This source file includes following definitions.
- gf100_ltc_cbc_clear
- gf100_ltc_cbc_wait
- gf100_ltc_zbc_clear_color
- gf100_ltc_zbc_clear_depth
- gf100_ltc_lts_intr
- gf100_ltc_intr
- gf100_ltc_invalidate
- gf100_ltc_flush
- gf100_ltc_oneinit_tag_ram
- gf100_ltc_oneinit
- gf100_ltc_init
- gf100_ltc_new
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 #include "priv.h"
25
26 #include <core/memory.h>
27 #include <subdev/fb.h>
28 #include <subdev/timer.h>
29
30 void
31 gf100_ltc_cbc_clear(struct nvkm_ltc *ltc, u32 start, u32 limit)
32 {
33 struct nvkm_device *device = ltc->subdev.device;
34 nvkm_wr32(device, 0x17e8cc, start);
35 nvkm_wr32(device, 0x17e8d0, limit);
36 nvkm_wr32(device, 0x17e8c8, 0x00000004);
37 }
38
39 void
40 gf100_ltc_cbc_wait(struct nvkm_ltc *ltc)
41 {
42 struct nvkm_device *device = ltc->subdev.device;
43 int c, s;
44 for (c = 0; c < ltc->ltc_nr; c++) {
45 for (s = 0; s < ltc->lts_nr; s++) {
46 const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400);
47 nvkm_msec(device, 2000,
48 if (!nvkm_rd32(device, addr))
49 break;
50 );
51 }
52 }
53 }
54
55 void
56 gf100_ltc_zbc_clear_color(struct nvkm_ltc *ltc, int i, const u32 color[4])
57 {
58 struct nvkm_device *device = ltc->subdev.device;
59 nvkm_mask(device, 0x17ea44, 0x0000000f, i);
60 nvkm_wr32(device, 0x17ea48, color[0]);
61 nvkm_wr32(device, 0x17ea4c, color[1]);
62 nvkm_wr32(device, 0x17ea50, color[2]);
63 nvkm_wr32(device, 0x17ea54, color[3]);
64 }
65
66 void
67 gf100_ltc_zbc_clear_depth(struct nvkm_ltc *ltc, int i, const u32 depth)
68 {
69 struct nvkm_device *device = ltc->subdev.device;
70 nvkm_mask(device, 0x17ea44, 0x0000000f, i);
71 nvkm_wr32(device, 0x17ea58, depth);
72 }
73
74 const struct nvkm_bitfield
75 gf100_ltc_lts_intr_name[] = {
76 { 0x00000001, "IDLE_ERROR_IQ" },
77 { 0x00000002, "IDLE_ERROR_CBC" },
78 { 0x00000004, "IDLE_ERROR_TSTG" },
79 { 0x00000008, "IDLE_ERROR_DSTG" },
80 { 0x00000010, "EVICTED_CB" },
81 { 0x00000020, "ILLEGAL_COMPSTAT" },
82 { 0x00000040, "BLOCKLINEAR_CB" },
83 { 0x00000100, "ECC_SEC_ERROR" },
84 { 0x00000200, "ECC_DED_ERROR" },
85 { 0x00000400, "DEBUG" },
86 { 0x00000800, "ATOMIC_TO_Z" },
87 { 0x00001000, "ILLEGAL_ATOMIC" },
88 { 0x00002000, "BLKACTIVITY_ERR" },
89 {}
90 };
91
92 static void
93 gf100_ltc_lts_intr(struct nvkm_ltc *ltc, int c, int s)
94 {
95 struct nvkm_subdev *subdev = <c->subdev;
96 struct nvkm_device *device = subdev->device;
97 u32 base = 0x141000 + (c * 0x2000) + (s * 0x400);
98 u32 intr = nvkm_rd32(device, base + 0x020);
99 u32 stat = intr & 0x0000ffff;
100 char msg[128];
101
102 if (stat) {
103 nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat);
104 nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg);
105 }
106
107 nvkm_wr32(device, base + 0x020, intr);
108 }
109
110 void
111 gf100_ltc_intr(struct nvkm_ltc *ltc)
112 {
113 struct nvkm_device *device = ltc->subdev.device;
114 u32 mask;
115
116 mask = nvkm_rd32(device, 0x00017c);
117 while (mask) {
118 u32 s, c = __ffs(mask);
119 for (s = 0; s < ltc->lts_nr; s++)
120 gf100_ltc_lts_intr(ltc, c, s);
121 mask &= ~(1 << c);
122 }
123 }
124
125 void
126 gf100_ltc_invalidate(struct nvkm_ltc *ltc)
127 {
128 struct nvkm_device *device = ltc->subdev.device;
129 s64 taken;
130
131 nvkm_wr32(device, 0x70004, 0x00000001);
132 taken = nvkm_wait_msec(device, 2000, 0x70004, 0x00000003, 0x00000000);
133
134 if (taken > 0)
135 nvkm_debug(<c->subdev, "LTC invalidate took %lld ns\n", taken);
136 }
137
138 void
139 gf100_ltc_flush(struct nvkm_ltc *ltc)
140 {
141 struct nvkm_device *device = ltc->subdev.device;
142 s64 taken;
143
144 nvkm_wr32(device, 0x70010, 0x00000001);
145 taken = nvkm_wait_msec(device, 2000, 0x70010, 0x00000003, 0x00000000);
146
147 if (taken > 0)
148 nvkm_debug(<c->subdev, "LTC flush took %lld ns\n", taken);
149 }
150
151
152
153 int
154 gf100_ltc_oneinit_tag_ram(struct nvkm_ltc *ltc)
155 {
156 struct nvkm_device *device = ltc->subdev.device;
157 struct nvkm_fb *fb = device->fb;
158 struct nvkm_ram *ram = fb->ram;
159 u32 bits = (nvkm_rd32(device, 0x100c80) & 0x00001000) ? 16 : 17;
160 u32 tag_size, tag_margin, tag_align;
161 int ret;
162
163
164 if (!ram) {
165 ltc->num_tags = 0;
166 goto mm_init;
167 }
168
169
170 ltc->num_tags = (ram->size >> 17) / 4;
171 if (ltc->num_tags > (1 << bits))
172 ltc->num_tags = 1 << bits;
173 ltc->num_tags = (ltc->num_tags + 63) & ~63;
174
175 tag_align = ltc->ltc_nr * 0x800;
176 tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align;
177
178
179
180
181
182
183
184
185
186 tag_size = (ltc->num_tags / 64) * 0x6000 + tag_margin;
187 tag_size += tag_align;
188
189 ret = nvkm_ram_get(device, NVKM_RAM_MM_NORMAL, 0x01, 12, tag_size,
190 true, true, <c->tag_ram);
191 if (ret) {
192 ltc->num_tags = 0;
193 } else {
194 u64 tag_base = nvkm_memory_addr(ltc->tag_ram) + tag_margin;
195
196 tag_base += tag_align - 1;
197 do_div(tag_base, tag_align);
198
199 ltc->tag_base = tag_base;
200 }
201
202 mm_init:
203 nvkm_mm_fini(&fb->tags);
204 return nvkm_mm_init(&fb->tags, 0, 0, ltc->num_tags, 1);
205 }
206
207 int
208 gf100_ltc_oneinit(struct nvkm_ltc *ltc)
209 {
210 struct nvkm_device *device = ltc->subdev.device;
211 const u32 parts = nvkm_rd32(device, 0x022438);
212 const u32 mask = nvkm_rd32(device, 0x022554);
213 const u32 slice = nvkm_rd32(device, 0x17e8dc) >> 28;
214 int i;
215
216 for (i = 0; i < parts; i++) {
217 if (!(mask & (1 << i)))
218 ltc->ltc_nr++;
219 }
220 ltc->lts_nr = slice;
221
222 return gf100_ltc_oneinit_tag_ram(ltc);
223 }
224
225 static void
226 gf100_ltc_init(struct nvkm_ltc *ltc)
227 {
228 struct nvkm_device *device = ltc->subdev.device;
229 u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001);
230
231 nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000);
232 nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr);
233 nvkm_wr32(device, 0x17e8d4, ltc->tag_base);
234 nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000);
235 }
236
237 static const struct nvkm_ltc_func
238 gf100_ltc = {
239 .oneinit = gf100_ltc_oneinit,
240 .init = gf100_ltc_init,
241 .intr = gf100_ltc_intr,
242 .cbc_clear = gf100_ltc_cbc_clear,
243 .cbc_wait = gf100_ltc_cbc_wait,
244 .zbc = 16,
245 .zbc_clear_color = gf100_ltc_zbc_clear_color,
246 .zbc_clear_depth = gf100_ltc_zbc_clear_depth,
247 .invalidate = gf100_ltc_invalidate,
248 .flush = gf100_ltc_flush,
249 };
250
251 int
252 gf100_ltc_new(struct nvkm_device *device, int index, struct nvkm_ltc **pltc)
253 {
254 return nvkm_ltc_new_(&gf100_ltc, device, index, pltc);
255 }