root/drivers/gpu/drm/nouveau/nvkm/subdev/ltc/gf100.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gf100_ltc_cbc_clear
  2. gf100_ltc_cbc_wait
  3. gf100_ltc_zbc_clear_color
  4. gf100_ltc_zbc_clear_depth
  5. gf100_ltc_lts_intr
  6. gf100_ltc_intr
  7. gf100_ltc_invalidate
  8. gf100_ltc_flush
  9. gf100_ltc_oneinit_tag_ram
  10. gf100_ltc_oneinit
  11. gf100_ltc_init
  12. gf100_ltc_new

   1 /*
   2  * Copyright 2012 Red Hat Inc.
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice shall be included in
  12  * all copies or substantial portions of the Software.
  13  *
  14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20  * OTHER DEALINGS IN THE SOFTWARE.
  21  *
  22  * Authors: Ben Skeggs
  23  */
  24 #include "priv.h"
  25 
  26 #include <core/memory.h>
  27 #include <subdev/fb.h>
  28 #include <subdev/timer.h>
  29 
  30 void
  31 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
  32 {
  33         struct nvkm_device *device = ltc->subdev.device;
  34         nvkm_wr32(device, 0x17e8cc, start);
  35         nvkm_wr32(device, 0x17e8d0, limit);
  36         nvkm_wr32(device, 0x17e8c8, 0x00000004);
  37 }
  38 
  39 void
  40 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
  41 {
  42         struct nvkm_device *device = ltc->subdev.device;
  43         int c, s;
  44         for (c = 0; c < ltc->ltc_nr; c++) {
  45                 for (s = 0; s < ltc->lts_nr; s++) {
  46                         const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
  47                         nvkm_msec(device, 2000,
  48                                 if (!nvkm_rd32(device, addr))
  49                                         break;
  50                         );
  51                 }
  52         }
  53 }
  54 
  55 void
  56 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
  57 {
  58         struct nvkm_device *device = ltc->subdev.device;
  59         nvkm_mask(device, 0x17ea44, 0x0000000f, i);
  60         nvkm_wr32(device, 0x17ea48, color[0]);
  61         nvkm_wr32(device, 0x17ea4c, color[1]);
  62         nvkm_wr32(device, 0x17ea50, color[2]);
  63         nvkm_wr32(device, 0x17ea54, color[3]);
  64 }
  65 
  66 void
  67 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
  68 {
  69         struct nvkm_device *device = ltc->subdev.device;
  70         nvkm_mask(device, 0x17ea44, 0x0000000f, i);
  71         nvkm_wr32(device, 0x17ea58, depth);
  72 }
  73 
  74 const struct nvkm_bitfield
  75 gf100_ltc_lts_intr_name[] = {
  76         { 0x00000001, "IDLE_ERROR_IQ" },
  77         { 0x00000002, "IDLE_ERROR_CBC" },
  78         { 0x00000004, "IDLE_ERROR_TSTG" },
  79         { 0x00000008, "IDLE_ERROR_DSTG" },
  80         { 0x00000010, "EVICTED_CB" },
  81         { 0x00000020, "ILLEGAL_COMPSTAT" },
  82         { 0x00000040, "BLOCKLINEAR_CB" },
  83         { 0x00000100, "ECC_SEC_ERROR" },
  84         { 0x00000200, "ECC_DED_ERROR" },
  85         { 0x00000400, "DEBUG" },
  86         { 0x00000800, "ATOMIC_TO_Z" },
  87         { 0x00001000, "ILLEGAL_ATOMIC" },
  88         { 0x00002000, "BLKACTIVITY_ERR" },
  89         {}
  90 };
  91 
  92 static void
  93 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
  94 {
  95         struct nvkm_subdev *subdev = &ltc->subdev;
  96         struct nvkm_device *device = subdev->device;
  97         u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
  98         u32 intr = nvkm_rd32(device, base + 0x020);
  99         u32 stat = intr & 0x0000ffff;
 100         char msg[128];
 101 
 102         if (stat) {
 103                 nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
 104                 nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
 105         }
 106 
 107         nvkm_wr32(device, base + 0x020, intr);
 108 }
 109 
 110 void
 111 gf100_ltc_intr(struct nvkm_ltc *ltc)
 112 {
 113         struct nvkm_device *device = ltc->subdev.device;
 114         u32 mask;
 115 
 116         mask = nvkm_rd32(device, 0x00017c);
 117         while (mask) {
 118                 u32 s, c = __ffs(mask);
 119                 for (s = 0; s < ltc->lts_nr; s++)
 120                         gf100_ltc_lts_intr(ltc, c, s);
 121                 mask &= ~(1 << c);
 122         }
 123 }
 124 
 125 void
 126 gf100_ltc_invalidate(struct nvkm_ltc *ltc)
 127 {
 128         struct nvkm_device *device = ltc->subdev.device;
 129         s64 taken;
 130 
 131         nvkm_wr32(device, 0x70004, 0x00000001);
 132         taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
 133 
 134         if (taken > 0)
 135                 nvkm_debug(&ltc->subdev, "LTC invalidate took %lld ns\n", taken);
 136 }
 137 
 138 void
 139 gf100_ltc_flush(struct nvkm_ltc *ltc)
 140 {
 141         struct nvkm_device *device = ltc->subdev.device;
 142         s64 taken;
 143 
 144         nvkm_wr32(device, 0x70010, 0x00000001);
 145         taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
 146 
 147         if (taken > 0)
 148                 nvkm_debug(&ltc->subdev, "LTC flush took %lld ns\n", taken);
 149 }
 150 
 151 /* TODO: Figure out tag memory details and drop the over-cautious allocation.
 152  */
 153 int
 154 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
 155 {
 156         struct nvkm_device *device = ltc->subdev.device;
 157         struct nvkm_fb *fb = device->fb;
 158         struct nvkm_ram *ram = fb->ram;
 159         u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
 160         u32 tag_size, tag_margin, tag_align;
 161         int ret;
 162 
 163         /* No VRAM, no tags for now. */
 164         if (!ram) {
 165                 ltc->num_tags = 0;
 166                 goto mm_init;
 167         }
 168 
 169         /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */
 170         ltc->num_tags = (ram->size >> 17) / 4;
 171         if (ltc->num_tags > (1 << bits))
 172                 ltc->num_tags = 1 << bits; /* we have 16/17 bits in PTE */
 173         ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */
 174 
 175         tag_align = ltc->ltc_nr * 0x800;
 176         tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
 177 
 178         /* 4 part 4 sub: 0x2000 bytes for 56 tags */
 179         /* 3 part 4 sub: 0x6000 bytes for 168 tags */
 180         /*
 181          * About 147 bytes per tag. Let's be safe and allocate x2, which makes
 182          * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags.
 183          *
 184          * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %.
 185          */
 186         tag_size  = (ltc->num_tags / 64) * 0x6000 + tag_margin;
 187         tag_size += tag_align;
 188 
 189         ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
 190                            true, true, &ltc->tag_ram);
 191         if (ret) {
 192                 ltc->num_tags = 0;
 193         } else {
 194                 u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
 195 
 196                 tag_base += tag_align - 1;
 197                 do_div(tag_base, tag_align);
 198 
 199                 ltc->tag_base = tag_base;
 200         }
 201 
 202 mm_init:
 203         nvkm_mm_fini(&fb->tags);
 204         return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
 205 }
 206 
 207 int
 208 gf100_ltc_oneinit(struct nvkm_ltc *ltc)
 209 {
 210         struct nvkm_device *device = ltc->subdev.device;
 211         const u32 parts = nvkm_rd32(device, 0x022438);
 212         const u32  mask = nvkm_rd32(device, 0x022554);
 213         const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
 214         int i;
 215 
 216         for (i = 0; i < parts; i++) {
 217                 if (!(mask & (1 << i)))
 218                         ltc->ltc_nr++;
 219         }
 220         ltc->lts_nr = slice;
 221 
 222         return gf100_ltc_oneinit_tag_ram(ltc);
 223 }
 224 
 225 static void
 226 gf100_ltc_init(struct nvkm_ltc *ltc)
 227 {
 228         struct nvkm_device *device = ltc->subdev.device;
 229         u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
 230 
 231         nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */
 232         nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
 233         nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
 234         nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
 235 }
 236 
 237 static const struct nvkm_ltc_func
 238 gf100_ltc = {
 239         .oneinit = gf100_ltc_oneinit,
 240         .init = gf100_ltc_init,
 241         .intr = gf100_ltc_intr,
 242         .cbc_clear = gf100_ltc_cbc_clear,
 243         .cbc_wait = gf100_ltc_cbc_wait,
 244         .zbc = 16,
 245         .zbc_clear_color = gf100_ltc_zbc_clear_color,
 246         .zbc_clear_depth = gf100_ltc_zbc_clear_depth,
 247         .invalidate = gf100_ltc_invalidate,
 248         .flush = gf100_ltc_flush,
 249 };
 250 
 251 int
 252 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
 253 {
 254         return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
 255 }

/* [<][>][^][v][top][bottom][index][help] */