root/arch/arm64/kernel/setup.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. smp_setup_processor_id
  2. arch_match_cpu_phys_id
  3. smp_build_mpidr_hash
  4. setup_machine_fdt
  5. request_standard_resources
  6. reserve_memblock_reserved_regions
  7. setup_arch
  8. cpu_can_disable
  9. topology_init
  10. dump_kernel_offset
  11. register_kernel_offset_dumper

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Based on arch/arm/kernel/setup.c
   4  *
   5  * Copyright (C) 1995-2001 Russell King
   6  * Copyright (C) 2012 ARM Ltd.
   7  */
   8 
   9 #include <linux/acpi.h>
  10 #include <linux/export.h>
  11 #include <linux/kernel.h>
  12 #include <linux/stddef.h>
  13 #include <linux/ioport.h>
  14 #include <linux/delay.h>
  15 #include <linux/initrd.h>
  16 #include <linux/console.h>
  17 #include <linux/cache.h>
  18 #include <linux/screen_info.h>
  19 #include <linux/init.h>
  20 #include <linux/kexec.h>
  21 #include <linux/root_dev.h>
  22 #include <linux/cpu.h>
  23 #include <linux/interrupt.h>
  24 #include <linux/smp.h>
  25 #include <linux/fs.h>
  26 #include <linux/proc_fs.h>
  27 #include <linux/memblock.h>
  28 #include <linux/of_fdt.h>
  29 #include <linux/efi.h>
  30 #include <linux/psci.h>
  31 #include <linux/sched/task.h>
  32 #include <linux/mm.h>
  33 
  34 #include <asm/acpi.h>
  35 #include <asm/fixmap.h>
  36 #include <asm/cpu.h>
  37 #include <asm/cputype.h>
  38 #include <asm/daifflags.h>
  39 #include <asm/elf.h>
  40 #include <asm/cpufeature.h>
  41 #include <asm/cpu_ops.h>
  42 #include <asm/kasan.h>
  43 #include <asm/numa.h>
  44 #include <asm/sections.h>
  45 #include <asm/setup.h>
  46 #include <asm/smp_plat.h>
  47 #include <asm/cacheflush.h>
  48 #include <asm/tlbflush.h>
  49 #include <asm/traps.h>
  50 #include <asm/efi.h>
  51 #include <asm/xen/hypervisor.h>
  52 #include <asm/mmu_context.h>
  53 
  54 static int num_standard_resources;
  55 static struct resource *standard_resources;
  56 
  57 phys_addr_t __fdt_pointer __initdata;
  58 
  59 /*
  60  * Standard memory resources
  61  */
  62 static struct resource mem_res[] = {
  63         {
  64                 .name = "Kernel code",
  65                 .start = 0,
  66                 .end = 0,
  67                 .flags = IORESOURCE_SYSTEM_RAM
  68         },
  69         {
  70                 .name = "Kernel data",
  71                 .start = 0,
  72                 .end = 0,
  73                 .flags = IORESOURCE_SYSTEM_RAM
  74         }
  75 };
  76 
  77 #define kernel_code mem_res[0]
  78 #define kernel_data mem_res[1]
  79 
  80 /*
  81  * The recorded values of x0 .. x3 upon kernel entry.
  82  */
  83 u64 __cacheline_aligned boot_args[4];
  84 
  85 void __init smp_setup_processor_id(void)
  86 {
  87         u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  88         cpu_logical_map(0) = mpidr;
  89 
  90         /*
  91          * clear __my_cpu_offset on boot CPU to avoid hang caused by
  92          * using percpu variable early, for example, lockdep will
  93          * access percpu variable inside lock_release
  94          */
  95         set_my_cpu_offset(0);
  96         pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
  97                 (unsigned long)mpidr, read_cpuid_id());
  98 }
  99 
 100 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 101 {
 102         return phys_id == cpu_logical_map(cpu);
 103 }
 104 
 105 struct mpidr_hash mpidr_hash;
 106 /**
 107  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
 108  *                        level in order to build a linear index from an
 109  *                        MPIDR value. Resulting algorithm is a collision
 110  *                        free hash carried out through shifting and ORing
 111  */
 112 static void __init smp_build_mpidr_hash(void)
 113 {
 114         u32 i, affinity, fs[4], bits[4], ls;
 115         u64 mask = 0;
 116         /*
 117          * Pre-scan the list of MPIDRS and filter out bits that do
 118          * not contribute to affinity levels, ie they never toggle.
 119          */
 120         for_each_possible_cpu(i)
 121                 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
 122         pr_debug("mask of set bits %#llx\n", mask);
 123         /*
 124          * Find and stash the last and first bit set at all affinity levels to
 125          * check how many bits are required to represent them.
 126          */
 127         for (i = 0; i < 4; i++) {
 128                 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
 129                 /*
 130                  * Find the MSB bit and LSB bits position
 131                  * to determine how many bits are required
 132                  * to express the affinity level.
 133                  */
 134                 ls = fls(affinity);
 135                 fs[i] = affinity ? ffs(affinity) - 1 : 0;
 136                 bits[i] = ls - fs[i];
 137         }
 138         /*
 139          * An index can be created from the MPIDR_EL1 by isolating the
 140          * significant bits at each affinity level and by shifting
 141          * them in order to compress the 32 bits values space to a
 142          * compressed set of values. This is equivalent to hashing
 143          * the MPIDR_EL1 through shifting and ORing. It is a collision free
 144          * hash though not minimal since some levels might contain a number
 145          * of CPUs that is not an exact power of 2 and their bit
 146          * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
 147          */
 148         mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
 149         mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
 150         mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
 151                                                 (bits[1] + bits[0]);
 152         mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
 153                                   fs[3] - (bits[2] + bits[1] + bits[0]);
 154         mpidr_hash.mask = mask;
 155         mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
 156         pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
 157                 mpidr_hash.shift_aff[0],
 158                 mpidr_hash.shift_aff[1],
 159                 mpidr_hash.shift_aff[2],
 160                 mpidr_hash.shift_aff[3],
 161                 mpidr_hash.mask,
 162                 mpidr_hash.bits);
 163         /*
 164          * 4x is an arbitrary value used to warn on a hash table much bigger
 165          * than expected on most systems.
 166          */
 167         if (mpidr_hash_size() > 4 * num_possible_cpus())
 168                 pr_warn("Large number of MPIDR hash buckets detected\n");
 169 }
 170 
 171 static void __init setup_machine_fdt(phys_addr_t dt_phys)
 172 {
 173         int size;
 174         void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
 175         const char *name;
 176 
 177         if (dt_virt)
 178                 memblock_reserve(dt_phys, size);
 179 
 180         if (!dt_virt || !early_init_dt_scan(dt_virt)) {
 181                 pr_crit("\n"
 182                         "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
 183                         "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
 184                         "\nPlease check your bootloader.",
 185                         &dt_phys, dt_virt);
 186 
 187                 while (true)
 188                         cpu_relax();
 189         }
 190 
 191         /* Early fixups are done, map the FDT as read-only now */
 192         fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
 193 
 194         name = of_flat_dt_get_machine_name();
 195         if (!name)
 196                 return;
 197 
 198         pr_info("Machine model: %s\n", name);
 199         dump_stack_set_arch_desc("%s (DT)", name);
 200 }
 201 
 202 static void __init request_standard_resources(void)
 203 {
 204         struct memblock_region *region;
 205         struct resource *res;
 206         unsigned long i = 0;
 207         size_t res_size;
 208 
 209         kernel_code.start   = __pa_symbol(_text);
 210         kernel_code.end     = __pa_symbol(__init_begin - 1);
 211         kernel_data.start   = __pa_symbol(_sdata);
 212         kernel_data.end     = __pa_symbol(_end - 1);
 213 
 214         num_standard_resources = memblock.memory.cnt;
 215         res_size = num_standard_resources * sizeof(*standard_resources);
 216         standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
 217         if (!standard_resources)
 218                 panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
 219 
 220         for_each_memblock(memory, region) {
 221                 res = &standard_resources[i++];
 222                 if (memblock_is_nomap(region)) {
 223                         res->name  = "reserved";
 224                         res->flags = IORESOURCE_MEM;
 225                 } else {
 226                         res->name  = "System RAM";
 227                         res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 228                 }
 229                 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
 230                 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
 231 
 232                 request_resource(&iomem_resource, res);
 233 
 234                 if (kernel_code.start >= res->start &&
 235                     kernel_code.end <= res->end)
 236                         request_resource(res, &kernel_code);
 237                 if (kernel_data.start >= res->start &&
 238                     kernel_data.end <= res->end)
 239                         request_resource(res, &kernel_data);
 240 #ifdef CONFIG_KEXEC_CORE
 241                 /* Userspace will find "Crash kernel" region in /proc/iomem. */
 242                 if (crashk_res.end && crashk_res.start >= res->start &&
 243                     crashk_res.end <= res->end)
 244                         request_resource(res, &crashk_res);
 245 #endif
 246         }
 247 }
 248 
 249 static int __init reserve_memblock_reserved_regions(void)
 250 {
 251         u64 i, j;
 252 
 253         for (i = 0; i < num_standard_resources; ++i) {
 254                 struct resource *mem = &standard_resources[i];
 255                 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
 256 
 257                 if (!memblock_is_region_reserved(mem->start, mem_size))
 258                         continue;
 259 
 260                 for_each_reserved_mem_region(j, &r_start, &r_end) {
 261                         resource_size_t start, end;
 262 
 263                         start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
 264                         end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
 265 
 266                         if (start > mem->end || end < mem->start)
 267                                 continue;
 268 
 269                         reserve_region_with_split(mem, start, end, "reserved");
 270                 }
 271         }
 272 
 273         return 0;
 274 }
 275 arch_initcall(reserve_memblock_reserved_regions);
 276 
 277 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
 278 
 279 void __init setup_arch(char **cmdline_p)
 280 {
 281         init_mm.start_code = (unsigned long) _text;
 282         init_mm.end_code   = (unsigned long) _etext;
 283         init_mm.end_data   = (unsigned long) _edata;
 284         init_mm.brk        = (unsigned long) _end;
 285 
 286         *cmdline_p = boot_command_line;
 287 
 288         early_fixmap_init();
 289         early_ioremap_init();
 290 
 291         setup_machine_fdt(__fdt_pointer);
 292 
 293         /*
 294          * Initialise the static keys early as they may be enabled by the
 295          * cpufeature code and early parameters.
 296          */
 297         jump_label_init();
 298         parse_early_param();
 299 
 300         /*
 301          * Unmask asynchronous aborts and fiq after bringing up possible
 302          * earlycon. (Report possible System Errors once we can report this
 303          * occurred).
 304          */
 305         local_daif_restore(DAIF_PROCCTX_NOIRQ);
 306 
 307         /*
 308          * TTBR0 is only used for the identity mapping at this stage. Make it
 309          * point to zero page to avoid speculatively fetching new entries.
 310          */
 311         cpu_uninstall_idmap();
 312 
 313         xen_early_init();
 314         efi_init();
 315         arm64_memblock_init();
 316 
 317         paging_init();
 318 
 319         acpi_table_upgrade();
 320 
 321         /* Parse the ACPI tables for possible boot-time configuration */
 322         acpi_boot_table_init();
 323 
 324         if (acpi_disabled)
 325                 unflatten_device_tree();
 326 
 327         bootmem_init();
 328 
 329         kasan_init();
 330 
 331         request_standard_resources();
 332 
 333         early_ioremap_reset();
 334 
 335         if (acpi_disabled)
 336                 psci_dt_init();
 337         else
 338                 psci_acpi_init();
 339 
 340         cpu_read_bootcpu_ops();
 341         smp_init_cpus();
 342         smp_build_mpidr_hash();
 343 
 344         /* Init percpu seeds for random tags after cpus are set up. */
 345         kasan_init_tags();
 346 
 347 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
 348         /*
 349          * Make sure init_thread_info.ttbr0 always generates translation
 350          * faults in case uaccess_enable() is inadvertently called by the init
 351          * thread.
 352          */
 353         init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page);
 354 #endif
 355 
 356 #ifdef CONFIG_VT
 357         conswitchp = &dummy_con;
 358 #endif
 359         if (boot_args[1] || boot_args[2] || boot_args[3]) {
 360                 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
 361                         "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
 362                         "This indicates a broken bootloader or old kernel\n",
 363                         boot_args[1], boot_args[2], boot_args[3]);
 364         }
 365 }
 366 
 367 static inline bool cpu_can_disable(unsigned int cpu)
 368 {
 369 #ifdef CONFIG_HOTPLUG_CPU
 370         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_can_disable)
 371                 return cpu_ops[cpu]->cpu_can_disable(cpu);
 372 #endif
 373         return false;
 374 }
 375 
 376 static int __init topology_init(void)
 377 {
 378         int i;
 379 
 380         for_each_online_node(i)
 381                 register_one_node(i);
 382 
 383         for_each_possible_cpu(i) {
 384                 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
 385                 cpu->hotpluggable = cpu_can_disable(i);
 386                 register_cpu(cpu, i);
 387         }
 388 
 389         return 0;
 390 }
 391 subsys_initcall(topology_init);
 392 
 393 /*
 394  * Dump out kernel offset information on panic.
 395  */
 396 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
 397                               void *p)
 398 {
 399         const unsigned long offset = kaslr_offset();
 400 
 401         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
 402                 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
 403                          offset, KIMAGE_VADDR);
 404                 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
 405         } else {
 406                 pr_emerg("Kernel Offset: disabled\n");
 407         }
 408         return 0;
 409 }
 410 
 411 static struct notifier_block kernel_offset_notifier = {
 412         .notifier_call = dump_kernel_offset
 413 };
 414 
 415 static int __init register_kernel_offset_dumper(void)
 416 {
 417         atomic_notifier_chain_register(&panic_notifier_list,
 418                                        &kernel_offset_notifier);
 419         return 0;
 420 }
 421 __initcall(register_kernel_offset_dumper);

/* [<][>][^][v][top][bottom][index][help] */