root/drivers/gpu/drm/i915/i915_syncmap.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. i915_syncmap_init
  2. __sync_seqno
  3. __sync_child
  4. __sync_branch_idx
  5. __sync_leaf_idx
  6. __sync_branch_prefix
  7. __sync_leaf_prefix
  8. seqno_later
  9. i915_syncmap_is_later
  10. __sync_alloc_leaf
  11. __sync_set_seqno
  12. __sync_set_child
  13. __sync_set
  14. i915_syncmap_set
  15. __sync_free
  16. i915_syncmap_free

   1 /*
   2  * Copyright © 2017 Intel Corporation
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice (including the next
  12  * paragraph) shall be included in all copies or substantial portions of the
  13  * Software.
  14  *
  15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21  * IN THE SOFTWARE.
  22  *
  23  */
  24 
  25 #include <linux/slab.h>
  26 
  27 #include "i915_syncmap.h"
  28 
  29 #include "i915_gem.h" /* GEM_BUG_ON() */
  30 #include "i915_selftest.h"
  31 
  32 #define SHIFT ilog2(KSYNCMAP)
  33 #define MASK (KSYNCMAP - 1)
  34 
  35 /*
  36  * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
  37  * context id to the last u32 fence seqno waited upon from that context.
  38  * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
  39  * the root. This allows us to access the whole tree via a single pointer
  40  * to the most recently used layer. We expect fence contexts to be dense
  41  * and most reuse to be on the same i915_gem_context but on neighbouring
  42  * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
  43  * effective lookup cache. If the new lookup is not on the same leaf, we
  44  * expect it to be on the neighbouring branch.
  45  *
  46  * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
  47  * allows us to store whether a particular seqno is valid (i.e. allows us
  48  * to distinguish unset from 0).
  49  *
  50  * A branch holds an array of layer pointers, and has height > 0, and always
  51  * has at least 2 layers (either branches or leaves) below it.
  52  *
  53  * For example,
  54  *      for x in
  55  *        0 1 2 0x10 0x11 0x200 0x201
  56  *        0x500000 0x500001 0x503000 0x503001
  57  *        0xE<<60:
  58  *              i915_syncmap_set(&sync, x, lower_32_bits(x));
  59  * will build a tree like:
  60  *      0xXXXXXXXXXXXXXXXX
  61  *      0-> 0x0000000000XXXXXX
  62  *      |   0-> 0x0000000000000XXX
  63  *      |   |   0-> 0x00000000000000XX
  64  *      |   |   |   0-> 0x000000000000000X 0:0, 1:1, 2:2
  65  *      |   |   |   1-> 0x000000000000001X 0:10, 1:11
  66  *      |   |   2-> 0x000000000000020X 0:200, 1:201
  67  *      |   5-> 0x000000000050XXXX
  68  *      |       0-> 0x000000000050000X 0:500000, 1:500001
  69  *      |       3-> 0x000000000050300X 0:503000, 1:503001
  70  *      e-> 0xe00000000000000X e:e
  71  */
  72 
  73 struct i915_syncmap {
  74         u64 prefix;
  75         unsigned int height;
  76         unsigned int bitmap;
  77         struct i915_syncmap *parent;
  78         /*
  79          * Following this header is an array of either seqno or child pointers:
  80          * union {
  81          *      u32 seqno[KSYNCMAP];
  82          *      struct i915_syncmap *child[KSYNCMAP];
  83          * };
  84          */
  85 };
  86 
  87 /**
  88  * i915_syncmap_init -- initialise the #i915_syncmap
  89  * @root: pointer to the #i915_syncmap
  90  */
  91 void i915_syncmap_init(struct i915_syncmap **root)
  92 {
  93         BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
  94         BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
  95         BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
  96         *root = NULL;
  97 }
  98 
  99 static inline u32 *__sync_seqno(struct i915_syncmap *p)
 100 {
 101         GEM_BUG_ON(p->height);
 102         return (u32 *)(p + 1);
 103 }
 104 
 105 static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
 106 {
 107         GEM_BUG_ON(!p->height);
 108         return (struct i915_syncmap **)(p + 1);
 109 }
 110 
 111 static inline unsigned int
 112 __sync_branch_idx(const struct i915_syncmap *p, u64 id)
 113 {
 114         return (id >> p->height) & MASK;
 115 }
 116 
 117 static inline unsigned int
 118 __sync_leaf_idx(const struct i915_syncmap *p, u64 id)
 119 {
 120         GEM_BUG_ON(p->height);
 121         return id & MASK;
 122 }
 123 
 124 static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
 125 {
 126         return id >> p->height >> SHIFT;
 127 }
 128 
 129 static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
 130 {
 131         GEM_BUG_ON(p->height);
 132         return id >> SHIFT;
 133 }
 134 
 135 static inline bool seqno_later(u32 a, u32 b)
 136 {
 137         return (s32)(a - b) >= 0;
 138 }
 139 
 140 /**
 141  * i915_syncmap_is_later -- compare against the last know sync point
 142  * @root: pointer to the #i915_syncmap
 143  * @id: the context id (other timeline) we are synchronising to
 144  * @seqno: the sequence number along the other timeline
 145  *
 146  * If we have already synchronised this @root timeline with another (@id) then
 147  * we can omit any repeated or earlier synchronisation requests. If the two
 148  * timelines are already coupled, we can also omit the dependency between the
 149  * two as that is already known via the timeline.
 150  *
 151  * Returns true if the two timelines are already synchronised wrt to @seqno,
 152  * false if not and the synchronisation must be emitted.
 153  */
 154 bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
 155 {
 156         struct i915_syncmap *p;
 157         unsigned int idx;
 158 
 159         p = *root;
 160         if (!p)
 161                 return false;
 162 
 163         if (likely(__sync_leaf_prefix(p, id) == p->prefix))
 164                 goto found;
 165 
 166         /* First climb the tree back to a parent branch */
 167         do {
 168                 p = p->parent;
 169                 if (!p)
 170                         return false;
 171 
 172                 if (__sync_branch_prefix(p, id) == p->prefix)
 173                         break;
 174         } while (1);
 175 
 176         /* And then descend again until we find our leaf */
 177         do {
 178                 if (!p->height)
 179                         break;
 180 
 181                 p = __sync_child(p)[__sync_branch_idx(p, id)];
 182                 if (!p)
 183                         return false;
 184 
 185                 if (__sync_branch_prefix(p, id) != p->prefix)
 186                         return false;
 187         } while (1);
 188 
 189         *root = p;
 190 found:
 191         idx = __sync_leaf_idx(p, id);
 192         if (!(p->bitmap & BIT(idx)))
 193                 return false;
 194 
 195         return seqno_later(__sync_seqno(p)[idx], seqno);
 196 }
 197 
 198 static struct i915_syncmap *
 199 __sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
 200 {
 201         struct i915_syncmap *p;
 202 
 203         p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
 204         if (unlikely(!p))
 205                 return NULL;
 206 
 207         p->parent = parent;
 208         p->height = 0;
 209         p->bitmap = 0;
 210         p->prefix = __sync_leaf_prefix(p, id);
 211         return p;
 212 }
 213 
 214 static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
 215 {
 216         unsigned int idx = __sync_leaf_idx(p, id);
 217 
 218         p->bitmap |= BIT(idx);
 219         __sync_seqno(p)[idx] = seqno;
 220 }
 221 
 222 static inline void __sync_set_child(struct i915_syncmap *p,
 223                                     unsigned int idx,
 224                                     struct i915_syncmap *child)
 225 {
 226         p->bitmap |= BIT(idx);
 227         __sync_child(p)[idx] = child;
 228 }
 229 
 230 static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
 231 {
 232         struct i915_syncmap *p = *root;
 233         unsigned int idx;
 234 
 235         if (!p) {
 236                 p = __sync_alloc_leaf(NULL, id);
 237                 if (unlikely(!p))
 238                         return -ENOMEM;
 239 
 240                 goto found;
 241         }
 242 
 243         /* Caller handled the likely cached case */
 244         GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
 245 
 246         /* Climb back up the tree until we find a common prefix */
 247         do {
 248                 if (!p->parent)
 249                         break;
 250 
 251                 p = p->parent;
 252 
 253                 if (__sync_branch_prefix(p, id) == p->prefix)
 254                         break;
 255         } while (1);
 256 
 257         /*
 258          * No shortcut, we have to descend the tree to find the right layer
 259          * containing this fence.
 260          *
 261          * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
 262          * or lower layers. Leaf nodes (height = 0) contain the fences, all
 263          * other nodes (height > 0) are internal layers that point to a lower
 264          * node. Each internal layer has at least 2 descendents.
 265          *
 266          * Starting at the top, we check whether the current prefix matches. If
 267          * it doesn't, we have gone past our target and need to insert a join
 268          * into the tree, and a new leaf node for the target as a descendent
 269          * of the join, as well as the original layer.
 270          *
 271          * The matching prefix means we are still following the right branch
 272          * of the tree. If it has height 0, we have found our leaf and just
 273          * need to replace the fence slot with ourselves. If the height is
 274          * not zero, our slot contains the next layer in the tree (unless
 275          * it is empty, in which case we can add ourselves as a new leaf).
 276          * As descend the tree the prefix grows (and height decreases).
 277          */
 278         do {
 279                 struct i915_syncmap *next;
 280 
 281                 if (__sync_branch_prefix(p, id) != p->prefix) {
 282                         unsigned int above;
 283 
 284                         /* Insert a join above the current layer */
 285                         next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
 286                                        GFP_KERNEL);
 287                         if (unlikely(!next))
 288                                 return -ENOMEM;
 289 
 290                         /* Compute the height at which these two diverge */
 291                         above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
 292                         above = round_up(above, SHIFT);
 293                         next->height = above + p->height;
 294                         next->prefix = __sync_branch_prefix(next, id);
 295 
 296                         /* Insert the join into the parent */
 297                         if (p->parent) {
 298                                 idx = __sync_branch_idx(p->parent, id);
 299                                 __sync_child(p->parent)[idx] = next;
 300                                 GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
 301                         }
 302                         next->parent = p->parent;
 303 
 304                         /* Compute the idx of the other branch, not our id! */
 305                         idx = p->prefix >> (above - SHIFT) & MASK;
 306                         __sync_set_child(next, idx, p);
 307                         p->parent = next;
 308 
 309                         /* Ascend to the join */
 310                         p = next;
 311                 } else {
 312                         if (!p->height)
 313                                 break;
 314                 }
 315 
 316                 /* Descend into the next layer */
 317                 GEM_BUG_ON(!p->height);
 318                 idx = __sync_branch_idx(p, id);
 319                 next = __sync_child(p)[idx];
 320                 if (!next) {
 321                         next = __sync_alloc_leaf(p, id);
 322                         if (unlikely(!next))
 323                                 return -ENOMEM;
 324 
 325                         __sync_set_child(p, idx, next);
 326                         p = next;
 327                         break;
 328                 }
 329 
 330                 p = next;
 331         } while (1);
 332 
 333 found:
 334         GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
 335         __sync_set_seqno(p, id, seqno);
 336         *root = p;
 337         return 0;
 338 }
 339 
 340 /**
 341  * i915_syncmap_set -- mark the most recent syncpoint between contexts
 342  * @root: pointer to the #i915_syncmap
 343  * @id: the context id (other timeline) we have synchronised to
 344  * @seqno: the sequence number along the other timeline
 345  *
 346  * When we synchronise this @root timeline with another (@id), we also know
 347  * that we have synchronized with all previous seqno along that timeline. If
 348  * we then have a request to synchronise with the same seqno or older, we can
 349  * omit it, see i915_syncmap_is_later()
 350  *
 351  * Returns 0 on success, or a negative error code.
 352  */
 353 int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
 354 {
 355         struct i915_syncmap *p = *root;
 356 
 357         /*
 358          * We expect to be called in sequence following is_later(id), which
 359          * should have preloaded the root for us.
 360          */
 361         if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
 362                 __sync_set_seqno(p, id, seqno);
 363                 return 0;
 364         }
 365 
 366         return __sync_set(root, id, seqno);
 367 }
 368 
 369 static void __sync_free(struct i915_syncmap *p)
 370 {
 371         if (p->height) {
 372                 unsigned int i;
 373 
 374                 while ((i = ffs(p->bitmap))) {
 375                         p->bitmap &= ~0u << i;
 376                         __sync_free(__sync_child(p)[i - 1]);
 377                 }
 378         }
 379 
 380         kfree(p);
 381 }
 382 
 383 /**
 384  * i915_syncmap_free -- free all memory associated with the syncmap
 385  * @root: pointer to the #i915_syncmap
 386  *
 387  * Either when the timeline is to be freed and we no longer need the sync
 388  * point tracking, or when the fences are all known to be signaled and the
 389  * sync point tracking is redundant, we can free the #i915_syncmap to recover
 390  * its allocations.
 391  *
 392  * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
 393  * reuse.
 394  */
 395 void i915_syncmap_free(struct i915_syncmap **root)
 396 {
 397         struct i915_syncmap *p;
 398 
 399         p = *root;
 400         if (!p)
 401                 return;
 402 
 403         while (p->parent)
 404                 p = p->parent;
 405 
 406         __sync_free(p);
 407         *root = NULL;
 408 }
 409 
 410 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
 411 #include "selftests/i915_syncmap.c"
 412 #endif

/* [<][>][^][v][top][bottom][index][help] */