This source file includes following definitions.
- nv40_ram_calc
- nv40_ram_prog
- nv40_ram_tidy
- nv40_ram_new_
- nv40_ram_new
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 #include "ramnv40.h"
25
26 #include <subdev/bios.h>
27 #include <subdev/bios/bit.h>
28 #include <subdev/bios/init.h>
29 #include <subdev/bios/pll.h>
30 #include <subdev/clk/pll.h>
31 #include <subdev/timer.h>
32
33 static int
34 nv40_ram_calc(struct nvkm_ram *base, u32 freq)
35 {
36 struct nv40_ram *ram = nv40_ram(base);
37 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
38 struct nvkm_bios *bios = subdev->device->bios;
39 struct nvbios_pll pll;
40 int N1, M1, N2, M2;
41 int log2P, ret;
42
43 ret = nvbios_pll_parse(bios, 0x04, &pll);
44 if (ret) {
45 nvkm_error(subdev, "mclk pll data not found\n");
46 return ret;
47 }
48
49 ret = nv04_pll_calc(subdev, &pll, freq, &N1, &M1, &N2, &M2, &log2P);
50 if (ret < 0)
51 return ret;
52
53 ram->ctrl = 0x80000000 | (log2P << 16);
54 ram->ctrl |= min(pll.bias_p + log2P, (int)pll.max_p) << 20;
55 if (N2 == M2) {
56 ram->ctrl |= 0x00000100;
57 ram->coef = (N1 << 8) | M1;
58 } else {
59 ram->ctrl |= 0x40000000;
60 ram->coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
61 }
62
63 return 0;
64 }
65
66 static int
67 nv40_ram_prog(struct nvkm_ram *base)
68 {
69 struct nv40_ram *ram = nv40_ram(base);
70 struct nvkm_subdev *subdev = &ram->base.fb->subdev;
71 struct nvkm_device *device = subdev->device;
72 struct nvkm_bios *bios = device->bios;
73 struct bit_entry M;
74 u32 crtc_mask = 0;
75 u8 sr1[2];
76 int i;
77
78
79 for (i = 0; i < 2; i++) {
80 u32 vbl = nvkm_rd32(device, 0x600808 + (i * 0x2000));
81 u32 cnt = 0;
82 do {
83 if (vbl != nvkm_rd32(device, 0x600808 + (i * 0x2000))) {
84 nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
85 sr1[i] = nvkm_rd08(device, 0x0c03c5 + (i * 0x2000));
86 if (!(sr1[i] & 0x20))
87 crtc_mask |= (1 << i);
88 break;
89 }
90 udelay(1);
91 } while (cnt++ < 32);
92 }
93
94
95 for (i = 0; i < 2; i++) {
96 if (!(crtc_mask & (1 << i)))
97 continue;
98
99 nvkm_msec(device, 2000,
100 u32 tmp = nvkm_rd32(device, 0x600808 + (i * 0x2000));
101 if (!(tmp & 0x00010000))
102 break;
103 );
104
105 nvkm_msec(device, 2000,
106 u32 tmp = nvkm_rd32(device, 0x600808 + (i * 0x2000));
107 if ( (tmp & 0x00010000))
108 break;
109 );
110
111 nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
112 nvkm_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
113 }
114
115
116 nvkm_wr32(device, 0x1002d4, 0x00000001);
117 nvkm_wr32(device, 0x1002d0, 0x00000001);
118 nvkm_wr32(device, 0x1002d0, 0x00000001);
119 nvkm_mask(device, 0x100210, 0x80000000, 0x00000000);
120 nvkm_wr32(device, 0x1002dc, 0x00000001);
121
122
123 nvkm_mask(device, 0x00c040, 0x0000c000, 0x00000000);
124 switch (device->chipset) {
125 case 0x40:
126 case 0x45:
127 case 0x41:
128 case 0x42:
129 case 0x47:
130 nvkm_mask(device, 0x004044, 0xc0771100, ram->ctrl);
131 nvkm_mask(device, 0x00402c, 0xc0771100, ram->ctrl);
132 nvkm_wr32(device, 0x004048, ram->coef);
133 nvkm_wr32(device, 0x004030, ram->coef);
134
135 case 0x43:
136 case 0x49:
137 case 0x4b:
138 nvkm_mask(device, 0x004038, 0xc0771100, ram->ctrl);
139 nvkm_wr32(device, 0x00403c, ram->coef);
140
141 default:
142 nvkm_mask(device, 0x004020, 0xc0771100, ram->ctrl);
143 nvkm_wr32(device, 0x004024, ram->coef);
144 break;
145 }
146 udelay(100);
147 nvkm_mask(device, 0x00c040, 0x0000c000, 0x0000c000);
148
149
150 nvkm_wr32(device, 0x1002dc, 0x00000000);
151 nvkm_mask(device, 0x100210, 0x80000000, 0x80000000);
152 udelay(100);
153
154
155 if (!bit_entry(bios, 'M', &M))
156 nvbios_init(subdev, nvbios_rd16(bios, M.offset + 0x00));
157
158
159
160
161 for (i = 0; i < 2; i++) {
162 if (!(crtc_mask & (1 << i)))
163 continue;
164
165 nvkm_msec(device, 2000,
166 u32 tmp = nvkm_rd32(device, 0x600808 + (i * 0x2000));
167 if ( (tmp & 0x00010000))
168 break;
169 );
170
171 nvkm_wr08(device, 0x0c03c4 + (i * 0x2000), 0x01);
172 nvkm_wr08(device, 0x0c03c5 + (i * 0x2000), sr1[i]);
173 }
174
175 return 0;
176 }
177
178 static void
179 nv40_ram_tidy(struct nvkm_ram *base)
180 {
181 }
182
183 static const struct nvkm_ram_func
184 nv40_ram_func = {
185 .calc = nv40_ram_calc,
186 .prog = nv40_ram_prog,
187 .tidy = nv40_ram_tidy,
188 };
189
190 int
191 nv40_ram_new_(struct nvkm_fb *fb, enum nvkm_ram_type type, u64 size,
192 struct nvkm_ram **pram)
193 {
194 struct nv40_ram *ram;
195 if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
196 return -ENOMEM;
197 *pram = &ram->base;
198 return nvkm_ram_ctor(&nv40_ram_func, fb, type, size, &ram->base);
199 }
200
201 int
202 nv40_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
203 {
204 struct nvkm_device *device = fb->subdev.device;
205 u32 pbus1218 = nvkm_rd32(device, 0x001218);
206 u32 size = nvkm_rd32(device, 0x10020c) & 0xff000000;
207 enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
208 int ret;
209
210 switch (pbus1218 & 0x00000300) {
211 case 0x00000000: type = NVKM_RAM_TYPE_SDRAM; break;
212 case 0x00000100: type = NVKM_RAM_TYPE_DDR1 ; break;
213 case 0x00000200: type = NVKM_RAM_TYPE_GDDR3; break;
214 case 0x00000300: type = NVKM_RAM_TYPE_DDR2 ; break;
215 }
216
217 ret = nv40_ram_new_(fb, type, size, pram);
218 if (ret)
219 return ret;
220
221 (*pram)->parts = (nvkm_rd32(device, 0x100200) & 0x00000003) + 1;
222 return 0;
223 }