root/drivers/gpu/drm/i915/i915_gem_gtt.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gen6_ggtt_invalidate
  2. guc_ggtt_invalidate
  3. gmch_ggtt_invalidate
  4. ppgtt_bind_vma
  5. ppgtt_unbind_vma
  6. ppgtt_set_pages
  7. clear_pages
  8. gen8_pte_encode
  9. gen8_pde_encode
  10. snb_pte_encode
  11. ivb_pte_encode
  12. byt_pte_encode
  13. hsw_pte_encode
  14. iris_pte_encode
  15. stash_init
  16. stash_pop_page
  17. stash_push_pagevec
  18. vm_alloc_page
  19. vm_free_pages_release
  20. vm_free_page
  21. i915_address_space_fini
  22. ppgtt_destroy_vma
  23. __i915_vm_release
  24. i915_vm_release
  25. i915_address_space_init
  26. __setup_page_dma
  27. setup_page_dma
  28. cleanup_page_dma
  29. fill_page_dma
  30. setup_scratch_page
  31. cleanup_scratch_page
  32. free_scratch
  33. alloc_pt
  34. __alloc_pd
  35. alloc_pd
  36. free_pd
  37. write_dma_entry
  38. __set_pd_entry
  39. clear_pd_entry
  40. release_pd_entry
  41. mark_tlbs_dirty
  42. gen8_ppgtt_notify_vgt
  43. gen8_pd_range
  44. gen8_pd_contains
  45. gen8_pt_count
  46. gen8_pd_top_count
  47. gen8_pdp_for_page_index
  48. gen8_pdp_for_page_address
  49. __gen8_ppgtt_cleanup
  50. gen8_ppgtt_cleanup
  51. __gen8_ppgtt_clear
  52. gen8_ppgtt_clear
  53. __gen8_ppgtt_alloc
  54. gen8_ppgtt_alloc
  55. sgt_dma
  56. gen8_ppgtt_insert_pte
  57. gen8_ppgtt_insert_huge
  58. gen8_ppgtt_insert
  59. gen8_init_scratch
  60. gen8_preallocate_top_level_pdp
  61. ppgtt_init
  62. gen8_alloc_top_pd
  63. gen8_ppgtt_create
  64. gen6_write_pde
  65. gen7_ppgtt_enable
  66. gen6_ppgtt_enable
  67. gen6_ppgtt_clear_range
  68. gen6_ppgtt_insert_entries
  69. gen6_alloc_va_range
  70. gen6_ppgtt_init_scratch
  71. gen6_ppgtt_free_pd
  72. gen6_ppgtt_cleanup
  73. pd_vma_set_pages
  74. pd_vma_clear_pages
  75. pd_vma_bind
  76. pd_vma_unbind
  77. pd_vma_create
  78. gen6_ppgtt_pin
  79. gen6_ppgtt_unpin
  80. gen6_ppgtt_unpin_all
  81. gen6_ppgtt_create
  82. gtt_write_workarounds
  83. i915_ppgtt_init_hw
  84. __ppgtt_create
  85. i915_ppgtt_create
  86. needs_idle_maps
  87. ggtt_suspend_mappings
  88. i915_gem_suspend_gtt_mappings
  89. i915_gem_gtt_prepare_pages
  90. gen8_set_pte
  91. gen8_ggtt_insert_page
  92. gen8_ggtt_insert_entries
  93. gen6_ggtt_insert_page
  94. gen6_ggtt_insert_entries
  95. nop_clear_range
  96. gen8_ggtt_clear_range
  97. bxt_vtd_ggtt_wa
  98. bxt_vtd_ggtt_insert_page__cb
  99. bxt_vtd_ggtt_insert_page__BKL
  100. bxt_vtd_ggtt_insert_entries__cb
  101. bxt_vtd_ggtt_insert_entries__BKL
  102. bxt_vtd_ggtt_clear_range__cb
  103. bxt_vtd_ggtt_clear_range__BKL
  104. gen6_ggtt_clear_range
  105. i915_ggtt_insert_page
  106. i915_ggtt_insert_entries
  107. i915_ggtt_clear_range
  108. ggtt_bind_vma
  109. ggtt_unbind_vma
  110. aliasing_gtt_bind_vma
  111. aliasing_gtt_unbind_vma
  112. i915_gem_gtt_finish_pages
  113. ggtt_set_pages
  114. i915_gtt_color_adjust
  115. init_aliasing_ppgtt
  116. fini_aliasing_ppgtt
  117. ggtt_reserve_guc_top
  118. ggtt_release_guc_top
  119. cleanup_init_ggtt
  120. init_ggtt
  121. i915_init_ggtt
  122. ggtt_cleanup_hw
  123. i915_ggtt_driver_release
  124. gen6_get_total_gtt_size
  125. gen8_get_total_gtt_size
  126. chv_get_total_gtt_size
  127. ggtt_probe_common
  128. tgl_setup_private_ppat
  129. cnl_setup_private_ppat
  130. bdw_setup_private_ppat
  131. chv_setup_private_ppat
  132. gen6_gmch_remove
  133. setup_private_pat
  134. gen8_gmch_probe
  135. gen6_gmch_probe
  136. i915_gmch_remove
  137. i915_gmch_probe
  138. ggtt_probe_hw
  139. i915_ggtt_probe_hw
  140. ggtt_init_hw
  141. i915_ggtt_init_hw
  142. i915_ggtt_enable_hw
  143. i915_ggtt_enable_guc
  144. i915_ggtt_disable_guc
  145. ggtt_restore_mappings
  146. i915_gem_restore_gtt_mappings
  147. rotate_pages
  148. intel_rotate_pages
  149. remap_pages
  150. intel_remap_pages
  151. intel_partial_pages
  152. i915_get_ggtt_vma_pages
  153. i915_gem_gtt_reserve
  154. random_offset
  155. i915_gem_gtt_insert

   1 /*
   2  * Copyright © 2010 Daniel Vetter
   3  * Copyright © 2011-2014 Intel Corporation
   4  *
   5  * Permission is hereby granted, free of charge, to any person obtaining a
   6  * copy of this software and associated documentation files (the "Software"),
   7  * to deal in the Software without restriction, including without limitation
   8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9  * and/or sell copies of the Software, and to permit persons to whom the
  10  * Software is furnished to do so, subject to the following conditions:
  11  *
  12  * The above copyright notice and this permission notice (including the next
  13  * paragraph) shall be included in all copies or substantial portions of the
  14  * Software.
  15  *
  16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22  * IN THE SOFTWARE.
  23  *
  24  */
  25 
  26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
  27 
  28 #include <linux/fault-inject.h>
  29 #include <linux/log2.h>
  30 #include <linux/random.h>
  31 #include <linux/seq_file.h>
  32 #include <linux/stop_machine.h>
  33 
  34 #include <asm/set_memory.h>
  35 #include <asm/smp.h>
  36 
  37 #include <drm/i915_drm.h>
  38 
  39 #include "display/intel_frontbuffer.h"
  40 #include "gt/intel_gt.h"
  41 
  42 #include "i915_drv.h"
  43 #include "i915_scatterlist.h"
  44 #include "i915_trace.h"
  45 #include "i915_vgpu.h"
  46 
  47 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
  48 
  49 #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
  50 #define DBG(...) trace_printk(__VA_ARGS__)
  51 #else
  52 #define DBG(...)
  53 #endif
  54 
  55 /**
  56  * DOC: Global GTT views
  57  *
  58  * Background and previous state
  59  *
  60  * Historically objects could exists (be bound) in global GTT space only as
  61  * singular instances with a view representing all of the object's backing pages
  62  * in a linear fashion. This view will be called a normal view.
  63  *
  64  * To support multiple views of the same object, where the number of mapped
  65  * pages is not equal to the backing store, or where the layout of the pages
  66  * is not linear, concept of a GGTT view was added.
  67  *
  68  * One example of an alternative view is a stereo display driven by a single
  69  * image. In this case we would have a framebuffer looking like this
  70  * (2x2 pages):
  71  *
  72  *    12
  73  *    34
  74  *
  75  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
  76  * rendering. In contrast, fed to the display engine would be an alternative
  77  * view which could look something like this:
  78  *
  79  *   1212
  80  *   3434
  81  *
  82  * In this example both the size and layout of pages in the alternative view is
  83  * different from the normal view.
  84  *
  85  * Implementation and usage
  86  *
  87  * GGTT views are implemented using VMAs and are distinguished via enum
  88  * i915_ggtt_view_type and struct i915_ggtt_view.
  89  *
  90  * A new flavour of core GEM functions which work with GGTT bound objects were
  91  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
  92  * renaming  in large amounts of code. They take the struct i915_ggtt_view
  93  * parameter encapsulating all metadata required to implement a view.
  94  *
  95  * As a helper for callers which are only interested in the normal view,
  96  * globally const i915_ggtt_view_normal singleton instance exists. All old core
  97  * GEM API functions, the ones not taking the view parameter, are operating on,
  98  * or with the normal GGTT view.
  99  *
 100  * Code wanting to add or use a new GGTT view needs to:
 101  *
 102  * 1. Add a new enum with a suitable name.
 103  * 2. Extend the metadata in the i915_ggtt_view structure if required.
 104  * 3. Add support to i915_get_vma_pages().
 105  *
 106  * New views are required to build a scatter-gather table from within the
 107  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 108  * exists for the lifetime of an VMA.
 109  *
 110  * Core API is designed to have copy semantics which means that passed in
 111  * struct i915_ggtt_view does not need to be persistent (left around after
 112  * calling the core API functions).
 113  *
 114  */
 115 
 116 #define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)
 117 
 118 static int
 119 i915_get_ggtt_vma_pages(struct i915_vma *vma);
 120 
 121 static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
 122 {
 123         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
 124 
 125         /*
 126          * Note that as an uncached mmio write, this will flush the
 127          * WCB of the writes into the GGTT before it triggers the invalidate.
 128          */
 129         intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 130 }
 131 
 132 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
 133 {
 134         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
 135 
 136         gen6_ggtt_invalidate(ggtt);
 137         intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
 138 }
 139 
 140 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
 141 {
 142         intel_gtt_chipset_flush();
 143 }
 144 
 145 static int ppgtt_bind_vma(struct i915_vma *vma,
 146                           enum i915_cache_level cache_level,
 147                           u32 unused)
 148 {
 149         u32 pte_flags;
 150         int err;
 151 
 152         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
 153                 err = vma->vm->allocate_va_range(vma->vm,
 154                                                  vma->node.start, vma->size);
 155                 if (err)
 156                         return err;
 157         }
 158 
 159         /* Applicable to VLV, and gen8+ */
 160         pte_flags = 0;
 161         if (i915_gem_object_is_readonly(vma->obj))
 162                 pte_flags |= PTE_READ_ONLY;
 163 
 164         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
 165 
 166         return 0;
 167 }
 168 
 169 static void ppgtt_unbind_vma(struct i915_vma *vma)
 170 {
 171         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
 172 }
 173 
 174 static int ppgtt_set_pages(struct i915_vma *vma)
 175 {
 176         GEM_BUG_ON(vma->pages);
 177 
 178         vma->pages = vma->obj->mm.pages;
 179 
 180         vma->page_sizes = vma->obj->mm.page_sizes;
 181 
 182         return 0;
 183 }
 184 
 185 static void clear_pages(struct i915_vma *vma)
 186 {
 187         GEM_BUG_ON(!vma->pages);
 188 
 189         if (vma->pages != vma->obj->mm.pages) {
 190                 sg_free_table(vma->pages);
 191                 kfree(vma->pages);
 192         }
 193         vma->pages = NULL;
 194 
 195         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
 196 }
 197 
 198 static u64 gen8_pte_encode(dma_addr_t addr,
 199                            enum i915_cache_level level,
 200                            u32 flags)
 201 {
 202         gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
 203 
 204         if (unlikely(flags & PTE_READ_ONLY))
 205                 pte &= ~_PAGE_RW;
 206 
 207         switch (level) {
 208         case I915_CACHE_NONE:
 209                 pte |= PPAT_UNCACHED;
 210                 break;
 211         case I915_CACHE_WT:
 212                 pte |= PPAT_DISPLAY_ELLC;
 213                 break;
 214         default:
 215                 pte |= PPAT_CACHED;
 216                 break;
 217         }
 218 
 219         return pte;
 220 }
 221 
 222 static u64 gen8_pde_encode(const dma_addr_t addr,
 223                            const enum i915_cache_level level)
 224 {
 225         u64 pde = _PAGE_PRESENT | _PAGE_RW;
 226         pde |= addr;
 227         if (level != I915_CACHE_NONE)
 228                 pde |= PPAT_CACHED_PDE;
 229         else
 230                 pde |= PPAT_UNCACHED;
 231         return pde;
 232 }
 233 
 234 static u64 snb_pte_encode(dma_addr_t addr,
 235                           enum i915_cache_level level,
 236                           u32 flags)
 237 {
 238         gen6_pte_t pte = GEN6_PTE_VALID;
 239         pte |= GEN6_PTE_ADDR_ENCODE(addr);
 240 
 241         switch (level) {
 242         case I915_CACHE_L3_LLC:
 243         case I915_CACHE_LLC:
 244                 pte |= GEN6_PTE_CACHE_LLC;
 245                 break;
 246         case I915_CACHE_NONE:
 247                 pte |= GEN6_PTE_UNCACHED;
 248                 break;
 249         default:
 250                 MISSING_CASE(level);
 251         }
 252 
 253         return pte;
 254 }
 255 
 256 static u64 ivb_pte_encode(dma_addr_t addr,
 257                           enum i915_cache_level level,
 258                           u32 flags)
 259 {
 260         gen6_pte_t pte = GEN6_PTE_VALID;
 261         pte |= GEN6_PTE_ADDR_ENCODE(addr);
 262 
 263         switch (level) {
 264         case I915_CACHE_L3_LLC:
 265                 pte |= GEN7_PTE_CACHE_L3_LLC;
 266                 break;
 267         case I915_CACHE_LLC:
 268                 pte |= GEN6_PTE_CACHE_LLC;
 269                 break;
 270         case I915_CACHE_NONE:
 271                 pte |= GEN6_PTE_UNCACHED;
 272                 break;
 273         default:
 274                 MISSING_CASE(level);
 275         }
 276 
 277         return pte;
 278 }
 279 
 280 static u64 byt_pte_encode(dma_addr_t addr,
 281                           enum i915_cache_level level,
 282                           u32 flags)
 283 {
 284         gen6_pte_t pte = GEN6_PTE_VALID;
 285         pte |= GEN6_PTE_ADDR_ENCODE(addr);
 286 
 287         if (!(flags & PTE_READ_ONLY))
 288                 pte |= BYT_PTE_WRITEABLE;
 289 
 290         if (level != I915_CACHE_NONE)
 291                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
 292 
 293         return pte;
 294 }
 295 
 296 static u64 hsw_pte_encode(dma_addr_t addr,
 297                           enum i915_cache_level level,
 298                           u32 flags)
 299 {
 300         gen6_pte_t pte = GEN6_PTE_VALID;
 301         pte |= HSW_PTE_ADDR_ENCODE(addr);
 302 
 303         if (level != I915_CACHE_NONE)
 304                 pte |= HSW_WB_LLC_AGE3;
 305 
 306         return pte;
 307 }
 308 
 309 static u64 iris_pte_encode(dma_addr_t addr,
 310                            enum i915_cache_level level,
 311                            u32 flags)
 312 {
 313         gen6_pte_t pte = GEN6_PTE_VALID;
 314         pte |= HSW_PTE_ADDR_ENCODE(addr);
 315 
 316         switch (level) {
 317         case I915_CACHE_NONE:
 318                 break;
 319         case I915_CACHE_WT:
 320                 pte |= HSW_WT_ELLC_LLC_AGE3;
 321                 break;
 322         default:
 323                 pte |= HSW_WB_ELLC_LLC_AGE3;
 324                 break;
 325         }
 326 
 327         return pte;
 328 }
 329 
 330 static void stash_init(struct pagestash *stash)
 331 {
 332         pagevec_init(&stash->pvec);
 333         spin_lock_init(&stash->lock);
 334 }
 335 
 336 static struct page *stash_pop_page(struct pagestash *stash)
 337 {
 338         struct page *page = NULL;
 339 
 340         spin_lock(&stash->lock);
 341         if (likely(stash->pvec.nr))
 342                 page = stash->pvec.pages[--stash->pvec.nr];
 343         spin_unlock(&stash->lock);
 344 
 345         return page;
 346 }
 347 
 348 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
 349 {
 350         unsigned int nr;
 351 
 352         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
 353 
 354         nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
 355         memcpy(stash->pvec.pages + stash->pvec.nr,
 356                pvec->pages + pvec->nr - nr,
 357                sizeof(pvec->pages[0]) * nr);
 358         stash->pvec.nr += nr;
 359 
 360         spin_unlock(&stash->lock);
 361 
 362         pvec->nr -= nr;
 363 }
 364 
 365 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
 366 {
 367         struct pagevec stack;
 368         struct page *page;
 369 
 370         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
 371                 i915_gem_shrink_all(vm->i915);
 372 
 373         page = stash_pop_page(&vm->free_pages);
 374         if (page)
 375                 return page;
 376 
 377         if (!vm->pt_kmap_wc)
 378                 return alloc_page(gfp);
 379 
 380         /* Look in our global stash of WC pages... */
 381         page = stash_pop_page(&vm->i915->mm.wc_stash);
 382         if (page)
 383                 return page;
 384 
 385         /*
 386          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
 387          *
 388          * We have to be careful as page allocation may trigger the shrinker
 389          * (via direct reclaim) which will fill up the WC stash underneath us.
 390          * So we add our WB pages into a temporary pvec on the stack and merge
 391          * them into the WC stash after all the allocations are complete.
 392          */
 393         pagevec_init(&stack);
 394         do {
 395                 struct page *page;
 396 
 397                 page = alloc_page(gfp);
 398                 if (unlikely(!page))
 399                         break;
 400 
 401                 stack.pages[stack.nr++] = page;
 402         } while (pagevec_space(&stack));
 403 
 404         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
 405                 page = stack.pages[--stack.nr];
 406 
 407                 /* Merge spare WC pages to the global stash */
 408                 if (stack.nr)
 409                         stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
 410 
 411                 /* Push any surplus WC pages onto the local VM stash */
 412                 if (stack.nr)
 413                         stash_push_pagevec(&vm->free_pages, &stack);
 414         }
 415 
 416         /* Return unwanted leftovers */
 417         if (unlikely(stack.nr)) {
 418                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
 419                 __pagevec_release(&stack);
 420         }
 421 
 422         return page;
 423 }
 424 
 425 static void vm_free_pages_release(struct i915_address_space *vm,
 426                                   bool immediate)
 427 {
 428         struct pagevec *pvec = &vm->free_pages.pvec;
 429         struct pagevec stack;
 430 
 431         lockdep_assert_held(&vm->free_pages.lock);
 432         GEM_BUG_ON(!pagevec_count(pvec));
 433 
 434         if (vm->pt_kmap_wc) {
 435                 /*
 436                  * When we use WC, first fill up the global stash and then
 437                  * only if full immediately free the overflow.
 438                  */
 439                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
 440 
 441                 /*
 442                  * As we have made some room in the VM's free_pages,
 443                  * we can wait for it to fill again. Unless we are
 444                  * inside i915_address_space_fini() and must
 445                  * immediately release the pages!
 446                  */
 447                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
 448                         return;
 449 
 450                 /*
 451                  * We have to drop the lock to allow ourselves to sleep,
 452                  * so take a copy of the pvec and clear the stash for
 453                  * others to use it as we sleep.
 454                  */
 455                 stack = *pvec;
 456                 pagevec_reinit(pvec);
 457                 spin_unlock(&vm->free_pages.lock);
 458 
 459                 pvec = &stack;
 460                 set_pages_array_wb(pvec->pages, pvec->nr);
 461 
 462                 spin_lock(&vm->free_pages.lock);
 463         }
 464 
 465         __pagevec_release(pvec);
 466 }
 467 
 468 static void vm_free_page(struct i915_address_space *vm, struct page *page)
 469 {
 470         /*
 471          * On !llc, we need to change the pages back to WB. We only do so
 472          * in bulk, so we rarely need to change the page attributes here,
 473          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
 474          * To make detection of the possible sleep more likely, use an
 475          * unconditional might_sleep() for everybody.
 476          */
 477         might_sleep();
 478         spin_lock(&vm->free_pages.lock);
 479         while (!pagevec_space(&vm->free_pages.pvec))
 480                 vm_free_pages_release(vm, false);
 481         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
 482         pagevec_add(&vm->free_pages.pvec, page);
 483         spin_unlock(&vm->free_pages.lock);
 484 }
 485 
 486 static void i915_address_space_fini(struct i915_address_space *vm)
 487 {
 488         spin_lock(&vm->free_pages.lock);
 489         if (pagevec_count(&vm->free_pages.pvec))
 490                 vm_free_pages_release(vm, true);
 491         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
 492         spin_unlock(&vm->free_pages.lock);
 493 
 494         drm_mm_takedown(&vm->mm);
 495 
 496         mutex_destroy(&vm->mutex);
 497 }
 498 
 499 static void ppgtt_destroy_vma(struct i915_address_space *vm)
 500 {
 501         struct list_head *phases[] = {
 502                 &vm->bound_list,
 503                 &vm->unbound_list,
 504                 NULL,
 505         }, **phase;
 506 
 507         mutex_lock(&vm->i915->drm.struct_mutex);
 508         for (phase = phases; *phase; phase++) {
 509                 struct i915_vma *vma, *vn;
 510 
 511                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
 512                         i915_vma_destroy(vma);
 513         }
 514         mutex_unlock(&vm->i915->drm.struct_mutex);
 515 }
 516 
 517 static void __i915_vm_release(struct work_struct *work)
 518 {
 519         struct i915_address_space *vm =
 520                 container_of(work, struct i915_address_space, rcu.work);
 521 
 522         ppgtt_destroy_vma(vm);
 523 
 524         GEM_BUG_ON(!list_empty(&vm->bound_list));
 525         GEM_BUG_ON(!list_empty(&vm->unbound_list));
 526 
 527         vm->cleanup(vm);
 528         i915_address_space_fini(vm);
 529 
 530         kfree(vm);
 531 }
 532 
 533 void i915_vm_release(struct kref *kref)
 534 {
 535         struct i915_address_space *vm =
 536                 container_of(kref, struct i915_address_space, ref);
 537 
 538         GEM_BUG_ON(i915_is_ggtt(vm));
 539         trace_i915_ppgtt_release(vm);
 540 
 541         vm->closed = true;
 542         queue_rcu_work(vm->i915->wq, &vm->rcu);
 543 }
 544 
 545 static void i915_address_space_init(struct i915_address_space *vm, int subclass)
 546 {
 547         kref_init(&vm->ref);
 548         INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
 549 
 550         /*
 551          * The vm->mutex must be reclaim safe (for use in the shrinker).
 552          * Do a dummy acquire now under fs_reclaim so that any allocation
 553          * attempt holding the lock is immediately reported by lockdep.
 554          */
 555         mutex_init(&vm->mutex);
 556         lockdep_set_subclass(&vm->mutex, subclass);
 557         i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
 558 
 559         GEM_BUG_ON(!vm->total);
 560         drm_mm_init(&vm->mm, 0, vm->total);
 561         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
 562 
 563         stash_init(&vm->free_pages);
 564 
 565         INIT_LIST_HEAD(&vm->unbound_list);
 566         INIT_LIST_HEAD(&vm->bound_list);
 567 }
 568 
 569 static int __setup_page_dma(struct i915_address_space *vm,
 570                             struct i915_page_dma *p,
 571                             gfp_t gfp)
 572 {
 573         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
 574         if (unlikely(!p->page))
 575                 return -ENOMEM;
 576 
 577         p->daddr = dma_map_page_attrs(vm->dma,
 578                                       p->page, 0, PAGE_SIZE,
 579                                       PCI_DMA_BIDIRECTIONAL,
 580                                       DMA_ATTR_SKIP_CPU_SYNC |
 581                                       DMA_ATTR_NO_WARN);
 582         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
 583                 vm_free_page(vm, p->page);
 584                 return -ENOMEM;
 585         }
 586 
 587         return 0;
 588 }
 589 
 590 static int setup_page_dma(struct i915_address_space *vm,
 591                           struct i915_page_dma *p)
 592 {
 593         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
 594 }
 595 
 596 static void cleanup_page_dma(struct i915_address_space *vm,
 597                              struct i915_page_dma *p)
 598 {
 599         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 600         vm_free_page(vm, p->page);
 601 }
 602 
 603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
 604 
 605 static void
 606 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
 607 {
 608         kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
 609 }
 610 
 611 #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
 612 #define fill32_px(px, v) do {                                           \
 613         u64 v__ = lower_32_bits(v);                                     \
 614         fill_px((px), v__ << 32 | v__);                                 \
 615 } while (0)
 616 
 617 static int
 618 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
 619 {
 620         unsigned long size;
 621 
 622         /*
 623          * In order to utilize 64K pages for an object with a size < 2M, we will
 624          * need to support a 64K scratch page, given that every 16th entry for a
 625          * page-table operating in 64K mode must point to a properly aligned 64K
 626          * region, including any PTEs which happen to point to scratch.
 627          *
 628          * This is only relevant for the 48b PPGTT where we support
 629          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
 630          * scratch (read-only) between all vm, we create one 64k scratch page
 631          * for all.
 632          */
 633         size = I915_GTT_PAGE_SIZE_4K;
 634         if (i915_vm_is_4lvl(vm) &&
 635             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
 636                 size = I915_GTT_PAGE_SIZE_64K;
 637                 gfp |= __GFP_NOWARN;
 638         }
 639         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
 640 
 641         do {
 642                 unsigned int order = get_order(size);
 643                 struct page *page;
 644                 dma_addr_t addr;
 645 
 646                 page = alloc_pages(gfp, order);
 647                 if (unlikely(!page))
 648                         goto skip;
 649 
 650                 addr = dma_map_page_attrs(vm->dma,
 651                                           page, 0, size,
 652                                           PCI_DMA_BIDIRECTIONAL,
 653                                           DMA_ATTR_SKIP_CPU_SYNC |
 654                                           DMA_ATTR_NO_WARN);
 655                 if (unlikely(dma_mapping_error(vm->dma, addr)))
 656                         goto free_page;
 657 
 658                 if (unlikely(!IS_ALIGNED(addr, size)))
 659                         goto unmap_page;
 660 
 661                 vm->scratch[0].base.page = page;
 662                 vm->scratch[0].base.daddr = addr;
 663                 vm->scratch_order = order;
 664                 return 0;
 665 
 666 unmap_page:
 667                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
 668 free_page:
 669                 __free_pages(page, order);
 670 skip:
 671                 if (size == I915_GTT_PAGE_SIZE_4K)
 672                         return -ENOMEM;
 673 
 674                 size = I915_GTT_PAGE_SIZE_4K;
 675                 gfp &= ~__GFP_NOWARN;
 676         } while (1);
 677 }
 678 
 679 static void cleanup_scratch_page(struct i915_address_space *vm)
 680 {
 681         struct i915_page_dma *p = px_base(&vm->scratch[0]);
 682         unsigned int order = vm->scratch_order;
 683 
 684         dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
 685                        PCI_DMA_BIDIRECTIONAL);
 686         __free_pages(p->page, order);
 687 }
 688 
 689 static void free_scratch(struct i915_address_space *vm)
 690 {
 691         int i;
 692 
 693         if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
 694                 return;
 695 
 696         for (i = 1; i <= vm->top; i++) {
 697                 if (!px_dma(&vm->scratch[i]))
 698                         break;
 699                 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
 700         }
 701 
 702         cleanup_scratch_page(vm);
 703 }
 704 
 705 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
 706 {
 707         struct i915_page_table *pt;
 708 
 709         pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
 710         if (unlikely(!pt))
 711                 return ERR_PTR(-ENOMEM);
 712 
 713         if (unlikely(setup_page_dma(vm, &pt->base))) {
 714                 kfree(pt);
 715                 return ERR_PTR(-ENOMEM);
 716         }
 717 
 718         atomic_set(&pt->used, 0);
 719         return pt;
 720 }
 721 
 722 static struct i915_page_directory *__alloc_pd(size_t sz)
 723 {
 724         struct i915_page_directory *pd;
 725 
 726         pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
 727         if (unlikely(!pd))
 728                 return NULL;
 729 
 730         spin_lock_init(&pd->lock);
 731         return pd;
 732 }
 733 
 734 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
 735 {
 736         struct i915_page_directory *pd;
 737 
 738         pd = __alloc_pd(sizeof(*pd));
 739         if (unlikely(!pd))
 740                 return ERR_PTR(-ENOMEM);
 741 
 742         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
 743                 kfree(pd);
 744                 return ERR_PTR(-ENOMEM);
 745         }
 746 
 747         return pd;
 748 }
 749 
 750 static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
 751 {
 752         cleanup_page_dma(vm, pd);
 753         kfree(pd);
 754 }
 755 
 756 #define free_px(vm, px) free_pd(vm, px_base(px))
 757 
 758 static inline void
 759 write_dma_entry(struct i915_page_dma * const pdma,
 760                 const unsigned short idx,
 761                 const u64 encoded_entry)
 762 {
 763         u64 * const vaddr = kmap_atomic(pdma->page);
 764 
 765         vaddr[idx] = encoded_entry;
 766         kunmap_atomic(vaddr);
 767 }
 768 
 769 static inline void
 770 __set_pd_entry(struct i915_page_directory * const pd,
 771                const unsigned short idx,
 772                struct i915_page_dma * const to,
 773                u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
 774 {
 775         /* Each thread pre-pins the pd, and we may have a thread per pde. */
 776         GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
 777 
 778         atomic_inc(px_used(pd));
 779         pd->entry[idx] = to;
 780         write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
 781 }
 782 
 783 #define set_pd_entry(pd, idx, to) \
 784         __set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
 785 
 786 static inline void
 787 clear_pd_entry(struct i915_page_directory * const pd,
 788                const unsigned short idx,
 789                const struct i915_page_scratch * const scratch)
 790 {
 791         GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
 792 
 793         write_dma_entry(px_base(pd), idx, scratch->encode);
 794         pd->entry[idx] = NULL;
 795         atomic_dec(px_used(pd));
 796 }
 797 
 798 static bool
 799 release_pd_entry(struct i915_page_directory * const pd,
 800                  const unsigned short idx,
 801                  struct i915_page_table * const pt,
 802                  const struct i915_page_scratch * const scratch)
 803 {
 804         bool free = false;
 805 
 806         if (atomic_add_unless(&pt->used, -1, 1))
 807                 return false;
 808 
 809         spin_lock(&pd->lock);
 810         if (atomic_dec_and_test(&pt->used)) {
 811                 clear_pd_entry(pd, idx, scratch);
 812                 free = true;
 813         }
 814         spin_unlock(&pd->lock);
 815 
 816         return free;
 817 }
 818 
 819 /*
 820  * PDE TLBs are a pain to invalidate on GEN8+. When we modify
 821  * the page table structures, we mark them dirty so that
 822  * context switching/execlist queuing code takes extra steps
 823  * to ensure that tlbs are flushed.
 824  */
 825 static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
 826 {
 827         ppgtt->pd_dirty_engines = ALL_ENGINES;
 828 }
 829 
 830 static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
 831 {
 832         struct drm_i915_private *dev_priv = ppgtt->vm.i915;
 833         enum vgt_g2v_type msg;
 834         int i;
 835 
 836         if (create)
 837                 atomic_inc(px_used(ppgtt->pd)); /* never remove */
 838         else
 839                 atomic_dec(px_used(ppgtt->pd));
 840 
 841         mutex_lock(&dev_priv->vgpu.lock);
 842 
 843         if (i915_vm_is_4lvl(&ppgtt->vm)) {
 844                 const u64 daddr = px_dma(ppgtt->pd);
 845 
 846                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
 847                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
 848 
 849                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
 850                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
 851         } else {
 852                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
 853                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
 854 
 855                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
 856                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
 857                 }
 858 
 859                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
 860                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
 861         }
 862 
 863         /* g2v_notify atomically (via hv trap) consumes the message packet. */
 864         I915_WRITE(vgtif_reg(g2v_notify), msg);
 865 
 866         mutex_unlock(&dev_priv->vgpu.lock);
 867 }
 868 
 869 /* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
 870 #define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
 871 #define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
 872 #define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
 873 #define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
 874 #define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
 875 #define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
 876 #define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))
 877 
 878 static inline unsigned int
 879 gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
 880 {
 881         const int shift = gen8_pd_shift(lvl);
 882         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
 883 
 884         GEM_BUG_ON(start >= end);
 885         end += ~mask >> gen8_pd_shift(1);
 886 
 887         *idx = i915_pde_index(start, shift);
 888         if ((start ^ end) & mask)
 889                 return GEN8_PDES - *idx;
 890         else
 891                 return i915_pde_index(end, shift) - *idx;
 892 }
 893 
 894 static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
 895 {
 896         const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);
 897 
 898         GEM_BUG_ON(start >= end);
 899         return (start ^ end) & mask && (start & ~mask) == 0;
 900 }
 901 
 902 static inline unsigned int gen8_pt_count(u64 start, u64 end)
 903 {
 904         GEM_BUG_ON(start >= end);
 905         if ((start ^ end) >> gen8_pd_shift(1))
 906                 return GEN8_PDES - (start & (GEN8_PDES - 1));
 907         else
 908                 return end - start;
 909 }
 910 
 911 static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
 912 {
 913         unsigned int shift = __gen8_pte_shift(vm->top);
 914         return (vm->total + (1ull << shift) - 1) >> shift;
 915 }
 916 
 917 static inline struct i915_page_directory *
 918 gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
 919 {
 920         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
 921 
 922         if (vm->top == 2)
 923                 return ppgtt->pd;
 924         else
 925                 return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
 926 }
 927 
 928 static inline struct i915_page_directory *
 929 gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
 930 {
 931         return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
 932 }
 933 
 934 static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
 935                                  struct i915_page_directory *pd,
 936                                  int count, int lvl)
 937 {
 938         if (lvl) {
 939                 void **pde = pd->entry;
 940 
 941                 do {
 942                         if (!*pde)
 943                                 continue;
 944 
 945                         __gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
 946                 } while (pde++, --count);
 947         }
 948 
 949         free_px(vm, pd);
 950 }
 951 
 952 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
 953 {
 954         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
 955 
 956         if (intel_vgpu_active(vm->i915))
 957                 gen8_ppgtt_notify_vgt(ppgtt, false);
 958 
 959         __gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
 960         free_scratch(vm);
 961 }
 962 
 963 static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
 964                               struct i915_page_directory * const pd,
 965                               u64 start, const u64 end, int lvl)
 966 {
 967         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
 968         unsigned int idx, len;
 969 
 970         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
 971 
 972         len = gen8_pd_range(start, end, lvl--, &idx);
 973         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
 974             __func__, vm, lvl + 1, start, end,
 975             idx, len, atomic_read(px_used(pd)));
 976         GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
 977 
 978         do {
 979                 struct i915_page_table *pt = pd->entry[idx];
 980 
 981                 if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
 982                     gen8_pd_contains(start, end, lvl)) {
 983                         DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
 984                             __func__, vm, lvl + 1, idx, start, end);
 985                         clear_pd_entry(pd, idx, scratch);
 986                         __gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
 987                         start += (u64)I915_PDES << gen8_pd_shift(lvl);
 988                         continue;
 989                 }
 990 
 991                 if (lvl) {
 992                         start = __gen8_ppgtt_clear(vm, as_pd(pt),
 993                                                    start, end, lvl);
 994                 } else {
 995                         unsigned int count;
 996                         u64 *vaddr;
 997 
 998                         count = gen8_pt_count(start, end);
 999                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
1000                             __func__, vm, lvl, start, end,
1001                             gen8_pd_index(start, 0), count,
1002                             atomic_read(&pt->used));
1003                         GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1004 
1005                         vaddr = kmap_atomic_px(pt);
1006                         memset64(vaddr + gen8_pd_index(start, 0),
1007                                  vm->scratch[0].encode,
1008                                  count);
1009                         kunmap_atomic(vaddr);
1010 
1011                         atomic_sub(count, &pt->used);
1012                         start += count;
1013                 }
1014 
1015                 if (release_pd_entry(pd, idx, pt, scratch))
1016                         free_px(vm, pt);
1017         } while (idx++, --len);
1018 
1019         return start;
1020 }
1021 
1022 static void gen8_ppgtt_clear(struct i915_address_space *vm,
1023                              u64 start, u64 length)
1024 {
1025         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1026         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1027         GEM_BUG_ON(range_overflows(start, length, vm->total));
1028 
1029         start >>= GEN8_PTE_SHIFT;
1030         length >>= GEN8_PTE_SHIFT;
1031         GEM_BUG_ON(length == 0);
1032 
1033         __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1034                            start, start + length, vm->top);
1035 }
1036 
1037 static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
1038                               struct i915_page_directory * const pd,
1039                               u64 * const start, const u64 end, int lvl)
1040 {
1041         const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
1042         struct i915_page_table *alloc = NULL;
1043         unsigned int idx, len;
1044         int ret = 0;
1045 
1046         GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);
1047 
1048         len = gen8_pd_range(*start, end, lvl--, &idx);
1049         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1050             __func__, vm, lvl + 1, *start, end,
1051             idx, len, atomic_read(px_used(pd)));
1052         GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));
1053 
1054         spin_lock(&pd->lock);
1055         GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
1056         do {
1057                 struct i915_page_table *pt = pd->entry[idx];
1058 
1059                 if (!pt) {
1060                         spin_unlock(&pd->lock);
1061 
1062                         DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
1063                             __func__, vm, lvl + 1, idx);
1064 
1065                         pt = fetch_and_zero(&alloc);
1066                         if (lvl) {
1067                                 if (!pt) {
1068                                         pt = &alloc_pd(vm)->pt;
1069                                         if (IS_ERR(pt)) {
1070                                                 ret = PTR_ERR(pt);
1071                                                 goto out;
1072                                         }
1073                                 }
1074 
1075                                 fill_px(pt, vm->scratch[lvl].encode);
1076                         } else {
1077                                 if (!pt) {
1078                                         pt = alloc_pt(vm);
1079                                         if (IS_ERR(pt)) {
1080                                                 ret = PTR_ERR(pt);
1081                                                 goto out;
1082                                         }
1083                                 }
1084 
1085                                 if (intel_vgpu_active(vm->i915) ||
1086                                     gen8_pt_count(*start, end) < I915_PDES)
1087                                         fill_px(pt, vm->scratch[lvl].encode);
1088                         }
1089 
1090                         spin_lock(&pd->lock);
1091                         if (likely(!pd->entry[idx]))
1092                                 set_pd_entry(pd, idx, pt);
1093                         else
1094                                 alloc = pt, pt = pd->entry[idx];
1095                 }
1096 
1097                 if (lvl) {
1098                         atomic_inc(&pt->used);
1099                         spin_unlock(&pd->lock);
1100 
1101                         ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
1102                                                  start, end, lvl);
1103                         if (unlikely(ret)) {
1104                                 if (release_pd_entry(pd, idx, pt, scratch))
1105                                         free_px(vm, pt);
1106                                 goto out;
1107                         }
1108 
1109                         spin_lock(&pd->lock);
1110                         atomic_dec(&pt->used);
1111                         GEM_BUG_ON(!atomic_read(&pt->used));
1112                 } else {
1113                         unsigned int count = gen8_pt_count(*start, end);
1114 
1115                         DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1116                             __func__, vm, lvl, *start, end,
1117                             gen8_pd_index(*start, 0), count,
1118                             atomic_read(&pt->used));
1119 
1120                         atomic_add(count, &pt->used);
1121                         /* All other pdes may be simultaneously removed */
1122                         GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1123                         *start += count;
1124                 }
1125         } while (idx++, --len);
1126         spin_unlock(&pd->lock);
1127 out:
1128         if (alloc)
1129                 free_px(vm, alloc);
1130         return ret;
1131 }
1132 
1133 static int gen8_ppgtt_alloc(struct i915_address_space *vm,
1134                             u64 start, u64 length)
1135 {
1136         u64 from;
1137         int err;
1138 
1139         GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
1140         GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1141         GEM_BUG_ON(range_overflows(start, length, vm->total));
1142 
1143         start >>= GEN8_PTE_SHIFT;
1144         length >>= GEN8_PTE_SHIFT;
1145         GEM_BUG_ON(length == 0);
1146         from = start;
1147 
1148         err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
1149                                  &start, start + length, vm->top);
1150         if (unlikely(err && from != start))
1151                 __gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
1152                                    from, start, vm->top);
1153 
1154         return err;
1155 }
1156 
1157 static inline struct sgt_dma {
1158         struct scatterlist *sg;
1159         dma_addr_t dma, max;
1160 } sgt_dma(struct i915_vma *vma) {
1161         struct scatterlist *sg = vma->pages->sgl;
1162         dma_addr_t addr = sg_dma_address(sg);
1163         return (struct sgt_dma) { sg, addr, addr + sg->length };
1164 }
1165 
1166 static __always_inline u64
1167 gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
1168                       struct i915_page_directory *pdp,
1169                       struct sgt_dma *iter,
1170                       u64 idx,
1171                       enum i915_cache_level cache_level,
1172                       u32 flags)
1173 {
1174         struct i915_page_directory *pd;
1175         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1176         gen8_pte_t *vaddr;
1177 
1178         pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
1179         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1180         do {
1181                 GEM_BUG_ON(iter->sg->length < I915_GTT_PAGE_SIZE);
1182                 vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1183 
1184                 iter->dma += I915_GTT_PAGE_SIZE;
1185                 if (iter->dma >= iter->max) {
1186                         iter->sg = __sg_next(iter->sg);
1187                         if (!iter->sg) {
1188                                 idx = 0;
1189                                 break;
1190                         }
1191 
1192                         iter->dma = sg_dma_address(iter->sg);
1193                         iter->max = iter->dma + iter->sg->length;
1194                 }
1195 
1196                 if (gen8_pd_index(++idx, 0) == 0) {
1197                         if (gen8_pd_index(idx, 1) == 0) {
1198                                 /* Limited by sg length for 3lvl */
1199                                 if (gen8_pd_index(idx, 2) == 0)
1200                                         break;
1201 
1202                                 pd = pdp->entry[gen8_pd_index(idx, 2)];
1203                         }
1204 
1205                         kunmap_atomic(vaddr);
1206                         vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1207                 }
1208         } while (1);
1209         kunmap_atomic(vaddr);
1210 
1211         return idx;
1212 }
1213 
1214 static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
1215                                    struct sgt_dma *iter,
1216                                    enum i915_cache_level cache_level,
1217                                    u32 flags)
1218 {
1219         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1220         u64 start = vma->node.start;
1221         dma_addr_t rem = iter->sg->length;
1222 
1223         GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));
1224 
1225         do {
1226                 struct i915_page_directory * const pdp =
1227                         gen8_pdp_for_page_address(vma->vm, start);
1228                 struct i915_page_directory * const pd =
1229                         i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1230                 gen8_pte_t encode = pte_encode;
1231                 unsigned int maybe_64K = -1;
1232                 unsigned int page_size;
1233                 gen8_pte_t *vaddr;
1234                 u16 index;
1235 
1236                 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1237                     IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1238                     rem >= I915_GTT_PAGE_SIZE_2M &&
1239                     !__gen8_pte_index(start, 0)) {
1240                         index = __gen8_pte_index(start, 1);
1241                         encode |= GEN8_PDE_PS_2M;
1242                         page_size = I915_GTT_PAGE_SIZE_2M;
1243 
1244                         vaddr = kmap_atomic_px(pd);
1245                 } else {
1246                         struct i915_page_table *pt =
1247                                 i915_pt_entry(pd, __gen8_pte_index(start, 1));
1248 
1249                         index = __gen8_pte_index(start, 0);
1250                         page_size = I915_GTT_PAGE_SIZE;
1251 
1252                         if (!index &&
1253                             vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1254                             IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1255                             (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1256                              rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
1257                                 maybe_64K = __gen8_pte_index(start, 1);
1258 
1259                         vaddr = kmap_atomic_px(pt);
1260                 }
1261 
1262                 do {
1263                         GEM_BUG_ON(iter->sg->length < page_size);
1264                         vaddr[index++] = encode | iter->dma;
1265 
1266                         start += page_size;
1267                         iter->dma += page_size;
1268                         rem -= page_size;
1269                         if (iter->dma >= iter->max) {
1270                                 iter->sg = __sg_next(iter->sg);
1271                                 if (!iter->sg)
1272                                         break;
1273 
1274                                 rem = iter->sg->length;
1275                                 iter->dma = sg_dma_address(iter->sg);
1276                                 iter->max = iter->dma + rem;
1277 
1278                                 if (maybe_64K != -1 && index < I915_PDES &&
1279                                     !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1280                                       (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1281                                        rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
1282                                         maybe_64K = -1;
1283 
1284                                 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1285                                         break;
1286                         }
1287                 } while (rem >= page_size && index < I915_PDES);
1288 
1289                 kunmap_atomic(vaddr);
1290 
1291                 /*
1292                  * Is it safe to mark the 2M block as 64K? -- Either we have
1293                  * filled whole page-table with 64K entries, or filled part of
1294                  * it and have reached the end of the sg table and we have
1295                  * enough padding.
1296                  */
1297                 if (maybe_64K != -1 &&
1298                     (index == I915_PDES ||
1299                      (i915_vm_has_scratch_64K(vma->vm) &&
1300                       !iter->sg && IS_ALIGNED(vma->node.start +
1301                                               vma->node.size,
1302                                               I915_GTT_PAGE_SIZE_2M)))) {
1303                         vaddr = kmap_atomic_px(pd);
1304                         vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1305                         kunmap_atomic(vaddr);
1306                         page_size = I915_GTT_PAGE_SIZE_64K;
1307 
1308                         /*
1309                          * We write all 4K page entries, even when using 64K
1310                          * pages. In order to verify that the HW isn't cheating
1311                          * by using the 4K PTE instead of the 64K PTE, we want
1312                          * to remove all the surplus entries. If the HW skipped
1313                          * the 64K PTE, it will read/write into the scratch page
1314                          * instead - which we detect as missing results during
1315                          * selftests.
1316                          */
1317                         if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1318                                 u16 i;
1319 
1320                                 encode = vma->vm->scratch[0].encode;
1321                                 vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
1322 
1323                                 for (i = 1; i < index; i += 16)
1324                                         memset64(vaddr + i, encode, 15);
1325 
1326                                 kunmap_atomic(vaddr);
1327                         }
1328                 }
1329 
1330                 vma->page_sizes.gtt |= page_size;
1331         } while (iter->sg);
1332 }
1333 
1334 static void gen8_ppgtt_insert(struct i915_address_space *vm,
1335                               struct i915_vma *vma,
1336                               enum i915_cache_level cache_level,
1337                               u32 flags)
1338 {
1339         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1340         struct sgt_dma iter = sgt_dma(vma);
1341 
1342         if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1343                 gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
1344         } else  {
1345                 u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1346 
1347                 do {
1348                         struct i915_page_directory * const pdp =
1349                                 gen8_pdp_for_page_index(vm, idx);
1350 
1351                         idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
1352                                                     cache_level, flags);
1353                 } while (idx);
1354 
1355                 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1356         }
1357 }
1358 
1359 static int gen8_init_scratch(struct i915_address_space *vm)
1360 {
1361         int ret;
1362         int i;
1363 
1364         /*
1365          * If everybody agrees to not to write into the scratch page,
1366          * we can reuse it for all vm, keeping contexts and processes separate.
1367          */
1368         if (vm->has_read_only &&
1369             vm->i915->kernel_context &&
1370             vm->i915->kernel_context->vm) {
1371                 struct i915_address_space *clone = vm->i915->kernel_context->vm;
1372 
1373                 GEM_BUG_ON(!clone->has_read_only);
1374 
1375                 vm->scratch_order = clone->scratch_order;
1376                 memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
1377                 px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1378                 return 0;
1379         }
1380 
1381         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1382         if (ret)
1383                 return ret;
1384 
1385         vm->scratch[0].encode =
1386                 gen8_pte_encode(px_dma(&vm->scratch[0]),
1387                                 I915_CACHE_LLC, vm->has_read_only);
1388 
1389         for (i = 1; i <= vm->top; i++) {
1390                 if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
1391                         goto free_scratch;
1392 
1393                 fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
1394                 vm->scratch[i].encode =
1395                         gen8_pde_encode(px_dma(&vm->scratch[i]),
1396                                         I915_CACHE_LLC);
1397         }
1398 
1399         return 0;
1400 
1401 free_scratch:
1402         free_scratch(vm);
1403         return -ENOMEM;
1404 }
1405 
1406 static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1407 {
1408         struct i915_address_space *vm = &ppgtt->vm;
1409         struct i915_page_directory *pd = ppgtt->pd;
1410         unsigned int idx;
1411 
1412         GEM_BUG_ON(vm->top != 2);
1413         GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1414 
1415         for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
1416                 struct i915_page_directory *pde;
1417 
1418                 pde = alloc_pd(vm);
1419                 if (IS_ERR(pde))
1420                         return PTR_ERR(pde);
1421 
1422                 fill_px(pde, vm->scratch[1].encode);
1423                 set_pd_entry(pd, idx, pde);
1424                 atomic_inc(px_used(pde)); /* keep pinned */
1425         }
1426 
1427         return 0;
1428 }
1429 
1430 static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1431 {
1432         struct drm_i915_private *i915 = gt->i915;
1433 
1434         ppgtt->vm.gt = gt;
1435         ppgtt->vm.i915 = i915;
1436         ppgtt->vm.dma = &i915->drm.pdev->dev;
1437         ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
1438 
1439         i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1440 
1441         ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1442         ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
1443         ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
1444         ppgtt->vm.vma_ops.clear_pages = clear_pages;
1445 }
1446 
1447 static struct i915_page_directory *
1448 gen8_alloc_top_pd(struct i915_address_space *vm)
1449 {
1450         const unsigned int count = gen8_pd_top_count(vm);
1451         struct i915_page_directory *pd;
1452 
1453         GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1454 
1455         pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
1456         if (unlikely(!pd))
1457                 return ERR_PTR(-ENOMEM);
1458 
1459         if (unlikely(setup_page_dma(vm, px_base(pd)))) {
1460                 kfree(pd);
1461                 return ERR_PTR(-ENOMEM);
1462         }
1463 
1464         fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1465         atomic_inc(px_used(pd)); /* mark as pinned */
1466         return pd;
1467 }
1468 
1469 /*
1470  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1471  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1472  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1473  * space.
1474  *
1475  */
1476 static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1477 {
1478         struct i915_ppgtt *ppgtt;
1479         int err;
1480 
1481         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1482         if (!ppgtt)
1483                 return ERR_PTR(-ENOMEM);
1484 
1485         ppgtt_init(ppgtt, &i915->gt);
1486         ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1487 
1488         /*
1489          * From bdw, there is hw support for read-only pages in the PPGTT.
1490          *
1491          * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
1492          * for now.
1493          */
1494         ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1495 
1496         /* There are only few exceptions for gen >=6. chv and bxt.
1497          * And we are not sure about the latter so play safe for now.
1498          */
1499         if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1500                 ppgtt->vm.pt_kmap_wc = true;
1501 
1502         err = gen8_init_scratch(&ppgtt->vm);
1503         if (err)
1504                 goto err_free;
1505 
1506         ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
1507         if (IS_ERR(ppgtt->pd)) {
1508                 err = PTR_ERR(ppgtt->pd);
1509                 goto err_free_scratch;
1510         }
1511 
1512         if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1513                 if (intel_vgpu_active(i915)) {
1514                         err = gen8_preallocate_top_level_pdp(ppgtt);
1515                         if (err)
1516                                 goto err_free_pd;
1517                 }
1518         }
1519 
1520         ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1521         ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1522         ppgtt->vm.clear_range = gen8_ppgtt_clear;
1523 
1524         if (intel_vgpu_active(i915))
1525                 gen8_ppgtt_notify_vgt(ppgtt, true);
1526 
1527         ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1528 
1529         return ppgtt;
1530 
1531 err_free_pd:
1532         __gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1533                              gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1534 err_free_scratch:
1535         free_scratch(&ppgtt->vm);
1536 err_free:
1537         kfree(ppgtt);
1538         return ERR_PTR(err);
1539 }
1540 
1541 /* Write pde (index) from the page directory @pd to the page table @pt */
1542 static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
1543                                   const unsigned int pde,
1544                                   const struct i915_page_table *pt)
1545 {
1546         /* Caller needs to make sure the write completes if necessary */
1547         iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1548                   ppgtt->pd_addr + pde);
1549 }
1550 
1551 static void gen7_ppgtt_enable(struct intel_gt *gt)
1552 {
1553         struct drm_i915_private *i915 = gt->i915;
1554         struct intel_uncore *uncore = gt->uncore;
1555         struct intel_engine_cs *engine;
1556         enum intel_engine_id id;
1557         u32 ecochk;
1558 
1559         intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1560 
1561         ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
1562         if (IS_HASWELL(i915)) {
1563                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1564         } else {
1565                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1566                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1567         }
1568         intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1569 
1570         for_each_engine(engine, i915, id) {
1571                 /* GFX_MODE is per-ring on gen7+ */
1572                 ENGINE_WRITE(engine,
1573                              RING_MODE_GEN7,
1574                              _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1575         }
1576 }
1577 
1578 static void gen6_ppgtt_enable(struct intel_gt *gt)
1579 {
1580         struct intel_uncore *uncore = gt->uncore;
1581 
1582         intel_uncore_rmw(uncore,
1583                          GAC_ECO_BITS,
1584                          0,
1585                          ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
1586 
1587         intel_uncore_rmw(uncore,
1588                          GAB_CTL,
1589                          0,
1590                          GAB_CTL_CONT_AFTER_PAGEFAULT);
1591 
1592         intel_uncore_rmw(uncore,
1593                          GAM_ECOCHK,
1594                          0,
1595                          ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1596 
1597         if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
1598                 intel_uncore_write(uncore,
1599                                    GFX_MODE,
1600                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1601 }
1602 
1603 /* PPGTT support for Sandybdrige/Gen6 and later */
1604 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1605                                    u64 start, u64 length)
1606 {
1607         struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1608         const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1609         const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1610         unsigned int pde = first_entry / GEN6_PTES;
1611         unsigned int pte = first_entry % GEN6_PTES;
1612         unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1613 
1614         while (num_entries) {
1615                 struct i915_page_table * const pt =
1616                         i915_pt_entry(ppgtt->base.pd, pde++);
1617                 const unsigned int count = min(num_entries, GEN6_PTES - pte);
1618                 gen6_pte_t *vaddr;
1619 
1620                 GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1621 
1622                 num_entries -= count;
1623 
1624                 GEM_BUG_ON(count > atomic_read(&pt->used));
1625                 if (!atomic_sub_return(count, &pt->used))
1626                         ppgtt->scan_for_unused_pt = true;
1627 
1628                 /*
1629                  * Note that the hw doesn't support removing PDE on the fly
1630                  * (they are cached inside the context with no means to
1631                  * invalidate the cache), so we can only reset the PTE
1632                  * entries back to scratch.
1633                  */
1634 
1635                 vaddr = kmap_atomic_px(pt);
1636                 memset32(vaddr + pte, scratch_pte, count);
1637                 kunmap_atomic(vaddr);
1638 
1639                 pte = 0;
1640         }
1641 }
1642 
1643 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1644                                       struct i915_vma *vma,
1645                                       enum i915_cache_level cache_level,
1646                                       u32 flags)
1647 {
1648         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1649         struct i915_page_directory * const pd = ppgtt->pd;
1650         unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1651         unsigned act_pt = first_entry / GEN6_PTES;
1652         unsigned act_pte = first_entry % GEN6_PTES;
1653         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1654         struct sgt_dma iter = sgt_dma(vma);
1655         gen6_pte_t *vaddr;
1656 
1657         GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1658 
1659         vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1660         do {
1661                 GEM_BUG_ON(iter.sg->length < I915_GTT_PAGE_SIZE);
1662                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1663 
1664                 iter.dma += I915_GTT_PAGE_SIZE;
1665                 if (iter.dma == iter.max) {
1666                         iter.sg = __sg_next(iter.sg);
1667                         if (!iter.sg)
1668                                 break;
1669 
1670                         iter.dma = sg_dma_address(iter.sg);
1671                         iter.max = iter.dma + iter.sg->length;
1672                 }
1673 
1674                 if (++act_pte == GEN6_PTES) {
1675                         kunmap_atomic(vaddr);
1676                         vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1677                         act_pte = 0;
1678                 }
1679         } while (1);
1680         kunmap_atomic(vaddr);
1681 
1682         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1683 }
1684 
1685 static int gen6_alloc_va_range(struct i915_address_space *vm,
1686                                u64 start, u64 length)
1687 {
1688         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1689         struct i915_page_directory * const pd = ppgtt->base.pd;
1690         struct i915_page_table *pt, *alloc = NULL;
1691         intel_wakeref_t wakeref;
1692         u64 from = start;
1693         unsigned int pde;
1694         bool flush = false;
1695         int ret = 0;
1696 
1697         wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1698 
1699         spin_lock(&pd->lock);
1700         gen6_for_each_pde(pt, pd, start, length, pde) {
1701                 const unsigned int count = gen6_pte_count(start, length);
1702 
1703                 if (px_base(pt) == px_base(&vm->scratch[1])) {
1704                         spin_unlock(&pd->lock);
1705 
1706                         pt = fetch_and_zero(&alloc);
1707                         if (!pt)
1708                                 pt = alloc_pt(vm);
1709                         if (IS_ERR(pt)) {
1710                                 ret = PTR_ERR(pt);
1711                                 goto unwind_out;
1712                         }
1713 
1714                         fill32_px(pt, vm->scratch[0].encode);
1715 
1716                         spin_lock(&pd->lock);
1717                         if (pd->entry[pde] == &vm->scratch[1]) {
1718                                 pd->entry[pde] = pt;
1719                                 if (i915_vma_is_bound(ppgtt->vma,
1720                                                       I915_VMA_GLOBAL_BIND)) {
1721                                         gen6_write_pde(ppgtt, pde, pt);
1722                                         flush = true;
1723                                 }
1724                         } else {
1725                                 alloc = pt;
1726                                 pt = pd->entry[pde];
1727                         }
1728                 }
1729 
1730                 atomic_add(count, &pt->used);
1731         }
1732         spin_unlock(&pd->lock);
1733 
1734         if (flush) {
1735                 mark_tlbs_dirty(&ppgtt->base);
1736                 gen6_ggtt_invalidate(vm->gt->ggtt);
1737         }
1738 
1739         goto out;
1740 
1741 unwind_out:
1742         gen6_ppgtt_clear_range(vm, from, start - from);
1743 out:
1744         if (alloc)
1745                 free_px(vm, alloc);
1746         intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1747         return ret;
1748 }
1749 
1750 static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1751 {
1752         struct i915_address_space * const vm = &ppgtt->base.vm;
1753         struct i915_page_directory * const pd = ppgtt->base.pd;
1754         int ret;
1755 
1756         ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1757         if (ret)
1758                 return ret;
1759 
1760         vm->scratch[0].encode =
1761                 vm->pte_encode(px_dma(&vm->scratch[0]),
1762                                I915_CACHE_NONE, PTE_READ_ONLY);
1763 
1764         if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1765                 cleanup_scratch_page(vm);
1766                 return -ENOMEM;
1767         }
1768 
1769         fill32_px(&vm->scratch[1], vm->scratch[0].encode);
1770         memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1771 
1772         return 0;
1773 }
1774 
1775 static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1776 {
1777         struct i915_page_directory * const pd = ppgtt->base.pd;
1778         struct i915_page_dma * const scratch =
1779                 px_base(&ppgtt->base.vm.scratch[1]);
1780         struct i915_page_table *pt;
1781         u32 pde;
1782 
1783         gen6_for_all_pdes(pt, pd, pde)
1784                 if (px_base(pt) != scratch)
1785                         free_px(&ppgtt->base.vm, pt);
1786 }
1787 
1788 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1789 {
1790         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1791         struct drm_i915_private *i915 = vm->i915;
1792 
1793         /* FIXME remove the struct_mutex to bring the locking under control */
1794         mutex_lock(&i915->drm.struct_mutex);
1795         i915_vma_destroy(ppgtt->vma);
1796         mutex_unlock(&i915->drm.struct_mutex);
1797 
1798         gen6_ppgtt_free_pd(ppgtt);
1799         free_scratch(vm);
1800         kfree(ppgtt->base.pd);
1801 }
1802 
1803 static int pd_vma_set_pages(struct i915_vma *vma)
1804 {
1805         vma->pages = ERR_PTR(-ENODEV);
1806         return 0;
1807 }
1808 
1809 static void pd_vma_clear_pages(struct i915_vma *vma)
1810 {
1811         GEM_BUG_ON(!vma->pages);
1812 
1813         vma->pages = NULL;
1814 }
1815 
1816 static int pd_vma_bind(struct i915_vma *vma,
1817                        enum i915_cache_level cache_level,
1818                        u32 unused)
1819 {
1820         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1821         struct gen6_ppgtt *ppgtt = vma->private;
1822         u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1823         struct i915_page_table *pt;
1824         unsigned int pde;
1825 
1826         px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1827         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1828 
1829         gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1830                 gen6_write_pde(ppgtt, pde, pt);
1831 
1832         mark_tlbs_dirty(&ppgtt->base);
1833         gen6_ggtt_invalidate(ggtt);
1834 
1835         return 0;
1836 }
1837 
1838 static void pd_vma_unbind(struct i915_vma *vma)
1839 {
1840         struct gen6_ppgtt *ppgtt = vma->private;
1841         struct i915_page_directory * const pd = ppgtt->base.pd;
1842         struct i915_page_dma * const scratch =
1843                 px_base(&ppgtt->base.vm.scratch[1]);
1844         struct i915_page_table *pt;
1845         unsigned int pde;
1846 
1847         if (!ppgtt->scan_for_unused_pt)
1848                 return;
1849 
1850         /* Free all no longer used page tables */
1851         gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1852                 if (px_base(pt) == scratch || atomic_read(&pt->used))
1853                         continue;
1854 
1855                 free_px(&ppgtt->base.vm, pt);
1856                 pd->entry[pde] = scratch;
1857         }
1858 
1859         ppgtt->scan_for_unused_pt = false;
1860 }
1861 
1862 static const struct i915_vma_ops pd_vma_ops = {
1863         .set_pages = pd_vma_set_pages,
1864         .clear_pages = pd_vma_clear_pages,
1865         .bind_vma = pd_vma_bind,
1866         .unbind_vma = pd_vma_unbind,
1867 };
1868 
1869 static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1870 {
1871         struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1872         struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1873         struct i915_vma *vma;
1874 
1875         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
1876         GEM_BUG_ON(size > ggtt->vm.total);
1877 
1878         vma = i915_vma_alloc();
1879         if (!vma)
1880                 return ERR_PTR(-ENOMEM);
1881 
1882         i915_active_init(i915, &vma->active, NULL, NULL);
1883 
1884         vma->vm = &ggtt->vm;
1885         vma->ops = &pd_vma_ops;
1886         vma->private = ppgtt;
1887 
1888         vma->size = size;
1889         vma->fence_size = size;
1890         vma->flags = I915_VMA_GGTT;
1891         vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
1892 
1893         INIT_LIST_HEAD(&vma->obj_link);
1894         INIT_LIST_HEAD(&vma->closed_link);
1895 
1896         mutex_lock(&vma->vm->mutex);
1897         list_add(&vma->vm_link, &vma->vm->unbound_list);
1898         mutex_unlock(&vma->vm->mutex);
1899 
1900         return vma;
1901 }
1902 
1903 int gen6_ppgtt_pin(struct i915_ppgtt *base)
1904 {
1905         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1906         int err;
1907 
1908         GEM_BUG_ON(ppgtt->base.vm.closed);
1909 
1910         /*
1911          * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
1912          * which will be pinned into every active context.
1913          * (When vma->pin_count becomes atomic, I expect we will naturally
1914          * need a larger, unpacked, type and kill this redundancy.)
1915          */
1916         if (ppgtt->pin_count++)
1917                 return 0;
1918 
1919         /*
1920          * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1921          * allocator works in address space sizes, so it's multiplied by page
1922          * size. We allocate at the top of the GTT to avoid fragmentation.
1923          */
1924         err = i915_vma_pin(ppgtt->vma,
1925                            0, GEN6_PD_ALIGN,
1926                            PIN_GLOBAL | PIN_HIGH);
1927         if (err)
1928                 goto unpin;
1929 
1930         return 0;
1931 
1932 unpin:
1933         ppgtt->pin_count = 0;
1934         return err;
1935 }
1936 
1937 void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1938 {
1939         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1940 
1941         GEM_BUG_ON(!ppgtt->pin_count);
1942         if (--ppgtt->pin_count)
1943                 return;
1944 
1945         i915_vma_unpin(ppgtt->vma);
1946 }
1947 
1948 void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1949 {
1950         struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1951 
1952         if (!ppgtt->pin_count)
1953                 return;
1954 
1955         ppgtt->pin_count = 0;
1956         i915_vma_unpin(ppgtt->vma);
1957 }
1958 
1959 static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1960 {
1961         struct i915_ggtt * const ggtt = &i915->ggtt;
1962         struct gen6_ppgtt *ppgtt;
1963         int err;
1964 
1965         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1966         if (!ppgtt)
1967                 return ERR_PTR(-ENOMEM);
1968 
1969         ppgtt_init(&ppgtt->base, &i915->gt);
1970         ppgtt->base.vm.top = 1;
1971 
1972         ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1973         ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
1974         ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
1975         ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1976 
1977         ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
1978 
1979         ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1980         if (!ppgtt->base.pd) {
1981                 err = -ENOMEM;
1982                 goto err_free;
1983         }
1984 
1985         err = gen6_ppgtt_init_scratch(ppgtt);
1986         if (err)
1987                 goto err_pd;
1988 
1989         ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
1990         if (IS_ERR(ppgtt->vma)) {
1991                 err = PTR_ERR(ppgtt->vma);
1992                 goto err_scratch;
1993         }
1994 
1995         return &ppgtt->base;
1996 
1997 err_scratch:
1998         free_scratch(&ppgtt->base.vm);
1999 err_pd:
2000         kfree(ppgtt->base.pd);
2001 err_free:
2002         kfree(ppgtt);
2003         return ERR_PTR(err);
2004 }
2005 
2006 static void gtt_write_workarounds(struct intel_gt *gt)
2007 {
2008         struct drm_i915_private *i915 = gt->i915;
2009         struct intel_uncore *uncore = gt->uncore;
2010 
2011         /* This function is for gtt related workarounds. This function is
2012          * called on driver load and after a GPU reset, so you can place
2013          * workarounds here even if they get overwritten by GPU reset.
2014          */
2015         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2016         if (IS_BROADWELL(i915))
2017                 intel_uncore_write(uncore,
2018                                    GEN8_L3_LRA_1_GPGPU,
2019                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2020         else if (IS_CHERRYVIEW(i915))
2021                 intel_uncore_write(uncore,
2022                                    GEN8_L3_LRA_1_GPGPU,
2023                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2024         else if (IS_GEN9_LP(i915))
2025                 intel_uncore_write(uncore,
2026                                    GEN8_L3_LRA_1_GPGPU,
2027                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2028         else if (INTEL_GEN(i915) >= 9)
2029                 intel_uncore_write(uncore,
2030                                    GEN8_L3_LRA_1_GPGPU,
2031                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2032 
2033         /*
2034          * To support 64K PTEs we need to first enable the use of the
2035          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2036          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2037          * shouldn't be needed after GEN10.
2038          *
2039          * 64K pages were first introduced from BDW+, although technically they
2040          * only *work* from gen9+. For pre-BDW we instead have the option for
2041          * 32K pages, but we don't currently have any support for it in our
2042          * driver.
2043          */
2044         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
2045             INTEL_GEN(i915) <= 10)
2046                 intel_uncore_rmw(uncore,
2047                                  GEN8_GAMW_ECO_DEV_RW_IA,
2048                                  0,
2049                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
2050 
2051         if (IS_GEN_RANGE(i915, 8, 11)) {
2052                 bool can_use_gtt_cache = true;
2053 
2054                 /*
2055                  * According to the BSpec if we use 2M/1G pages then we also
2056                  * need to disable the GTT cache. At least on BDW we can see
2057                  * visual corruption when using 2M pages, and not disabling the
2058                  * GTT cache.
2059                  */
2060                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
2061                         can_use_gtt_cache = false;
2062 
2063                 /* WaGttCachingOffByDefault */
2064                 intel_uncore_write(uncore,
2065                                    HSW_GTT_CACHE_EN,
2066                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
2067                 WARN_ON_ONCE(can_use_gtt_cache &&
2068                              intel_uncore_read(uncore,
2069                                                HSW_GTT_CACHE_EN) == 0);
2070         }
2071 }
2072 
2073 int i915_ppgtt_init_hw(struct intel_gt *gt)
2074 {
2075         struct drm_i915_private *i915 = gt->i915;
2076 
2077         gtt_write_workarounds(gt);
2078 
2079         if (IS_GEN(i915, 6))
2080                 gen6_ppgtt_enable(gt);
2081         else if (IS_GEN(i915, 7))
2082                 gen7_ppgtt_enable(gt);
2083 
2084         return 0;
2085 }
2086 
2087 static struct i915_ppgtt *
2088 __ppgtt_create(struct drm_i915_private *i915)
2089 {
2090         if (INTEL_GEN(i915) < 8)
2091                 return gen6_ppgtt_create(i915);
2092         else
2093                 return gen8_ppgtt_create(i915);
2094 }
2095 
2096 struct i915_ppgtt *
2097 i915_ppgtt_create(struct drm_i915_private *i915)
2098 {
2099         struct i915_ppgtt *ppgtt;
2100 
2101         ppgtt = __ppgtt_create(i915);
2102         if (IS_ERR(ppgtt))
2103                 return ppgtt;
2104 
2105         trace_i915_ppgtt_create(&ppgtt->vm);
2106 
2107         return ppgtt;
2108 }
2109 
2110 /* Certain Gen5 chipsets require require idling the GPU before
2111  * unmapping anything from the GTT when VT-d is enabled.
2112  */
2113 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2114 {
2115         /* Query intel_iommu to see if we need the workaround. Presumably that
2116          * was loaded first.
2117          */
2118         return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2119 }
2120 
2121 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2122 {
2123         struct drm_i915_private *i915 = ggtt->vm.i915;
2124 
2125         /* Don't bother messing with faults pre GEN6 as we have little
2126          * documentation supporting that it's a good idea.
2127          */
2128         if (INTEL_GEN(i915) < 6)
2129                 return;
2130 
2131         intel_gt_check_and_clear_faults(ggtt->vm.gt);
2132 
2133         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2134 
2135         ggtt->invalidate(ggtt);
2136 }
2137 
2138 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
2139 {
2140         ggtt_suspend_mappings(&i915->ggtt);
2141 }
2142 
2143 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2144                                struct sg_table *pages)
2145 {
2146         do {
2147                 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2148                                      pages->sgl, pages->nents,
2149                                      PCI_DMA_BIDIRECTIONAL,
2150                                      DMA_ATTR_NO_WARN))
2151                         return 0;
2152 
2153                 /*
2154                  * If the DMA remap fails, one cause can be that we have
2155                  * too many objects pinned in a small remapping table,
2156                  * such as swiotlb. Incrementally purge all other objects and
2157                  * try again - if there are no more pages to remove from
2158                  * the DMA remapper, i915_gem_shrink will return 0.
2159                  */
2160                 GEM_BUG_ON(obj->mm.pages == pages);
2161         } while (i915_gem_shrink(to_i915(obj->base.dev),
2162                                  obj->base.size >> PAGE_SHIFT, NULL,
2163                                  I915_SHRINK_BOUND |
2164                                  I915_SHRINK_UNBOUND));
2165 
2166         return -ENOSPC;
2167 }
2168 
2169 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2170 {
2171         writeq(pte, addr);
2172 }
2173 
2174 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2175                                   dma_addr_t addr,
2176                                   u64 offset,
2177                                   enum i915_cache_level level,
2178                                   u32 unused)
2179 {
2180         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2181         gen8_pte_t __iomem *pte =
2182                 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2183 
2184         gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2185 
2186         ggtt->invalidate(ggtt);
2187 }
2188 
2189 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2190                                      struct i915_vma *vma,
2191                                      enum i915_cache_level level,
2192                                      u32 flags)
2193 {
2194         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2195         struct sgt_iter sgt_iter;
2196         gen8_pte_t __iomem *gtt_entries;
2197         const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2198         dma_addr_t addr;
2199 
2200         /*
2201          * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2202          * not to allow the user to override access to a read only page.
2203          */
2204 
2205         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2206         gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2207         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2208                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2209 
2210         /*
2211          * We want to flush the TLBs only after we're certain all the PTE
2212          * updates have finished.
2213          */
2214         ggtt->invalidate(ggtt);
2215 }
2216 
2217 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2218                                   dma_addr_t addr,
2219                                   u64 offset,
2220                                   enum i915_cache_level level,
2221                                   u32 flags)
2222 {
2223         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2224         gen6_pte_t __iomem *pte =
2225                 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2226 
2227         iowrite32(vm->pte_encode(addr, level, flags), pte);
2228 
2229         ggtt->invalidate(ggtt);
2230 }
2231 
2232 /*
2233  * Binds an object into the global gtt with the specified cache level. The object
2234  * will be accessible to the GPU via commands whose operands reference offsets
2235  * within the global GTT as well as accessible by the GPU through the GMADR
2236  * mapped BAR (dev_priv->mm.gtt->gtt).
2237  */
2238 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2239                                      struct i915_vma *vma,
2240                                      enum i915_cache_level level,
2241                                      u32 flags)
2242 {
2243         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2244         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2245         unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2246         struct sgt_iter iter;
2247         dma_addr_t addr;
2248         for_each_sgt_dma(addr, iter, vma->pages)
2249                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2250 
2251         /*
2252          * We want to flush the TLBs only after we're certain all the PTE
2253          * updates have finished.
2254          */
2255         ggtt->invalidate(ggtt);
2256 }
2257 
2258 static void nop_clear_range(struct i915_address_space *vm,
2259                             u64 start, u64 length)
2260 {
2261 }
2262 
2263 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2264                                   u64 start, u64 length)
2265 {
2266         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2267         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2268         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2269         const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2270         gen8_pte_t __iomem *gtt_base =
2271                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2272         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2273         int i;
2274 
2275         if (WARN(num_entries > max_entries,
2276                  "First entry = %d; Num entries = %d (max=%d)\n",
2277                  first_entry, num_entries, max_entries))
2278                 num_entries = max_entries;
2279 
2280         for (i = 0; i < num_entries; i++)
2281                 gen8_set_pte(&gtt_base[i], scratch_pte);
2282 }
2283 
2284 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2285 {
2286         struct drm_i915_private *dev_priv = vm->i915;
2287 
2288         /*
2289          * Make sure the internal GAM fifo has been cleared of all GTT
2290          * writes before exiting stop_machine(). This guarantees that
2291          * any aperture accesses waiting to start in another process
2292          * cannot back up behind the GTT writes causing a hang.
2293          * The register can be any arbitrary GAM register.
2294          */
2295         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2296 }
2297 
2298 struct insert_page {
2299         struct i915_address_space *vm;
2300         dma_addr_t addr;
2301         u64 offset;
2302         enum i915_cache_level level;
2303 };
2304 
2305 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2306 {
2307         struct insert_page *arg = _arg;
2308 
2309         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2310         bxt_vtd_ggtt_wa(arg->vm);
2311 
2312         return 0;
2313 }
2314 
2315 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2316                                           dma_addr_t addr,
2317                                           u64 offset,
2318                                           enum i915_cache_level level,
2319                                           u32 unused)
2320 {
2321         struct insert_page arg = { vm, addr, offset, level };
2322 
2323         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2324 }
2325 
2326 struct insert_entries {
2327         struct i915_address_space *vm;
2328         struct i915_vma *vma;
2329         enum i915_cache_level level;
2330         u32 flags;
2331 };
2332 
2333 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2334 {
2335         struct insert_entries *arg = _arg;
2336 
2337         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2338         bxt_vtd_ggtt_wa(arg->vm);
2339 
2340         return 0;
2341 }
2342 
2343 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2344                                              struct i915_vma *vma,
2345                                              enum i915_cache_level level,
2346                                              u32 flags)
2347 {
2348         struct insert_entries arg = { vm, vma, level, flags };
2349 
2350         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2351 }
2352 
2353 struct clear_range {
2354         struct i915_address_space *vm;
2355         u64 start;
2356         u64 length;
2357 };
2358 
2359 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2360 {
2361         struct clear_range *arg = _arg;
2362 
2363         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2364         bxt_vtd_ggtt_wa(arg->vm);
2365 
2366         return 0;
2367 }
2368 
2369 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2370                                           u64 start,
2371                                           u64 length)
2372 {
2373         struct clear_range arg = { vm, start, length };
2374 
2375         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2376 }
2377 
2378 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2379                                   u64 start, u64 length)
2380 {
2381         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2382         unsigned first_entry = start / I915_GTT_PAGE_SIZE;
2383         unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2384         gen6_pte_t scratch_pte, __iomem *gtt_base =
2385                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2386         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2387         int i;
2388 
2389         if (WARN(num_entries > max_entries,
2390                  "First entry = %d; Num entries = %d (max=%d)\n",
2391                  first_entry, num_entries, max_entries))
2392                 num_entries = max_entries;
2393 
2394         scratch_pte = vm->scratch[0].encode;
2395         for (i = 0; i < num_entries; i++)
2396                 iowrite32(scratch_pte, &gtt_base[i]);
2397 }
2398 
2399 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2400                                   dma_addr_t addr,
2401                                   u64 offset,
2402                                   enum i915_cache_level cache_level,
2403                                   u32 unused)
2404 {
2405         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2406                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2407 
2408         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2409 }
2410 
2411 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2412                                      struct i915_vma *vma,
2413                                      enum i915_cache_level cache_level,
2414                                      u32 unused)
2415 {
2416         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2417                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2418 
2419         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2420                                     flags);
2421 }
2422 
2423 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2424                                   u64 start, u64 length)
2425 {
2426         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2427 }
2428 
2429 static int ggtt_bind_vma(struct i915_vma *vma,
2430                          enum i915_cache_level cache_level,
2431                          u32 flags)
2432 {
2433         struct drm_i915_private *i915 = vma->vm->i915;
2434         struct drm_i915_gem_object *obj = vma->obj;
2435         intel_wakeref_t wakeref;
2436         u32 pte_flags;
2437 
2438         /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2439         pte_flags = 0;
2440         if (i915_gem_object_is_readonly(obj))
2441                 pte_flags |= PTE_READ_ONLY;
2442 
2443         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2444                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2445 
2446         vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2447 
2448         /*
2449          * Without aliasing PPGTT there's no difference between
2450          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2451          * upgrade to both bound if we bind either to avoid double-binding.
2452          */
2453         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2454 
2455         return 0;
2456 }
2457 
2458 static void ggtt_unbind_vma(struct i915_vma *vma)
2459 {
2460         struct drm_i915_private *i915 = vma->vm->i915;
2461         intel_wakeref_t wakeref;
2462 
2463         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2464                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2465 }
2466 
2467 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2468                                  enum i915_cache_level cache_level,
2469                                  u32 flags)
2470 {
2471         struct drm_i915_private *i915 = vma->vm->i915;
2472         u32 pte_flags;
2473         int ret;
2474 
2475         /* Currently applicable only to VLV */
2476         pte_flags = 0;
2477         if (i915_gem_object_is_readonly(vma->obj))
2478                 pte_flags |= PTE_READ_ONLY;
2479 
2480         if (flags & I915_VMA_LOCAL_BIND) {
2481                 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2482 
2483                 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2484                         ret = alias->vm.allocate_va_range(&alias->vm,
2485                                                           vma->node.start,
2486                                                           vma->size);
2487                         if (ret)
2488                                 return ret;
2489                 }
2490 
2491                 alias->vm.insert_entries(&alias->vm, vma,
2492                                          cache_level, pte_flags);
2493         }
2494 
2495         if (flags & I915_VMA_GLOBAL_BIND) {
2496                 intel_wakeref_t wakeref;
2497 
2498                 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2499                         vma->vm->insert_entries(vma->vm, vma,
2500                                                 cache_level, pte_flags);
2501                 }
2502         }
2503 
2504         return 0;
2505 }
2506 
2507 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2508 {
2509         struct drm_i915_private *i915 = vma->vm->i915;
2510 
2511         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2512                 struct i915_address_space *vm = vma->vm;
2513                 intel_wakeref_t wakeref;
2514 
2515                 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2516                         vm->clear_range(vm, vma->node.start, vma->size);
2517         }
2518 
2519         if (vma->flags & I915_VMA_LOCAL_BIND) {
2520                 struct i915_address_space *vm =
2521                         &i915_vm_to_ggtt(vma->vm)->alias->vm;
2522 
2523                 vm->clear_range(vm, vma->node.start, vma->size);
2524         }
2525 }
2526 
2527 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2528                                struct sg_table *pages)
2529 {
2530         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2531         struct device *kdev = &dev_priv->drm.pdev->dev;
2532         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2533 
2534         if (unlikely(ggtt->do_idle_maps)) {
2535                 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2536                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2537                         /* Wait a bit, in hopes it avoids the hang */
2538                         udelay(10);
2539                 }
2540         }
2541 
2542         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2543 }
2544 
2545 static int ggtt_set_pages(struct i915_vma *vma)
2546 {
2547         int ret;
2548 
2549         GEM_BUG_ON(vma->pages);
2550 
2551         ret = i915_get_ggtt_vma_pages(vma);
2552         if (ret)
2553                 return ret;
2554 
2555         vma->page_sizes = vma->obj->mm.page_sizes;
2556 
2557         return 0;
2558 }
2559 
2560 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2561                                   unsigned long color,
2562                                   u64 *start,
2563                                   u64 *end)
2564 {
2565         if (node->allocated && node->color != color)
2566                 *start += I915_GTT_PAGE_SIZE;
2567 
2568         /* Also leave a space between the unallocated reserved node after the
2569          * GTT and any objects within the GTT, i.e. we use the color adjustment
2570          * to insert a guard page to prevent prefetches crossing over the
2571          * GTT boundary.
2572          */
2573         node = list_next_entry(node, node_list);
2574         if (node->color != color)
2575                 *end -= I915_GTT_PAGE_SIZE;
2576 }
2577 
2578 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2579 {
2580         struct i915_ppgtt *ppgtt;
2581         int err;
2582 
2583         ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2584         if (IS_ERR(ppgtt))
2585                 return PTR_ERR(ppgtt);
2586 
2587         if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2588                 err = -ENODEV;
2589                 goto err_ppgtt;
2590         }
2591 
2592         /*
2593          * Note we only pre-allocate as far as the end of the global
2594          * GTT. On 48b / 4-level page-tables, the difference is very,
2595          * very significant! We have to preallocate as GVT/vgpu does
2596          * not like the page directory disappearing.
2597          */
2598         err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2599         if (err)
2600                 goto err_ppgtt;
2601 
2602         ggtt->alias = ppgtt;
2603 
2604         GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2605         ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2606 
2607         GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2608         ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2609 
2610         return 0;
2611 
2612 err_ppgtt:
2613         i915_vm_put(&ppgtt->vm);
2614         return err;
2615 }
2616 
2617 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2618 {
2619         struct drm_i915_private *i915 = ggtt->vm.i915;
2620         struct i915_ppgtt *ppgtt;
2621 
2622         mutex_lock(&i915->drm.struct_mutex);
2623 
2624         ppgtt = fetch_and_zero(&ggtt->alias);
2625         if (!ppgtt)
2626                 goto out;
2627 
2628         i915_vm_put(&ppgtt->vm);
2629 
2630         ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
2631         ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2632 
2633 out:
2634         mutex_unlock(&i915->drm.struct_mutex);
2635 }
2636 
2637 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
2638 {
2639         u64 size;
2640         int ret;
2641 
2642         if (!USES_GUC(ggtt->vm.i915))
2643                 return 0;
2644 
2645         GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
2646         size = ggtt->vm.total - GUC_GGTT_TOP;
2647 
2648         ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
2649                                    GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
2650                                    PIN_NOEVICT);
2651         if (ret)
2652                 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
2653 
2654         return ret;
2655 }
2656 
2657 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
2658 {
2659         if (drm_mm_node_allocated(&ggtt->uc_fw))
2660                 drm_mm_remove_node(&ggtt->uc_fw);
2661 }
2662 
2663 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
2664 {
2665         ggtt_release_guc_top(ggtt);
2666         drm_mm_remove_node(&ggtt->error_capture);
2667 }
2668 
2669 static int init_ggtt(struct i915_ggtt *ggtt)
2670 {
2671         /* Let GEM Manage all of the aperture.
2672          *
2673          * However, leave one page at the end still bound to the scratch page.
2674          * There are a number of places where the hardware apparently prefetches
2675          * past the end of the object, and we've seen multiple hangs with the
2676          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2677          * aperture.  One page should be enough to keep any prefetching inside
2678          * of the aperture.
2679          */
2680         unsigned long hole_start, hole_end;
2681         struct drm_mm_node *entry;
2682         int ret;
2683 
2684         /*
2685          * GuC requires all resources that we're sharing with it to be placed in
2686          * non-WOPCM memory. If GuC is not present or not in use we still need a
2687          * small bias as ring wraparound at offset 0 sometimes hangs. No idea
2688          * why.
2689          */
2690         ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2691                                intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2692 
2693         ret = intel_vgt_balloon(ggtt);
2694         if (ret)
2695                 return ret;
2696 
2697         /* Reserve a mappable slot for our lockless error capture */
2698         ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2699                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2700                                           0, ggtt->mappable_end,
2701                                           DRM_MM_INSERT_LOW);
2702         if (ret)
2703                 return ret;
2704 
2705         /*
2706          * The upper portion of the GuC address space has a sizeable hole
2707          * (several MB) that is inaccessible by GuC. Reserve this range within
2708          * GGTT as it can comfortably hold GuC/HuC firmware images.
2709          */
2710         ret = ggtt_reserve_guc_top(ggtt);
2711         if (ret)
2712                 goto err;
2713 
2714         /* Clear any non-preallocated blocks */
2715         drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2716                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2717                               hole_start, hole_end);
2718                 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2719                                      hole_end - hole_start);
2720         }
2721 
2722         /* And finally clear the reserved guard page */
2723         ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2724 
2725         return 0;
2726 
2727 err:
2728         cleanup_init_ggtt(ggtt);
2729         return ret;
2730 }
2731 
2732 int i915_init_ggtt(struct drm_i915_private *i915)
2733 {
2734         int ret;
2735 
2736         ret = init_ggtt(&i915->ggtt);
2737         if (ret)
2738                 return ret;
2739 
2740         if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2741                 ret = init_aliasing_ppgtt(&i915->ggtt);
2742                 if (ret)
2743                         cleanup_init_ggtt(&i915->ggtt);
2744         }
2745 
2746         return 0;
2747 }
2748 
2749 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2750 {
2751         struct drm_i915_private *i915 = ggtt->vm.i915;
2752         struct i915_vma *vma, *vn;
2753 
2754         ggtt->vm.closed = true;
2755 
2756         rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2757         flush_workqueue(i915->wq);
2758 
2759         mutex_lock(&i915->drm.struct_mutex);
2760 
2761         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2762                 WARN_ON(i915_vma_unbind(vma));
2763 
2764         if (drm_mm_node_allocated(&ggtt->error_capture))
2765                 drm_mm_remove_node(&ggtt->error_capture);
2766 
2767         ggtt_release_guc_top(ggtt);
2768 
2769         if (drm_mm_initialized(&ggtt->vm.mm)) {
2770                 intel_vgt_deballoon(ggtt);
2771                 i915_address_space_fini(&ggtt->vm);
2772         }
2773 
2774         ggtt->vm.cleanup(&ggtt->vm);
2775 
2776         mutex_unlock(&i915->drm.struct_mutex);
2777 
2778         arch_phys_wc_del(ggtt->mtrr);
2779         io_mapping_fini(&ggtt->iomap);
2780 }
2781 
2782 /**
2783  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2784  * @i915: i915 device
2785  */
2786 void i915_ggtt_driver_release(struct drm_i915_private *i915)
2787 {
2788         struct pagevec *pvec;
2789 
2790         fini_aliasing_ppgtt(&i915->ggtt);
2791 
2792         ggtt_cleanup_hw(&i915->ggtt);
2793 
2794         pvec = &i915->mm.wc_stash.pvec;
2795         if (pvec->nr) {
2796                 set_pages_array_wb(pvec->pages, pvec->nr);
2797                 __pagevec_release(pvec);
2798         }
2799 
2800         i915_gem_cleanup_stolen(i915);
2801 }
2802 
2803 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2804 {
2805         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2806         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2807         return snb_gmch_ctl << 20;
2808 }
2809 
2810 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2811 {
2812         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2813         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2814         if (bdw_gmch_ctl)
2815                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2816 
2817 #ifdef CONFIG_X86_32
2818         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2819         if (bdw_gmch_ctl > 4)
2820                 bdw_gmch_ctl = 4;
2821 #endif
2822 
2823         return bdw_gmch_ctl << 20;
2824 }
2825 
2826 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2827 {
2828         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2829         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2830 
2831         if (gmch_ctrl)
2832                 return 1 << (20 + gmch_ctrl);
2833 
2834         return 0;
2835 }
2836 
2837 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2838 {
2839         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2840         struct pci_dev *pdev = dev_priv->drm.pdev;
2841         phys_addr_t phys_addr;
2842         int ret;
2843 
2844         /* For Modern GENs the PTEs and register space are split in the BAR */
2845         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2846 
2847         /*
2848          * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2849          * will be dropped. For WC mappings in general we have 64 byte burst
2850          * writes when the WC buffer is flushed, so we can't use it, but have to
2851          * resort to an uncached mapping. The WC issue is easily caught by the
2852          * readback check when writing GTT PTE entries.
2853          */
2854         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2855                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2856         else
2857                 ggtt->gsm = ioremap_wc(phys_addr, size);
2858         if (!ggtt->gsm) {
2859                 DRM_ERROR("Failed to map the ggtt page table\n");
2860                 return -ENOMEM;
2861         }
2862 
2863         ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2864         if (ret) {
2865                 DRM_ERROR("Scratch setup failed\n");
2866                 /* iounmap will also get called at remove, but meh */
2867                 iounmap(ggtt->gsm);
2868                 return ret;
2869         }
2870 
2871         ggtt->vm.scratch[0].encode =
2872                 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2873                                     I915_CACHE_NONE, 0);
2874 
2875         return 0;
2876 }
2877 
2878 static void tgl_setup_private_ppat(struct drm_i915_private *dev_priv)
2879 {
2880         /* TGL doesn't support LLC or AGE settings */
2881         I915_WRITE(GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
2882         I915_WRITE(GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
2883         I915_WRITE(GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
2884         I915_WRITE(GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
2885         I915_WRITE(GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
2886         I915_WRITE(GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
2887         I915_WRITE(GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
2888         I915_WRITE(GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
2889 }
2890 
2891 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2892 {
2893         I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2894         I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2895         I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2896         I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2897         I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2898         I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2899         I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2900         I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2901 }
2902 
2903 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2904  * bits. When using advanced contexts each context stores its own PAT, but
2905  * writing this data shouldn't be harmful even in those cases. */
2906 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2907 {
2908         u64 pat;
2909 
2910         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
2911               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
2912               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
2913               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
2914               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2915               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2916               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2917               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2918 
2919         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2920         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2921 }
2922 
2923 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2924 {
2925         u64 pat;
2926 
2927         /*
2928          * Map WB on BDW to snooped on CHV.
2929          *
2930          * Only the snoop bit has meaning for CHV, the rest is
2931          * ignored.
2932          *
2933          * The hardware will never snoop for certain types of accesses:
2934          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2935          * - PPGTT page tables
2936          * - some other special cycles
2937          *
2938          * As with BDW, we also need to consider the following for GT accesses:
2939          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2940          * so RTL will always use the value corresponding to
2941          * pat_sel = 000".
2942          * Which means we must set the snoop bit in PAT entry 0
2943          * in order to keep the global status page working.
2944          */
2945 
2946         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2947               GEN8_PPAT(1, 0) |
2948               GEN8_PPAT(2, 0) |
2949               GEN8_PPAT(3, 0) |
2950               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2951               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2952               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2953               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2954 
2955         I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
2956         I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2957 }
2958 
2959 static void gen6_gmch_remove(struct i915_address_space *vm)
2960 {
2961         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2962 
2963         iounmap(ggtt->gsm);
2964         cleanup_scratch_page(vm);
2965 }
2966 
2967 static void setup_private_pat(struct drm_i915_private *dev_priv)
2968 {
2969         GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);
2970 
2971         if (INTEL_GEN(dev_priv) >= 12)
2972                 tgl_setup_private_ppat(dev_priv);
2973         else if (INTEL_GEN(dev_priv) >= 10)
2974                 cnl_setup_private_ppat(dev_priv);
2975         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2976                 chv_setup_private_ppat(dev_priv);
2977         else
2978                 bdw_setup_private_ppat(dev_priv);
2979 }
2980 
2981 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2982 {
2983         struct drm_i915_private *dev_priv = ggtt->vm.i915;
2984         struct pci_dev *pdev = dev_priv->drm.pdev;
2985         unsigned int size;
2986         u16 snb_gmch_ctl;
2987         int err;
2988 
2989         /* TODO: We're not aware of mappable constraints on gen8 yet */
2990         ggtt->gmadr =
2991                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
2992                                                  pci_resource_len(pdev, 2));
2993         ggtt->mappable_end = resource_size(&ggtt->gmadr);
2994 
2995         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2996         if (!err)
2997                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2998         if (err)
2999                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3000 
3001         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3002         if (IS_CHERRYVIEW(dev_priv))
3003                 size = chv_get_total_gtt_size(snb_gmch_ctl);
3004         else
3005                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3006 
3007         ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3008         ggtt->vm.cleanup = gen6_gmch_remove;
3009         ggtt->vm.insert_page = gen8_ggtt_insert_page;
3010         ggtt->vm.clear_range = nop_clear_range;
3011         if (intel_scanout_needs_vtd_wa(dev_priv))
3012                 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3013 
3014         ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3015 
3016         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3017         if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
3018             IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3019                 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3020                 ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
3021                 if (ggtt->vm.clear_range != nop_clear_range)
3022                         ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3023         }
3024 
3025         ggtt->invalidate = gen6_ggtt_invalidate;
3026 
3027         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3028         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3029         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3030         ggtt->vm.vma_ops.clear_pages = clear_pages;
3031 
3032         ggtt->vm.pte_encode = gen8_pte_encode;
3033 
3034         setup_private_pat(dev_priv);
3035 
3036         return ggtt_probe_common(ggtt, size);
3037 }
3038 
3039 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3040 {
3041         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3042         struct pci_dev *pdev = dev_priv->drm.pdev;
3043         unsigned int size;
3044         u16 snb_gmch_ctl;
3045         int err;
3046 
3047         ggtt->gmadr =
3048                 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3049                                                  pci_resource_len(pdev, 2));
3050         ggtt->mappable_end = resource_size(&ggtt->gmadr);
3051 
3052         /* 64/512MB is the current min/max we actually know of, but this is just
3053          * a coarse sanity check.
3054          */
3055         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3056                 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3057                 return -ENXIO;
3058         }
3059 
3060         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3061         if (!err)
3062                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3063         if (err)
3064                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3065         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3066 
3067         size = gen6_get_total_gtt_size(snb_gmch_ctl);
3068         ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3069 
3070         ggtt->vm.clear_range = nop_clear_range;
3071         if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3072                 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3073         ggtt->vm.insert_page = gen6_ggtt_insert_page;
3074         ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3075         ggtt->vm.cleanup = gen6_gmch_remove;
3076 
3077         ggtt->invalidate = gen6_ggtt_invalidate;
3078 
3079         if (HAS_EDRAM(dev_priv))
3080                 ggtt->vm.pte_encode = iris_pte_encode;
3081         else if (IS_HASWELL(dev_priv))
3082                 ggtt->vm.pte_encode = hsw_pte_encode;
3083         else if (IS_VALLEYVIEW(dev_priv))
3084                 ggtt->vm.pte_encode = byt_pte_encode;
3085         else if (INTEL_GEN(dev_priv) >= 7)
3086                 ggtt->vm.pte_encode = ivb_pte_encode;
3087         else
3088                 ggtt->vm.pte_encode = snb_pte_encode;
3089 
3090         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3091         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3092         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3093         ggtt->vm.vma_ops.clear_pages = clear_pages;
3094 
3095         return ggtt_probe_common(ggtt, size);
3096 }
3097 
3098 static void i915_gmch_remove(struct i915_address_space *vm)
3099 {
3100         intel_gmch_remove();
3101 }
3102 
3103 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3104 {
3105         struct drm_i915_private *dev_priv = ggtt->vm.i915;
3106         phys_addr_t gmadr_base;
3107         int ret;
3108 
3109         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3110         if (!ret) {
3111                 DRM_ERROR("failed to set up gmch\n");
3112                 return -EIO;
3113         }
3114 
3115         intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3116 
3117         ggtt->gmadr =
3118                 (struct resource) DEFINE_RES_MEM(gmadr_base,
3119                                                  ggtt->mappable_end);
3120 
3121         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3122         ggtt->vm.insert_page = i915_ggtt_insert_page;
3123         ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3124         ggtt->vm.clear_range = i915_ggtt_clear_range;
3125         ggtt->vm.cleanup = i915_gmch_remove;
3126 
3127         ggtt->invalidate = gmch_ggtt_invalidate;
3128 
3129         ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
3130         ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
3131         ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
3132         ggtt->vm.vma_ops.clear_pages = clear_pages;
3133 
3134         if (unlikely(ggtt->do_idle_maps))
3135                 dev_notice(dev_priv->drm.dev,
3136                            "Applying Ironlake quirks for intel_iommu\n");
3137 
3138         return 0;
3139 }
3140 
3141 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3142 {
3143         struct drm_i915_private *i915 = gt->i915;
3144         int ret;
3145 
3146         ggtt->vm.gt = gt;
3147         ggtt->vm.i915 = i915;
3148         ggtt->vm.dma = &i915->drm.pdev->dev;
3149 
3150         if (INTEL_GEN(i915) <= 5)
3151                 ret = i915_gmch_probe(ggtt);
3152         else if (INTEL_GEN(i915) < 8)
3153                 ret = gen6_gmch_probe(ggtt);
3154         else
3155                 ret = gen8_gmch_probe(ggtt);
3156         if (ret)
3157                 return ret;
3158 
3159         if ((ggtt->vm.total - 1) >> 32) {
3160                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3161                           " of address space! Found %lldM!\n",
3162                           ggtt->vm.total >> 20);
3163                 ggtt->vm.total = 1ULL << 32;
3164                 ggtt->mappable_end =
3165                         min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3166         }
3167 
3168         if (ggtt->mappable_end > ggtt->vm.total) {
3169                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3170                           " aperture=%pa, total=%llx\n",
3171                           &ggtt->mappable_end, ggtt->vm.total);
3172                 ggtt->mappable_end = ggtt->vm.total;
3173         }
3174 
3175         /* GMADR is the PCI mmio aperture into the global GTT. */
3176         DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3177         DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3178         DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3179                          (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3180 
3181         return 0;
3182 }
3183 
3184 /**
3185  * i915_ggtt_probe_hw - Probe GGTT hardware location
3186  * @i915: i915 device
3187  */
3188 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
3189 {
3190         int ret;
3191 
3192         ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3193         if (ret)
3194                 return ret;
3195 
3196         if (intel_vtd_active())
3197                 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3198 
3199         return 0;
3200 }
3201 
3202 static int ggtt_init_hw(struct i915_ggtt *ggtt)
3203 {
3204         struct drm_i915_private *i915 = ggtt->vm.i915;
3205         int ret = 0;
3206 
3207         mutex_lock(&i915->drm.struct_mutex);
3208 
3209         i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3210 
3211         ggtt->vm.is_ggtt = true;
3212 
3213         /* Only VLV supports read-only GGTT mappings */
3214         ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3215 
3216         if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3217                 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3218 
3219         if (!io_mapping_init_wc(&ggtt->iomap,
3220                                 ggtt->gmadr.start,
3221                                 ggtt->mappable_end)) {
3222                 ggtt->vm.cleanup(&ggtt->vm);
3223                 ret = -EIO;
3224                 goto out;
3225         }
3226 
3227         ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3228 
3229         i915_ggtt_init_fences(ggtt);
3230 
3231 out:
3232         mutex_unlock(&i915->drm.struct_mutex);
3233 
3234         return ret;
3235 }
3236 
3237 /**
3238  * i915_ggtt_init_hw - Initialize GGTT hardware
3239  * @dev_priv: i915 device
3240  */
3241 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3242 {
3243         int ret;
3244 
3245         stash_init(&dev_priv->mm.wc_stash);
3246 
3247         /* Note that we use page colouring to enforce a guard page at the
3248          * end of the address space. This is required as the CS may prefetch
3249          * beyond the end of the batch buffer, across the page boundary,
3250          * and beyond the end of the GTT if we do not provide a guard.
3251          */
3252         ret = ggtt_init_hw(&dev_priv->ggtt);
3253         if (ret)
3254                 return ret;
3255 
3256         /*
3257          * Initialise stolen early so that we may reserve preallocated
3258          * objects for the BIOS to KMS transition.
3259          */
3260         ret = i915_gem_init_stolen(dev_priv);
3261         if (ret)
3262                 goto out_gtt_cleanup;
3263 
3264         return 0;
3265 
3266 out_gtt_cleanup:
3267         dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
3268         return ret;
3269 }
3270 
3271 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3272 {
3273         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3274                 return -EIO;
3275 
3276         return 0;
3277 }
3278 
3279 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3280 {
3281         GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3282 
3283         ggtt->invalidate = guc_ggtt_invalidate;
3284 
3285         ggtt->invalidate(ggtt);
3286 }
3287 
3288 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3289 {
3290         /* XXX Temporary pardon for error unload */
3291         if (ggtt->invalidate == gen6_ggtt_invalidate)
3292                 return;
3293 
3294         /* We should only be called after i915_ggtt_enable_guc() */
3295         GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3296 
3297         ggtt->invalidate = gen6_ggtt_invalidate;
3298 
3299         ggtt->invalidate(ggtt);
3300 }
3301 
3302 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3303 {
3304         struct i915_vma *vma, *vn;
3305         bool flush = false;
3306 
3307         intel_gt_check_and_clear_faults(ggtt->vm.gt);
3308 
3309         mutex_lock(&ggtt->vm.mutex);
3310 
3311         /* First fill our portion of the GTT with scratch pages */
3312         ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3313         ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3314 
3315         /* clflush objects bound into the GGTT and rebind them. */
3316         list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3317                 struct drm_i915_gem_object *obj = vma->obj;
3318 
3319                 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3320                         continue;
3321 
3322                 mutex_unlock(&ggtt->vm.mutex);
3323 
3324                 if (!i915_vma_unbind(vma))
3325                         goto lock;
3326 
3327                 WARN_ON(i915_vma_bind(vma,
3328                                       obj ? obj->cache_level : 0,
3329                                       PIN_UPDATE));
3330                 if (obj) { /* only used during resume => exclusive access */
3331                         flush |= fetch_and_zero(&obj->write_domain);
3332                         obj->read_domains |= I915_GEM_DOMAIN_GTT;
3333                 }
3334 
3335 lock:
3336                 mutex_lock(&ggtt->vm.mutex);
3337         }
3338 
3339         ggtt->vm.closed = false;
3340         ggtt->invalidate(ggtt);
3341 
3342         mutex_unlock(&ggtt->vm.mutex);
3343 
3344         if (flush)
3345                 wbinvd_on_all_cpus();
3346 }
3347 
3348 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
3349 {
3350         ggtt_restore_mappings(&i915->ggtt);
3351 
3352         if (INTEL_GEN(i915) >= 8)
3353                 setup_private_pat(i915);
3354 }
3355 
3356 static struct scatterlist *
3357 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3358              unsigned int width, unsigned int height,
3359              unsigned int stride,
3360              struct sg_table *st, struct scatterlist *sg)
3361 {
3362         unsigned int column, row;
3363         unsigned int src_idx;
3364 
3365         for (column = 0; column < width; column++) {
3366                 src_idx = stride * (height - 1) + column + offset;
3367                 for (row = 0; row < height; row++) {
3368                         st->nents++;
3369                         /* We don't need the pages, but need to initialize
3370                          * the entries so the sg list can be happily traversed.
3371                          * The only thing we need are DMA addresses.
3372                          */
3373                         sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3374                         sg_dma_address(sg) =
3375                                 i915_gem_object_get_dma_address(obj, src_idx);
3376                         sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3377                         sg = sg_next(sg);
3378                         src_idx -= stride;
3379                 }
3380         }
3381 
3382         return sg;
3383 }
3384 
3385 static noinline struct sg_table *
3386 intel_rotate_pages(struct intel_rotation_info *rot_info,
3387                    struct drm_i915_gem_object *obj)
3388 {
3389         unsigned int size = intel_rotation_info_size(rot_info);
3390         struct sg_table *st;
3391         struct scatterlist *sg;
3392         int ret = -ENOMEM;
3393         int i;
3394 
3395         /* Allocate target SG list. */
3396         st = kmalloc(sizeof(*st), GFP_KERNEL);
3397         if (!st)
3398                 goto err_st_alloc;
3399 
3400         ret = sg_alloc_table(st, size, GFP_KERNEL);
3401         if (ret)
3402                 goto err_sg_alloc;
3403 
3404         st->nents = 0;
3405         sg = st->sgl;
3406 
3407         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3408                 sg = rotate_pages(obj, rot_info->plane[i].offset,
3409                                   rot_info->plane[i].width, rot_info->plane[i].height,
3410                                   rot_info->plane[i].stride, st, sg);
3411         }
3412 
3413         return st;
3414 
3415 err_sg_alloc:
3416         kfree(st);
3417 err_st_alloc:
3418 
3419         DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3420                          obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3421 
3422         return ERR_PTR(ret);
3423 }
3424 
3425 static struct scatterlist *
3426 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3427             unsigned int width, unsigned int height,
3428             unsigned int stride,
3429             struct sg_table *st, struct scatterlist *sg)
3430 {
3431         unsigned int row;
3432 
3433         for (row = 0; row < height; row++) {
3434                 unsigned int left = width * I915_GTT_PAGE_SIZE;
3435 
3436                 while (left) {
3437                         dma_addr_t addr;
3438                         unsigned int length;
3439 
3440                         /* We don't need the pages, but need to initialize
3441                          * the entries so the sg list can be happily traversed.
3442                          * The only thing we need are DMA addresses.
3443                          */
3444 
3445                         addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
3446 
3447                         length = min(left, length);
3448 
3449                         st->nents++;
3450 
3451                         sg_set_page(sg, NULL, length, 0);
3452                         sg_dma_address(sg) = addr;
3453                         sg_dma_len(sg) = length;
3454                         sg = sg_next(sg);
3455 
3456                         offset += length / I915_GTT_PAGE_SIZE;
3457                         left -= length;
3458                 }
3459 
3460                 offset += stride - width;
3461         }
3462 
3463         return sg;
3464 }
3465 
3466 static noinline struct sg_table *
3467 intel_remap_pages(struct intel_remapped_info *rem_info,
3468                   struct drm_i915_gem_object *obj)
3469 {
3470         unsigned int size = intel_remapped_info_size(rem_info);
3471         struct sg_table *st;
3472         struct scatterlist *sg;
3473         int ret = -ENOMEM;
3474         int i;
3475 
3476         /* Allocate target SG list. */
3477         st = kmalloc(sizeof(*st), GFP_KERNEL);
3478         if (!st)
3479                 goto err_st_alloc;
3480 
3481         ret = sg_alloc_table(st, size, GFP_KERNEL);
3482         if (ret)
3483                 goto err_sg_alloc;
3484 
3485         st->nents = 0;
3486         sg = st->sgl;
3487 
3488         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
3489                 sg = remap_pages(obj, rem_info->plane[i].offset,
3490                                  rem_info->plane[i].width, rem_info->plane[i].height,
3491                                  rem_info->plane[i].stride, st, sg);
3492         }
3493 
3494         i915_sg_trim(st);
3495 
3496         return st;
3497 
3498 err_sg_alloc:
3499         kfree(st);
3500 err_st_alloc:
3501 
3502         DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3503                          obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
3504 
3505         return ERR_PTR(ret);
3506 }
3507 
3508 static noinline struct sg_table *
3509 intel_partial_pages(const struct i915_ggtt_view *view,
3510                     struct drm_i915_gem_object *obj)
3511 {
3512         struct sg_table *st;
3513         struct scatterlist *sg, *iter;
3514         unsigned int count = view->partial.size;
3515         unsigned int offset;
3516         int ret = -ENOMEM;
3517 
3518         st = kmalloc(sizeof(*st), GFP_KERNEL);
3519         if (!st)
3520                 goto err_st_alloc;
3521 
3522         ret = sg_alloc_table(st, count, GFP_KERNEL);
3523         if (ret)
3524                 goto err_sg_alloc;
3525 
3526         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3527         GEM_BUG_ON(!iter);
3528 
3529         sg = st->sgl;
3530         st->nents = 0;
3531         do {
3532                 unsigned int len;
3533 
3534                 len = min(iter->length - (offset << PAGE_SHIFT),
3535                           count << PAGE_SHIFT);
3536                 sg_set_page(sg, NULL, len, 0);
3537                 sg_dma_address(sg) =
3538                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3539                 sg_dma_len(sg) = len;
3540 
3541                 st->nents++;
3542                 count -= len >> PAGE_SHIFT;
3543                 if (count == 0) {
3544                         sg_mark_end(sg);
3545                         i915_sg_trim(st); /* Drop any unused tail entries. */
3546 
3547                         return st;
3548                 }
3549 
3550                 sg = __sg_next(sg);
3551                 iter = __sg_next(iter);
3552                 offset = 0;
3553         } while (1);
3554 
3555 err_sg_alloc:
3556         kfree(st);
3557 err_st_alloc:
3558         return ERR_PTR(ret);
3559 }
3560 
3561 static int
3562 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3563 {
3564         int ret;
3565 
3566         /* The vma->pages are only valid within the lifespan of the borrowed
3567          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3568          * must be the vma->pages. A simple rule is that vma->pages must only
3569          * be accessed when the obj->mm.pages are pinned.
3570          */
3571         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3572 
3573         switch (vma->ggtt_view.type) {
3574         default:
3575                 GEM_BUG_ON(vma->ggtt_view.type);
3576                 /* fall through */
3577         case I915_GGTT_VIEW_NORMAL:
3578                 vma->pages = vma->obj->mm.pages;
3579                 return 0;
3580 
3581         case I915_GGTT_VIEW_ROTATED:
3582                 vma->pages =
3583                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3584                 break;
3585 
3586         case I915_GGTT_VIEW_REMAPPED:
3587                 vma->pages =
3588                         intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
3589                 break;
3590 
3591         case I915_GGTT_VIEW_PARTIAL:
3592                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3593                 break;
3594         }
3595 
3596         ret = 0;
3597         if (IS_ERR(vma->pages)) {
3598                 ret = PTR_ERR(vma->pages);
3599                 vma->pages = NULL;
3600                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3601                           vma->ggtt_view.type, ret);
3602         }
3603         return ret;
3604 }
3605 
3606 /**
3607  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3608  * @vm: the &struct i915_address_space
3609  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3610  * @size: how much space to allocate inside the GTT,
3611  *        must be #I915_GTT_PAGE_SIZE aligned
3612  * @offset: where to insert inside the GTT,
3613  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3614  *          (@offset + @size) must fit within the address space
3615  * @color: color to apply to node, if this node is not from a VMA,
3616  *         color must be #I915_COLOR_UNEVICTABLE
3617  * @flags: control search and eviction behaviour
3618  *
3619  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3620  * the address space (using @size and @color). If the @node does not fit, it
3621  * tries to evict any overlapping nodes from the GTT, including any
3622  * neighbouring nodes if the colors do not match (to ensure guard pages between
3623  * differing domains). See i915_gem_evict_for_node() for the gory details
3624  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3625  * evicting active overlapping objects, and any overlapping node that is pinned
3626  * or marked as unevictable will also result in failure.
3627  *
3628  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3629  * asked to wait for eviction and interrupted.
3630  */
3631 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3632                          struct drm_mm_node *node,
3633                          u64 size, u64 offset, unsigned long color,
3634                          unsigned int flags)
3635 {
3636         int err;
3637 
3638         GEM_BUG_ON(!size);
3639         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3640         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3641         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3642         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3643         GEM_BUG_ON(drm_mm_node_allocated(node));
3644 
3645         node->size = size;
3646         node->start = offset;
3647         node->color = color;
3648 
3649         err = drm_mm_reserve_node(&vm->mm, node);
3650         if (err != -ENOSPC)
3651                 return err;
3652 
3653         if (flags & PIN_NOEVICT)
3654                 return -ENOSPC;
3655 
3656         err = i915_gem_evict_for_node(vm, node, flags);
3657         if (err == 0)
3658                 err = drm_mm_reserve_node(&vm->mm, node);
3659 
3660         return err;
3661 }
3662 
3663 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3664 {
3665         u64 range, addr;
3666 
3667         GEM_BUG_ON(range_overflows(start, len, end));
3668         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3669 
3670         range = round_down(end - len, align) - round_up(start, align);
3671         if (range) {
3672                 if (sizeof(unsigned long) == sizeof(u64)) {
3673                         addr = get_random_long();
3674                 } else {
3675                         addr = get_random_int();
3676                         if (range > U32_MAX) {
3677                                 addr <<= 32;
3678                                 addr |= get_random_int();
3679                         }
3680                 }
3681                 div64_u64_rem(addr, range, &addr);
3682                 start += addr;
3683         }
3684 
3685         return round_up(start, align);
3686 }
3687 
3688 /**
3689  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3690  * @vm: the &struct i915_address_space
3691  * @node: the &struct drm_mm_node (typically i915_vma.node)
3692  * @size: how much space to allocate inside the GTT,
3693  *        must be #I915_GTT_PAGE_SIZE aligned
3694  * @alignment: required alignment of starting offset, may be 0 but
3695  *             if specified, this must be a power-of-two and at least
3696  *             #I915_GTT_MIN_ALIGNMENT
3697  * @color: color to apply to node
3698  * @start: start of any range restriction inside GTT (0 for all),
3699  *         must be #I915_GTT_PAGE_SIZE aligned
3700  * @end: end of any range restriction inside GTT (U64_MAX for all),
3701  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3702  * @flags: control search and eviction behaviour
3703  *
3704  * i915_gem_gtt_insert() first searches for an available hole into which
3705  * is can insert the node. The hole address is aligned to @alignment and
3706  * its @size must then fit entirely within the [@start, @end] bounds. The
3707  * nodes on either side of the hole must match @color, or else a guard page
3708  * will be inserted between the two nodes (or the node evicted). If no
3709  * suitable hole is found, first a victim is randomly selected and tested
3710  * for eviction, otherwise then the LRU list of objects within the GTT
3711  * is scanned to find the first set of replacement nodes to create the hole.
3712  * Those old overlapping nodes are evicted from the GTT (and so must be
3713  * rebound before any future use). Any node that is currently pinned cannot
3714  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3715  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3716  * searching for an eviction candidate. See i915_gem_evict_something() for
3717  * the gory details on the eviction algorithm.
3718  *
3719  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3720  * asked to wait for eviction and interrupted.
3721  */
3722 int i915_gem_gtt_insert(struct i915_address_space *vm,
3723                         struct drm_mm_node *node,
3724                         u64 size, u64 alignment, unsigned long color,
3725                         u64 start, u64 end, unsigned int flags)
3726 {
3727         enum drm_mm_insert_mode mode;
3728         u64 offset;
3729         int err;
3730 
3731         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3732         GEM_BUG_ON(!size);
3733         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3734         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3735         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3736         GEM_BUG_ON(start >= end);
3737         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3738         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3739         GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3740         GEM_BUG_ON(drm_mm_node_allocated(node));
3741 
3742         if (unlikely(range_overflows(start, size, end)))
3743                 return -ENOSPC;
3744 
3745         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3746                 return -ENOSPC;
3747 
3748         mode = DRM_MM_INSERT_BEST;
3749         if (flags & PIN_HIGH)
3750                 mode = DRM_MM_INSERT_HIGHEST;
3751         if (flags & PIN_MAPPABLE)
3752                 mode = DRM_MM_INSERT_LOW;
3753 
3754         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3755          * so we know that we always have a minimum alignment of 4096.
3756          * The drm_mm range manager is optimised to return results
3757          * with zero alignment, so where possible use the optimal
3758          * path.
3759          */
3760         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3761         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3762                 alignment = 0;
3763 
3764         err = drm_mm_insert_node_in_range(&vm->mm, node,
3765                                           size, alignment, color,
3766                                           start, end, mode);
3767         if (err != -ENOSPC)
3768                 return err;
3769 
3770         if (mode & DRM_MM_INSERT_ONCE) {
3771                 err = drm_mm_insert_node_in_range(&vm->mm, node,
3772                                                   size, alignment, color,
3773                                                   start, end,
3774                                                   DRM_MM_INSERT_BEST);
3775                 if (err != -ENOSPC)
3776                         return err;
3777         }
3778 
3779         if (flags & PIN_NOEVICT)
3780                 return -ENOSPC;
3781 
3782         /*
3783          * No free space, pick a slot at random.
3784          *
3785          * There is a pathological case here using a GTT shared between
3786          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3787          *
3788          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3789          *         (64k objects)             (448k objects)
3790          *
3791          * Now imagine that the eviction LRU is ordered top-down (just because
3792          * pathology meets real life), and that we need to evict an object to
3793          * make room inside the aperture. The eviction scan then has to walk
3794          * the 448k list before it finds one within range. And now imagine that
3795          * it has to search for a new hole between every byte inside the memcpy,
3796          * for several simultaneous clients.
3797          *
3798          * On a full-ppgtt system, if we have run out of available space, there
3799          * will be lots and lots of objects in the eviction list! Again,
3800          * searching that LRU list may be slow if we are also applying any
3801          * range restrictions (e.g. restriction to low 4GiB) and so, for
3802          * simplicity and similarilty between different GTT, try the single
3803          * random replacement first.
3804          */
3805         offset = random_offset(start, end,
3806                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3807         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3808         if (err != -ENOSPC)
3809                 return err;
3810 
3811         if (flags & PIN_NOSEARCH)
3812                 return -ENOSPC;
3813 
3814         /* Randomly selected placement is pinned, do a search */
3815         err = i915_gem_evict_something(vm, size, alignment, color,
3816                                        start, end, flags);
3817         if (err)
3818                 return err;
3819 
3820         return drm_mm_insert_node_in_range(&vm->mm, node,
3821                                            size, alignment, color,
3822                                            start, end, DRM_MM_INSERT_EVICT);
3823 }
3824 
3825 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3826 #include "selftests/mock_gtt.c"
3827 #include "selftests/i915_gem_gtt.c"
3828 #endif

/* [<][>][^][v][top][bottom][index][help] */