root/drivers/gpu/drm/i915/display/intel_dp.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. intel_dp_is_edp
  2. intel_attached_dp
  3. intel_dp_set_sink_rates
  4. intel_dp_rate_limit_len
  5. intel_dp_common_len_rate_limit
  6. intel_dp_max_common_rate
  7. intel_dp_max_common_lane_count
  8. intel_dp_max_lane_count
  9. intel_dp_link_required
  10. intel_dp_max_data_rate
  11. intel_dp_downstream_max_dotclock
  12. cnl_max_source_rate
  13. icl_max_source_rate
  14. intel_dp_set_source_rates
  15. intersect_rates
  16. intel_dp_rate_index
  17. intel_dp_set_common_rates
  18. intel_dp_link_params_valid
  19. intel_dp_can_link_train_fallback_for_edp
  20. intel_dp_get_link_train_fallback_values
  21. intel_dp_mode_to_fec_clock
  22. intel_dp_dsc_get_output_bpp
  23. intel_dp_dsc_get_slice_count
  24. intel_dp_mode_valid
  25. intel_dp_pack_aux
  26. intel_dp_unpack_aux
  27. pps_lock
  28. pps_unlock
  29. vlv_power_sequencer_kick
  30. vlv_find_free_pps
  31. vlv_power_sequencer_pipe
  32. bxt_power_sequencer_idx
  33. vlv_pipe_has_pp_on
  34. vlv_pipe_has_vdd_on
  35. vlv_pipe_any
  36. vlv_initial_pps_pipe
  37. vlv_initial_power_sequencer_setup
  38. intel_power_sequencer_reset
  39. intel_pps_get_registers
  40. _pp_ctrl_reg
  41. _pp_stat_reg
  42. edp_notify_handler
  43. edp_have_panel_power
  44. edp_have_panel_vdd
  45. intel_dp_check_edp
  46. intel_dp_aux_wait_done
  47. g4x_get_aux_clock_divider
  48. ilk_get_aux_clock_divider
  49. hsw_get_aux_clock_divider
  50. skl_get_aux_clock_divider
  51. g4x_get_aux_send_ctl
  52. skl_get_aux_send_ctl
  53. intel_dp_aux_xfer
  54. intel_dp_aux_header
  55. intel_dp_aux_transfer
  56. g4x_aux_ctl_reg
  57. g4x_aux_data_reg
  58. ilk_aux_ctl_reg
  59. ilk_aux_data_reg
  60. skl_aux_ctl_reg
  61. skl_aux_data_reg
  62. intel_dp_aux_fini
  63. intel_dp_aux_init
  64. intel_dp_source_supports_hbr2
  65. intel_dp_source_supports_hbr3
  66. intel_dp_set_clock
  67. snprintf_int_array
  68. intel_dp_print_rates
  69. intel_dp_max_link_rate
  70. intel_dp_rate_select
  71. intel_dp_compute_rate
  72. intel_dp_source_supports_fec
  73. intel_dp_supports_fec
  74. intel_dp_source_supports_dsc
  75. intel_dp_supports_dsc
  76. intel_dp_compute_bpp
  77. intel_dp_adjust_compliance_config
  78. intel_dp_output_bpp
  79. intel_dp_compute_link_config_wide
  80. intel_dp_dsc_compute_bpp
  81. intel_dp_dsc_compute_config
  82. intel_dp_min_bpp
  83. intel_dp_compute_link_config
  84. intel_dp_ycbcr420_config
  85. intel_dp_limited_color_range
  86. intel_dp_compute_config
  87. intel_dp_set_link_params
  88. intel_dp_prepare
  89. wait_panel_status
  90. wait_panel_on
  91. wait_panel_off
  92. wait_panel_power_cycle
  93. wait_backlight_on
  94. edp_wait_backlight_off
  95. ironlake_get_pp_control
  96. edp_panel_vdd_on
  97. intel_edp_panel_vdd_on
  98. edp_panel_vdd_off_sync
  99. edp_panel_vdd_work
  100. edp_panel_vdd_schedule_off
  101. edp_panel_vdd_off
  102. edp_panel_on
  103. intel_edp_panel_on
  104. edp_panel_off
  105. intel_edp_panel_off
  106. _intel_edp_backlight_on
  107. intel_edp_backlight_on
  108. _intel_edp_backlight_off
  109. intel_edp_backlight_off
  110. intel_edp_backlight_power
  111. assert_dp_port
  112. assert_edp_pll
  113. ironlake_edp_pll_on
  114. ironlake_edp_pll_off
  115. downstream_hpd_needs_d0
  116. intel_dp_sink_set_decompression_state
  117. intel_dp_sink_dpms
  118. cpt_dp_port_selected
  119. intel_dp_port_enabled
  120. intel_dp_get_hw_state
  121. intel_dp_get_config
  122. intel_disable_dp
  123. g4x_disable_dp
  124. vlv_disable_dp
  125. g4x_post_disable_dp
  126. vlv_post_disable_dp
  127. chv_post_disable_dp
  128. _intel_dp_set_link_train
  129. intel_dp_enable_port
  130. intel_enable_dp
  131. g4x_enable_dp
  132. vlv_enable_dp
  133. g4x_pre_enable_dp
  134. vlv_detach_power_sequencer
  135. vlv_steal_power_sequencer
  136. vlv_init_panel_power_sequencer
  137. vlv_pre_enable_dp
  138. vlv_dp_pre_pll_enable
  139. chv_pre_enable_dp
  140. chv_dp_pre_pll_enable
  141. chv_dp_post_pll_disable
  142. intel_dp_get_link_status
  143. intel_dp_voltage_max
  144. intel_dp_pre_emphasis_max
  145. vlv_signal_levels
  146. chv_signal_levels
  147. g4x_signal_levels
  148. snb_cpu_edp_signal_levels
  149. ivb_cpu_edp_signal_levels
  150. intel_dp_set_signal_levels
  151. intel_dp_program_link_training_pattern
  152. intel_dp_set_idle_link_train
  153. intel_dp_link_down
  154. intel_dp_extended_receiver_capabilities
  155. intel_dp_read_dpcd
  156. intel_dp_get_colorimetry_status
  157. intel_dp_get_dsc_sink_cap
  158. intel_edp_init_dpcd
  159. intel_dp_get_dpcd
  160. intel_dp_sink_can_mst
  161. intel_dp_can_mst
  162. intel_dp_configure_mst
  163. intel_dp_get_sink_irq_esi
  164. intel_pixel_encoding_setup_vsc
  165. intel_dp_ycbcr_420_enable
  166. intel_dp_autotest_link_training
  167. intel_dp_autotest_video_pattern
  168. intel_dp_autotest_edid
  169. intel_dp_autotest_phy_pattern
  170. intel_dp_handle_test_request
  171. intel_dp_check_mst_status
  172. intel_dp_needs_link_retrain
  173. intel_dp_retrain_link
  174. intel_dp_hotplug
  175. intel_dp_check_service_irq
  176. intel_dp_short_pulse
  177. intel_dp_detect_dpcd
  178. edp_detect
  179. ibx_digital_port_connected
  180. cpt_digital_port_connected
  181. spt_digital_port_connected
  182. g4x_digital_port_connected
  183. gm45_digital_port_connected
  184. ilk_digital_port_connected
  185. snb_digital_port_connected
  186. ivb_digital_port_connected
  187. bdw_digital_port_connected
  188. bxt_digital_port_connected
  189. icl_combo_port_connected
  190. icl_digital_port_connected
  191. __intel_digital_port_connected
  192. intel_digital_port_connected
  193. intel_dp_get_edid
  194. intel_dp_set_edid
  195. intel_dp_unset_edid
  196. intel_dp_detect
  197. intel_dp_force
  198. intel_dp_get_modes
  199. intel_dp_connector_register
  200. intel_dp_connector_unregister
  201. intel_dp_encoder_flush_work
  202. intel_dp_encoder_destroy
  203. intel_dp_encoder_suspend
  204. intel_dp_hdcp_wait_for_cp_irq
  205. intel_dp_hdcp_write_an_aksv
  206. intel_dp_hdcp_read_bksv
  207. intel_dp_hdcp_read_bstatus
  208. intel_dp_hdcp_read_bcaps
  209. intel_dp_hdcp_repeater_present
  210. intel_dp_hdcp_read_ri_prime
  211. intel_dp_hdcp_read_ksv_ready
  212. intel_dp_hdcp_read_ksv_fifo
  213. intel_dp_hdcp_read_v_prime_part
  214. intel_dp_hdcp_toggle_signalling
  215. intel_dp_hdcp_check_link
  216. intel_dp_hdcp_capable
  217. intel_dp_hdcp2_read_rx_status
  218. hdcp2_detect_msg_availability
  219. intel_dp_hdcp2_wait_for_msg
  220. get_hdcp2_dp_msg_data
  221. intel_dp_hdcp2_write_msg
  222. get_receiver_id_list_size
  223. intel_dp_hdcp2_read_msg
  224. intel_dp_hdcp2_config_stream_type
  225. intel_dp_hdcp2_check_link
  226. intel_dp_hdcp2_capable
  227. intel_edp_panel_vdd_sanitize
  228. vlv_active_pipe
  229. intel_dp_encoder_reset
  230. intel_dp_hpd_pulse
  231. intel_dp_is_port_edp
  232. intel_dp_add_properties
  233. intel_dp_init_panel_power_timestamps
  234. intel_pps_readout_hw_state
  235. intel_pps_dump_state
  236. intel_pps_verify_state
  237. intel_dp_init_panel_power_sequencer
  238. intel_dp_init_panel_power_sequencer_registers
  239. intel_dp_pps_init
  240. intel_dp_set_drrs_state
  241. intel_edp_drrs_enable
  242. intel_edp_drrs_disable
  243. intel_edp_drrs_downclock_work
  244. intel_edp_drrs_invalidate
  245. intel_edp_drrs_flush
  246. intel_dp_drrs_init
  247. intel_edp_init_connector
  248. intel_dp_modeset_retry_work_fn
  249. intel_dp_init_connector
  250. intel_dp_init
  251. intel_dp_mst_suspend
  252. intel_dp_mst_resume

   1 /*
   2  * Copyright © 2008 Intel Corporation
   3  *
   4  * Permission is hereby granted, free of charge, to any person obtaining a
   5  * copy of this software and associated documentation files (the "Software"),
   6  * to deal in the Software without restriction, including without limitation
   7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8  * and/or sell copies of the Software, and to permit persons to whom the
   9  * Software is furnished to do so, subject to the following conditions:
  10  *
  11  * The above copyright notice and this permission notice (including the next
  12  * paragraph) shall be included in all copies or substantial portions of the
  13  * Software.
  14  *
  15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21  * IN THE SOFTWARE.
  22  *
  23  * Authors:
  24  *    Keith Packard <keithp@keithp.com>
  25  *
  26  */
  27 
  28 #include <linux/export.h>
  29 #include <linux/i2c.h>
  30 #include <linux/notifier.h>
  31 #include <linux/reboot.h>
  32 #include <linux/slab.h>
  33 #include <linux/types.h>
  34 
  35 #include <asm/byteorder.h>
  36 
  37 #include <drm/drm_atomic_helper.h>
  38 #include <drm/drm_crtc.h>
  39 #include <drm/drm_dp_helper.h>
  40 #include <drm/drm_edid.h>
  41 #include <drm/drm_hdcp.h>
  42 #include <drm/drm_probe_helper.h>
  43 #include <drm/i915_drm.h>
  44 
  45 #include "i915_debugfs.h"
  46 #include "i915_drv.h"
  47 #include "i915_trace.h"
  48 #include "intel_atomic.h"
  49 #include "intel_audio.h"
  50 #include "intel_connector.h"
  51 #include "intel_ddi.h"
  52 #include "intel_display_types.h"
  53 #include "intel_dp.h"
  54 #include "intel_dp_link_training.h"
  55 #include "intel_dp_mst.h"
  56 #include "intel_dpio_phy.h"
  57 #include "intel_fifo_underrun.h"
  58 #include "intel_hdcp.h"
  59 #include "intel_hdmi.h"
  60 #include "intel_hotplug.h"
  61 #include "intel_lspcon.h"
  62 #include "intel_lvds.h"
  63 #include "intel_panel.h"
  64 #include "intel_psr.h"
  65 #include "intel_sideband.h"
  66 #include "intel_tc.h"
  67 #include "intel_vdsc.h"
  68 
  69 #define DP_DPRX_ESI_LEN 14
  70 
  71 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
  72 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER      61440
  73 #define DP_DSC_MIN_SUPPORTED_BPC                8
  74 #define DP_DSC_MAX_SUPPORTED_BPC                10
  75 
  76 /* DP DSC throughput values used for slice count calculations KPixels/s */
  77 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
  78 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
  79 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
  80 
  81 /* DP DSC FEC Overhead factor = 1/(0.972261) */
  82 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
  83 
  84 /* Compliance test status bits  */
  85 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
  86 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
  87 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
  88 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
  89 
  90 struct dp_link_dpll {
  91         int clock;
  92         struct dpll dpll;
  93 };
  94 
  95 static const struct dp_link_dpll g4x_dpll[] = {
  96         { 162000,
  97                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  98         { 270000,
  99                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
 100 };
 101 
 102 static const struct dp_link_dpll pch_dpll[] = {
 103         { 162000,
 104                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
 105         { 270000,
 106                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
 107 };
 108 
 109 static const struct dp_link_dpll vlv_dpll[] = {
 110         { 162000,
 111                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
 112         { 270000,
 113                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
 114 };
 115 
 116 /*
 117  * CHV supports eDP 1.4 that have  more link rates.
 118  * Below only provides the fixed rate but exclude variable rate.
 119  */
 120 static const struct dp_link_dpll chv_dpll[] = {
 121         /*
 122          * CHV requires to program fractional division for m2.
 123          * m2 is stored in fixed point format using formula below
 124          * (m2_int << 22) | m2_fraction
 125          */
 126         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
 127                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
 128         { 270000,       /* m2_int = 27, m2_fraction = 0 */
 129                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
 130 };
 131 
 132 /* Constants for DP DSC configurations */
 133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
 134 
 135 /* With Single pipe configuration, HW is capable of supporting maximum
 136  * of 4 slices per line.
 137  */
 138 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
 139 
 140 /**
 141  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 142  * @intel_dp: DP struct
 143  *
 144  * If a CPU or PCH DP output is attached to an eDP panel, this function
 145  * will return true, and false otherwise.
 146  */
 147 bool intel_dp_is_edp(struct intel_dp *intel_dp)
 148 {
 149         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 150 
 151         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
 152 }
 153 
 154 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
 155 {
 156         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
 157 }
 158 
 159 static void intel_dp_link_down(struct intel_encoder *encoder,
 160                                const struct intel_crtc_state *old_crtc_state);
 161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
 162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
 163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
 164                                            const struct intel_crtc_state *crtc_state);
 165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
 166                                       enum pipe pipe);
 167 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
 168 
 169 /* update sink rates from dpcd */
 170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
 171 {
 172         static const int dp_rates[] = {
 173                 162000, 270000, 540000, 810000
 174         };
 175         int i, max_rate;
 176 
 177         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
 178 
 179         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
 180                 if (dp_rates[i] > max_rate)
 181                         break;
 182                 intel_dp->sink_rates[i] = dp_rates[i];
 183         }
 184 
 185         intel_dp->num_sink_rates = i;
 186 }
 187 
 188 /* Get length of rates array potentially limited by max_rate. */
 189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
 190 {
 191         int i;
 192 
 193         /* Limit results by potentially reduced max rate */
 194         for (i = 0; i < len; i++) {
 195                 if (rates[len - i - 1] <= max_rate)
 196                         return len - i;
 197         }
 198 
 199         return 0;
 200 }
 201 
 202 /* Get length of common rates array potentially limited by max_rate. */
 203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
 204                                           int max_rate)
 205 {
 206         return intel_dp_rate_limit_len(intel_dp->common_rates,
 207                                        intel_dp->num_common_rates, max_rate);
 208 }
 209 
 210 /* Theoretical max between source and sink */
 211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
 212 {
 213         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
 214 }
 215 
 216 /* Theoretical max between source and sink */
 217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
 218 {
 219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 220         int source_max = intel_dig_port->max_lanes;
 221         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
 222         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
 223 
 224         return min3(source_max, sink_max, fia_max);
 225 }
 226 
 227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
 228 {
 229         return intel_dp->max_link_lane_count;
 230 }
 231 
 232 int
 233 intel_dp_link_required(int pixel_clock, int bpp)
 234 {
 235         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
 236         return DIV_ROUND_UP(pixel_clock * bpp, 8);
 237 }
 238 
 239 int
 240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 241 {
 242         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
 243          * link rate that is generally expressed in Gbps. Since, 8 bits of data
 244          * is transmitted every LS_Clk per lane, there is no need to account for
 245          * the channel encoding that is done in the PHY layer here.
 246          */
 247 
 248         return max_link_clock * max_lanes;
 249 }
 250 
 251 static int
 252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
 253 {
 254         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 255         struct intel_encoder *encoder = &intel_dig_port->base;
 256         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 257         int max_dotclk = dev_priv->max_dotclk_freq;
 258         int ds_max_dotclk;
 259 
 260         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
 261 
 262         if (type != DP_DS_PORT_TYPE_VGA)
 263                 return max_dotclk;
 264 
 265         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
 266                                                     intel_dp->downstream_ports);
 267 
 268         if (ds_max_dotclk != 0)
 269                 max_dotclk = min(max_dotclk, ds_max_dotclk);
 270 
 271         return max_dotclk;
 272 }
 273 
 274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
 275 {
 276         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 277         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
 278         enum port port = dig_port->base.port;
 279 
 280         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
 281 
 282         /* Low voltage SKUs are limited to max of 5.4G */
 283         if (voltage == VOLTAGE_INFO_0_85V)
 284                 return 540000;
 285 
 286         /* For this SKU 8.1G is supported in all ports */
 287         if (IS_CNL_WITH_PORT_F(dev_priv))
 288                 return 810000;
 289 
 290         /* For other SKUs, max rate on ports A and D is 5.4G */
 291         if (port == PORT_A || port == PORT_D)
 292                 return 540000;
 293 
 294         return 810000;
 295 }
 296 
 297 static int icl_max_source_rate(struct intel_dp *intel_dp)
 298 {
 299         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 300         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
 301         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
 302 
 303         if (intel_phy_is_combo(dev_priv, phy) &&
 304             !IS_ELKHARTLAKE(dev_priv) &&
 305             !intel_dp_is_edp(intel_dp))
 306                 return 540000;
 307 
 308         return 810000;
 309 }
 310 
 311 static void
 312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
 313 {
 314         /* The values must be in increasing order */
 315         static const int cnl_rates[] = {
 316                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
 317         };
 318         static const int bxt_rates[] = {
 319                 162000, 216000, 243000, 270000, 324000, 432000, 540000
 320         };
 321         static const int skl_rates[] = {
 322                 162000, 216000, 270000, 324000, 432000, 540000
 323         };
 324         static const int hsw_rates[] = {
 325                 162000, 270000, 540000
 326         };
 327         static const int g4x_rates[] = {
 328                 162000, 270000
 329         };
 330         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 331         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
 332         const struct ddi_vbt_port_info *info =
 333                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
 334         const int *source_rates;
 335         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
 336 
 337         /* This should only be done once */
 338         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
 339 
 340         if (INTEL_GEN(dev_priv) >= 10) {
 341                 source_rates = cnl_rates;
 342                 size = ARRAY_SIZE(cnl_rates);
 343                 if (IS_GEN(dev_priv, 10))
 344                         max_rate = cnl_max_source_rate(intel_dp);
 345                 else
 346                         max_rate = icl_max_source_rate(intel_dp);
 347         } else if (IS_GEN9_LP(dev_priv)) {
 348                 source_rates = bxt_rates;
 349                 size = ARRAY_SIZE(bxt_rates);
 350         } else if (IS_GEN9_BC(dev_priv)) {
 351                 source_rates = skl_rates;
 352                 size = ARRAY_SIZE(skl_rates);
 353         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
 354                    IS_BROADWELL(dev_priv)) {
 355                 source_rates = hsw_rates;
 356                 size = ARRAY_SIZE(hsw_rates);
 357         } else {
 358                 source_rates = g4x_rates;
 359                 size = ARRAY_SIZE(g4x_rates);
 360         }
 361 
 362         if (max_rate && vbt_max_rate)
 363                 max_rate = min(max_rate, vbt_max_rate);
 364         else if (vbt_max_rate)
 365                 max_rate = vbt_max_rate;
 366 
 367         if (max_rate)
 368                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
 369 
 370         intel_dp->source_rates = source_rates;
 371         intel_dp->num_source_rates = size;
 372 }
 373 
 374 static int intersect_rates(const int *source_rates, int source_len,
 375                            const int *sink_rates, int sink_len,
 376                            int *common_rates)
 377 {
 378         int i = 0, j = 0, k = 0;
 379 
 380         while (i < source_len && j < sink_len) {
 381                 if (source_rates[i] == sink_rates[j]) {
 382                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
 383                                 return k;
 384                         common_rates[k] = source_rates[i];
 385                         ++k;
 386                         ++i;
 387                         ++j;
 388                 } else if (source_rates[i] < sink_rates[j]) {
 389                         ++i;
 390                 } else {
 391                         ++j;
 392                 }
 393         }
 394         return k;
 395 }
 396 
 397 /* return index of rate in rates array, or -1 if not found */
 398 static int intel_dp_rate_index(const int *rates, int len, int rate)
 399 {
 400         int i;
 401 
 402         for (i = 0; i < len; i++)
 403                 if (rate == rates[i])
 404                         return i;
 405 
 406         return -1;
 407 }
 408 
 409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
 410 {
 411         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
 412 
 413         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
 414                                                      intel_dp->num_source_rates,
 415                                                      intel_dp->sink_rates,
 416                                                      intel_dp->num_sink_rates,
 417                                                      intel_dp->common_rates);
 418 
 419         /* Paranoia, there should always be something in common. */
 420         if (WARN_ON(intel_dp->num_common_rates == 0)) {
 421                 intel_dp->common_rates[0] = 162000;
 422                 intel_dp->num_common_rates = 1;
 423         }
 424 }
 425 
 426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
 427                                        u8 lane_count)
 428 {
 429         /*
 430          * FIXME: we need to synchronize the current link parameters with
 431          * hardware readout. Currently fast link training doesn't work on
 432          * boot-up.
 433          */
 434         if (link_rate == 0 ||
 435             link_rate > intel_dp->max_link_rate)
 436                 return false;
 437 
 438         if (lane_count == 0 ||
 439             lane_count > intel_dp_max_lane_count(intel_dp))
 440                 return false;
 441 
 442         return true;
 443 }
 444 
 445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
 446                                                      int link_rate,
 447                                                      u8 lane_count)
 448 {
 449         const struct drm_display_mode *fixed_mode =
 450                 intel_dp->attached_connector->panel.fixed_mode;
 451         int mode_rate, max_rate;
 452 
 453         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
 454         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
 455         if (mode_rate > max_rate)
 456                 return false;
 457 
 458         return true;
 459 }
 460 
 461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
 462                                             int link_rate, u8 lane_count)
 463 {
 464         int index;
 465 
 466         index = intel_dp_rate_index(intel_dp->common_rates,
 467                                     intel_dp->num_common_rates,
 468                                     link_rate);
 469         if (index > 0) {
 470                 if (intel_dp_is_edp(intel_dp) &&
 471                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
 472                                                               intel_dp->common_rates[index - 1],
 473                                                               lane_count)) {
 474                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
 475                         return 0;
 476                 }
 477                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
 478                 intel_dp->max_link_lane_count = lane_count;
 479         } else if (lane_count > 1) {
 480                 if (intel_dp_is_edp(intel_dp) &&
 481                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
 482                                                               intel_dp_max_common_rate(intel_dp),
 483                                                               lane_count >> 1)) {
 484                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
 485                         return 0;
 486                 }
 487                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
 488                 intel_dp->max_link_lane_count = lane_count >> 1;
 489         } else {
 490                 DRM_ERROR("Link Training Unsuccessful\n");
 491                 return -1;
 492         }
 493 
 494         return 0;
 495 }
 496 
 497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
 498 {
 499         return div_u64(mul_u32_u32(mode_clock, 1000000U),
 500                        DP_DSC_FEC_OVERHEAD_FACTOR);
 501 }
 502 
 503 static u16 intel_dp_dsc_get_output_bpp(u32 link_clock, u32 lane_count,
 504                                        u32 mode_clock, u32 mode_hdisplay)
 505 {
 506         u32 bits_per_pixel, max_bpp_small_joiner_ram;
 507         int i;
 508 
 509         /*
 510          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
 511          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
 512          * for SST -> TimeSlotsPerMTP is 1,
 513          * for MST -> TimeSlotsPerMTP has to be calculated
 514          */
 515         bits_per_pixel = (link_clock * lane_count * 8) /
 516                          intel_dp_mode_to_fec_clock(mode_clock);
 517         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
 518 
 519         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
 520         max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER / mode_hdisplay;
 521         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
 522 
 523         /*
 524          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
 525          * check, output bpp from small joiner RAM check)
 526          */
 527         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
 528 
 529         /* Error out if the max bpp is less than smallest allowed valid bpp */
 530         if (bits_per_pixel < valid_dsc_bpp[0]) {
 531                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
 532                               bits_per_pixel, valid_dsc_bpp[0]);
 533                 return 0;
 534         }
 535 
 536         /* Find the nearest match in the array of known BPPs from VESA */
 537         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
 538                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
 539                         break;
 540         }
 541         bits_per_pixel = valid_dsc_bpp[i];
 542 
 543         /*
 544          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
 545          * fractional part is 0
 546          */
 547         return bits_per_pixel << 4;
 548 }
 549 
 550 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
 551                                        int mode_clock, int mode_hdisplay)
 552 {
 553         u8 min_slice_count, i;
 554         int max_slice_width;
 555 
 556         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
 557                 min_slice_count = DIV_ROUND_UP(mode_clock,
 558                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
 559         else
 560                 min_slice_count = DIV_ROUND_UP(mode_clock,
 561                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
 562 
 563         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
 564         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
 565                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
 566                               max_slice_width);
 567                 return 0;
 568         }
 569         /* Also take into account max slice width */
 570         min_slice_count = min_t(u8, min_slice_count,
 571                                 DIV_ROUND_UP(mode_hdisplay,
 572                                              max_slice_width));
 573 
 574         /* Find the closest match to the valid slice count values */
 575         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
 576                 if (valid_dsc_slicecount[i] >
 577                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
 578                                                     false))
 579                         break;
 580                 if (min_slice_count  <= valid_dsc_slicecount[i])
 581                         return valid_dsc_slicecount[i];
 582         }
 583 
 584         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
 585         return 0;
 586 }
 587 
 588 static enum drm_mode_status
 589 intel_dp_mode_valid(struct drm_connector *connector,
 590                     struct drm_display_mode *mode)
 591 {
 592         struct intel_dp *intel_dp = intel_attached_dp(connector);
 593         struct intel_connector *intel_connector = to_intel_connector(connector);
 594         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
 595         struct drm_i915_private *dev_priv = to_i915(connector->dev);
 596         int target_clock = mode->clock;
 597         int max_rate, mode_rate, max_lanes, max_link_clock;
 598         int max_dotclk;
 599         u16 dsc_max_output_bpp = 0;
 600         u8 dsc_slice_count = 0;
 601 
 602         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
 603                 return MODE_NO_DBLESCAN;
 604 
 605         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
 606 
 607         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
 608                 if (mode->hdisplay > fixed_mode->hdisplay)
 609                         return MODE_PANEL;
 610 
 611                 if (mode->vdisplay > fixed_mode->vdisplay)
 612                         return MODE_PANEL;
 613 
 614                 target_clock = fixed_mode->clock;
 615         }
 616 
 617         max_link_clock = intel_dp_max_link_rate(intel_dp);
 618         max_lanes = intel_dp_max_lane_count(intel_dp);
 619 
 620         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
 621         mode_rate = intel_dp_link_required(target_clock, 18);
 622 
 623         /*
 624          * Output bpp is stored in 6.4 format so right shift by 4 to get the
 625          * integer value since we support only integer values of bpp.
 626          */
 627         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
 628             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
 629                 if (intel_dp_is_edp(intel_dp)) {
 630                         dsc_max_output_bpp =
 631                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
 632                         dsc_slice_count =
 633                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
 634                                                                 true);
 635                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
 636                         dsc_max_output_bpp =
 637                                 intel_dp_dsc_get_output_bpp(max_link_clock,
 638                                                             max_lanes,
 639                                                             target_clock,
 640                                                             mode->hdisplay) >> 4;
 641                         dsc_slice_count =
 642                                 intel_dp_dsc_get_slice_count(intel_dp,
 643                                                              target_clock,
 644                                                              mode->hdisplay);
 645                 }
 646         }
 647 
 648         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
 649             target_clock > max_dotclk)
 650                 return MODE_CLOCK_HIGH;
 651 
 652         if (mode->clock < 10000)
 653                 return MODE_CLOCK_LOW;
 654 
 655         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 656                 return MODE_H_ILLEGAL;
 657 
 658         return MODE_OK;
 659 }
 660 
 661 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
 662 {
 663         int i;
 664         u32 v = 0;
 665 
 666         if (src_bytes > 4)
 667                 src_bytes = 4;
 668         for (i = 0; i < src_bytes; i++)
 669                 v |= ((u32)src[i]) << ((3 - i) * 8);
 670         return v;
 671 }
 672 
 673 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
 674 {
 675         int i;
 676         if (dst_bytes > 4)
 677                 dst_bytes = 4;
 678         for (i = 0; i < dst_bytes; i++)
 679                 dst[i] = src >> ((3-i) * 8);
 680 }
 681 
 682 static void
 683 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
 684 static void
 685 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
 686                                               bool force_disable_vdd);
 687 static void
 688 intel_dp_pps_init(struct intel_dp *intel_dp);
 689 
 690 static intel_wakeref_t
 691 pps_lock(struct intel_dp *intel_dp)
 692 {
 693         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 694         intel_wakeref_t wakeref;
 695 
 696         /*
 697          * See intel_power_sequencer_reset() why we need
 698          * a power domain reference here.
 699          */
 700         wakeref = intel_display_power_get(dev_priv,
 701                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
 702 
 703         mutex_lock(&dev_priv->pps_mutex);
 704 
 705         return wakeref;
 706 }
 707 
 708 static intel_wakeref_t
 709 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
 710 {
 711         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 712 
 713         mutex_unlock(&dev_priv->pps_mutex);
 714         intel_display_power_put(dev_priv,
 715                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
 716                                 wakeref);
 717         return 0;
 718 }
 719 
 720 #define with_pps_lock(dp, wf) \
 721         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
 722 
 723 static void
 724 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
 725 {
 726         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 727         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 728         enum pipe pipe = intel_dp->pps_pipe;
 729         bool pll_enabled, release_cl_override = false;
 730         enum dpio_phy phy = DPIO_PHY(pipe);
 731         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
 732         u32 DP;
 733 
 734         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
 735                  "skipping pipe %c power sequencer kick due to port %c being active\n",
 736                  pipe_name(pipe), port_name(intel_dig_port->base.port)))
 737                 return;
 738 
 739         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
 740                       pipe_name(pipe), port_name(intel_dig_port->base.port));
 741 
 742         /* Preserve the BIOS-computed detected bit. This is
 743          * supposed to be read-only.
 744          */
 745         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
 746         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 747         DP |= DP_PORT_WIDTH(1);
 748         DP |= DP_LINK_TRAIN_PAT_1;
 749 
 750         if (IS_CHERRYVIEW(dev_priv))
 751                 DP |= DP_PIPE_SEL_CHV(pipe);
 752         else
 753                 DP |= DP_PIPE_SEL(pipe);
 754 
 755         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
 756 
 757         /*
 758          * The DPLL for the pipe must be enabled for this to work.
 759          * So enable temporarily it if it's not already enabled.
 760          */
 761         if (!pll_enabled) {
 762                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
 763                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
 764 
 765                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
 766                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
 767                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
 768                                   pipe_name(pipe));
 769                         return;
 770                 }
 771         }
 772 
 773         /*
 774          * Similar magic as in intel_dp_enable_port().
 775          * We _must_ do this port enable + disable trick
 776          * to make this power sequencer lock onto the port.
 777          * Otherwise even VDD force bit won't work.
 778          */
 779         I915_WRITE(intel_dp->output_reg, DP);
 780         POSTING_READ(intel_dp->output_reg);
 781 
 782         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
 783         POSTING_READ(intel_dp->output_reg);
 784 
 785         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
 786         POSTING_READ(intel_dp->output_reg);
 787 
 788         if (!pll_enabled) {
 789                 vlv_force_pll_off(dev_priv, pipe);
 790 
 791                 if (release_cl_override)
 792                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
 793         }
 794 }
 795 
 796 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
 797 {
 798         struct intel_encoder *encoder;
 799         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
 800 
 801         /*
 802          * We don't have power sequencer currently.
 803          * Pick one that's not used by other ports.
 804          */
 805         for_each_intel_dp(&dev_priv->drm, encoder) {
 806                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 807 
 808                 if (encoder->type == INTEL_OUTPUT_EDP) {
 809                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
 810                                 intel_dp->active_pipe != intel_dp->pps_pipe);
 811 
 812                         if (intel_dp->pps_pipe != INVALID_PIPE)
 813                                 pipes &= ~(1 << intel_dp->pps_pipe);
 814                 } else {
 815                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
 816 
 817                         if (intel_dp->active_pipe != INVALID_PIPE)
 818                                 pipes &= ~(1 << intel_dp->active_pipe);
 819                 }
 820         }
 821 
 822         if (pipes == 0)
 823                 return INVALID_PIPE;
 824 
 825         return ffs(pipes) - 1;
 826 }
 827 
 828 static enum pipe
 829 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
 830 {
 831         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 832         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 833         enum pipe pipe;
 834 
 835         lockdep_assert_held(&dev_priv->pps_mutex);
 836 
 837         /* We should never land here with regular DP ports */
 838         WARN_ON(!intel_dp_is_edp(intel_dp));
 839 
 840         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
 841                 intel_dp->active_pipe != intel_dp->pps_pipe);
 842 
 843         if (intel_dp->pps_pipe != INVALID_PIPE)
 844                 return intel_dp->pps_pipe;
 845 
 846         pipe = vlv_find_free_pps(dev_priv);
 847 
 848         /*
 849          * Didn't find one. This should not happen since there
 850          * are two power sequencers and up to two eDP ports.
 851          */
 852         if (WARN_ON(pipe == INVALID_PIPE))
 853                 pipe = PIPE_A;
 854 
 855         vlv_steal_power_sequencer(dev_priv, pipe);
 856         intel_dp->pps_pipe = pipe;
 857 
 858         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
 859                       pipe_name(intel_dp->pps_pipe),
 860                       port_name(intel_dig_port->base.port));
 861 
 862         /* init power sequencer on this pipe and port */
 863         intel_dp_init_panel_power_sequencer(intel_dp);
 864         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
 865 
 866         /*
 867          * Even vdd force doesn't work until we've made
 868          * the power sequencer lock in on the port.
 869          */
 870         vlv_power_sequencer_kick(intel_dp);
 871 
 872         return intel_dp->pps_pipe;
 873 }
 874 
 875 static int
 876 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
 877 {
 878         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 879         int backlight_controller = dev_priv->vbt.backlight.controller;
 880 
 881         lockdep_assert_held(&dev_priv->pps_mutex);
 882 
 883         /* We should never land here with regular DP ports */
 884         WARN_ON(!intel_dp_is_edp(intel_dp));
 885 
 886         if (!intel_dp->pps_reset)
 887                 return backlight_controller;
 888 
 889         intel_dp->pps_reset = false;
 890 
 891         /*
 892          * Only the HW needs to be reprogrammed, the SW state is fixed and
 893          * has been setup during connector init.
 894          */
 895         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
 896 
 897         return backlight_controller;
 898 }
 899 
 900 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
 901                                enum pipe pipe);
 902 
 903 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
 904                                enum pipe pipe)
 905 {
 906         return I915_READ(PP_STATUS(pipe)) & PP_ON;
 907 }
 908 
 909 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
 910                                 enum pipe pipe)
 911 {
 912         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
 913 }
 914 
 915 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
 916                          enum pipe pipe)
 917 {
 918         return true;
 919 }
 920 
 921 static enum pipe
 922 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
 923                      enum port port,
 924                      vlv_pipe_check pipe_check)
 925 {
 926         enum pipe pipe;
 927 
 928         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
 929                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
 930                         PANEL_PORT_SELECT_MASK;
 931 
 932                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
 933                         continue;
 934 
 935                 if (!pipe_check(dev_priv, pipe))
 936                         continue;
 937 
 938                 return pipe;
 939         }
 940 
 941         return INVALID_PIPE;
 942 }
 943 
 944 static void
 945 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
 946 {
 947         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
 948         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 949         enum port port = intel_dig_port->base.port;
 950 
 951         lockdep_assert_held(&dev_priv->pps_mutex);
 952 
 953         /* try to find a pipe with this port selected */
 954         /* first pick one where the panel is on */
 955         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
 956                                                   vlv_pipe_has_pp_on);
 957         /* didn't find one? pick one where vdd is on */
 958         if (intel_dp->pps_pipe == INVALID_PIPE)
 959                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
 960                                                           vlv_pipe_has_vdd_on);
 961         /* didn't find one? pick one with just the correct port */
 962         if (intel_dp->pps_pipe == INVALID_PIPE)
 963                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
 964                                                           vlv_pipe_any);
 965 
 966         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
 967         if (intel_dp->pps_pipe == INVALID_PIPE) {
 968                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
 969                               port_name(port));
 970                 return;
 971         }
 972 
 973         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
 974                       port_name(port), pipe_name(intel_dp->pps_pipe));
 975 
 976         intel_dp_init_panel_power_sequencer(intel_dp);
 977         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
 978 }
 979 
 980 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
 981 {
 982         struct intel_encoder *encoder;
 983 
 984         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
 985                     !IS_GEN9_LP(dev_priv)))
 986                 return;
 987 
 988         /*
 989          * We can't grab pps_mutex here due to deadlock with power_domain
 990          * mutex when power_domain functions are called while holding pps_mutex.
 991          * That also means that in order to use pps_pipe the code needs to
 992          * hold both a power domain reference and pps_mutex, and the power domain
 993          * reference get/put must be done while _not_ holding pps_mutex.
 994          * pps_{lock,unlock}() do these steps in the correct order, so one
 995          * should use them always.
 996          */
 997 
 998         for_each_intel_dp(&dev_priv->drm, encoder) {
 999                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1000 
1001                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1002 
1003                 if (encoder->type != INTEL_OUTPUT_EDP)
1004                         continue;
1005 
1006                 if (IS_GEN9_LP(dev_priv))
1007                         intel_dp->pps_reset = true;
1008                 else
1009                         intel_dp->pps_pipe = INVALID_PIPE;
1010         }
1011 }
1012 
1013 struct pps_registers {
1014         i915_reg_t pp_ctrl;
1015         i915_reg_t pp_stat;
1016         i915_reg_t pp_on;
1017         i915_reg_t pp_off;
1018         i915_reg_t pp_div;
1019 };
1020 
1021 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1022                                     struct pps_registers *regs)
1023 {
1024         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1025         int pps_idx = 0;
1026 
1027         memset(regs, 0, sizeof(*regs));
1028 
1029         if (IS_GEN9_LP(dev_priv))
1030                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1031         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1032                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1033 
1034         regs->pp_ctrl = PP_CONTROL(pps_idx);
1035         regs->pp_stat = PP_STATUS(pps_idx);
1036         regs->pp_on = PP_ON_DELAYS(pps_idx);
1037         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1038 
1039         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1040         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1041                 regs->pp_div = INVALID_MMIO_REG;
1042         else
1043                 regs->pp_div = PP_DIVISOR(pps_idx);
1044 }
1045 
1046 static i915_reg_t
1047 _pp_ctrl_reg(struct intel_dp *intel_dp)
1048 {
1049         struct pps_registers regs;
1050 
1051         intel_pps_get_registers(intel_dp, &regs);
1052 
1053         return regs.pp_ctrl;
1054 }
1055 
1056 static i915_reg_t
1057 _pp_stat_reg(struct intel_dp *intel_dp)
1058 {
1059         struct pps_registers regs;
1060 
1061         intel_pps_get_registers(intel_dp, &regs);
1062 
1063         return regs.pp_stat;
1064 }
1065 
1066 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1067    This function only applicable when panel PM state is not to be tracked */
1068 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1069                               void *unused)
1070 {
1071         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1072                                                  edp_notifier);
1073         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1074         intel_wakeref_t wakeref;
1075 
1076         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1077                 return 0;
1078 
1079         with_pps_lock(intel_dp, wakeref) {
1080                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1081                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1082                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1083                         u32 pp_div;
1084 
1085                         pp_ctrl_reg = PP_CONTROL(pipe);
1086                         pp_div_reg  = PP_DIVISOR(pipe);
1087                         pp_div = I915_READ(pp_div_reg);
1088                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1089 
1090                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1091                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1092                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1093                         msleep(intel_dp->panel_power_cycle_delay);
1094                 }
1095         }
1096 
1097         return 0;
1098 }
1099 
1100 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1101 {
1102         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1103 
1104         lockdep_assert_held(&dev_priv->pps_mutex);
1105 
1106         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1107             intel_dp->pps_pipe == INVALID_PIPE)
1108                 return false;
1109 
1110         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1111 }
1112 
1113 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1114 {
1115         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1116 
1117         lockdep_assert_held(&dev_priv->pps_mutex);
1118 
1119         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1120             intel_dp->pps_pipe == INVALID_PIPE)
1121                 return false;
1122 
1123         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1124 }
1125 
1126 static void
1127 intel_dp_check_edp(struct intel_dp *intel_dp)
1128 {
1129         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1130 
1131         if (!intel_dp_is_edp(intel_dp))
1132                 return;
1133 
1134         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1135                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1136                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1137                               I915_READ(_pp_stat_reg(intel_dp)),
1138                               I915_READ(_pp_ctrl_reg(intel_dp)));
1139         }
1140 }
1141 
1142 static u32
1143 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1144 {
1145         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1146         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1147         u32 status;
1148         bool done;
1149 
1150 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1151         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1152                                   msecs_to_jiffies_timeout(10));
1153 
1154         /* just trace the final value */
1155         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1156 
1157         if (!done)
1158                 DRM_ERROR("dp aux hw did not signal timeout!\n");
1159 #undef C
1160 
1161         return status;
1162 }
1163 
1164 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1165 {
1166         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1167 
1168         if (index)
1169                 return 0;
1170 
1171         /*
1172          * The clock divider is based off the hrawclk, and would like to run at
1173          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1174          */
1175         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1176 }
1177 
1178 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1179 {
1180         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1181         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1182 
1183         if (index)
1184                 return 0;
1185 
1186         /*
1187          * The clock divider is based off the cdclk or PCH rawclk, and would
1188          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1189          * divide by 2000 and use that
1190          */
1191         if (dig_port->aux_ch == AUX_CH_A)
1192                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1193         else
1194                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1195 }
1196 
1197 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1198 {
1199         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1200         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1201 
1202         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1203                 /* Workaround for non-ULT HSW */
1204                 switch (index) {
1205                 case 0: return 63;
1206                 case 1: return 72;
1207                 default: return 0;
1208                 }
1209         }
1210 
1211         return ilk_get_aux_clock_divider(intel_dp, index);
1212 }
1213 
1214 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1215 {
1216         /*
1217          * SKL doesn't need us to program the AUX clock divider (Hardware will
1218          * derive the clock from CDCLK automatically). We still implement the
1219          * get_aux_clock_divider vfunc to plug-in into the existing code.
1220          */
1221         return index ? 0 : 1;
1222 }
1223 
1224 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1225                                 int send_bytes,
1226                                 u32 aux_clock_divider)
1227 {
1228         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1229         struct drm_i915_private *dev_priv =
1230                         to_i915(intel_dig_port->base.base.dev);
1231         u32 precharge, timeout;
1232 
1233         if (IS_GEN(dev_priv, 6))
1234                 precharge = 3;
1235         else
1236                 precharge = 5;
1237 
1238         if (IS_BROADWELL(dev_priv))
1239                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1240         else
1241                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1242 
1243         return DP_AUX_CH_CTL_SEND_BUSY |
1244                DP_AUX_CH_CTL_DONE |
1245                DP_AUX_CH_CTL_INTERRUPT |
1246                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1247                timeout |
1248                DP_AUX_CH_CTL_RECEIVE_ERROR |
1249                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1250                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1251                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1252 }
1253 
1254 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1255                                 int send_bytes,
1256                                 u32 unused)
1257 {
1258         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1259         struct drm_i915_private *i915 =
1260                         to_i915(intel_dig_port->base.base.dev);
1261         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1262         u32 ret;
1263 
1264         ret = DP_AUX_CH_CTL_SEND_BUSY |
1265               DP_AUX_CH_CTL_DONE |
1266               DP_AUX_CH_CTL_INTERRUPT |
1267               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1268               DP_AUX_CH_CTL_TIME_OUT_MAX |
1269               DP_AUX_CH_CTL_RECEIVE_ERROR |
1270               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1271               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1272               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1273 
1274         if (intel_phy_is_tc(i915, phy) &&
1275             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1276                 ret |= DP_AUX_CH_CTL_TBT_IO;
1277 
1278         return ret;
1279 }
1280 
1281 static int
1282 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1283                   const u8 *send, int send_bytes,
1284                   u8 *recv, int recv_size,
1285                   u32 aux_send_ctl_flags)
1286 {
1287         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1288         struct drm_i915_private *i915 =
1289                         to_i915(intel_dig_port->base.base.dev);
1290         struct intel_uncore *uncore = &i915->uncore;
1291         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1292         bool is_tc_port = intel_phy_is_tc(i915, phy);
1293         i915_reg_t ch_ctl, ch_data[5];
1294         u32 aux_clock_divider;
1295         enum intel_display_power_domain aux_domain =
1296                 intel_aux_power_domain(intel_dig_port);
1297         intel_wakeref_t aux_wakeref;
1298         intel_wakeref_t pps_wakeref;
1299         int i, ret, recv_bytes;
1300         int try, clock = 0;
1301         u32 status;
1302         bool vdd;
1303 
1304         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1305         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1306                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1307 
1308         if (is_tc_port)
1309                 intel_tc_port_lock(intel_dig_port);
1310 
1311         aux_wakeref = intel_display_power_get(i915, aux_domain);
1312         pps_wakeref = pps_lock(intel_dp);
1313 
1314         /*
1315          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1316          * In such cases we want to leave VDD enabled and it's up to upper layers
1317          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1318          * ourselves.
1319          */
1320         vdd = edp_panel_vdd_on(intel_dp);
1321 
1322         /* dp aux is extremely sensitive to irq latency, hence request the
1323          * lowest possible wakeup latency and so prevent the cpu from going into
1324          * deep sleep states.
1325          */
1326         pm_qos_update_request(&i915->pm_qos, 0);
1327 
1328         intel_dp_check_edp(intel_dp);
1329 
1330         /* Try to wait for any previous AUX channel activity */
1331         for (try = 0; try < 3; try++) {
1332                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1333                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1334                         break;
1335                 msleep(1);
1336         }
1337         /* just trace the final value */
1338         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1339 
1340         if (try == 3) {
1341                 static u32 last_status = -1;
1342                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1343 
1344                 if (status != last_status) {
1345                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1346                              status);
1347                         last_status = status;
1348                 }
1349 
1350                 ret = -EBUSY;
1351                 goto out;
1352         }
1353 
1354         /* Only 5 data registers! */
1355         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1356                 ret = -E2BIG;
1357                 goto out;
1358         }
1359 
1360         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1361                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1362                                                           send_bytes,
1363                                                           aux_clock_divider);
1364 
1365                 send_ctl |= aux_send_ctl_flags;
1366 
1367                 /* Must try at least 3 times according to DP spec */
1368                 for (try = 0; try < 5; try++) {
1369                         /* Load the send data into the aux channel data registers */
1370                         for (i = 0; i < send_bytes; i += 4)
1371                                 intel_uncore_write(uncore,
1372                                                    ch_data[i >> 2],
1373                                                    intel_dp_pack_aux(send + i,
1374                                                                      send_bytes - i));
1375 
1376                         /* Send the command and wait for it to complete */
1377                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1378 
1379                         status = intel_dp_aux_wait_done(intel_dp);
1380 
1381                         /* Clear done status and any errors */
1382                         intel_uncore_write(uncore,
1383                                            ch_ctl,
1384                                            status |
1385                                            DP_AUX_CH_CTL_DONE |
1386                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1387                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1388 
1389                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1390                          *   400us delay required for errors and timeouts
1391                          *   Timeout errors from the HW already meet this
1392                          *   requirement so skip to next iteration
1393                          */
1394                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1395                                 continue;
1396 
1397                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1398                                 usleep_range(400, 500);
1399                                 continue;
1400                         }
1401                         if (status & DP_AUX_CH_CTL_DONE)
1402                                 goto done;
1403                 }
1404         }
1405 
1406         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1407                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1408                 ret = -EBUSY;
1409                 goto out;
1410         }
1411 
1412 done:
1413         /* Check for timeout or receive error.
1414          * Timeouts occur when the sink is not connected
1415          */
1416         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1417                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1418                 ret = -EIO;
1419                 goto out;
1420         }
1421 
1422         /* Timeouts occur when the device isn't connected, so they're
1423          * "normal" -- don't fill the kernel log with these */
1424         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1425                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1426                 ret = -ETIMEDOUT;
1427                 goto out;
1428         }
1429 
1430         /* Unload any bytes sent back from the other side */
1431         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1432                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1433 
1434         /*
1435          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1436          * We have no idea of what happened so we return -EBUSY so
1437          * drm layer takes care for the necessary retries.
1438          */
1439         if (recv_bytes == 0 || recv_bytes > 20) {
1440                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1441                               recv_bytes);
1442                 ret = -EBUSY;
1443                 goto out;
1444         }
1445 
1446         if (recv_bytes > recv_size)
1447                 recv_bytes = recv_size;
1448 
1449         for (i = 0; i < recv_bytes; i += 4)
1450                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1451                                     recv + i, recv_bytes - i);
1452 
1453         ret = recv_bytes;
1454 out:
1455         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1456 
1457         if (vdd)
1458                 edp_panel_vdd_off(intel_dp, false);
1459 
1460         pps_unlock(intel_dp, pps_wakeref);
1461         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1462 
1463         if (is_tc_port)
1464                 intel_tc_port_unlock(intel_dig_port);
1465 
1466         return ret;
1467 }
1468 
1469 #define BARE_ADDRESS_SIZE       3
1470 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1471 
1472 static void
1473 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1474                     const struct drm_dp_aux_msg *msg)
1475 {
1476         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1477         txbuf[1] = (msg->address >> 8) & 0xff;
1478         txbuf[2] = msg->address & 0xff;
1479         txbuf[3] = msg->size - 1;
1480 }
1481 
1482 static ssize_t
1483 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1484 {
1485         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1486         u8 txbuf[20], rxbuf[20];
1487         size_t txsize, rxsize;
1488         int ret;
1489 
1490         intel_dp_aux_header(txbuf, msg);
1491 
1492         switch (msg->request & ~DP_AUX_I2C_MOT) {
1493         case DP_AUX_NATIVE_WRITE:
1494         case DP_AUX_I2C_WRITE:
1495         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1496                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1497                 rxsize = 2; /* 0 or 1 data bytes */
1498 
1499                 if (WARN_ON(txsize > 20))
1500                         return -E2BIG;
1501 
1502                 WARN_ON(!msg->buffer != !msg->size);
1503 
1504                 if (msg->buffer)
1505                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1506 
1507                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1508                                         rxbuf, rxsize, 0);
1509                 if (ret > 0) {
1510                         msg->reply = rxbuf[0] >> 4;
1511 
1512                         if (ret > 1) {
1513                                 /* Number of bytes written in a short write. */
1514                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1515                         } else {
1516                                 /* Return payload size. */
1517                                 ret = msg->size;
1518                         }
1519                 }
1520                 break;
1521 
1522         case DP_AUX_NATIVE_READ:
1523         case DP_AUX_I2C_READ:
1524                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1525                 rxsize = msg->size + 1;
1526 
1527                 if (WARN_ON(rxsize > 20))
1528                         return -E2BIG;
1529 
1530                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1531                                         rxbuf, rxsize, 0);
1532                 if (ret > 0) {
1533                         msg->reply = rxbuf[0] >> 4;
1534                         /*
1535                          * Assume happy day, and copy the data. The caller is
1536                          * expected to check msg->reply before touching it.
1537                          *
1538                          * Return payload size.
1539                          */
1540                         ret--;
1541                         memcpy(msg->buffer, rxbuf + 1, ret);
1542                 }
1543                 break;
1544 
1545         default:
1546                 ret = -EINVAL;
1547                 break;
1548         }
1549 
1550         return ret;
1551 }
1552 
1553 
1554 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1555 {
1556         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1557         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1558         enum aux_ch aux_ch = dig_port->aux_ch;
1559 
1560         switch (aux_ch) {
1561         case AUX_CH_B:
1562         case AUX_CH_C:
1563         case AUX_CH_D:
1564                 return DP_AUX_CH_CTL(aux_ch);
1565         default:
1566                 MISSING_CASE(aux_ch);
1567                 return DP_AUX_CH_CTL(AUX_CH_B);
1568         }
1569 }
1570 
1571 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1572 {
1573         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1574         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1575         enum aux_ch aux_ch = dig_port->aux_ch;
1576 
1577         switch (aux_ch) {
1578         case AUX_CH_B:
1579         case AUX_CH_C:
1580         case AUX_CH_D:
1581                 return DP_AUX_CH_DATA(aux_ch, index);
1582         default:
1583                 MISSING_CASE(aux_ch);
1584                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1585         }
1586 }
1587 
1588 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1589 {
1590         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1591         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1592         enum aux_ch aux_ch = dig_port->aux_ch;
1593 
1594         switch (aux_ch) {
1595         case AUX_CH_A:
1596                 return DP_AUX_CH_CTL(aux_ch);
1597         case AUX_CH_B:
1598         case AUX_CH_C:
1599         case AUX_CH_D:
1600                 return PCH_DP_AUX_CH_CTL(aux_ch);
1601         default:
1602                 MISSING_CASE(aux_ch);
1603                 return DP_AUX_CH_CTL(AUX_CH_A);
1604         }
1605 }
1606 
1607 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611         enum aux_ch aux_ch = dig_port->aux_ch;
1612 
1613         switch (aux_ch) {
1614         case AUX_CH_A:
1615                 return DP_AUX_CH_DATA(aux_ch, index);
1616         case AUX_CH_B:
1617         case AUX_CH_C:
1618         case AUX_CH_D:
1619                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1620         default:
1621                 MISSING_CASE(aux_ch);
1622                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1623         }
1624 }
1625 
1626 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630         enum aux_ch aux_ch = dig_port->aux_ch;
1631 
1632         switch (aux_ch) {
1633         case AUX_CH_A:
1634         case AUX_CH_B:
1635         case AUX_CH_C:
1636         case AUX_CH_D:
1637         case AUX_CH_E:
1638         case AUX_CH_F:
1639                 return DP_AUX_CH_CTL(aux_ch);
1640         default:
1641                 MISSING_CASE(aux_ch);
1642                 return DP_AUX_CH_CTL(AUX_CH_A);
1643         }
1644 }
1645 
1646 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1647 {
1648         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1649         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1650         enum aux_ch aux_ch = dig_port->aux_ch;
1651 
1652         switch (aux_ch) {
1653         case AUX_CH_A:
1654         case AUX_CH_B:
1655         case AUX_CH_C:
1656         case AUX_CH_D:
1657         case AUX_CH_E:
1658         case AUX_CH_F:
1659                 return DP_AUX_CH_DATA(aux_ch, index);
1660         default:
1661                 MISSING_CASE(aux_ch);
1662                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1663         }
1664 }
1665 
1666 static void
1667 intel_dp_aux_fini(struct intel_dp *intel_dp)
1668 {
1669         kfree(intel_dp->aux.name);
1670 }
1671 
1672 static void
1673 intel_dp_aux_init(struct intel_dp *intel_dp)
1674 {
1675         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1676         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1677         struct intel_encoder *encoder = &dig_port->base;
1678 
1679         if (INTEL_GEN(dev_priv) >= 9) {
1680                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1681                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1682         } else if (HAS_PCH_SPLIT(dev_priv)) {
1683                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1684                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1685         } else {
1686                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1687                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1688         }
1689 
1690         if (INTEL_GEN(dev_priv) >= 9)
1691                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1692         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1693                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1694         else if (HAS_PCH_SPLIT(dev_priv))
1695                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1696         else
1697                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1698 
1699         if (INTEL_GEN(dev_priv) >= 9)
1700                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1701         else
1702                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1703 
1704         drm_dp_aux_init(&intel_dp->aux);
1705 
1706         /* Failure to allocate our preferred name is not critical */
1707         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1708                                        port_name(encoder->port));
1709         intel_dp->aux.transfer = intel_dp_aux_transfer;
1710 }
1711 
1712 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1713 {
1714         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1715 
1716         return max_rate >= 540000;
1717 }
1718 
1719 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1720 {
1721         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1722 
1723         return max_rate >= 810000;
1724 }
1725 
1726 static void
1727 intel_dp_set_clock(struct intel_encoder *encoder,
1728                    struct intel_crtc_state *pipe_config)
1729 {
1730         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1731         const struct dp_link_dpll *divisor = NULL;
1732         int i, count = 0;
1733 
1734         if (IS_G4X(dev_priv)) {
1735                 divisor = g4x_dpll;
1736                 count = ARRAY_SIZE(g4x_dpll);
1737         } else if (HAS_PCH_SPLIT(dev_priv)) {
1738                 divisor = pch_dpll;
1739                 count = ARRAY_SIZE(pch_dpll);
1740         } else if (IS_CHERRYVIEW(dev_priv)) {
1741                 divisor = chv_dpll;
1742                 count = ARRAY_SIZE(chv_dpll);
1743         } else if (IS_VALLEYVIEW(dev_priv)) {
1744                 divisor = vlv_dpll;
1745                 count = ARRAY_SIZE(vlv_dpll);
1746         }
1747 
1748         if (divisor && count) {
1749                 for (i = 0; i < count; i++) {
1750                         if (pipe_config->port_clock == divisor[i].clock) {
1751                                 pipe_config->dpll = divisor[i].dpll;
1752                                 pipe_config->clock_set = true;
1753                                 break;
1754                         }
1755                 }
1756         }
1757 }
1758 
1759 static void snprintf_int_array(char *str, size_t len,
1760                                const int *array, int nelem)
1761 {
1762         int i;
1763 
1764         str[0] = '\0';
1765 
1766         for (i = 0; i < nelem; i++) {
1767                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1768                 if (r >= len)
1769                         return;
1770                 str += r;
1771                 len -= r;
1772         }
1773 }
1774 
1775 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1776 {
1777         char str[128]; /* FIXME: too big for stack? */
1778 
1779         if ((drm_debug & DRM_UT_KMS) == 0)
1780                 return;
1781 
1782         snprintf_int_array(str, sizeof(str),
1783                            intel_dp->source_rates, intel_dp->num_source_rates);
1784         DRM_DEBUG_KMS("source rates: %s\n", str);
1785 
1786         snprintf_int_array(str, sizeof(str),
1787                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1788         DRM_DEBUG_KMS("sink rates: %s\n", str);
1789 
1790         snprintf_int_array(str, sizeof(str),
1791                            intel_dp->common_rates, intel_dp->num_common_rates);
1792         DRM_DEBUG_KMS("common rates: %s\n", str);
1793 }
1794 
1795 int
1796 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1797 {
1798         int len;
1799 
1800         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1801         if (WARN_ON(len <= 0))
1802                 return 162000;
1803 
1804         return intel_dp->common_rates[len - 1];
1805 }
1806 
1807 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1808 {
1809         int i = intel_dp_rate_index(intel_dp->sink_rates,
1810                                     intel_dp->num_sink_rates, rate);
1811 
1812         if (WARN_ON(i < 0))
1813                 i = 0;
1814 
1815         return i;
1816 }
1817 
1818 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1819                            u8 *link_bw, u8 *rate_select)
1820 {
1821         /* eDP 1.4 rate select method. */
1822         if (intel_dp->use_rate_select) {
1823                 *link_bw = 0;
1824                 *rate_select =
1825                         intel_dp_rate_select(intel_dp, port_clock);
1826         } else {
1827                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1828                 *rate_select = 0;
1829         }
1830 }
1831 
1832 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1833                                          const struct intel_crtc_state *pipe_config)
1834 {
1835         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1836 
1837         return INTEL_GEN(dev_priv) >= 11 &&
1838                 pipe_config->cpu_transcoder != TRANSCODER_A;
1839 }
1840 
1841 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1842                                   const struct intel_crtc_state *pipe_config)
1843 {
1844         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1845                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1846 }
1847 
1848 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1849                                          const struct intel_crtc_state *pipe_config)
1850 {
1851         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1852 
1853         return INTEL_GEN(dev_priv) >= 10 &&
1854                 pipe_config->cpu_transcoder != TRANSCODER_A;
1855 }
1856 
1857 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1858                                   const struct intel_crtc_state *pipe_config)
1859 {
1860         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1861                 return false;
1862 
1863         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1864                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1865 }
1866 
1867 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1868                                 struct intel_crtc_state *pipe_config)
1869 {
1870         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1871         struct intel_connector *intel_connector = intel_dp->attached_connector;
1872         int bpp, bpc;
1873 
1874         bpp = pipe_config->pipe_bpp;
1875         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1876 
1877         if (bpc > 0)
1878                 bpp = min(bpp, 3*bpc);
1879 
1880         if (intel_dp_is_edp(intel_dp)) {
1881                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1882                 if (intel_connector->base.display_info.bpc == 0 &&
1883                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1884                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1885                                       dev_priv->vbt.edp.bpp);
1886                         bpp = dev_priv->vbt.edp.bpp;
1887                 }
1888         }
1889 
1890         return bpp;
1891 }
1892 
1893 /* Adjust link config limits based on compliance test requests. */
1894 void
1895 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1896                                   struct intel_crtc_state *pipe_config,
1897                                   struct link_config_limits *limits)
1898 {
1899         /* For DP Compliance we override the computed bpp for the pipe */
1900         if (intel_dp->compliance.test_data.bpc != 0) {
1901                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1902 
1903                 limits->min_bpp = limits->max_bpp = bpp;
1904                 pipe_config->dither_force_disable = bpp == 6 * 3;
1905 
1906                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1907         }
1908 
1909         /* Use values requested by Compliance Test Request */
1910         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1911                 int index;
1912 
1913                 /* Validate the compliance test data since max values
1914                  * might have changed due to link train fallback.
1915                  */
1916                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1917                                                intel_dp->compliance.test_lane_count)) {
1918                         index = intel_dp_rate_index(intel_dp->common_rates,
1919                                                     intel_dp->num_common_rates,
1920                                                     intel_dp->compliance.test_link_rate);
1921                         if (index >= 0)
1922                                 limits->min_clock = limits->max_clock = index;
1923                         limits->min_lane_count = limits->max_lane_count =
1924                                 intel_dp->compliance.test_lane_count;
1925                 }
1926         }
1927 }
1928 
1929 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1930 {
1931         /*
1932          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1933          * format of the number of bytes per pixel will be half the number
1934          * of bytes of RGB pixel.
1935          */
1936         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1937                 bpp /= 2;
1938 
1939         return bpp;
1940 }
1941 
1942 /* Optimize link config in order: max bpp, min clock, min lanes */
1943 static int
1944 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1945                                   struct intel_crtc_state *pipe_config,
1946                                   const struct link_config_limits *limits)
1947 {
1948         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1949         int bpp, clock, lane_count;
1950         int mode_rate, link_clock, link_avail;
1951 
1952         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1953                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1954 
1955                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1956                                                    output_bpp);
1957 
1958                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1959                         for (lane_count = limits->min_lane_count;
1960                              lane_count <= limits->max_lane_count;
1961                              lane_count <<= 1) {
1962                                 link_clock = intel_dp->common_rates[clock];
1963                                 link_avail = intel_dp_max_data_rate(link_clock,
1964                                                                     lane_count);
1965 
1966                                 if (mode_rate <= link_avail) {
1967                                         pipe_config->lane_count = lane_count;
1968                                         pipe_config->pipe_bpp = bpp;
1969                                         pipe_config->port_clock = link_clock;
1970 
1971                                         return 0;
1972                                 }
1973                         }
1974                 }
1975         }
1976 
1977         return -EINVAL;
1978 }
1979 
1980 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1981 {
1982         int i, num_bpc;
1983         u8 dsc_bpc[3] = {0};
1984 
1985         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1986                                                        dsc_bpc);
1987         for (i = 0; i < num_bpc; i++) {
1988                 if (dsc_max_bpc >= dsc_bpc[i])
1989                         return dsc_bpc[i] * 3;
1990         }
1991 
1992         return 0;
1993 }
1994 
1995 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1996                                        struct intel_crtc_state *pipe_config,
1997                                        struct drm_connector_state *conn_state,
1998                                        struct link_config_limits *limits)
1999 {
2000         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2001         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2002         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003         u8 dsc_max_bpc;
2004         int pipe_bpp;
2005         int ret;
2006 
2007         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2008                 intel_dp_supports_fec(intel_dp, pipe_config);
2009 
2010         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2011                 return -EINVAL;
2012 
2013         dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
2014                             conn_state->max_requested_bpc);
2015 
2016         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2017         if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
2018                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2019                 return -EINVAL;
2020         }
2021 
2022         /*
2023          * For now enable DSC for max bpp, max link rate, max lane count.
2024          * Optimize this later for the minimum possible link rate/lane count
2025          * with DSC enabled for the requested mode.
2026          */
2027         pipe_config->pipe_bpp = pipe_bpp;
2028         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2029         pipe_config->lane_count = limits->max_lane_count;
2030 
2031         if (intel_dp_is_edp(intel_dp)) {
2032                 pipe_config->dsc_params.compressed_bpp =
2033                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2034                               pipe_config->pipe_bpp);
2035                 pipe_config->dsc_params.slice_count =
2036                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2037                                                         true);
2038         } else {
2039                 u16 dsc_max_output_bpp;
2040                 u8 dsc_dp_slice_count;
2041 
2042                 dsc_max_output_bpp =
2043                         intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
2044                                                     pipe_config->lane_count,
2045                                                     adjusted_mode->crtc_clock,
2046                                                     adjusted_mode->crtc_hdisplay);
2047                 dsc_dp_slice_count =
2048                         intel_dp_dsc_get_slice_count(intel_dp,
2049                                                      adjusted_mode->crtc_clock,
2050                                                      adjusted_mode->crtc_hdisplay);
2051                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2052                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2053                         return -EINVAL;
2054                 }
2055                 pipe_config->dsc_params.compressed_bpp = min_t(u16,
2056                                                                dsc_max_output_bpp >> 4,
2057                                                                pipe_config->pipe_bpp);
2058                 pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
2059         }
2060         /*
2061          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2062          * is greater than the maximum Cdclock and if slice count is even
2063          * then we need to use 2 VDSC instances.
2064          */
2065         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2066                 if (pipe_config->dsc_params.slice_count > 1) {
2067                         pipe_config->dsc_params.dsc_split = true;
2068                 } else {
2069                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2070                         return -EINVAL;
2071                 }
2072         }
2073 
2074         ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2075         if (ret < 0) {
2076                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2077                               "Compressed BPP = %d\n",
2078                               pipe_config->pipe_bpp,
2079                               pipe_config->dsc_params.compressed_bpp);
2080                 return ret;
2081         }
2082 
2083         pipe_config->dsc_params.compression_enable = true;
2084         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2085                       "Compressed Bpp = %d Slice Count = %d\n",
2086                       pipe_config->pipe_bpp,
2087                       pipe_config->dsc_params.compressed_bpp,
2088                       pipe_config->dsc_params.slice_count);
2089 
2090         return 0;
2091 }
2092 
2093 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2094 {
2095         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2096                 return 6 * 3;
2097         else
2098                 return 8 * 3;
2099 }
2100 
2101 static int
2102 intel_dp_compute_link_config(struct intel_encoder *encoder,
2103                              struct intel_crtc_state *pipe_config,
2104                              struct drm_connector_state *conn_state)
2105 {
2106         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2107         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2108         struct link_config_limits limits;
2109         int common_len;
2110         int ret;
2111 
2112         common_len = intel_dp_common_len_rate_limit(intel_dp,
2113                                                     intel_dp->max_link_rate);
2114 
2115         /* No common link rates between source and sink */
2116         WARN_ON(common_len <= 0);
2117 
2118         limits.min_clock = 0;
2119         limits.max_clock = common_len - 1;
2120 
2121         limits.min_lane_count = 1;
2122         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2123 
2124         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2125         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2126 
2127         if (intel_dp_is_edp(intel_dp)) {
2128                 /*
2129                  * Use the maximum clock and number of lanes the eDP panel
2130                  * advertizes being capable of. The panels are generally
2131                  * designed to support only a single clock and lane
2132                  * configuration, and typically these values correspond to the
2133                  * native resolution of the panel.
2134                  */
2135                 limits.min_lane_count = limits.max_lane_count;
2136                 limits.min_clock = limits.max_clock;
2137         }
2138 
2139         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2140 
2141         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2142                       "max rate %d max bpp %d pixel clock %iKHz\n",
2143                       limits.max_lane_count,
2144                       intel_dp->common_rates[limits.max_clock],
2145                       limits.max_bpp, adjusted_mode->crtc_clock);
2146 
2147         /*
2148          * Optimize for slow and wide. This is the place to add alternative
2149          * optimization policy.
2150          */
2151         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2152 
2153         /* enable compression if the mode doesn't fit available BW */
2154         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2155         if (ret || intel_dp->force_dsc_en) {
2156                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2157                                                   conn_state, &limits);
2158                 if (ret < 0)
2159                         return ret;
2160         }
2161 
2162         if (pipe_config->dsc_params.compression_enable) {
2163                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2164                               pipe_config->lane_count, pipe_config->port_clock,
2165                               pipe_config->pipe_bpp,
2166                               pipe_config->dsc_params.compressed_bpp);
2167 
2168                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2169                               intel_dp_link_required(adjusted_mode->crtc_clock,
2170                                                      pipe_config->dsc_params.compressed_bpp),
2171                               intel_dp_max_data_rate(pipe_config->port_clock,
2172                                                      pipe_config->lane_count));
2173         } else {
2174                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2175                               pipe_config->lane_count, pipe_config->port_clock,
2176                               pipe_config->pipe_bpp);
2177 
2178                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2179                               intel_dp_link_required(adjusted_mode->crtc_clock,
2180                                                      pipe_config->pipe_bpp),
2181                               intel_dp_max_data_rate(pipe_config->port_clock,
2182                                                      pipe_config->lane_count));
2183         }
2184         return 0;
2185 }
2186 
2187 static int
2188 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2189                          struct drm_connector *connector,
2190                          struct intel_crtc_state *crtc_state)
2191 {
2192         const struct drm_display_info *info = &connector->display_info;
2193         const struct drm_display_mode *adjusted_mode =
2194                 &crtc_state->base.adjusted_mode;
2195         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2196         int ret;
2197 
2198         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2199             !intel_dp_get_colorimetry_status(intel_dp) ||
2200             !connector->ycbcr_420_allowed)
2201                 return 0;
2202 
2203         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2204 
2205         /* YCBCR 420 output conversion needs a scaler */
2206         ret = skl_update_scaler_crtc(crtc_state);
2207         if (ret) {
2208                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2209                 return ret;
2210         }
2211 
2212         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2213 
2214         return 0;
2215 }
2216 
2217 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2218                                   const struct drm_connector_state *conn_state)
2219 {
2220         const struct intel_digital_connector_state *intel_conn_state =
2221                 to_intel_digital_connector_state(conn_state);
2222         const struct drm_display_mode *adjusted_mode =
2223                 &crtc_state->base.adjusted_mode;
2224 
2225         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2226                 /*
2227                  * See:
2228                  * CEA-861-E - 5.1 Default Encoding Parameters
2229                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2230                  */
2231                 return crtc_state->pipe_bpp != 18 &&
2232                         drm_default_rgb_quant_range(adjusted_mode) ==
2233                         HDMI_QUANTIZATION_RANGE_LIMITED;
2234         } else {
2235                 return intel_conn_state->broadcast_rgb ==
2236                         INTEL_BROADCAST_RGB_LIMITED;
2237         }
2238 }
2239 
2240 int
2241 intel_dp_compute_config(struct intel_encoder *encoder,
2242                         struct intel_crtc_state *pipe_config,
2243                         struct drm_connector_state *conn_state)
2244 {
2245         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2246         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2247         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2248         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2249         enum port port = encoder->port;
2250         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2251         struct intel_connector *intel_connector = intel_dp->attached_connector;
2252         struct intel_digital_connector_state *intel_conn_state =
2253                 to_intel_digital_connector_state(conn_state);
2254         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2255                                            DP_DPCD_QUIRK_CONSTANT_N);
2256         int ret = 0, output_bpp;
2257 
2258         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2259                 pipe_config->has_pch_encoder = true;
2260 
2261         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2262         if (lspcon->active)
2263                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2264         else
2265                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2266                                                pipe_config);
2267 
2268         if (ret)
2269                 return ret;
2270 
2271         pipe_config->has_drrs = false;
2272         if (IS_G4X(dev_priv) || port == PORT_A)
2273                 pipe_config->has_audio = false;
2274         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2275                 pipe_config->has_audio = intel_dp->has_audio;
2276         else
2277                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2278 
2279         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2280                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2281                                        adjusted_mode);
2282 
2283                 if (INTEL_GEN(dev_priv) >= 9) {
2284                         ret = skl_update_scaler_crtc(pipe_config);
2285                         if (ret)
2286                                 return ret;
2287                 }
2288 
2289                 if (HAS_GMCH(dev_priv))
2290                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2291                                                  conn_state->scaling_mode);
2292                 else
2293                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2294                                                 conn_state->scaling_mode);
2295         }
2296 
2297         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2298                 return -EINVAL;
2299 
2300         if (HAS_GMCH(dev_priv) &&
2301             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2302                 return -EINVAL;
2303 
2304         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2305                 return -EINVAL;
2306 
2307         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2308         if (ret < 0)
2309                 return ret;
2310 
2311         pipe_config->limited_color_range =
2312                 intel_dp_limited_color_range(pipe_config, conn_state);
2313 
2314         if (pipe_config->dsc_params.compression_enable)
2315                 output_bpp = pipe_config->dsc_params.compressed_bpp;
2316         else
2317                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2318 
2319         intel_link_compute_m_n(output_bpp,
2320                                pipe_config->lane_count,
2321                                adjusted_mode->crtc_clock,
2322                                pipe_config->port_clock,
2323                                &pipe_config->dp_m_n,
2324                                constant_n, pipe_config->fec_enable);
2325 
2326         if (intel_connector->panel.downclock_mode != NULL &&
2327                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2328                         pipe_config->has_drrs = true;
2329                         intel_link_compute_m_n(output_bpp,
2330                                                pipe_config->lane_count,
2331                                                intel_connector->panel.downclock_mode->clock,
2332                                                pipe_config->port_clock,
2333                                                &pipe_config->dp_m2_n2,
2334                                                constant_n, pipe_config->fec_enable);
2335         }
2336 
2337         if (!HAS_DDI(dev_priv))
2338                 intel_dp_set_clock(encoder, pipe_config);
2339 
2340         intel_psr_compute_config(intel_dp, pipe_config);
2341 
2342         return 0;
2343 }
2344 
2345 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2346                               int link_rate, u8 lane_count,
2347                               bool link_mst)
2348 {
2349         intel_dp->link_trained = false;
2350         intel_dp->link_rate = link_rate;
2351         intel_dp->lane_count = lane_count;
2352         intel_dp->link_mst = link_mst;
2353 }
2354 
2355 static void intel_dp_prepare(struct intel_encoder *encoder,
2356                              const struct intel_crtc_state *pipe_config)
2357 {
2358         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2359         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2360         enum port port = encoder->port;
2361         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2362         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2363 
2364         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2365                                  pipe_config->lane_count,
2366                                  intel_crtc_has_type(pipe_config,
2367                                                      INTEL_OUTPUT_DP_MST));
2368 
2369         /*
2370          * There are four kinds of DP registers:
2371          *
2372          *      IBX PCH
2373          *      SNB CPU
2374          *      IVB CPU
2375          *      CPT PCH
2376          *
2377          * IBX PCH and CPU are the same for almost everything,
2378          * except that the CPU DP PLL is configured in this
2379          * register
2380          *
2381          * CPT PCH is quite different, having many bits moved
2382          * to the TRANS_DP_CTL register instead. That
2383          * configuration happens (oddly) in ironlake_pch_enable
2384          */
2385 
2386         /* Preserve the BIOS-computed detected bit. This is
2387          * supposed to be read-only.
2388          */
2389         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2390 
2391         /* Handle DP bits in common between all three register formats */
2392         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2393         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2394 
2395         /* Split out the IBX/CPU vs CPT settings */
2396 
2397         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2398                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2399                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2400                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2401                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2402                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2403 
2404                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2405                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2406 
2407                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2408         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2409                 u32 trans_dp;
2410 
2411                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2412 
2413                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2414                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2415                         trans_dp |= TRANS_DP_ENH_FRAMING;
2416                 else
2417                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2418                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2419         } else {
2420                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2421                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2422 
2423                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2424                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2425                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2426                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2427                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2428 
2429                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2430                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2431 
2432                 if (IS_CHERRYVIEW(dev_priv))
2433                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2434                 else
2435                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2436         }
2437 }
2438 
2439 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2440 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2441 
2442 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2443 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2444 
2445 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2446 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2447 
2448 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2449 
2450 static void wait_panel_status(struct intel_dp *intel_dp,
2451                                        u32 mask,
2452                                        u32 value)
2453 {
2454         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2455         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2456 
2457         lockdep_assert_held(&dev_priv->pps_mutex);
2458 
2459         intel_pps_verify_state(intel_dp);
2460 
2461         pp_stat_reg = _pp_stat_reg(intel_dp);
2462         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2463 
2464         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2465                         mask, value,
2466                         I915_READ(pp_stat_reg),
2467                         I915_READ(pp_ctrl_reg));
2468 
2469         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2470                                        mask, value, 5000))
2471                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2472                                 I915_READ(pp_stat_reg),
2473                                 I915_READ(pp_ctrl_reg));
2474 
2475         DRM_DEBUG_KMS("Wait complete\n");
2476 }
2477 
2478 static void wait_panel_on(struct intel_dp *intel_dp)
2479 {
2480         DRM_DEBUG_KMS("Wait for panel power on\n");
2481         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2482 }
2483 
2484 static void wait_panel_off(struct intel_dp *intel_dp)
2485 {
2486         DRM_DEBUG_KMS("Wait for panel power off time\n");
2487         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2488 }
2489 
2490 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2491 {
2492         ktime_t panel_power_on_time;
2493         s64 panel_power_off_duration;
2494 
2495         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2496 
2497         /* take the difference of currrent time and panel power off time
2498          * and then make panel wait for t11_t12 if needed. */
2499         panel_power_on_time = ktime_get_boottime();
2500         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2501 
2502         /* When we disable the VDD override bit last we have to do the manual
2503          * wait. */
2504         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2505                 wait_remaining_ms_from_jiffies(jiffies,
2506                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2507 
2508         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2509 }
2510 
2511 static void wait_backlight_on(struct intel_dp *intel_dp)
2512 {
2513         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2514                                        intel_dp->backlight_on_delay);
2515 }
2516 
2517 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2518 {
2519         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2520                                        intel_dp->backlight_off_delay);
2521 }
2522 
2523 /* Read the current pp_control value, unlocking the register if it
2524  * is locked
2525  */
2526 
2527 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2528 {
2529         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2530         u32 control;
2531 
2532         lockdep_assert_held(&dev_priv->pps_mutex);
2533 
2534         control = I915_READ(_pp_ctrl_reg(intel_dp));
2535         if (WARN_ON(!HAS_DDI(dev_priv) &&
2536                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2537                 control &= ~PANEL_UNLOCK_MASK;
2538                 control |= PANEL_UNLOCK_REGS;
2539         }
2540         return control;
2541 }
2542 
2543 /*
2544  * Must be paired with edp_panel_vdd_off().
2545  * Must hold pps_mutex around the whole on/off sequence.
2546  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2547  */
2548 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2549 {
2550         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2551         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2552         u32 pp;
2553         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2554         bool need_to_disable = !intel_dp->want_panel_vdd;
2555 
2556         lockdep_assert_held(&dev_priv->pps_mutex);
2557 
2558         if (!intel_dp_is_edp(intel_dp))
2559                 return false;
2560 
2561         cancel_delayed_work(&intel_dp->panel_vdd_work);
2562         intel_dp->want_panel_vdd = true;
2563 
2564         if (edp_have_panel_vdd(intel_dp))
2565                 return need_to_disable;
2566 
2567         intel_display_power_get(dev_priv,
2568                                 intel_aux_power_domain(intel_dig_port));
2569 
2570         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2571                       port_name(intel_dig_port->base.port));
2572 
2573         if (!edp_have_panel_power(intel_dp))
2574                 wait_panel_power_cycle(intel_dp);
2575 
2576         pp = ironlake_get_pp_control(intel_dp);
2577         pp |= EDP_FORCE_VDD;
2578 
2579         pp_stat_reg = _pp_stat_reg(intel_dp);
2580         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2581 
2582         I915_WRITE(pp_ctrl_reg, pp);
2583         POSTING_READ(pp_ctrl_reg);
2584         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2585                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2586         /*
2587          * If the panel wasn't on, delay before accessing aux channel
2588          */
2589         if (!edp_have_panel_power(intel_dp)) {
2590                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2591                               port_name(intel_dig_port->base.port));
2592                 msleep(intel_dp->panel_power_up_delay);
2593         }
2594 
2595         return need_to_disable;
2596 }
2597 
2598 /*
2599  * Must be paired with intel_edp_panel_vdd_off() or
2600  * intel_edp_panel_off().
2601  * Nested calls to these functions are not allowed since
2602  * we drop the lock. Caller must use some higher level
2603  * locking to prevent nested calls from other threads.
2604  */
2605 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2606 {
2607         intel_wakeref_t wakeref;
2608         bool vdd;
2609 
2610         if (!intel_dp_is_edp(intel_dp))
2611                 return;
2612 
2613         vdd = false;
2614         with_pps_lock(intel_dp, wakeref)
2615                 vdd = edp_panel_vdd_on(intel_dp);
2616         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2617              port_name(dp_to_dig_port(intel_dp)->base.port));
2618 }
2619 
2620 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2621 {
2622         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2623         struct intel_digital_port *intel_dig_port =
2624                 dp_to_dig_port(intel_dp);
2625         u32 pp;
2626         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2627 
2628         lockdep_assert_held(&dev_priv->pps_mutex);
2629 
2630         WARN_ON(intel_dp->want_panel_vdd);
2631 
2632         if (!edp_have_panel_vdd(intel_dp))
2633                 return;
2634 
2635         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2636                       port_name(intel_dig_port->base.port));
2637 
2638         pp = ironlake_get_pp_control(intel_dp);
2639         pp &= ~EDP_FORCE_VDD;
2640 
2641         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2642         pp_stat_reg = _pp_stat_reg(intel_dp);
2643 
2644         I915_WRITE(pp_ctrl_reg, pp);
2645         POSTING_READ(pp_ctrl_reg);
2646 
2647         /* Make sure sequencer is idle before allowing subsequent activity */
2648         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2649         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2650 
2651         if ((pp & PANEL_POWER_ON) == 0)
2652                 intel_dp->panel_power_off_time = ktime_get_boottime();
2653 
2654         intel_display_power_put_unchecked(dev_priv,
2655                                           intel_aux_power_domain(intel_dig_port));
2656 }
2657 
2658 static void edp_panel_vdd_work(struct work_struct *__work)
2659 {
2660         struct intel_dp *intel_dp =
2661                 container_of(to_delayed_work(__work),
2662                              struct intel_dp, panel_vdd_work);
2663         intel_wakeref_t wakeref;
2664 
2665         with_pps_lock(intel_dp, wakeref) {
2666                 if (!intel_dp->want_panel_vdd)
2667                         edp_panel_vdd_off_sync(intel_dp);
2668         }
2669 }
2670 
2671 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2672 {
2673         unsigned long delay;
2674 
2675         /*
2676          * Queue the timer to fire a long time from now (relative to the power
2677          * down delay) to keep the panel power up across a sequence of
2678          * operations.
2679          */
2680         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2681         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2682 }
2683 
2684 /*
2685  * Must be paired with edp_panel_vdd_on().
2686  * Must hold pps_mutex around the whole on/off sequence.
2687  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2688  */
2689 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2690 {
2691         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2692 
2693         lockdep_assert_held(&dev_priv->pps_mutex);
2694 
2695         if (!intel_dp_is_edp(intel_dp))
2696                 return;
2697 
2698         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2699              port_name(dp_to_dig_port(intel_dp)->base.port));
2700 
2701         intel_dp->want_panel_vdd = false;
2702 
2703         if (sync)
2704                 edp_panel_vdd_off_sync(intel_dp);
2705         else
2706                 edp_panel_vdd_schedule_off(intel_dp);
2707 }
2708 
2709 static void edp_panel_on(struct intel_dp *intel_dp)
2710 {
2711         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2712         u32 pp;
2713         i915_reg_t pp_ctrl_reg;
2714 
2715         lockdep_assert_held(&dev_priv->pps_mutex);
2716 
2717         if (!intel_dp_is_edp(intel_dp))
2718                 return;
2719 
2720         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2721                       port_name(dp_to_dig_port(intel_dp)->base.port));
2722 
2723         if (WARN(edp_have_panel_power(intel_dp),
2724                  "eDP port %c panel power already on\n",
2725                  port_name(dp_to_dig_port(intel_dp)->base.port)))
2726                 return;
2727 
2728         wait_panel_power_cycle(intel_dp);
2729 
2730         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2731         pp = ironlake_get_pp_control(intel_dp);
2732         if (IS_GEN(dev_priv, 5)) {
2733                 /* ILK workaround: disable reset around power sequence */
2734                 pp &= ~PANEL_POWER_RESET;
2735                 I915_WRITE(pp_ctrl_reg, pp);
2736                 POSTING_READ(pp_ctrl_reg);
2737         }
2738 
2739         pp |= PANEL_POWER_ON;
2740         if (!IS_GEN(dev_priv, 5))
2741                 pp |= PANEL_POWER_RESET;
2742 
2743         I915_WRITE(pp_ctrl_reg, pp);
2744         POSTING_READ(pp_ctrl_reg);
2745 
2746         wait_panel_on(intel_dp);
2747         intel_dp->last_power_on = jiffies;
2748 
2749         if (IS_GEN(dev_priv, 5)) {
2750                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2751                 I915_WRITE(pp_ctrl_reg, pp);
2752                 POSTING_READ(pp_ctrl_reg);
2753         }
2754 }
2755 
2756 void intel_edp_panel_on(struct intel_dp *intel_dp)
2757 {
2758         intel_wakeref_t wakeref;
2759 
2760         if (!intel_dp_is_edp(intel_dp))
2761                 return;
2762 
2763         with_pps_lock(intel_dp, wakeref)
2764                 edp_panel_on(intel_dp);
2765 }
2766 
2767 
2768 static void edp_panel_off(struct intel_dp *intel_dp)
2769 {
2770         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2771         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2772         u32 pp;
2773         i915_reg_t pp_ctrl_reg;
2774 
2775         lockdep_assert_held(&dev_priv->pps_mutex);
2776 
2777         if (!intel_dp_is_edp(intel_dp))
2778                 return;
2779 
2780         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2781                       port_name(dig_port->base.port));
2782 
2783         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2784              port_name(dig_port->base.port));
2785 
2786         pp = ironlake_get_pp_control(intel_dp);
2787         /* We need to switch off panel power _and_ force vdd, for otherwise some
2788          * panels get very unhappy and cease to work. */
2789         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2790                 EDP_BLC_ENABLE);
2791 
2792         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2793 
2794         intel_dp->want_panel_vdd = false;
2795 
2796         I915_WRITE(pp_ctrl_reg, pp);
2797         POSTING_READ(pp_ctrl_reg);
2798 
2799         wait_panel_off(intel_dp);
2800         intel_dp->panel_power_off_time = ktime_get_boottime();
2801 
2802         /* We got a reference when we enabled the VDD. */
2803         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2804 }
2805 
2806 void intel_edp_panel_off(struct intel_dp *intel_dp)
2807 {
2808         intel_wakeref_t wakeref;
2809 
2810         if (!intel_dp_is_edp(intel_dp))
2811                 return;
2812 
2813         with_pps_lock(intel_dp, wakeref)
2814                 edp_panel_off(intel_dp);
2815 }
2816 
2817 /* Enable backlight in the panel power control. */
2818 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2819 {
2820         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2821         intel_wakeref_t wakeref;
2822 
2823         /*
2824          * If we enable the backlight right away following a panel power
2825          * on, we may see slight flicker as the panel syncs with the eDP
2826          * link.  So delay a bit to make sure the image is solid before
2827          * allowing it to appear.
2828          */
2829         wait_backlight_on(intel_dp);
2830 
2831         with_pps_lock(intel_dp, wakeref) {
2832                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2833                 u32 pp;
2834 
2835                 pp = ironlake_get_pp_control(intel_dp);
2836                 pp |= EDP_BLC_ENABLE;
2837 
2838                 I915_WRITE(pp_ctrl_reg, pp);
2839                 POSTING_READ(pp_ctrl_reg);
2840         }
2841 }
2842 
2843 /* Enable backlight PWM and backlight PP control. */
2844 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2845                             const struct drm_connector_state *conn_state)
2846 {
2847         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2848 
2849         if (!intel_dp_is_edp(intel_dp))
2850                 return;
2851 
2852         DRM_DEBUG_KMS("\n");
2853 
2854         intel_panel_enable_backlight(crtc_state, conn_state);
2855         _intel_edp_backlight_on(intel_dp);
2856 }
2857 
2858 /* Disable backlight in the panel power control. */
2859 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2860 {
2861         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2862         intel_wakeref_t wakeref;
2863 
2864         if (!intel_dp_is_edp(intel_dp))
2865                 return;
2866 
2867         with_pps_lock(intel_dp, wakeref) {
2868                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2869                 u32 pp;
2870 
2871                 pp = ironlake_get_pp_control(intel_dp);
2872                 pp &= ~EDP_BLC_ENABLE;
2873 
2874                 I915_WRITE(pp_ctrl_reg, pp);
2875                 POSTING_READ(pp_ctrl_reg);
2876         }
2877 
2878         intel_dp->last_backlight_off = jiffies;
2879         edp_wait_backlight_off(intel_dp);
2880 }
2881 
2882 /* Disable backlight PP control and backlight PWM. */
2883 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2884 {
2885         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2886 
2887         if (!intel_dp_is_edp(intel_dp))
2888                 return;
2889 
2890         DRM_DEBUG_KMS("\n");
2891 
2892         _intel_edp_backlight_off(intel_dp);
2893         intel_panel_disable_backlight(old_conn_state);
2894 }
2895 
2896 /*
2897  * Hook for controlling the panel power control backlight through the bl_power
2898  * sysfs attribute. Take care to handle multiple calls.
2899  */
2900 static void intel_edp_backlight_power(struct intel_connector *connector,
2901                                       bool enable)
2902 {
2903         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2904         intel_wakeref_t wakeref;
2905         bool is_enabled;
2906 
2907         is_enabled = false;
2908         with_pps_lock(intel_dp, wakeref)
2909                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2910         if (is_enabled == enable)
2911                 return;
2912 
2913         DRM_DEBUG_KMS("panel power control backlight %s\n",
2914                       enable ? "enable" : "disable");
2915 
2916         if (enable)
2917                 _intel_edp_backlight_on(intel_dp);
2918         else
2919                 _intel_edp_backlight_off(intel_dp);
2920 }
2921 
2922 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2923 {
2924         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2925         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2926         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2927 
2928         I915_STATE_WARN(cur_state != state,
2929                         "DP port %c state assertion failure (expected %s, current %s)\n",
2930                         port_name(dig_port->base.port),
2931                         onoff(state), onoff(cur_state));
2932 }
2933 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2934 
2935 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2936 {
2937         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2938 
2939         I915_STATE_WARN(cur_state != state,
2940                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2941                         onoff(state), onoff(cur_state));
2942 }
2943 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2944 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2945 
2946 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2947                                 const struct intel_crtc_state *pipe_config)
2948 {
2949         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2950         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2951 
2952         assert_pipe_disabled(dev_priv, crtc->pipe);
2953         assert_dp_port_disabled(intel_dp);
2954         assert_edp_pll_disabled(dev_priv);
2955 
2956         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2957                       pipe_config->port_clock);
2958 
2959         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2960 
2961         if (pipe_config->port_clock == 162000)
2962                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2963         else
2964                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2965 
2966         I915_WRITE(DP_A, intel_dp->DP);
2967         POSTING_READ(DP_A);
2968         udelay(500);
2969 
2970         /*
2971          * [DevILK] Work around required when enabling DP PLL
2972          * while a pipe is enabled going to FDI:
2973          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2974          * 2. Program DP PLL enable
2975          */
2976         if (IS_GEN(dev_priv, 5))
2977                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2978 
2979         intel_dp->DP |= DP_PLL_ENABLE;
2980 
2981         I915_WRITE(DP_A, intel_dp->DP);
2982         POSTING_READ(DP_A);
2983         udelay(200);
2984 }
2985 
2986 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2987                                  const struct intel_crtc_state *old_crtc_state)
2988 {
2989         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2990         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2991 
2992         assert_pipe_disabled(dev_priv, crtc->pipe);
2993         assert_dp_port_disabled(intel_dp);
2994         assert_edp_pll_enabled(dev_priv);
2995 
2996         DRM_DEBUG_KMS("disabling eDP PLL\n");
2997 
2998         intel_dp->DP &= ~DP_PLL_ENABLE;
2999 
3000         I915_WRITE(DP_A, intel_dp->DP);
3001         POSTING_READ(DP_A);
3002         udelay(200);
3003 }
3004 
3005 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3006 {
3007         /*
3008          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3009          * be capable of signalling downstream hpd with a long pulse.
3010          * Whether or not that means D3 is safe to use is not clear,
3011          * but let's assume so until proven otherwise.
3012          *
3013          * FIXME should really check all downstream ports...
3014          */
3015         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3016                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3017                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3018 }
3019 
3020 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3021                                            const struct intel_crtc_state *crtc_state,
3022                                            bool enable)
3023 {
3024         int ret;
3025 
3026         if (!crtc_state->dsc_params.compression_enable)
3027                 return;
3028 
3029         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3030                                  enable ? DP_DECOMPRESSION_EN : 0);
3031         if (ret < 0)
3032                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3033                               enable ? "enable" : "disable");
3034 }
3035 
3036 /* If the sink supports it, try to set the power state appropriately */
3037 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3038 {
3039         int ret, i;
3040 
3041         /* Should have a valid DPCD by this point */
3042         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3043                 return;
3044 
3045         if (mode != DRM_MODE_DPMS_ON) {
3046                 if (downstream_hpd_needs_d0(intel_dp))
3047                         return;
3048 
3049                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3050                                          DP_SET_POWER_D3);
3051         } else {
3052                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3053 
3054                 /*
3055                  * When turning on, we need to retry for 1ms to give the sink
3056                  * time to wake up.
3057                  */
3058                 for (i = 0; i < 3; i++) {
3059                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3060                                                  DP_SET_POWER_D0);
3061                         if (ret == 1)
3062                                 break;
3063                         msleep(1);
3064                 }
3065 
3066                 if (ret == 1 && lspcon->active)
3067                         lspcon_wait_pcon_mode(lspcon);
3068         }
3069 
3070         if (ret != 1)
3071                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3072                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3073 }
3074 
3075 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3076                                  enum port port, enum pipe *pipe)
3077 {
3078         enum pipe p;
3079 
3080         for_each_pipe(dev_priv, p) {
3081                 u32 val = I915_READ(TRANS_DP_CTL(p));
3082 
3083                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3084                         *pipe = p;
3085                         return true;
3086                 }
3087         }
3088 
3089         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3090 
3091         /* must initialize pipe to something for the asserts */
3092         *pipe = PIPE_A;
3093 
3094         return false;
3095 }
3096 
3097 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3098                            i915_reg_t dp_reg, enum port port,
3099                            enum pipe *pipe)
3100 {
3101         bool ret;
3102         u32 val;
3103 
3104         val = I915_READ(dp_reg);
3105 
3106         ret = val & DP_PORT_EN;
3107 
3108         /* asserts want to know the pipe even if the port is disabled */
3109         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3110                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3111         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3112                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3113         else if (IS_CHERRYVIEW(dev_priv))
3114                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3115         else
3116                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3117 
3118         return ret;
3119 }
3120 
3121 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3122                                   enum pipe *pipe)
3123 {
3124         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3125         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3126         intel_wakeref_t wakeref;
3127         bool ret;
3128 
3129         wakeref = intel_display_power_get_if_enabled(dev_priv,
3130                                                      encoder->power_domain);
3131         if (!wakeref)
3132                 return false;
3133 
3134         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3135                                     encoder->port, pipe);
3136 
3137         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3138 
3139         return ret;
3140 }
3141 
3142 static void intel_dp_get_config(struct intel_encoder *encoder,
3143                                 struct intel_crtc_state *pipe_config)
3144 {
3145         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3146         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3147         u32 tmp, flags = 0;
3148         enum port port = encoder->port;
3149         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3150 
3151         if (encoder->type == INTEL_OUTPUT_EDP)
3152                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3153         else
3154                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3155 
3156         tmp = I915_READ(intel_dp->output_reg);
3157 
3158         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3159 
3160         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3161                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3162 
3163                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3164                         flags |= DRM_MODE_FLAG_PHSYNC;
3165                 else
3166                         flags |= DRM_MODE_FLAG_NHSYNC;
3167 
3168                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3169                         flags |= DRM_MODE_FLAG_PVSYNC;
3170                 else
3171                         flags |= DRM_MODE_FLAG_NVSYNC;
3172         } else {
3173                 if (tmp & DP_SYNC_HS_HIGH)
3174                         flags |= DRM_MODE_FLAG_PHSYNC;
3175                 else
3176                         flags |= DRM_MODE_FLAG_NHSYNC;
3177 
3178                 if (tmp & DP_SYNC_VS_HIGH)
3179                         flags |= DRM_MODE_FLAG_PVSYNC;
3180                 else
3181                         flags |= DRM_MODE_FLAG_NVSYNC;
3182         }
3183 
3184         pipe_config->base.adjusted_mode.flags |= flags;
3185 
3186         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3187                 pipe_config->limited_color_range = true;
3188 
3189         pipe_config->lane_count =
3190                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3191 
3192         intel_dp_get_m_n(crtc, pipe_config);
3193 
3194         if (port == PORT_A) {
3195                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3196                         pipe_config->port_clock = 162000;
3197                 else
3198                         pipe_config->port_clock = 270000;
3199         }
3200 
3201         pipe_config->base.adjusted_mode.crtc_clock =
3202                 intel_dotclock_calculate(pipe_config->port_clock,
3203                                          &pipe_config->dp_m_n);
3204 
3205         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3206             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3207                 /*
3208                  * This is a big fat ugly hack.
3209                  *
3210                  * Some machines in UEFI boot mode provide us a VBT that has 18
3211                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3212                  * unknown we fail to light up. Yet the same BIOS boots up with
3213                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3214                  * max, not what it tells us to use.
3215                  *
3216                  * Note: This will still be broken if the eDP panel is not lit
3217                  * up by the BIOS, and thus we can't get the mode at module
3218                  * load.
3219                  */
3220                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3221                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3222                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3223         }
3224 }
3225 
3226 static void intel_disable_dp(struct intel_encoder *encoder,
3227                              const struct intel_crtc_state *old_crtc_state,
3228                              const struct drm_connector_state *old_conn_state)
3229 {
3230         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3231 
3232         intel_dp->link_trained = false;
3233 
3234         if (old_crtc_state->has_audio)
3235                 intel_audio_codec_disable(encoder,
3236                                           old_crtc_state, old_conn_state);
3237 
3238         /* Make sure the panel is off before trying to change the mode. But also
3239          * ensure that we have vdd while we switch off the panel. */
3240         intel_edp_panel_vdd_on(intel_dp);
3241         intel_edp_backlight_off(old_conn_state);
3242         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3243         intel_edp_panel_off(intel_dp);
3244 }
3245 
3246 static void g4x_disable_dp(struct intel_encoder *encoder,
3247                            const struct intel_crtc_state *old_crtc_state,
3248                            const struct drm_connector_state *old_conn_state)
3249 {
3250         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3251 }
3252 
3253 static void vlv_disable_dp(struct intel_encoder *encoder,
3254                            const struct intel_crtc_state *old_crtc_state,
3255                            const struct drm_connector_state *old_conn_state)
3256 {
3257         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3258 }
3259 
3260 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3261                                 const struct intel_crtc_state *old_crtc_state,
3262                                 const struct drm_connector_state *old_conn_state)
3263 {
3264         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3265         enum port port = encoder->port;
3266 
3267         /*
3268          * Bspec does not list a specific disable sequence for g4x DP.
3269          * Follow the ilk+ sequence (disable pipe before the port) for
3270          * g4x DP as it does not suffer from underruns like the normal
3271          * g4x modeset sequence (disable pipe after the port).
3272          */
3273         intel_dp_link_down(encoder, old_crtc_state);
3274 
3275         /* Only ilk+ has port A */
3276         if (port == PORT_A)
3277                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3278 }
3279 
3280 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3281                                 const struct intel_crtc_state *old_crtc_state,
3282                                 const struct drm_connector_state *old_conn_state)
3283 {
3284         intel_dp_link_down(encoder, old_crtc_state);
3285 }
3286 
3287 static void chv_post_disable_dp(struct intel_encoder *encoder,
3288                                 const struct intel_crtc_state *old_crtc_state,
3289                                 const struct drm_connector_state *old_conn_state)
3290 {
3291         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3292 
3293         intel_dp_link_down(encoder, old_crtc_state);
3294 
3295         vlv_dpio_get(dev_priv);
3296 
3297         /* Assert data lane reset */
3298         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3299 
3300         vlv_dpio_put(dev_priv);
3301 }
3302 
3303 static void
3304 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3305                          u32 *DP,
3306                          u8 dp_train_pat)
3307 {
3308         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3309         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3310         enum port port = intel_dig_port->base.port;
3311         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3312 
3313         if (dp_train_pat & train_pat_mask)
3314                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3315                               dp_train_pat & train_pat_mask);
3316 
3317         if (HAS_DDI(dev_priv)) {
3318                 u32 temp = I915_READ(DP_TP_CTL(port));
3319 
3320                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3321                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3322                 else
3323                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3324 
3325                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3326                 switch (dp_train_pat & train_pat_mask) {
3327                 case DP_TRAINING_PATTERN_DISABLE:
3328                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3329 
3330                         break;
3331                 case DP_TRAINING_PATTERN_1:
3332                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3333                         break;
3334                 case DP_TRAINING_PATTERN_2:
3335                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3336                         break;
3337                 case DP_TRAINING_PATTERN_3:
3338                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3339                         break;
3340                 case DP_TRAINING_PATTERN_4:
3341                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3342                         break;
3343                 }
3344                 I915_WRITE(DP_TP_CTL(port), temp);
3345 
3346         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3347                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3348                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3349 
3350                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3351                 case DP_TRAINING_PATTERN_DISABLE:
3352                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3353                         break;
3354                 case DP_TRAINING_PATTERN_1:
3355                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3356                         break;
3357                 case DP_TRAINING_PATTERN_2:
3358                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3359                         break;
3360                 case DP_TRAINING_PATTERN_3:
3361                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3362                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3363                         break;
3364                 }
3365 
3366         } else {
3367                 *DP &= ~DP_LINK_TRAIN_MASK;
3368 
3369                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3370                 case DP_TRAINING_PATTERN_DISABLE:
3371                         *DP |= DP_LINK_TRAIN_OFF;
3372                         break;
3373                 case DP_TRAINING_PATTERN_1:
3374                         *DP |= DP_LINK_TRAIN_PAT_1;
3375                         break;
3376                 case DP_TRAINING_PATTERN_2:
3377                         *DP |= DP_LINK_TRAIN_PAT_2;
3378                         break;
3379                 case DP_TRAINING_PATTERN_3:
3380                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3381                         *DP |= DP_LINK_TRAIN_PAT_2;
3382                         break;
3383                 }
3384         }
3385 }
3386 
3387 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3388                                  const struct intel_crtc_state *old_crtc_state)
3389 {
3390         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3391 
3392         /* enable with pattern 1 (as per spec) */
3393 
3394         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3395 
3396         /*
3397          * Magic for VLV/CHV. We _must_ first set up the register
3398          * without actually enabling the port, and then do another
3399          * write to enable the port. Otherwise link training will
3400          * fail when the power sequencer is freshly used for this port.
3401          */
3402         intel_dp->DP |= DP_PORT_EN;
3403         if (old_crtc_state->has_audio)
3404                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3405 
3406         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3407         POSTING_READ(intel_dp->output_reg);
3408 }
3409 
3410 static void intel_enable_dp(struct intel_encoder *encoder,
3411                             const struct intel_crtc_state *pipe_config,
3412                             const struct drm_connector_state *conn_state)
3413 {
3414         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3415         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3416         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3417         u32 dp_reg = I915_READ(intel_dp->output_reg);
3418         enum pipe pipe = crtc->pipe;
3419         intel_wakeref_t wakeref;
3420 
3421         if (WARN_ON(dp_reg & DP_PORT_EN))
3422                 return;
3423 
3424         with_pps_lock(intel_dp, wakeref) {
3425                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3426                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3427 
3428                 intel_dp_enable_port(intel_dp, pipe_config);
3429 
3430                 edp_panel_vdd_on(intel_dp);
3431                 edp_panel_on(intel_dp);
3432                 edp_panel_vdd_off(intel_dp, true);
3433         }
3434 
3435         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3436                 unsigned int lane_mask = 0x0;
3437 
3438                 if (IS_CHERRYVIEW(dev_priv))
3439                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3440 
3441                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3442                                     lane_mask);
3443         }
3444 
3445         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3446         intel_dp_start_link_train(intel_dp);
3447         intel_dp_stop_link_train(intel_dp);
3448 
3449         if (pipe_config->has_audio) {
3450                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3451                                  pipe_name(pipe));
3452                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3453         }
3454 }
3455 
3456 static void g4x_enable_dp(struct intel_encoder *encoder,
3457                           const struct intel_crtc_state *pipe_config,
3458                           const struct drm_connector_state *conn_state)
3459 {
3460         intel_enable_dp(encoder, pipe_config, conn_state);
3461         intel_edp_backlight_on(pipe_config, conn_state);
3462 }
3463 
3464 static void vlv_enable_dp(struct intel_encoder *encoder,
3465                           const struct intel_crtc_state *pipe_config,
3466                           const struct drm_connector_state *conn_state)
3467 {
3468         intel_edp_backlight_on(pipe_config, conn_state);
3469 }
3470 
3471 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3472                               const struct intel_crtc_state *pipe_config,
3473                               const struct drm_connector_state *conn_state)
3474 {
3475         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3476         enum port port = encoder->port;
3477 
3478         intel_dp_prepare(encoder, pipe_config);
3479 
3480         /* Only ilk+ has port A */
3481         if (port == PORT_A)
3482                 ironlake_edp_pll_on(intel_dp, pipe_config);
3483 }
3484 
3485 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3486 {
3487         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3488         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3489         enum pipe pipe = intel_dp->pps_pipe;
3490         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3491 
3492         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3493 
3494         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3495                 return;
3496 
3497         edp_panel_vdd_off_sync(intel_dp);
3498 
3499         /*
3500          * VLV seems to get confused when multiple power sequencers
3501          * have the same port selected (even if only one has power/vdd
3502          * enabled). The failure manifests as vlv_wait_port_ready() failing
3503          * CHV on the other hand doesn't seem to mind having the same port
3504          * selected in multiple power sequencers, but let's clear the
3505          * port select always when logically disconnecting a power sequencer
3506          * from a port.
3507          */
3508         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3509                       pipe_name(pipe), port_name(intel_dig_port->base.port));
3510         I915_WRITE(pp_on_reg, 0);
3511         POSTING_READ(pp_on_reg);
3512 
3513         intel_dp->pps_pipe = INVALID_PIPE;
3514 }
3515 
3516 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3517                                       enum pipe pipe)
3518 {
3519         struct intel_encoder *encoder;
3520 
3521         lockdep_assert_held(&dev_priv->pps_mutex);
3522 
3523         for_each_intel_dp(&dev_priv->drm, encoder) {
3524                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3525                 enum port port = encoder->port;
3526 
3527                 WARN(intel_dp->active_pipe == pipe,
3528                      "stealing pipe %c power sequencer from active (e)DP port %c\n",
3529                      pipe_name(pipe), port_name(port));
3530 
3531                 if (intel_dp->pps_pipe != pipe)
3532                         continue;
3533 
3534                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3535                               pipe_name(pipe), port_name(port));
3536 
3537                 /* make sure vdd is off before we steal it */
3538                 vlv_detach_power_sequencer(intel_dp);
3539         }
3540 }
3541 
3542 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3543                                            const struct intel_crtc_state *crtc_state)
3544 {
3545         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3546         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3547         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3548 
3549         lockdep_assert_held(&dev_priv->pps_mutex);
3550 
3551         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3552 
3553         if (intel_dp->pps_pipe != INVALID_PIPE &&
3554             intel_dp->pps_pipe != crtc->pipe) {
3555                 /*
3556                  * If another power sequencer was being used on this
3557                  * port previously make sure to turn off vdd there while
3558                  * we still have control of it.
3559                  */
3560                 vlv_detach_power_sequencer(intel_dp);
3561         }
3562 
3563         /*
3564          * We may be stealing the power
3565          * sequencer from another port.
3566          */
3567         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3568 
3569         intel_dp->active_pipe = crtc->pipe;
3570 
3571         if (!intel_dp_is_edp(intel_dp))
3572                 return;
3573 
3574         /* now it's all ours */
3575         intel_dp->pps_pipe = crtc->pipe;
3576 
3577         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3578                       pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3579 
3580         /* init power sequencer on this pipe and port */
3581         intel_dp_init_panel_power_sequencer(intel_dp);
3582         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3583 }
3584 
3585 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3586                               const struct intel_crtc_state *pipe_config,
3587                               const struct drm_connector_state *conn_state)
3588 {
3589         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3590 
3591         intel_enable_dp(encoder, pipe_config, conn_state);
3592 }
3593 
3594 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3595                                   const struct intel_crtc_state *pipe_config,
3596                                   const struct drm_connector_state *conn_state)
3597 {
3598         intel_dp_prepare(encoder, pipe_config);
3599 
3600         vlv_phy_pre_pll_enable(encoder, pipe_config);
3601 }
3602 
3603 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3604                               const struct intel_crtc_state *pipe_config,
3605                               const struct drm_connector_state *conn_state)
3606 {
3607         chv_phy_pre_encoder_enable(encoder, pipe_config);
3608 
3609         intel_enable_dp(encoder, pipe_config, conn_state);
3610 
3611         /* Second common lane will stay alive on its own now */
3612         chv_phy_release_cl2_override(encoder);
3613 }
3614 
3615 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3616                                   const struct intel_crtc_state *pipe_config,
3617                                   const struct drm_connector_state *conn_state)
3618 {
3619         intel_dp_prepare(encoder, pipe_config);
3620 
3621         chv_phy_pre_pll_enable(encoder, pipe_config);
3622 }
3623 
3624 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3625                                     const struct intel_crtc_state *old_crtc_state,
3626                                     const struct drm_connector_state *old_conn_state)
3627 {
3628         chv_phy_post_pll_disable(encoder, old_crtc_state);
3629 }
3630 
3631 /*
3632  * Fetch AUX CH registers 0x202 - 0x207 which contain
3633  * link status information
3634  */
3635 bool
3636 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3637 {
3638         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3639                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3640 }
3641 
3642 /* These are source-specific values. */
3643 u8
3644 intel_dp_voltage_max(struct intel_dp *intel_dp)
3645 {
3646         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3647         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3648         enum port port = encoder->port;
3649 
3650         if (HAS_DDI(dev_priv))
3651                 return intel_ddi_dp_voltage_max(encoder);
3652         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3653                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3654         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3655                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3656         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3657                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3658         else
3659                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3660 }
3661 
3662 u8
3663 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3664 {
3665         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3666         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3667         enum port port = encoder->port;
3668 
3669         if (HAS_DDI(dev_priv)) {
3670                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3671         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3672                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3673                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3674                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3675                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3676                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3677                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3678                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3679                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3680                 default:
3681                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3682                 }
3683         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3684                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3685                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3686                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3687                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3688                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3689                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3690                 default:
3691                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3692                 }
3693         } else {
3694                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3695                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3696                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3697                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3698                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3699                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3700                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3701                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3702                 default:
3703                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3704                 }
3705         }
3706 }
3707 
3708 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3709 {
3710         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3711         unsigned long demph_reg_value, preemph_reg_value,
3712                 uniqtranscale_reg_value;
3713         u8 train_set = intel_dp->train_set[0];
3714 
3715         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3716         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3717                 preemph_reg_value = 0x0004000;
3718                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3719                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3720                         demph_reg_value = 0x2B405555;
3721                         uniqtranscale_reg_value = 0x552AB83A;
3722                         break;
3723                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3724                         demph_reg_value = 0x2B404040;
3725                         uniqtranscale_reg_value = 0x5548B83A;
3726                         break;
3727                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3728                         demph_reg_value = 0x2B245555;
3729                         uniqtranscale_reg_value = 0x5560B83A;
3730                         break;
3731                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3732                         demph_reg_value = 0x2B405555;
3733                         uniqtranscale_reg_value = 0x5598DA3A;
3734                         break;
3735                 default:
3736                         return 0;
3737                 }
3738                 break;
3739         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3740                 preemph_reg_value = 0x0002000;
3741                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3742                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3743                         demph_reg_value = 0x2B404040;
3744                         uniqtranscale_reg_value = 0x5552B83A;
3745                         break;
3746                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3747                         demph_reg_value = 0x2B404848;
3748                         uniqtranscale_reg_value = 0x5580B83A;
3749                         break;
3750                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3751                         demph_reg_value = 0x2B404040;
3752                         uniqtranscale_reg_value = 0x55ADDA3A;
3753                         break;
3754                 default:
3755                         return 0;
3756                 }
3757                 break;
3758         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3759                 preemph_reg_value = 0x0000000;
3760                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3761                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3762                         demph_reg_value = 0x2B305555;
3763                         uniqtranscale_reg_value = 0x5570B83A;
3764                         break;
3765                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3766                         demph_reg_value = 0x2B2B4040;
3767                         uniqtranscale_reg_value = 0x55ADDA3A;
3768                         break;
3769                 default:
3770                         return 0;
3771                 }
3772                 break;
3773         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3774                 preemph_reg_value = 0x0006000;
3775                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3776                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3777                         demph_reg_value = 0x1B405555;
3778                         uniqtranscale_reg_value = 0x55ADDA3A;
3779                         break;
3780                 default:
3781                         return 0;
3782                 }
3783                 break;
3784         default:
3785                 return 0;
3786         }
3787 
3788         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3789                                  uniqtranscale_reg_value, 0);
3790 
3791         return 0;
3792 }
3793 
3794 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3795 {
3796         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3797         u32 deemph_reg_value, margin_reg_value;
3798         bool uniq_trans_scale = false;
3799         u8 train_set = intel_dp->train_set[0];
3800 
3801         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3802         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3803                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3804                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3805                         deemph_reg_value = 128;
3806                         margin_reg_value = 52;
3807                         break;
3808                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3809                         deemph_reg_value = 128;
3810                         margin_reg_value = 77;
3811                         break;
3812                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3813                         deemph_reg_value = 128;
3814                         margin_reg_value = 102;
3815                         break;
3816                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3817                         deemph_reg_value = 128;
3818                         margin_reg_value = 154;
3819                         uniq_trans_scale = true;
3820                         break;
3821                 default:
3822                         return 0;
3823                 }
3824                 break;
3825         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3826                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3827                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3828                         deemph_reg_value = 85;
3829                         margin_reg_value = 78;
3830                         break;
3831                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3832                         deemph_reg_value = 85;
3833                         margin_reg_value = 116;
3834                         break;
3835                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3836                         deemph_reg_value = 85;
3837                         margin_reg_value = 154;
3838                         break;
3839                 default:
3840                         return 0;
3841                 }
3842                 break;
3843         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3844                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3845                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3846                         deemph_reg_value = 64;
3847                         margin_reg_value = 104;
3848                         break;
3849                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3850                         deemph_reg_value = 64;
3851                         margin_reg_value = 154;
3852                         break;
3853                 default:
3854                         return 0;
3855                 }
3856                 break;
3857         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3858                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3859                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3860                         deemph_reg_value = 43;
3861                         margin_reg_value = 154;
3862                         break;
3863                 default:
3864                         return 0;
3865                 }
3866                 break;
3867         default:
3868                 return 0;
3869         }
3870 
3871         chv_set_phy_signal_level(encoder, deemph_reg_value,
3872                                  margin_reg_value, uniq_trans_scale);
3873 
3874         return 0;
3875 }
3876 
3877 static u32
3878 g4x_signal_levels(u8 train_set)
3879 {
3880         u32 signal_levels = 0;
3881 
3882         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3883         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3884         default:
3885                 signal_levels |= DP_VOLTAGE_0_4;
3886                 break;
3887         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3888                 signal_levels |= DP_VOLTAGE_0_6;
3889                 break;
3890         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3891                 signal_levels |= DP_VOLTAGE_0_8;
3892                 break;
3893         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3894                 signal_levels |= DP_VOLTAGE_1_2;
3895                 break;
3896         }
3897         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3898         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3899         default:
3900                 signal_levels |= DP_PRE_EMPHASIS_0;
3901                 break;
3902         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3903                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3904                 break;
3905         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3906                 signal_levels |= DP_PRE_EMPHASIS_6;
3907                 break;
3908         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3909                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3910                 break;
3911         }
3912         return signal_levels;
3913 }
3914 
3915 /* SNB CPU eDP voltage swing and pre-emphasis control */
3916 static u32
3917 snb_cpu_edp_signal_levels(u8 train_set)
3918 {
3919         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3920                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3921         switch (signal_levels) {
3922         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3923         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3924                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3925         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3926                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3927         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3928         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3929                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3930         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3931         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3932                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3933         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3934         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3935                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3936         default:
3937                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3938                               "0x%x\n", signal_levels);
3939                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3940         }
3941 }
3942 
3943 /* IVB CPU eDP voltage swing and pre-emphasis control */
3944 static u32
3945 ivb_cpu_edp_signal_levels(u8 train_set)
3946 {
3947         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3948                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3949         switch (signal_levels) {
3950         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3951                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3952         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3953                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3954         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3955                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3956 
3957         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3958                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3959         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3960                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3961 
3962         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3963                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3964         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3965                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3966 
3967         default:
3968                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3969                               "0x%x\n", signal_levels);
3970                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3971         }
3972 }
3973 
3974 void
3975 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3976 {
3977         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3978         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3979         enum port port = intel_dig_port->base.port;
3980         u32 signal_levels, mask = 0;
3981         u8 train_set = intel_dp->train_set[0];
3982 
3983         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3984                 signal_levels = bxt_signal_levels(intel_dp);
3985         } else if (HAS_DDI(dev_priv)) {
3986                 signal_levels = ddi_signal_levels(intel_dp);
3987                 mask = DDI_BUF_EMP_MASK;
3988         } else if (IS_CHERRYVIEW(dev_priv)) {
3989                 signal_levels = chv_signal_levels(intel_dp);
3990         } else if (IS_VALLEYVIEW(dev_priv)) {
3991                 signal_levels = vlv_signal_levels(intel_dp);
3992         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3993                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3994                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3995         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3996                 signal_levels = snb_cpu_edp_signal_levels(train_set);
3997                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3998         } else {
3999                 signal_levels = g4x_signal_levels(train_set);
4000                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4001         }
4002 
4003         if (mask)
4004                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4005 
4006         DRM_DEBUG_KMS("Using vswing level %d\n",
4007                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4008         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4009                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4010                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4011 
4012         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4013 
4014         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4015         POSTING_READ(intel_dp->output_reg);
4016 }
4017 
4018 void
4019 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4020                                        u8 dp_train_pat)
4021 {
4022         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4023         struct drm_i915_private *dev_priv =
4024                 to_i915(intel_dig_port->base.base.dev);
4025 
4026         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4027 
4028         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4029         POSTING_READ(intel_dp->output_reg);
4030 }
4031 
4032 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4033 {
4034         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4035         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4036         enum port port = intel_dig_port->base.port;
4037         u32 val;
4038 
4039         if (!HAS_DDI(dev_priv))
4040                 return;
4041 
4042         val = I915_READ(DP_TP_CTL(port));
4043         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4044         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4045         I915_WRITE(DP_TP_CTL(port), val);
4046 
4047         /*
4048          * On PORT_A we can have only eDP in SST mode. There the only reason
4049          * we need to set idle transmission mode is to work around a HW issue
4050          * where we enable the pipe while not in idle link-training mode.
4051          * In this case there is requirement to wait for a minimum number of
4052          * idle patterns to be sent.
4053          */
4054         if (port == PORT_A)
4055                 return;
4056 
4057         if (intel_de_wait_for_set(dev_priv, DP_TP_STATUS(port),
4058                                   DP_TP_STATUS_IDLE_DONE, 1))
4059                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4060 }
4061 
4062 static void
4063 intel_dp_link_down(struct intel_encoder *encoder,
4064                    const struct intel_crtc_state *old_crtc_state)
4065 {
4066         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4067         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4068         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4069         enum port port = encoder->port;
4070         u32 DP = intel_dp->DP;
4071 
4072         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4073                 return;
4074 
4075         DRM_DEBUG_KMS("\n");
4076 
4077         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4078             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4079                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4080                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4081         } else {
4082                 DP &= ~DP_LINK_TRAIN_MASK;
4083                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4084         }
4085         I915_WRITE(intel_dp->output_reg, DP);
4086         POSTING_READ(intel_dp->output_reg);
4087 
4088         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4089         I915_WRITE(intel_dp->output_reg, DP);
4090         POSTING_READ(intel_dp->output_reg);
4091 
4092         /*
4093          * HW workaround for IBX, we need to move the port
4094          * to transcoder A after disabling it to allow the
4095          * matching HDMI port to be enabled on transcoder A.
4096          */
4097         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4098                 /*
4099                  * We get CPU/PCH FIFO underruns on the other pipe when
4100                  * doing the workaround. Sweep them under the rug.
4101                  */
4102                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4103                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4104 
4105                 /* always enable with pattern 1 (as per spec) */
4106                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4107                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4108                         DP_LINK_TRAIN_PAT_1;
4109                 I915_WRITE(intel_dp->output_reg, DP);
4110                 POSTING_READ(intel_dp->output_reg);
4111 
4112                 DP &= ~DP_PORT_EN;
4113                 I915_WRITE(intel_dp->output_reg, DP);
4114                 POSTING_READ(intel_dp->output_reg);
4115 
4116                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4117                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4118                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4119         }
4120 
4121         msleep(intel_dp->panel_power_down_delay);
4122 
4123         intel_dp->DP = DP;
4124 
4125         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4126                 intel_wakeref_t wakeref;
4127 
4128                 with_pps_lock(intel_dp, wakeref)
4129                         intel_dp->active_pipe = INVALID_PIPE;
4130         }
4131 }
4132 
4133 static void
4134 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4135 {
4136         u8 dpcd_ext[6];
4137 
4138         /*
4139          * Prior to DP1.3 the bit represented by
4140          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4141          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4142          * the true capability of the panel. The only way to check is to
4143          * then compare 0000h and 2200h.
4144          */
4145         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4146               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4147                 return;
4148 
4149         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4150                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4151                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4152                 return;
4153         }
4154 
4155         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4156                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4157                 return;
4158         }
4159 
4160         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4161                 return;
4162 
4163         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4164                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4165 
4166         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4167 }
4168 
4169 bool
4170 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4171 {
4172         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4173                              sizeof(intel_dp->dpcd)) < 0)
4174                 return false; /* aux transfer failed */
4175 
4176         intel_dp_extended_receiver_capabilities(intel_dp);
4177 
4178         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4179 
4180         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4181 }
4182 
4183 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4184 {
4185         u8 dprx = 0;
4186 
4187         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4188                               &dprx) != 1)
4189                 return false;
4190         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4191 }
4192 
4193 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4194 {
4195         /*
4196          * Clear the cached register set to avoid using stale values
4197          * for the sinks that do not support DSC.
4198          */
4199         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4200 
4201         /* Clear fec_capable to avoid using stale values */
4202         intel_dp->fec_capable = 0;
4203 
4204         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4205         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4206             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4207                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4208                                      intel_dp->dsc_dpcd,
4209                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4210                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4211                                   DP_DSC_SUPPORT);
4212 
4213                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4214                               (int)sizeof(intel_dp->dsc_dpcd),
4215                               intel_dp->dsc_dpcd);
4216 
4217                 /* FEC is supported only on DP 1.4 */
4218                 if (!intel_dp_is_edp(intel_dp) &&
4219                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4220                                       &intel_dp->fec_capable) < 0)
4221                         DRM_ERROR("Failed to read FEC DPCD register\n");
4222 
4223                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4224         }
4225 }
4226 
4227 static bool
4228 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4229 {
4230         struct drm_i915_private *dev_priv =
4231                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4232 
4233         /* this function is meant to be called only once */
4234         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4235 
4236         if (!intel_dp_read_dpcd(intel_dp))
4237                 return false;
4238 
4239         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4240                          drm_dp_is_branch(intel_dp->dpcd));
4241 
4242         /*
4243          * Read the eDP display control registers.
4244          *
4245          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4246          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4247          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4248          * method). The display control registers should read zero if they're
4249          * not supported anyway.
4250          */
4251         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4252                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4253                              sizeof(intel_dp->edp_dpcd))
4254                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4255                               intel_dp->edp_dpcd);
4256 
4257         /*
4258          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4259          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4260          */
4261         intel_psr_init_dpcd(intel_dp);
4262 
4263         /* Read the eDP 1.4+ supported link rates. */
4264         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4265                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4266                 int i;
4267 
4268                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4269                                 sink_rates, sizeof(sink_rates));
4270 
4271                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4272                         int val = le16_to_cpu(sink_rates[i]);
4273 
4274                         if (val == 0)
4275                                 break;
4276 
4277                         /* Value read multiplied by 200kHz gives the per-lane
4278                          * link rate in kHz. The source rates are, however,
4279                          * stored in terms of LS_Clk kHz. The full conversion
4280                          * back to symbols is
4281                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4282                          */
4283                         intel_dp->sink_rates[i] = (val * 200) / 10;
4284                 }
4285                 intel_dp->num_sink_rates = i;
4286         }
4287 
4288         /*
4289          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4290          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4291          */
4292         if (intel_dp->num_sink_rates)
4293                 intel_dp->use_rate_select = true;
4294         else
4295                 intel_dp_set_sink_rates(intel_dp);
4296 
4297         intel_dp_set_common_rates(intel_dp);
4298 
4299         /* Read the eDP DSC DPCD registers */
4300         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4301                 intel_dp_get_dsc_sink_cap(intel_dp);
4302 
4303         return true;
4304 }
4305 
4306 
4307 static bool
4308 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4309 {
4310         if (!intel_dp_read_dpcd(intel_dp))
4311                 return false;
4312 
4313         /*
4314          * Don't clobber cached eDP rates. Also skip re-reading
4315          * the OUI/ID since we know it won't change.
4316          */
4317         if (!intel_dp_is_edp(intel_dp)) {
4318                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4319                                  drm_dp_is_branch(intel_dp->dpcd));
4320 
4321                 intel_dp_set_sink_rates(intel_dp);
4322                 intel_dp_set_common_rates(intel_dp);
4323         }
4324 
4325         /*
4326          * Some eDP panels do not set a valid value for sink count, that is why
4327          * it don't care about read it here and in intel_edp_init_dpcd().
4328          */
4329         if (!intel_dp_is_edp(intel_dp) &&
4330             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4331                 u8 count;
4332                 ssize_t r;
4333 
4334                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4335                 if (r < 1)
4336                         return false;
4337 
4338                 /*
4339                  * Sink count can change between short pulse hpd hence
4340                  * a member variable in intel_dp will track any changes
4341                  * between short pulse interrupts.
4342                  */
4343                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4344 
4345                 /*
4346                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4347                  * a dongle is present but no display. Unless we require to know
4348                  * if a dongle is present or not, we don't need to update
4349                  * downstream port information. So, an early return here saves
4350                  * time from performing other operations which are not required.
4351                  */
4352                 if (!intel_dp->sink_count)
4353                         return false;
4354         }
4355 
4356         if (!drm_dp_is_branch(intel_dp->dpcd))
4357                 return true; /* native DP sink */
4358 
4359         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4360                 return true; /* no per-port downstream info */
4361 
4362         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4363                              intel_dp->downstream_ports,
4364                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4365                 return false; /* downstream port status fetch failed */
4366 
4367         return true;
4368 }
4369 
4370 static bool
4371 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4372 {
4373         u8 mstm_cap;
4374 
4375         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4376                 return false;
4377 
4378         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4379                 return false;
4380 
4381         return mstm_cap & DP_MST_CAP;
4382 }
4383 
4384 static bool
4385 intel_dp_can_mst(struct intel_dp *intel_dp)
4386 {
4387         return i915_modparams.enable_dp_mst &&
4388                 intel_dp->can_mst &&
4389                 intel_dp_sink_can_mst(intel_dp);
4390 }
4391 
4392 static void
4393 intel_dp_configure_mst(struct intel_dp *intel_dp)
4394 {
4395         struct intel_encoder *encoder =
4396                 &dp_to_dig_port(intel_dp)->base;
4397         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4398 
4399         DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4400                       port_name(encoder->port), yesno(intel_dp->can_mst),
4401                       yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4402 
4403         if (!intel_dp->can_mst)
4404                 return;
4405 
4406         intel_dp->is_mst = sink_can_mst &&
4407                 i915_modparams.enable_dp_mst;
4408 
4409         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4410                                         intel_dp->is_mst);
4411 }
4412 
4413 static bool
4414 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4415 {
4416         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4417                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4418                 DP_DPRX_ESI_LEN;
4419 }
4420 
4421 static void
4422 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4423                                const struct intel_crtc_state *crtc_state)
4424 {
4425         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4426         struct dp_sdp vsc_sdp = {};
4427 
4428         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4429         vsc_sdp.sdp_header.HB0 = 0;
4430         vsc_sdp.sdp_header.HB1 = 0x7;
4431 
4432         /*
4433          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4434          * Colorimetry Format indication.
4435          */
4436         vsc_sdp.sdp_header.HB2 = 0x5;
4437 
4438         /*
4439          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4440          * Colorimetry Format indication (HB2 = 05h).
4441          */
4442         vsc_sdp.sdp_header.HB3 = 0x13;
4443 
4444         /*
4445          * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4446          * DB16[3:0] DP 1.4a spec, Table 2-120
4447          */
4448         vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4449         /* RGB->YCBCR color conversion uses the BT.709 color space. */
4450         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4451 
4452         /*
4453          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4454          * the following Component Bit Depth values are defined:
4455          * 001b = 8bpc.
4456          * 010b = 10bpc.
4457          * 011b = 12bpc.
4458          * 100b = 16bpc.
4459          */
4460         switch (crtc_state->pipe_bpp) {
4461         case 24: /* 8bpc */
4462                 vsc_sdp.db[17] = 0x1;
4463                 break;
4464         case 30: /* 10bpc */
4465                 vsc_sdp.db[17] = 0x2;
4466                 break;
4467         case 36: /* 12bpc */
4468                 vsc_sdp.db[17] = 0x3;
4469                 break;
4470         case 48: /* 16bpc */
4471                 vsc_sdp.db[17] = 0x4;
4472                 break;
4473         default:
4474                 MISSING_CASE(crtc_state->pipe_bpp);
4475                 break;
4476         }
4477 
4478         /*
4479          * Dynamic Range (Bit 7)
4480          * 0 = VESA range, 1 = CTA range.
4481          * all YCbCr are always limited range
4482          */
4483         vsc_sdp.db[17] |= 0x80;
4484 
4485         /*
4486          * Content Type (Bits 2:0)
4487          * 000b = Not defined.
4488          * 001b = Graphics.
4489          * 010b = Photo.
4490          * 011b = Video.
4491          * 100b = Game
4492          * All other values are RESERVED.
4493          * Note: See CTA-861-G for the definition and expected
4494          * processing by a stream sink for the above contect types.
4495          */
4496         vsc_sdp.db[18] = 0;
4497 
4498         intel_dig_port->write_infoframe(&intel_dig_port->base,
4499                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4500 }
4501 
4502 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4503                                const struct intel_crtc_state *crtc_state)
4504 {
4505         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4506                 return;
4507 
4508         intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4509 }
4510 
4511 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4512 {
4513         int status = 0;
4514         int test_link_rate;
4515         u8 test_lane_count, test_link_bw;
4516         /* (DP CTS 1.2)
4517          * 4.3.1.11
4518          */
4519         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4520         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4521                                    &test_lane_count);
4522 
4523         if (status <= 0) {
4524                 DRM_DEBUG_KMS("Lane count read failed\n");
4525                 return DP_TEST_NAK;
4526         }
4527         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4528 
4529         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4530                                    &test_link_bw);
4531         if (status <= 0) {
4532                 DRM_DEBUG_KMS("Link Rate read failed\n");
4533                 return DP_TEST_NAK;
4534         }
4535         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4536 
4537         /* Validate the requested link rate and lane count */
4538         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4539                                         test_lane_count))
4540                 return DP_TEST_NAK;
4541 
4542         intel_dp->compliance.test_lane_count = test_lane_count;
4543         intel_dp->compliance.test_link_rate = test_link_rate;
4544 
4545         return DP_TEST_ACK;
4546 }
4547 
4548 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4549 {
4550         u8 test_pattern;
4551         u8 test_misc;
4552         __be16 h_width, v_height;
4553         int status = 0;
4554 
4555         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4556         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4557                                    &test_pattern);
4558         if (status <= 0) {
4559                 DRM_DEBUG_KMS("Test pattern read failed\n");
4560                 return DP_TEST_NAK;
4561         }
4562         if (test_pattern != DP_COLOR_RAMP)
4563                 return DP_TEST_NAK;
4564 
4565         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4566                                   &h_width, 2);
4567         if (status <= 0) {
4568                 DRM_DEBUG_KMS("H Width read failed\n");
4569                 return DP_TEST_NAK;
4570         }
4571 
4572         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4573                                   &v_height, 2);
4574         if (status <= 0) {
4575                 DRM_DEBUG_KMS("V Height read failed\n");
4576                 return DP_TEST_NAK;
4577         }
4578 
4579         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4580                                    &test_misc);
4581         if (status <= 0) {
4582                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4583                 return DP_TEST_NAK;
4584         }
4585         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4586                 return DP_TEST_NAK;
4587         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4588                 return DP_TEST_NAK;
4589         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4590         case DP_TEST_BIT_DEPTH_6:
4591                 intel_dp->compliance.test_data.bpc = 6;
4592                 break;
4593         case DP_TEST_BIT_DEPTH_8:
4594                 intel_dp->compliance.test_data.bpc = 8;
4595                 break;
4596         default:
4597                 return DP_TEST_NAK;
4598         }
4599 
4600         intel_dp->compliance.test_data.video_pattern = test_pattern;
4601         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4602         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4603         /* Set test active flag here so userspace doesn't interrupt things */
4604         intel_dp->compliance.test_active = 1;
4605 
4606         return DP_TEST_ACK;
4607 }
4608 
4609 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4610 {
4611         u8 test_result = DP_TEST_ACK;
4612         struct intel_connector *intel_connector = intel_dp->attached_connector;
4613         struct drm_connector *connector = &intel_connector->base;
4614 
4615         if (intel_connector->detect_edid == NULL ||
4616             connector->edid_corrupt ||
4617             intel_dp->aux.i2c_defer_count > 6) {
4618                 /* Check EDID read for NACKs, DEFERs and corruption
4619                  * (DP CTS 1.2 Core r1.1)
4620                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4621                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4622                  *    4.2.2.6 : EDID corruption detected
4623                  * Use failsafe mode for all cases
4624                  */
4625                 if (intel_dp->aux.i2c_nack_count > 0 ||
4626                         intel_dp->aux.i2c_defer_count > 0)
4627                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4628                                       intel_dp->aux.i2c_nack_count,
4629                                       intel_dp->aux.i2c_defer_count);
4630                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4631         } else {
4632                 struct edid *block = intel_connector->detect_edid;
4633 
4634                 /* We have to write the checksum
4635                  * of the last block read
4636                  */
4637                 block += intel_connector->detect_edid->extensions;
4638 
4639                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4640                                        block->checksum) <= 0)
4641                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4642 
4643                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4644                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4645         }
4646 
4647         /* Set test active flag here so userspace doesn't interrupt things */
4648         intel_dp->compliance.test_active = 1;
4649 
4650         return test_result;
4651 }
4652 
4653 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4654 {
4655         u8 test_result = DP_TEST_NAK;
4656         return test_result;
4657 }
4658 
4659 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4660 {
4661         u8 response = DP_TEST_NAK;
4662         u8 request = 0;
4663         int status;
4664 
4665         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4666         if (status <= 0) {
4667                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4668                 goto update_status;
4669         }
4670 
4671         switch (request) {
4672         case DP_TEST_LINK_TRAINING:
4673                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4674                 response = intel_dp_autotest_link_training(intel_dp);
4675                 break;
4676         case DP_TEST_LINK_VIDEO_PATTERN:
4677                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4678                 response = intel_dp_autotest_video_pattern(intel_dp);
4679                 break;
4680         case DP_TEST_LINK_EDID_READ:
4681                 DRM_DEBUG_KMS("EDID test requested\n");
4682                 response = intel_dp_autotest_edid(intel_dp);
4683                 break;
4684         case DP_TEST_LINK_PHY_TEST_PATTERN:
4685                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4686                 response = intel_dp_autotest_phy_pattern(intel_dp);
4687                 break;
4688         default:
4689                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4690                 break;
4691         }
4692 
4693         if (response & DP_TEST_ACK)
4694                 intel_dp->compliance.test_type = request;
4695 
4696 update_status:
4697         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4698         if (status <= 0)
4699                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4700 }
4701 
4702 static int
4703 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4704 {
4705         bool bret;
4706 
4707         if (intel_dp->is_mst) {
4708                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4709                 int ret = 0;
4710                 int retry;
4711                 bool handled;
4712 
4713                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4714                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4715 go_again:
4716                 if (bret == true) {
4717 
4718                         /* check link status - esi[10] = 0x200c */
4719                         if (intel_dp->active_mst_links > 0 &&
4720                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4721                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4722                                 intel_dp_start_link_train(intel_dp);
4723                                 intel_dp_stop_link_train(intel_dp);
4724                         }
4725 
4726                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4727                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4728 
4729                         if (handled) {
4730                                 for (retry = 0; retry < 3; retry++) {
4731                                         int wret;
4732                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4733                                                                  DP_SINK_COUNT_ESI+1,
4734                                                                  &esi[1], 3);
4735                                         if (wret == 3) {
4736                                                 break;
4737                                         }
4738                                 }
4739 
4740                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4741                                 if (bret == true) {
4742                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4743                                         goto go_again;
4744                                 }
4745                         } else
4746                                 ret = 0;
4747 
4748                         return ret;
4749                 } else {
4750                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4751                         intel_dp->is_mst = false;
4752                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4753                                                         intel_dp->is_mst);
4754                 }
4755         }
4756         return -EINVAL;
4757 }
4758 
4759 static bool
4760 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4761 {
4762         u8 link_status[DP_LINK_STATUS_SIZE];
4763 
4764         if (!intel_dp->link_trained)
4765                 return false;
4766 
4767         /*
4768          * While PSR source HW is enabled, it will control main-link sending
4769          * frames, enabling and disabling it so trying to do a retrain will fail
4770          * as the link would or not be on or it could mix training patterns
4771          * and frame data at the same time causing retrain to fail.
4772          * Also when exiting PSR, HW will retrain the link anyways fixing
4773          * any link status error.
4774          */
4775         if (intel_psr_enabled(intel_dp))
4776                 return false;
4777 
4778         if (!intel_dp_get_link_status(intel_dp, link_status))
4779                 return false;
4780 
4781         /*
4782          * Validate the cached values of intel_dp->link_rate and
4783          * intel_dp->lane_count before attempting to retrain.
4784          */
4785         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4786                                         intel_dp->lane_count))
4787                 return false;
4788 
4789         /* Retrain if Channel EQ or CR not ok */
4790         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4791 }
4792 
4793 int intel_dp_retrain_link(struct intel_encoder *encoder,
4794                           struct drm_modeset_acquire_ctx *ctx)
4795 {
4796         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4797         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4798         struct intel_connector *connector = intel_dp->attached_connector;
4799         struct drm_connector_state *conn_state;
4800         struct intel_crtc_state *crtc_state;
4801         struct intel_crtc *crtc;
4802         int ret;
4803 
4804         /* FIXME handle the MST connectors as well */
4805 
4806         if (!connector || connector->base.status != connector_status_connected)
4807                 return 0;
4808 
4809         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4810                                ctx);
4811         if (ret)
4812                 return ret;
4813 
4814         conn_state = connector->base.state;
4815 
4816         crtc = to_intel_crtc(conn_state->crtc);
4817         if (!crtc)
4818                 return 0;
4819 
4820         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4821         if (ret)
4822                 return ret;
4823 
4824         crtc_state = to_intel_crtc_state(crtc->base.state);
4825 
4826         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4827 
4828         if (!crtc_state->base.active)
4829                 return 0;
4830 
4831         if (conn_state->commit &&
4832             !try_wait_for_completion(&conn_state->commit->hw_done))
4833                 return 0;
4834 
4835         if (!intel_dp_needs_link_retrain(intel_dp))
4836                 return 0;
4837 
4838         /* Suppress underruns caused by re-training */
4839         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4840         if (crtc_state->has_pch_encoder)
4841                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4842                                                       intel_crtc_pch_transcoder(crtc), false);
4843 
4844         intel_dp_start_link_train(intel_dp);
4845         intel_dp_stop_link_train(intel_dp);
4846 
4847         /* Keep underrun reporting disabled until things are stable */
4848         intel_wait_for_vblank(dev_priv, crtc->pipe);
4849 
4850         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4851         if (crtc_state->has_pch_encoder)
4852                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4853                                                       intel_crtc_pch_transcoder(crtc), true);
4854 
4855         return 0;
4856 }
4857 
4858 /*
4859  * If display is now connected check links status,
4860  * there has been known issues of link loss triggering
4861  * long pulse.
4862  *
4863  * Some sinks (eg. ASUS PB287Q) seem to perform some
4864  * weird HPD ping pong during modesets. So we can apparently
4865  * end up with HPD going low during a modeset, and then
4866  * going back up soon after. And once that happens we must
4867  * retrain the link to get a picture. That's in case no
4868  * userspace component reacted to intermittent HPD dip.
4869  */
4870 static enum intel_hotplug_state
4871 intel_dp_hotplug(struct intel_encoder *encoder,
4872                  struct intel_connector *connector,
4873                  bool irq_received)
4874 {
4875         struct drm_modeset_acquire_ctx ctx;
4876         enum intel_hotplug_state state;
4877         int ret;
4878 
4879         state = intel_encoder_hotplug(encoder, connector, irq_received);
4880 
4881         drm_modeset_acquire_init(&ctx, 0);
4882 
4883         for (;;) {
4884                 ret = intel_dp_retrain_link(encoder, &ctx);
4885 
4886                 if (ret == -EDEADLK) {
4887                         drm_modeset_backoff(&ctx);
4888                         continue;
4889                 }
4890 
4891                 break;
4892         }
4893 
4894         drm_modeset_drop_locks(&ctx);
4895         drm_modeset_acquire_fini(&ctx);
4896         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4897 
4898         /*
4899          * Keeping it consistent with intel_ddi_hotplug() and
4900          * intel_hdmi_hotplug().
4901          */
4902         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
4903                 state = INTEL_HOTPLUG_RETRY;
4904 
4905         return state;
4906 }
4907 
4908 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4909 {
4910         u8 val;
4911 
4912         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4913                 return;
4914 
4915         if (drm_dp_dpcd_readb(&intel_dp->aux,
4916                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4917                 return;
4918 
4919         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4920 
4921         if (val & DP_AUTOMATED_TEST_REQUEST)
4922                 intel_dp_handle_test_request(intel_dp);
4923 
4924         if (val & DP_CP_IRQ)
4925                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4926 
4927         if (val & DP_SINK_SPECIFIC_IRQ)
4928                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4929 }
4930 
4931 /*
4932  * According to DP spec
4933  * 5.1.2:
4934  *  1. Read DPCD
4935  *  2. Configure link according to Receiver Capabilities
4936  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4937  *  4. Check link status on receipt of hot-plug interrupt
4938  *
4939  * intel_dp_short_pulse -  handles short pulse interrupts
4940  * when full detection is not required.
4941  * Returns %true if short pulse is handled and full detection
4942  * is NOT required and %false otherwise.
4943  */
4944 static bool
4945 intel_dp_short_pulse(struct intel_dp *intel_dp)
4946 {
4947         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4948         u8 old_sink_count = intel_dp->sink_count;
4949         bool ret;
4950 
4951         /*
4952          * Clearing compliance test variables to allow capturing
4953          * of values for next automated test request.
4954          */
4955         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4956 
4957         /*
4958          * Now read the DPCD to see if it's actually running
4959          * If the current value of sink count doesn't match with
4960          * the value that was stored earlier or dpcd read failed
4961          * we need to do full detection
4962          */
4963         ret = intel_dp_get_dpcd(intel_dp);
4964 
4965         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4966                 /* No need to proceed if we are going to do full detect */
4967                 return false;
4968         }
4969 
4970         intel_dp_check_service_irq(intel_dp);
4971 
4972         /* Handle CEC interrupts, if any */
4973         drm_dp_cec_irq(&intel_dp->aux);
4974 
4975         /* defer to the hotplug work for link retraining if needed */
4976         if (intel_dp_needs_link_retrain(intel_dp))
4977                 return false;
4978 
4979         intel_psr_short_pulse(intel_dp);
4980 
4981         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4982                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4983                 /* Send a Hotplug Uevent to userspace to start modeset */
4984                 drm_kms_helper_hotplug_event(&dev_priv->drm);
4985         }
4986 
4987         return true;
4988 }
4989 
4990 /* XXX this is probably wrong for multiple downstream ports */
4991 static enum drm_connector_status
4992 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4993 {
4994         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4995         u8 *dpcd = intel_dp->dpcd;
4996         u8 type;
4997 
4998         if (WARN_ON(intel_dp_is_edp(intel_dp)))
4999                 return connector_status_connected;
5000 
5001         if (lspcon->active)
5002                 lspcon_resume(lspcon);
5003 
5004         if (!intel_dp_get_dpcd(intel_dp))
5005                 return connector_status_disconnected;
5006 
5007         /* if there's no downstream port, we're done */
5008         if (!drm_dp_is_branch(dpcd))
5009                 return connector_status_connected;
5010 
5011         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5012         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5013             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5014 
5015                 return intel_dp->sink_count ?
5016                 connector_status_connected : connector_status_disconnected;
5017         }
5018 
5019         if (intel_dp_can_mst(intel_dp))
5020                 return connector_status_connected;
5021 
5022         /* If no HPD, poke DDC gently */
5023         if (drm_probe_ddc(&intel_dp->aux.ddc))
5024                 return connector_status_connected;
5025 
5026         /* Well we tried, say unknown for unreliable port types */
5027         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5028                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5029                 if (type == DP_DS_PORT_TYPE_VGA ||
5030                     type == DP_DS_PORT_TYPE_NON_EDID)
5031                         return connector_status_unknown;
5032         } else {
5033                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5034                         DP_DWN_STRM_PORT_TYPE_MASK;
5035                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5036                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5037                         return connector_status_unknown;
5038         }
5039 
5040         /* Anything else is out of spec, warn and ignore */
5041         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5042         return connector_status_disconnected;
5043 }
5044 
5045 static enum drm_connector_status
5046 edp_detect(struct intel_dp *intel_dp)
5047 {
5048         return connector_status_connected;
5049 }
5050 
5051 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5052 {
5053         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5054         u32 bit;
5055 
5056         switch (encoder->hpd_pin) {
5057         case HPD_PORT_B:
5058                 bit = SDE_PORTB_HOTPLUG;
5059                 break;
5060         case HPD_PORT_C:
5061                 bit = SDE_PORTC_HOTPLUG;
5062                 break;
5063         case HPD_PORT_D:
5064                 bit = SDE_PORTD_HOTPLUG;
5065                 break;
5066         default:
5067                 MISSING_CASE(encoder->hpd_pin);
5068                 return false;
5069         }
5070 
5071         return I915_READ(SDEISR) & bit;
5072 }
5073 
5074 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5075 {
5076         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5077         u32 bit;
5078 
5079         switch (encoder->hpd_pin) {
5080         case HPD_PORT_B:
5081                 bit = SDE_PORTB_HOTPLUG_CPT;
5082                 break;
5083         case HPD_PORT_C:
5084                 bit = SDE_PORTC_HOTPLUG_CPT;
5085                 break;
5086         case HPD_PORT_D:
5087                 bit = SDE_PORTD_HOTPLUG_CPT;
5088                 break;
5089         default:
5090                 MISSING_CASE(encoder->hpd_pin);
5091                 return false;
5092         }
5093 
5094         return I915_READ(SDEISR) & bit;
5095 }
5096 
5097 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5098 {
5099         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5100         u32 bit;
5101 
5102         switch (encoder->hpd_pin) {
5103         case HPD_PORT_A:
5104                 bit = SDE_PORTA_HOTPLUG_SPT;
5105                 break;
5106         case HPD_PORT_E:
5107                 bit = SDE_PORTE_HOTPLUG_SPT;
5108                 break;
5109         default:
5110                 return cpt_digital_port_connected(encoder);
5111         }
5112 
5113         return I915_READ(SDEISR) & bit;
5114 }
5115 
5116 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5117 {
5118         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5119         u32 bit;
5120 
5121         switch (encoder->hpd_pin) {
5122         case HPD_PORT_B:
5123                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5124                 break;
5125         case HPD_PORT_C:
5126                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5127                 break;
5128         case HPD_PORT_D:
5129                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5130                 break;
5131         default:
5132                 MISSING_CASE(encoder->hpd_pin);
5133                 return false;
5134         }
5135 
5136         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5137 }
5138 
5139 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5140 {
5141         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5142         u32 bit;
5143 
5144         switch (encoder->hpd_pin) {
5145         case HPD_PORT_B:
5146                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5147                 break;
5148         case HPD_PORT_C:
5149                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5150                 break;
5151         case HPD_PORT_D:
5152                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5153                 break;
5154         default:
5155                 MISSING_CASE(encoder->hpd_pin);
5156                 return false;
5157         }
5158 
5159         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5160 }
5161 
5162 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5163 {
5164         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5165 
5166         if (encoder->hpd_pin == HPD_PORT_A)
5167                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5168         else
5169                 return ibx_digital_port_connected(encoder);
5170 }
5171 
5172 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5173 {
5174         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5175 
5176         if (encoder->hpd_pin == HPD_PORT_A)
5177                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5178         else
5179                 return cpt_digital_port_connected(encoder);
5180 }
5181 
5182 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5183 {
5184         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5185 
5186         if (encoder->hpd_pin == HPD_PORT_A)
5187                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5188         else
5189                 return cpt_digital_port_connected(encoder);
5190 }
5191 
5192 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5193 {
5194         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5195 
5196         if (encoder->hpd_pin == HPD_PORT_A)
5197                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5198         else
5199                 return cpt_digital_port_connected(encoder);
5200 }
5201 
5202 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5203 {
5204         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5205         u32 bit;
5206 
5207         switch (encoder->hpd_pin) {
5208         case HPD_PORT_A:
5209                 bit = BXT_DE_PORT_HP_DDIA;
5210                 break;
5211         case HPD_PORT_B:
5212                 bit = BXT_DE_PORT_HP_DDIB;
5213                 break;
5214         case HPD_PORT_C:
5215                 bit = BXT_DE_PORT_HP_DDIC;
5216                 break;
5217         default:
5218                 MISSING_CASE(encoder->hpd_pin);
5219                 return false;
5220         }
5221 
5222         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5223 }
5224 
5225 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5226                                      struct intel_digital_port *intel_dig_port)
5227 {
5228         enum port port = intel_dig_port->base.port;
5229 
5230         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5231 }
5232 
5233 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5234 {
5235         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5236         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5237         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5238 
5239         if (intel_phy_is_combo(dev_priv, phy))
5240                 return icl_combo_port_connected(dev_priv, dig_port);
5241         else if (intel_phy_is_tc(dev_priv, phy))
5242                 return intel_tc_port_connected(dig_port);
5243         else
5244                 MISSING_CASE(encoder->hpd_pin);
5245 
5246         return false;
5247 }
5248 
5249 /*
5250  * intel_digital_port_connected - is the specified port connected?
5251  * @encoder: intel_encoder
5252  *
5253  * In cases where there's a connector physically connected but it can't be used
5254  * by our hardware we also return false, since the rest of the driver should
5255  * pretty much treat the port as disconnected. This is relevant for type-C
5256  * (starting on ICL) where there's ownership involved.
5257  *
5258  * Return %true if port is connected, %false otherwise.
5259  */
5260 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5261 {
5262         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5263 
5264         if (HAS_GMCH(dev_priv)) {
5265                 if (IS_GM45(dev_priv))
5266                         return gm45_digital_port_connected(encoder);
5267                 else
5268                         return g4x_digital_port_connected(encoder);
5269         }
5270 
5271         if (INTEL_GEN(dev_priv) >= 11)
5272                 return icl_digital_port_connected(encoder);
5273         else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5274                 return spt_digital_port_connected(encoder);
5275         else if (IS_GEN9_LP(dev_priv))
5276                 return bxt_digital_port_connected(encoder);
5277         else if (IS_GEN(dev_priv, 8))
5278                 return bdw_digital_port_connected(encoder);
5279         else if (IS_GEN(dev_priv, 7))
5280                 return ivb_digital_port_connected(encoder);
5281         else if (IS_GEN(dev_priv, 6))
5282                 return snb_digital_port_connected(encoder);
5283         else if (IS_GEN(dev_priv, 5))
5284                 return ilk_digital_port_connected(encoder);
5285 
5286         MISSING_CASE(INTEL_GEN(dev_priv));
5287         return false;
5288 }
5289 
5290 bool intel_digital_port_connected(struct intel_encoder *encoder)
5291 {
5292         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5293         bool is_connected = false;
5294         intel_wakeref_t wakeref;
5295 
5296         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5297                 is_connected = __intel_digital_port_connected(encoder);
5298 
5299         return is_connected;
5300 }
5301 
5302 static struct edid *
5303 intel_dp_get_edid(struct intel_dp *intel_dp)
5304 {
5305         struct intel_connector *intel_connector = intel_dp->attached_connector;
5306 
5307         /* use cached edid if we have one */
5308         if (intel_connector->edid) {
5309                 /* invalid edid */
5310                 if (IS_ERR(intel_connector->edid))
5311                         return NULL;
5312 
5313                 return drm_edid_duplicate(intel_connector->edid);
5314         } else
5315                 return drm_get_edid(&intel_connector->base,
5316                                     &intel_dp->aux.ddc);
5317 }
5318 
5319 static void
5320 intel_dp_set_edid(struct intel_dp *intel_dp)
5321 {
5322         struct intel_connector *intel_connector = intel_dp->attached_connector;
5323         struct edid *edid;
5324 
5325         intel_dp_unset_edid(intel_dp);
5326         edid = intel_dp_get_edid(intel_dp);
5327         intel_connector->detect_edid = edid;
5328 
5329         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5330         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5331 }
5332 
5333 static void
5334 intel_dp_unset_edid(struct intel_dp *intel_dp)
5335 {
5336         struct intel_connector *intel_connector = intel_dp->attached_connector;
5337 
5338         drm_dp_cec_unset_edid(&intel_dp->aux);
5339         kfree(intel_connector->detect_edid);
5340         intel_connector->detect_edid = NULL;
5341 
5342         intel_dp->has_audio = false;
5343 }
5344 
5345 static int
5346 intel_dp_detect(struct drm_connector *connector,
5347                 struct drm_modeset_acquire_ctx *ctx,
5348                 bool force)
5349 {
5350         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5351         struct intel_dp *intel_dp = intel_attached_dp(connector);
5352         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5353         struct intel_encoder *encoder = &dig_port->base;
5354         enum drm_connector_status status;
5355 
5356         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5357                       connector->base.id, connector->name);
5358         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5359 
5360         /* Can't disconnect eDP */
5361         if (intel_dp_is_edp(intel_dp))
5362                 status = edp_detect(intel_dp);
5363         else if (intel_digital_port_connected(encoder))
5364                 status = intel_dp_detect_dpcd(intel_dp);
5365         else
5366                 status = connector_status_disconnected;
5367 
5368         if (status == connector_status_disconnected) {
5369                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5370                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5371 
5372                 if (intel_dp->is_mst) {
5373                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5374                                       intel_dp->is_mst,
5375                                       intel_dp->mst_mgr.mst_state);
5376                         intel_dp->is_mst = false;
5377                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5378                                                         intel_dp->is_mst);
5379                 }
5380 
5381                 goto out;
5382         }
5383 
5384         if (intel_dp->reset_link_params) {
5385                 /* Initial max link lane count */
5386                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5387 
5388                 /* Initial max link rate */
5389                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5390 
5391                 intel_dp->reset_link_params = false;
5392         }
5393 
5394         intel_dp_print_rates(intel_dp);
5395 
5396         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5397         if (INTEL_GEN(dev_priv) >= 11)
5398                 intel_dp_get_dsc_sink_cap(intel_dp);
5399 
5400         intel_dp_configure_mst(intel_dp);
5401 
5402         if (intel_dp->is_mst) {
5403                 /*
5404                  * If we are in MST mode then this connector
5405                  * won't appear connected or have anything
5406                  * with EDID on it
5407                  */
5408                 status = connector_status_disconnected;
5409                 goto out;
5410         }
5411 
5412         /*
5413          * Some external monitors do not signal loss of link synchronization
5414          * with an IRQ_HPD, so force a link status check.
5415          */
5416         if (!intel_dp_is_edp(intel_dp)) {
5417                 int ret;
5418 
5419                 ret = intel_dp_retrain_link(encoder, ctx);
5420                 if (ret)
5421                         return ret;
5422         }
5423 
5424         /*
5425          * Clearing NACK and defer counts to get their exact values
5426          * while reading EDID which are required by Compliance tests
5427          * 4.2.2.4 and 4.2.2.5
5428          */
5429         intel_dp->aux.i2c_nack_count = 0;
5430         intel_dp->aux.i2c_defer_count = 0;
5431 
5432         intel_dp_set_edid(intel_dp);
5433         if (intel_dp_is_edp(intel_dp) ||
5434             to_intel_connector(connector)->detect_edid)
5435                 status = connector_status_connected;
5436 
5437         intel_dp_check_service_irq(intel_dp);
5438 
5439 out:
5440         if (status != connector_status_connected && !intel_dp->is_mst)
5441                 intel_dp_unset_edid(intel_dp);
5442 
5443         /*
5444          * Make sure the refs for power wells enabled during detect are
5445          * dropped to avoid a new detect cycle triggered by HPD polling.
5446          */
5447         intel_display_power_flush_work(dev_priv);
5448 
5449         return status;
5450 }
5451 
5452 static void
5453 intel_dp_force(struct drm_connector *connector)
5454 {
5455         struct intel_dp *intel_dp = intel_attached_dp(connector);
5456         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5457         struct intel_encoder *intel_encoder = &dig_port->base;
5458         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5459         enum intel_display_power_domain aux_domain =
5460                 intel_aux_power_domain(dig_port);
5461         intel_wakeref_t wakeref;
5462 
5463         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5464                       connector->base.id, connector->name);
5465         intel_dp_unset_edid(intel_dp);
5466 
5467         if (connector->status != connector_status_connected)
5468                 return;
5469 
5470         wakeref = intel_display_power_get(dev_priv, aux_domain);
5471 
5472         intel_dp_set_edid(intel_dp);
5473 
5474         intel_display_power_put(dev_priv, aux_domain, wakeref);
5475 }
5476 
5477 static int intel_dp_get_modes(struct drm_connector *connector)
5478 {
5479         struct intel_connector *intel_connector = to_intel_connector(connector);
5480         struct edid *edid;
5481 
5482         edid = intel_connector->detect_edid;
5483         if (edid) {
5484                 int ret = intel_connector_update_modes(connector, edid);
5485                 if (ret)
5486                         return ret;
5487         }
5488 
5489         /* if eDP has no EDID, fall back to fixed mode */
5490         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5491             intel_connector->panel.fixed_mode) {
5492                 struct drm_display_mode *mode;
5493 
5494                 mode = drm_mode_duplicate(connector->dev,
5495                                           intel_connector->panel.fixed_mode);
5496                 if (mode) {
5497                         drm_mode_probed_add(connector, mode);
5498                         return 1;
5499                 }
5500         }
5501 
5502         return 0;
5503 }
5504 
5505 static int
5506 intel_dp_connector_register(struct drm_connector *connector)
5507 {
5508         struct intel_dp *intel_dp = intel_attached_dp(connector);
5509         struct drm_device *dev = connector->dev;
5510         int ret;
5511 
5512         ret = intel_connector_register(connector);
5513         if (ret)
5514                 return ret;
5515 
5516         i915_debugfs_connector_add(connector);
5517 
5518         DRM_DEBUG_KMS("registering %s bus for %s\n",
5519                       intel_dp->aux.name, connector->kdev->kobj.name);
5520 
5521         intel_dp->aux.dev = connector->kdev;
5522         ret = drm_dp_aux_register(&intel_dp->aux);
5523         if (!ret)
5524                 drm_dp_cec_register_connector(&intel_dp->aux,
5525                                               connector->name, dev->dev);
5526         return ret;
5527 }
5528 
5529 static void
5530 intel_dp_connector_unregister(struct drm_connector *connector)
5531 {
5532         struct intel_dp *intel_dp = intel_attached_dp(connector);
5533 
5534         drm_dp_cec_unregister_connector(&intel_dp->aux);
5535         drm_dp_aux_unregister(&intel_dp->aux);
5536         intel_connector_unregister(connector);
5537 }
5538 
5539 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5540 {
5541         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5542         struct intel_dp *intel_dp = &intel_dig_port->dp;
5543 
5544         intel_dp_mst_encoder_cleanup(intel_dig_port);
5545         if (intel_dp_is_edp(intel_dp)) {
5546                 intel_wakeref_t wakeref;
5547 
5548                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5549                 /*
5550                  * vdd might still be enabled do to the delayed vdd off.
5551                  * Make sure vdd is actually turned off here.
5552                  */
5553                 with_pps_lock(intel_dp, wakeref)
5554                         edp_panel_vdd_off_sync(intel_dp);
5555 
5556                 if (intel_dp->edp_notifier.notifier_call) {
5557                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5558                         intel_dp->edp_notifier.notifier_call = NULL;
5559                 }
5560         }
5561 
5562         intel_dp_aux_fini(intel_dp);
5563 }
5564 
5565 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5566 {
5567         intel_dp_encoder_flush_work(encoder);
5568 
5569         drm_encoder_cleanup(encoder);
5570         kfree(enc_to_dig_port(encoder));
5571 }
5572 
5573 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5574 {
5575         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5576         intel_wakeref_t wakeref;
5577 
5578         if (!intel_dp_is_edp(intel_dp))
5579                 return;
5580 
5581         /*
5582          * vdd might still be enabled do to the delayed vdd off.
5583          * Make sure vdd is actually turned off here.
5584          */
5585         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5586         with_pps_lock(intel_dp, wakeref)
5587                 edp_panel_vdd_off_sync(intel_dp);
5588 }
5589 
5590 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5591 {
5592         long ret;
5593 
5594 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5595         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5596                                                msecs_to_jiffies(timeout));
5597 
5598         if (!ret)
5599                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5600 }
5601 
5602 static
5603 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5604                                 u8 *an)
5605 {
5606         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5607         static const struct drm_dp_aux_msg msg = {
5608                 .request = DP_AUX_NATIVE_WRITE,
5609                 .address = DP_AUX_HDCP_AKSV,
5610                 .size = DRM_HDCP_KSV_LEN,
5611         };
5612         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5613         ssize_t dpcd_ret;
5614         int ret;
5615 
5616         /* Output An first, that's easy */
5617         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5618                                      an, DRM_HDCP_AN_LEN);
5619         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5620                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5621                               dpcd_ret);
5622                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5623         }
5624 
5625         /*
5626          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5627          * order to get it on the wire, we need to create the AUX header as if
5628          * we were writing the data, and then tickle the hardware to output the
5629          * data once the header is sent out.
5630          */
5631         intel_dp_aux_header(txbuf, &msg);
5632 
5633         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5634                                 rxbuf, sizeof(rxbuf),
5635                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5636         if (ret < 0) {
5637                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5638                 return ret;
5639         } else if (ret == 0) {
5640                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5641                 return -EIO;
5642         }
5643 
5644         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5645         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5646                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5647                               reply);
5648                 return -EIO;
5649         }
5650         return 0;
5651 }
5652 
5653 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5654                                    u8 *bksv)
5655 {
5656         ssize_t ret;
5657         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5658                                DRM_HDCP_KSV_LEN);
5659         if (ret != DRM_HDCP_KSV_LEN) {
5660                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5661                 return ret >= 0 ? -EIO : ret;
5662         }
5663         return 0;
5664 }
5665 
5666 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5667                                       u8 *bstatus)
5668 {
5669         ssize_t ret;
5670         /*
5671          * For some reason the HDMI and DP HDCP specs call this register
5672          * definition by different names. In the HDMI spec, it's called BSTATUS,
5673          * but in DP it's called BINFO.
5674          */
5675         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5676                                bstatus, DRM_HDCP_BSTATUS_LEN);
5677         if (ret != DRM_HDCP_BSTATUS_LEN) {
5678                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5679                 return ret >= 0 ? -EIO : ret;
5680         }
5681         return 0;
5682 }
5683 
5684 static
5685 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5686                              u8 *bcaps)
5687 {
5688         ssize_t ret;
5689 
5690         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5691                                bcaps, 1);
5692         if (ret != 1) {
5693                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5694                 return ret >= 0 ? -EIO : ret;
5695         }
5696 
5697         return 0;
5698 }
5699 
5700 static
5701 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5702                                    bool *repeater_present)
5703 {
5704         ssize_t ret;
5705         u8 bcaps;
5706 
5707         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5708         if (ret)
5709                 return ret;
5710 
5711         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5712         return 0;
5713 }
5714 
5715 static
5716 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5717                                 u8 *ri_prime)
5718 {
5719         ssize_t ret;
5720         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5721                                ri_prime, DRM_HDCP_RI_LEN);
5722         if (ret != DRM_HDCP_RI_LEN) {
5723                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5724                 return ret >= 0 ? -EIO : ret;
5725         }
5726         return 0;
5727 }
5728 
5729 static
5730 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5731                                  bool *ksv_ready)
5732 {
5733         ssize_t ret;
5734         u8 bstatus;
5735         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5736                                &bstatus, 1);
5737         if (ret != 1) {
5738                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5739                 return ret >= 0 ? -EIO : ret;
5740         }
5741         *ksv_ready = bstatus & DP_BSTATUS_READY;
5742         return 0;
5743 }
5744 
5745 static
5746 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5747                                 int num_downstream, u8 *ksv_fifo)
5748 {
5749         ssize_t ret;
5750         int i;
5751 
5752         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5753         for (i = 0; i < num_downstream; i += 3) {
5754                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5755                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5756                                        DP_AUX_HDCP_KSV_FIFO,
5757                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
5758                                        len);
5759                 if (ret != len) {
5760                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5761                                       i, ret);
5762                         return ret >= 0 ? -EIO : ret;
5763                 }
5764         }
5765         return 0;
5766 }
5767 
5768 static
5769 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5770                                     int i, u32 *part)
5771 {
5772         ssize_t ret;
5773 
5774         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5775                 return -EINVAL;
5776 
5777         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5778                                DP_AUX_HDCP_V_PRIME(i), part,
5779                                DRM_HDCP_V_PRIME_PART_LEN);
5780         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5781                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5782                 return ret >= 0 ? -EIO : ret;
5783         }
5784         return 0;
5785 }
5786 
5787 static
5788 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5789                                     bool enable)
5790 {
5791         /* Not used for single stream DisplayPort setups */
5792         return 0;
5793 }
5794 
5795 static
5796 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5797 {
5798         ssize_t ret;
5799         u8 bstatus;
5800 
5801         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5802                                &bstatus, 1);
5803         if (ret != 1) {
5804                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5805                 return false;
5806         }
5807 
5808         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5809 }
5810 
5811 static
5812 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5813                           bool *hdcp_capable)
5814 {
5815         ssize_t ret;
5816         u8 bcaps;
5817 
5818         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5819         if (ret)
5820                 return ret;
5821 
5822         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5823         return 0;
5824 }
5825 
5826 struct hdcp2_dp_errata_stream_type {
5827         u8      msg_id;
5828         u8      stream_type;
5829 } __packed;
5830 
5831 struct hdcp2_dp_msg_data {
5832         u8 msg_id;
5833         u32 offset;
5834         bool msg_detectable;
5835         u32 timeout;
5836         u32 timeout2; /* Added for non_paired situation */
5837 };
5838 
5839 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5840         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
5841         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
5842           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
5843         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
5844           false, 0, 0 },
5845         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
5846           false, 0, 0 },
5847         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
5848           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
5849           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
5850         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
5851           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
5852           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
5853         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
5854         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
5855           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
5856         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
5857           0, 0 },
5858         { HDCP_2_2_REP_SEND_RECVID_LIST,
5859           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
5860           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
5861         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
5862           0, 0 },
5863         { HDCP_2_2_REP_STREAM_MANAGE,
5864           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
5865           0, 0 },
5866         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
5867           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5868 /* local define to shovel this through the write_2_2 interface */
5869 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
5870         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
5871           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
5872           0, 0 },
5873 };
5874 
5875 static inline
5876 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
5877                                   u8 *rx_status)
5878 {
5879         ssize_t ret;
5880 
5881         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5882                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
5883                                HDCP_2_2_DP_RXSTATUS_LEN);
5884         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
5885                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5886                 return ret >= 0 ? -EIO : ret;
5887         }
5888 
5889         return 0;
5890 }
5891 
5892 static
5893 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
5894                                   u8 msg_id, bool *msg_ready)
5895 {
5896         u8 rx_status;
5897         int ret;
5898 
5899         *msg_ready = false;
5900         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
5901         if (ret < 0)
5902                 return ret;
5903 
5904         switch (msg_id) {
5905         case HDCP_2_2_AKE_SEND_HPRIME:
5906                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
5907                         *msg_ready = true;
5908                 break;
5909         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
5910                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
5911                         *msg_ready = true;
5912                 break;
5913         case HDCP_2_2_REP_SEND_RECVID_LIST:
5914                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
5915                         *msg_ready = true;
5916                 break;
5917         default:
5918                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
5919                 return -EINVAL;
5920         }
5921 
5922         return 0;
5923 }
5924 
5925 static ssize_t
5926 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5927                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5928 {
5929         struct intel_dp *dp = &intel_dig_port->dp;
5930         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5931         u8 msg_id = hdcp2_msg_data->msg_id;
5932         int ret, timeout;
5933         bool msg_ready = false;
5934 
5935         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
5936                 timeout = hdcp2_msg_data->timeout2;
5937         else
5938                 timeout = hdcp2_msg_data->timeout;
5939 
5940         /*
5941          * There is no way to detect the CERT, LPRIME and STREAM_READY
5942          * availability. So Wait for timeout and read the msg.
5943          */
5944         if (!hdcp2_msg_data->msg_detectable) {
5945                 mdelay(timeout);
5946                 ret = 0;
5947         } else {
5948                 /*
5949                  * As we want to check the msg availability at timeout, Ignoring
5950                  * the timeout at wait for CP_IRQ.
5951                  */
5952                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
5953                 ret = hdcp2_detect_msg_availability(intel_dig_port,
5954                                                     msg_id, &msg_ready);
5955                 if (!msg_ready)
5956                         ret = -ETIMEDOUT;
5957         }
5958 
5959         if (ret)
5960                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
5961                               hdcp2_msg_data->msg_id, ret, timeout);
5962 
5963         return ret;
5964 }
5965 
5966 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
5967 {
5968         int i;
5969 
5970         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
5971                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
5972                         return &hdcp2_dp_msg_data[i];
5973 
5974         return NULL;
5975 }
5976 
5977 static
5978 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
5979                              void *buf, size_t size)
5980 {
5981         struct intel_dp *dp = &intel_dig_port->dp;
5982         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5983         unsigned int offset;
5984         u8 *byte = buf;
5985         ssize_t ret, bytes_to_write, len;
5986         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
5987 
5988         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
5989         if (!hdcp2_msg_data)
5990                 return -EINVAL;
5991 
5992         offset = hdcp2_msg_data->offset;
5993 
5994         /* No msg_id in DP HDCP2.2 msgs */
5995         bytes_to_write = size - 1;
5996         byte++;
5997 
5998         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
5999 
6000         while (bytes_to_write) {
6001                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6002                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6003 
6004                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6005                                         offset, (void *)byte, len);
6006                 if (ret < 0)
6007                         return ret;
6008 
6009                 bytes_to_write -= ret;
6010                 byte += ret;
6011                 offset += ret;
6012         }
6013 
6014         return size;
6015 }
6016 
6017 static
6018 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6019 {
6020         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6021         u32 dev_cnt;
6022         ssize_t ret;
6023 
6024         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6025                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6026                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6027         if (ret != HDCP_2_2_RXINFO_LEN)
6028                 return ret >= 0 ? -EIO : ret;
6029 
6030         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6031                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6032 
6033         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6034                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6035 
6036         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6037                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6038                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6039 
6040         return ret;
6041 }
6042 
6043 static
6044 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6045                             u8 msg_id, void *buf, size_t size)
6046 {
6047         unsigned int offset;
6048         u8 *byte = buf;
6049         ssize_t ret, bytes_to_recv, len;
6050         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6051 
6052         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6053         if (!hdcp2_msg_data)
6054                 return -EINVAL;
6055         offset = hdcp2_msg_data->offset;
6056 
6057         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6058         if (ret < 0)
6059                 return ret;
6060 
6061         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6062                 ret = get_receiver_id_list_size(intel_dig_port);
6063                 if (ret < 0)
6064                         return ret;
6065 
6066                 size = ret;
6067         }
6068         bytes_to_recv = size - 1;
6069 
6070         /* DP adaptation msgs has no msg_id */
6071         byte++;
6072 
6073         while (bytes_to_recv) {
6074                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6075                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6076 
6077                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6078                                        (void *)byte, len);
6079                 if (ret < 0) {
6080                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6081                         return ret;
6082                 }
6083 
6084                 bytes_to_recv -= ret;
6085                 byte += ret;
6086                 offset += ret;
6087         }
6088         byte = buf;
6089         *byte = msg_id;
6090 
6091         return size;
6092 }
6093 
6094 static
6095 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6096                                       bool is_repeater, u8 content_type)
6097 {
6098         struct hdcp2_dp_errata_stream_type stream_type_msg;
6099 
6100         if (is_repeater)
6101                 return 0;
6102 
6103         /*
6104          * Errata for DP: As Stream type is used for encryption, Receiver
6105          * should be communicated with stream type for the decryption of the
6106          * content.
6107          * Repeater will be communicated with stream type as a part of it's
6108          * auth later in time.
6109          */
6110         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6111         stream_type_msg.stream_type = content_type;
6112 
6113         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6114                                         sizeof(stream_type_msg));
6115 }
6116 
6117 static
6118 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6119 {
6120         u8 rx_status;
6121         int ret;
6122 
6123         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6124         if (ret)
6125                 return ret;
6126 
6127         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6128                 ret = HDCP_REAUTH_REQUEST;
6129         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6130                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6131         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6132                 ret = HDCP_TOPOLOGY_CHANGE;
6133 
6134         return ret;
6135 }
6136 
6137 static
6138 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6139                            bool *capable)
6140 {
6141         u8 rx_caps[3];
6142         int ret;
6143 
6144         *capable = false;
6145         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6146                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6147                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6148         if (ret != HDCP_2_2_RXCAPS_LEN)
6149                 return ret >= 0 ? -EIO : ret;
6150 
6151         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6152             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6153                 *capable = true;
6154 
6155         return 0;
6156 }
6157 
6158 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6159         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6160         .read_bksv = intel_dp_hdcp_read_bksv,
6161         .read_bstatus = intel_dp_hdcp_read_bstatus,
6162         .repeater_present = intel_dp_hdcp_repeater_present,
6163         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6164         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6165         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6166         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6167         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6168         .check_link = intel_dp_hdcp_check_link,
6169         .hdcp_capable = intel_dp_hdcp_capable,
6170         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6171         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6172         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6173         .check_2_2_link = intel_dp_hdcp2_check_link,
6174         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6175         .protocol = HDCP_PROTOCOL_DP,
6176 };
6177 
6178 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6179 {
6180         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6181         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6182 
6183         lockdep_assert_held(&dev_priv->pps_mutex);
6184 
6185         if (!edp_have_panel_vdd(intel_dp))
6186                 return;
6187 
6188         /*
6189          * The VDD bit needs a power domain reference, so if the bit is
6190          * already enabled when we boot or resume, grab this reference and
6191          * schedule a vdd off, so we don't hold on to the reference
6192          * indefinitely.
6193          */
6194         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6195         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6196 
6197         edp_panel_vdd_schedule_off(intel_dp);
6198 }
6199 
6200 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6201 {
6202         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6203         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6204         enum pipe pipe;
6205 
6206         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6207                                   encoder->port, &pipe))
6208                 return pipe;
6209 
6210         return INVALID_PIPE;
6211 }
6212 
6213 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6214 {
6215         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6216         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6217         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6218         intel_wakeref_t wakeref;
6219 
6220         if (!HAS_DDI(dev_priv))
6221                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6222 
6223         if (lspcon->active)
6224                 lspcon_resume(lspcon);
6225 
6226         intel_dp->reset_link_params = true;
6227 
6228         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6229             !intel_dp_is_edp(intel_dp))
6230                 return;
6231 
6232         with_pps_lock(intel_dp, wakeref) {
6233                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6234                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6235 
6236                 if (intel_dp_is_edp(intel_dp)) {
6237                         /*
6238                          * Reinit the power sequencer, in case BIOS did
6239                          * something nasty with it.
6240                          */
6241                         intel_dp_pps_init(intel_dp);
6242                         intel_edp_panel_vdd_sanitize(intel_dp);
6243                 }
6244         }
6245 }
6246 
6247 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6248         .force = intel_dp_force,
6249         .fill_modes = drm_helper_probe_single_connector_modes,
6250         .atomic_get_property = intel_digital_connector_atomic_get_property,
6251         .atomic_set_property = intel_digital_connector_atomic_set_property,
6252         .late_register = intel_dp_connector_register,
6253         .early_unregister = intel_dp_connector_unregister,
6254         .destroy = intel_connector_destroy,
6255         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6256         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6257 };
6258 
6259 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6260         .detect_ctx = intel_dp_detect,
6261         .get_modes = intel_dp_get_modes,
6262         .mode_valid = intel_dp_mode_valid,
6263         .atomic_check = intel_digital_connector_atomic_check,
6264 };
6265 
6266 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6267         .reset = intel_dp_encoder_reset,
6268         .destroy = intel_dp_encoder_destroy,
6269 };
6270 
6271 enum irqreturn
6272 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6273 {
6274         struct intel_dp *intel_dp = &intel_dig_port->dp;
6275 
6276         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6277                 /*
6278                  * vdd off can generate a long pulse on eDP which
6279                  * would require vdd on to handle it, and thus we
6280                  * would end up in an endless cycle of
6281                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6282                  */
6283                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6284                               port_name(intel_dig_port->base.port));
6285                 return IRQ_HANDLED;
6286         }
6287 
6288         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6289                       port_name(intel_dig_port->base.port),
6290                       long_hpd ? "long" : "short");
6291 
6292         if (long_hpd) {
6293                 intel_dp->reset_link_params = true;
6294                 return IRQ_NONE;
6295         }
6296 
6297         if (intel_dp->is_mst) {
6298                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6299                         /*
6300                          * If we were in MST mode, and device is not
6301                          * there, get out of MST mode
6302                          */
6303                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6304                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6305                         intel_dp->is_mst = false;
6306                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6307                                                         intel_dp->is_mst);
6308 
6309                         return IRQ_NONE;
6310                 }
6311         }
6312 
6313         if (!intel_dp->is_mst) {
6314                 bool handled;
6315 
6316                 handled = intel_dp_short_pulse(intel_dp);
6317 
6318                 if (!handled)
6319                         return IRQ_NONE;
6320         }
6321 
6322         return IRQ_HANDLED;
6323 }
6324 
6325 /* check the VBT to see whether the eDP is on another port */
6326 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6327 {
6328         /*
6329          * eDP not supported on g4x. so bail out early just
6330          * for a bit extra safety in case the VBT is bonkers.
6331          */
6332         if (INTEL_GEN(dev_priv) < 5)
6333                 return false;
6334 
6335         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6336                 return true;
6337 
6338         return intel_bios_is_port_edp(dev_priv, port);
6339 }
6340 
6341 static void
6342 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6343 {
6344         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6345         enum port port = dp_to_dig_port(intel_dp)->base.port;
6346 
6347         if (!IS_G4X(dev_priv) && port != PORT_A)
6348                 intel_attach_force_audio_property(connector);
6349 
6350         intel_attach_broadcast_rgb_property(connector);
6351         if (HAS_GMCH(dev_priv))
6352                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6353         else if (INTEL_GEN(dev_priv) >= 5)
6354                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6355 
6356         if (intel_dp_is_edp(intel_dp)) {
6357                 u32 allowed_scalers;
6358 
6359                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6360                 if (!HAS_GMCH(dev_priv))
6361                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6362 
6363                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6364 
6365                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6366 
6367         }
6368 }
6369 
6370 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6371 {
6372         intel_dp->panel_power_off_time = ktime_get_boottime();
6373         intel_dp->last_power_on = jiffies;
6374         intel_dp->last_backlight_off = jiffies;
6375 }
6376 
6377 static void
6378 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6379 {
6380         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6381         u32 pp_on, pp_off, pp_ctl;
6382         struct pps_registers regs;
6383 
6384         intel_pps_get_registers(intel_dp, &regs);
6385 
6386         pp_ctl = ironlake_get_pp_control(intel_dp);
6387 
6388         /* Ensure PPS is unlocked */
6389         if (!HAS_DDI(dev_priv))
6390                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6391 
6392         pp_on = I915_READ(regs.pp_on);
6393         pp_off = I915_READ(regs.pp_off);
6394 
6395         /* Pull timing values out of registers */
6396         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6397         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6398         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6399         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6400 
6401         if (i915_mmio_reg_valid(regs.pp_div)) {
6402                 u32 pp_div;
6403 
6404                 pp_div = I915_READ(regs.pp_div);
6405 
6406                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6407         } else {
6408                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6409         }
6410 }
6411 
6412 static void
6413 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6414 {
6415         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6416                       state_name,
6417                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6418 }
6419 
6420 static void
6421 intel_pps_verify_state(struct intel_dp *intel_dp)
6422 {
6423         struct edp_power_seq hw;
6424         struct edp_power_seq *sw = &intel_dp->pps_delays;
6425 
6426         intel_pps_readout_hw_state(intel_dp, &hw);
6427 
6428         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6429             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6430                 DRM_ERROR("PPS state mismatch\n");
6431                 intel_pps_dump_state("sw", sw);
6432                 intel_pps_dump_state("hw", &hw);
6433         }
6434 }
6435 
6436 static void
6437 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6438 {
6439         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6440         struct edp_power_seq cur, vbt, spec,
6441                 *final = &intel_dp->pps_delays;
6442 
6443         lockdep_assert_held(&dev_priv->pps_mutex);
6444 
6445         /* already initialized? */
6446         if (final->t11_t12 != 0)
6447                 return;
6448 
6449         intel_pps_readout_hw_state(intel_dp, &cur);
6450 
6451         intel_pps_dump_state("cur", &cur);
6452 
6453         vbt = dev_priv->vbt.edp.pps;
6454         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6455          * of 500ms appears to be too short. Ocassionally the panel
6456          * just fails to power back on. Increasing the delay to 800ms
6457          * seems sufficient to avoid this problem.
6458          */
6459         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6460                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6461                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6462                               vbt.t11_t12);
6463         }
6464         /* T11_T12 delay is special and actually in units of 100ms, but zero
6465          * based in the hw (so we need to add 100 ms). But the sw vbt
6466          * table multiplies it with 1000 to make it in units of 100usec,
6467          * too. */
6468         vbt.t11_t12 += 100 * 10;
6469 
6470         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6471          * our hw here, which are all in 100usec. */
6472         spec.t1_t3 = 210 * 10;
6473         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6474         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6475         spec.t10 = 500 * 10;
6476         /* This one is special and actually in units of 100ms, but zero
6477          * based in the hw (so we need to add 100 ms). But the sw vbt
6478          * table multiplies it with 1000 to make it in units of 100usec,
6479          * too. */
6480         spec.t11_t12 = (510 + 100) * 10;
6481 
6482         intel_pps_dump_state("vbt", &vbt);
6483 
6484         /* Use the max of the register settings and vbt. If both are
6485          * unset, fall back to the spec limits. */
6486 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6487                                        spec.field : \
6488                                        max(cur.field, vbt.field))
6489         assign_final(t1_t3);
6490         assign_final(t8);
6491         assign_final(t9);
6492         assign_final(t10);
6493         assign_final(t11_t12);
6494 #undef assign_final
6495 
6496 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6497         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6498         intel_dp->backlight_on_delay = get_delay(t8);
6499         intel_dp->backlight_off_delay = get_delay(t9);
6500         intel_dp->panel_power_down_delay = get_delay(t10);
6501         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6502 #undef get_delay
6503 
6504         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6505                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6506                       intel_dp->panel_power_cycle_delay);
6507 
6508         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6509                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6510 
6511         /*
6512          * We override the HW backlight delays to 1 because we do manual waits
6513          * on them. For T8, even BSpec recommends doing it. For T9, if we
6514          * don't do this, we'll end up waiting for the backlight off delay
6515          * twice: once when we do the manual sleep, and once when we disable
6516          * the panel and wait for the PP_STATUS bit to become zero.
6517          */
6518         final->t8 = 1;
6519         final->t9 = 1;
6520 
6521         /*
6522          * HW has only a 100msec granularity for t11_t12 so round it up
6523          * accordingly.
6524          */
6525         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6526 }
6527 
6528 static void
6529 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6530                                               bool force_disable_vdd)
6531 {
6532         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6533         u32 pp_on, pp_off, port_sel = 0;
6534         int div = dev_priv->rawclk_freq / 1000;
6535         struct pps_registers regs;
6536         enum port port = dp_to_dig_port(intel_dp)->base.port;
6537         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6538 
6539         lockdep_assert_held(&dev_priv->pps_mutex);
6540 
6541         intel_pps_get_registers(intel_dp, &regs);
6542 
6543         /*
6544          * On some VLV machines the BIOS can leave the VDD
6545          * enabled even on power sequencers which aren't
6546          * hooked up to any port. This would mess up the
6547          * power domain tracking the first time we pick
6548          * one of these power sequencers for use since
6549          * edp_panel_vdd_on() would notice that the VDD was
6550          * already on and therefore wouldn't grab the power
6551          * domain reference. Disable VDD first to avoid this.
6552          * This also avoids spuriously turning the VDD on as
6553          * soon as the new power sequencer gets initialized.
6554          */
6555         if (force_disable_vdd) {
6556                 u32 pp = ironlake_get_pp_control(intel_dp);
6557 
6558                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6559 
6560                 if (pp & EDP_FORCE_VDD)
6561                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6562 
6563                 pp &= ~EDP_FORCE_VDD;
6564 
6565                 I915_WRITE(regs.pp_ctrl, pp);
6566         }
6567 
6568         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6569                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6570         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6571                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6572 
6573         /* Haswell doesn't have any port selection bits for the panel
6574          * power sequencer any more. */
6575         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6576                 port_sel = PANEL_PORT_SELECT_VLV(port);
6577         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6578                 switch (port) {
6579                 case PORT_A:
6580                         port_sel = PANEL_PORT_SELECT_DPA;
6581                         break;
6582                 case PORT_C:
6583                         port_sel = PANEL_PORT_SELECT_DPC;
6584                         break;
6585                 case PORT_D:
6586                         port_sel = PANEL_PORT_SELECT_DPD;
6587                         break;
6588                 default:
6589                         MISSING_CASE(port);
6590                         break;
6591                 }
6592         }
6593 
6594         pp_on |= port_sel;
6595 
6596         I915_WRITE(regs.pp_on, pp_on);
6597         I915_WRITE(regs.pp_off, pp_off);
6598 
6599         /*
6600          * Compute the divisor for the pp clock, simply match the Bspec formula.
6601          */
6602         if (i915_mmio_reg_valid(regs.pp_div)) {
6603                 I915_WRITE(regs.pp_div,
6604                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6605                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6606         } else {
6607                 u32 pp_ctl;
6608 
6609                 pp_ctl = I915_READ(regs.pp_ctrl);
6610                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6611                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6612                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6613         }
6614 
6615         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6616                       I915_READ(regs.pp_on),
6617                       I915_READ(regs.pp_off),
6618                       i915_mmio_reg_valid(regs.pp_div) ?
6619                       I915_READ(regs.pp_div) :
6620                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6621 }
6622 
6623 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6624 {
6625         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6626 
6627         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6628                 vlv_initial_power_sequencer_setup(intel_dp);
6629         } else {
6630                 intel_dp_init_panel_power_sequencer(intel_dp);
6631                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6632         }
6633 }
6634 
6635 /**
6636  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6637  * @dev_priv: i915 device
6638  * @crtc_state: a pointer to the active intel_crtc_state
6639  * @refresh_rate: RR to be programmed
6640  *
6641  * This function gets called when refresh rate (RR) has to be changed from
6642  * one frequency to another. Switches can be between high and low RR
6643  * supported by the panel or to any other RR based on media playback (in
6644  * this case, RR value needs to be passed from user space).
6645  *
6646  * The caller of this function needs to take a lock on dev_priv->drrs.
6647  */
6648 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6649                                     const struct intel_crtc_state *crtc_state,
6650                                     int refresh_rate)
6651 {
6652         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6653         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6654         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6655 
6656         if (refresh_rate <= 0) {
6657                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6658                 return;
6659         }
6660 
6661         if (intel_dp == NULL) {
6662                 DRM_DEBUG_KMS("DRRS not supported.\n");
6663                 return;
6664         }
6665 
6666         if (!intel_crtc) {
6667                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6668                 return;
6669         }
6670 
6671         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6672                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6673                 return;
6674         }
6675 
6676         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6677                         refresh_rate)
6678                 index = DRRS_LOW_RR;
6679 
6680         if (index == dev_priv->drrs.refresh_rate_type) {
6681                 DRM_DEBUG_KMS(
6682                         "DRRS requested for previously set RR...ignoring\n");
6683                 return;
6684         }
6685 
6686         if (!crtc_state->base.active) {
6687                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6688                 return;
6689         }
6690 
6691         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6692                 switch (index) {
6693                 case DRRS_HIGH_RR:
6694                         intel_dp_set_m_n(crtc_state, M1_N1);
6695                         break;
6696                 case DRRS_LOW_RR:
6697                         intel_dp_set_m_n(crtc_state, M2_N2);
6698                         break;
6699                 case DRRS_MAX_RR:
6700                 default:
6701                         DRM_ERROR("Unsupported refreshrate type\n");
6702                 }
6703         } else if (INTEL_GEN(dev_priv) > 6) {
6704                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6705                 u32 val;
6706 
6707                 val = I915_READ(reg);
6708                 if (index > DRRS_HIGH_RR) {
6709                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6710                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6711                         else
6712                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6713                 } else {
6714                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6715                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6716                         else
6717                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6718                 }
6719                 I915_WRITE(reg, val);
6720         }
6721 
6722         dev_priv->drrs.refresh_rate_type = index;
6723 
6724         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6725 }
6726 
6727 /**
6728  * intel_edp_drrs_enable - init drrs struct if supported
6729  * @intel_dp: DP struct
6730  * @crtc_state: A pointer to the active crtc state.
6731  *
6732  * Initializes frontbuffer_bits and drrs.dp
6733  */
6734 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6735                            const struct intel_crtc_state *crtc_state)
6736 {
6737         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6738 
6739         if (!crtc_state->has_drrs) {
6740                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6741                 return;
6742         }
6743 
6744         if (dev_priv->psr.enabled) {
6745                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6746                 return;
6747         }
6748 
6749         mutex_lock(&dev_priv->drrs.mutex);
6750         if (dev_priv->drrs.dp) {
6751                 DRM_DEBUG_KMS("DRRS already enabled\n");
6752                 goto unlock;
6753         }
6754 
6755         dev_priv->drrs.busy_frontbuffer_bits = 0;
6756 
6757         dev_priv->drrs.dp = intel_dp;
6758 
6759 unlock:
6760         mutex_unlock(&dev_priv->drrs.mutex);
6761 }
6762 
6763 /**
6764  * intel_edp_drrs_disable - Disable DRRS
6765  * @intel_dp: DP struct
6766  * @old_crtc_state: Pointer to old crtc_state.
6767  *
6768  */
6769 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6770                             const struct intel_crtc_state *old_crtc_state)
6771 {
6772         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6773 
6774         if (!old_crtc_state->has_drrs)
6775                 return;
6776 
6777         mutex_lock(&dev_priv->drrs.mutex);
6778         if (!dev_priv->drrs.dp) {
6779                 mutex_unlock(&dev_priv->drrs.mutex);
6780                 return;
6781         }
6782 
6783         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6784                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6785                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6786 
6787         dev_priv->drrs.dp = NULL;
6788         mutex_unlock(&dev_priv->drrs.mutex);
6789 
6790         cancel_delayed_work_sync(&dev_priv->drrs.work);
6791 }
6792 
6793 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6794 {
6795         struct drm_i915_private *dev_priv =
6796                 container_of(work, typeof(*dev_priv), drrs.work.work);
6797         struct intel_dp *intel_dp;
6798 
6799         mutex_lock(&dev_priv->drrs.mutex);
6800 
6801         intel_dp = dev_priv->drrs.dp;
6802 
6803         if (!intel_dp)
6804                 goto unlock;
6805 
6806         /*
6807          * The delayed work can race with an invalidate hence we need to
6808          * recheck.
6809          */
6810 
6811         if (dev_priv->drrs.busy_frontbuffer_bits)
6812                 goto unlock;
6813 
6814         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6815                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6816 
6817                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6818                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6819         }
6820 
6821 unlock:
6822         mutex_unlock(&dev_priv->drrs.mutex);
6823 }
6824 
6825 /**
6826  * intel_edp_drrs_invalidate - Disable Idleness DRRS
6827  * @dev_priv: i915 device
6828  * @frontbuffer_bits: frontbuffer plane tracking bits
6829  *
6830  * This function gets called everytime rendering on the given planes start.
6831  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6832  *
6833  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6834  */
6835 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6836                                unsigned int frontbuffer_bits)
6837 {
6838         struct drm_crtc *crtc;
6839         enum pipe pipe;
6840 
6841         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6842                 return;
6843 
6844         cancel_delayed_work(&dev_priv->drrs.work);
6845 
6846         mutex_lock(&dev_priv->drrs.mutex);
6847         if (!dev_priv->drrs.dp) {
6848                 mutex_unlock(&dev_priv->drrs.mutex);
6849                 return;
6850         }
6851 
6852         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6853         pipe = to_intel_crtc(crtc)->pipe;
6854 
6855         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6856         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6857 
6858         /* invalidate means busy screen hence upclock */
6859         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6860                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6861                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6862 
6863         mutex_unlock(&dev_priv->drrs.mutex);
6864 }
6865 
6866 /**
6867  * intel_edp_drrs_flush - Restart Idleness DRRS
6868  * @dev_priv: i915 device
6869  * @frontbuffer_bits: frontbuffer plane tracking bits
6870  *
6871  * This function gets called every time rendering on the given planes has
6872  * completed or flip on a crtc is completed. So DRRS should be upclocked
6873  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6874  * if no other planes are dirty.
6875  *
6876  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6877  */
6878 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6879                           unsigned int frontbuffer_bits)
6880 {
6881         struct drm_crtc *crtc;
6882         enum pipe pipe;
6883 
6884         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6885                 return;
6886 
6887         cancel_delayed_work(&dev_priv->drrs.work);
6888 
6889         mutex_lock(&dev_priv->drrs.mutex);
6890         if (!dev_priv->drrs.dp) {
6891                 mutex_unlock(&dev_priv->drrs.mutex);
6892                 return;
6893         }
6894 
6895         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6896         pipe = to_intel_crtc(crtc)->pipe;
6897 
6898         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6899         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6900 
6901         /* flush means busy screen hence upclock */
6902         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6903                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6904                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6905 
6906         /*
6907          * flush also means no more activity hence schedule downclock, if all
6908          * other fbs are quiescent too
6909          */
6910         if (!dev_priv->drrs.busy_frontbuffer_bits)
6911                 schedule_delayed_work(&dev_priv->drrs.work,
6912                                 msecs_to_jiffies(1000));
6913         mutex_unlock(&dev_priv->drrs.mutex);
6914 }
6915 
6916 /**
6917  * DOC: Display Refresh Rate Switching (DRRS)
6918  *
6919  * Display Refresh Rate Switching (DRRS) is a power conservation feature
6920  * which enables swtching between low and high refresh rates,
6921  * dynamically, based on the usage scenario. This feature is applicable
6922  * for internal panels.
6923  *
6924  * Indication that the panel supports DRRS is given by the panel EDID, which
6925  * would list multiple refresh rates for one resolution.
6926  *
6927  * DRRS is of 2 types - static and seamless.
6928  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6929  * (may appear as a blink on screen) and is used in dock-undock scenario.
6930  * Seamless DRRS involves changing RR without any visual effect to the user
6931  * and can be used during normal system usage. This is done by programming
6932  * certain registers.
6933  *
6934  * Support for static/seamless DRRS may be indicated in the VBT based on
6935  * inputs from the panel spec.
6936  *
6937  * DRRS saves power by switching to low RR based on usage scenarios.
6938  *
6939  * The implementation is based on frontbuffer tracking implementation.  When
6940  * there is a disturbance on the screen triggered by user activity or a periodic
6941  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
6942  * no movement on screen, after a timeout of 1 second, a switch to low RR is
6943  * made.
6944  *
6945  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6946  * and intel_edp_drrs_flush() are called.
6947  *
6948  * DRRS can be further extended to support other internal panels and also
6949  * the scenario of video playback wherein RR is set based on the rate
6950  * requested by userspace.
6951  */
6952 
6953 /**
6954  * intel_dp_drrs_init - Init basic DRRS work and mutex.
6955  * @connector: eDP connector
6956  * @fixed_mode: preferred mode of panel
6957  *
6958  * This function is  called only once at driver load to initialize basic
6959  * DRRS stuff.
6960  *
6961  * Returns:
6962  * Downclock mode if panel supports it, else return NULL.
6963  * DRRS support is determined by the presence of downclock mode (apart
6964  * from VBT setting).
6965  */
6966 static struct drm_display_mode *
6967 intel_dp_drrs_init(struct intel_connector *connector,
6968                    struct drm_display_mode *fixed_mode)
6969 {
6970         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
6971         struct drm_display_mode *downclock_mode = NULL;
6972 
6973         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
6974         mutex_init(&dev_priv->drrs.mutex);
6975 
6976         if (INTEL_GEN(dev_priv) <= 6) {
6977                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
6978                 return NULL;
6979         }
6980 
6981         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
6982                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
6983                 return NULL;
6984         }
6985 
6986         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
6987         if (!downclock_mode) {
6988                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
6989                 return NULL;
6990         }
6991 
6992         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
6993 
6994         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
6995         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
6996         return downclock_mode;
6997 }
6998 
6999 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7000                                      struct intel_connector *intel_connector)
7001 {
7002         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7003         struct drm_device *dev = &dev_priv->drm;
7004         struct drm_connector *connector = &intel_connector->base;
7005         struct drm_display_mode *fixed_mode = NULL;
7006         struct drm_display_mode *downclock_mode = NULL;
7007         bool has_dpcd;
7008         enum pipe pipe = INVALID_PIPE;
7009         intel_wakeref_t wakeref;
7010         struct edid *edid;
7011 
7012         if (!intel_dp_is_edp(intel_dp))
7013                 return true;
7014 
7015         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7016 
7017         /*
7018          * On IBX/CPT we may get here with LVDS already registered. Since the
7019          * driver uses the only internal power sequencer available for both
7020          * eDP and LVDS bail out early in this case to prevent interfering
7021          * with an already powered-on LVDS power sequencer.
7022          */
7023         if (intel_get_lvds_encoder(dev_priv)) {
7024                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7025                 DRM_INFO("LVDS was detected, not registering eDP\n");
7026 
7027                 return false;
7028         }
7029 
7030         with_pps_lock(intel_dp, wakeref) {
7031                 intel_dp_init_panel_power_timestamps(intel_dp);
7032                 intel_dp_pps_init(intel_dp);
7033                 intel_edp_panel_vdd_sanitize(intel_dp);
7034         }
7035 
7036         /* Cache DPCD and EDID for edp. */
7037         has_dpcd = intel_edp_init_dpcd(intel_dp);
7038 
7039         if (!has_dpcd) {
7040                 /* if this fails, presume the device is a ghost */
7041                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7042                 goto out_vdd_off;
7043         }
7044 
7045         mutex_lock(&dev->mode_config.mutex);
7046         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7047         if (edid) {
7048                 if (drm_add_edid_modes(connector, edid)) {
7049                         drm_connector_update_edid_property(connector,
7050                                                                 edid);
7051                 } else {
7052                         kfree(edid);
7053                         edid = ERR_PTR(-EINVAL);
7054                 }
7055         } else {
7056                 edid = ERR_PTR(-ENOENT);
7057         }
7058         intel_connector->edid = edid;
7059 
7060         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7061         if (fixed_mode)
7062                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7063 
7064         /* fallback to VBT if available for eDP */
7065         if (!fixed_mode)
7066                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7067         mutex_unlock(&dev->mode_config.mutex);
7068 
7069         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7070                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7071                 register_reboot_notifier(&intel_dp->edp_notifier);
7072 
7073                 /*
7074                  * Figure out the current pipe for the initial backlight setup.
7075                  * If the current pipe isn't valid, try the PPS pipe, and if that
7076                  * fails just assume pipe A.
7077                  */
7078                 pipe = vlv_active_pipe(intel_dp);
7079 
7080                 if (pipe != PIPE_A && pipe != PIPE_B)
7081                         pipe = intel_dp->pps_pipe;
7082 
7083                 if (pipe != PIPE_A && pipe != PIPE_B)
7084                         pipe = PIPE_A;
7085 
7086                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7087                               pipe_name(pipe));
7088         }
7089 
7090         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7091         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7092         intel_panel_setup_backlight(connector, pipe);
7093 
7094         if (fixed_mode)
7095                 drm_connector_init_panel_orientation_property(
7096                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7097 
7098         return true;
7099 
7100 out_vdd_off:
7101         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7102         /*
7103          * vdd might still be enabled do to the delayed vdd off.
7104          * Make sure vdd is actually turned off here.
7105          */
7106         with_pps_lock(intel_dp, wakeref)
7107                 edp_panel_vdd_off_sync(intel_dp);
7108 
7109         return false;
7110 }
7111 
7112 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7113 {
7114         struct intel_connector *intel_connector;
7115         struct drm_connector *connector;
7116 
7117         intel_connector = container_of(work, typeof(*intel_connector),
7118                                        modeset_retry_work);
7119         connector = &intel_connector->base;
7120         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7121                       connector->name);
7122 
7123         /* Grab the locks before changing connector property*/
7124         mutex_lock(&connector->dev->mode_config.mutex);
7125         /* Set connector link status to BAD and send a Uevent to notify
7126          * userspace to do a modeset.
7127          */
7128         drm_connector_set_link_status_property(connector,
7129                                                DRM_MODE_LINK_STATUS_BAD);
7130         mutex_unlock(&connector->dev->mode_config.mutex);
7131         /* Send Hotplug uevent so userspace can reprobe */
7132         drm_kms_helper_hotplug_event(connector->dev);
7133 }
7134 
7135 bool
7136 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7137                         struct intel_connector *intel_connector)
7138 {
7139         struct drm_connector *connector = &intel_connector->base;
7140         struct intel_dp *intel_dp = &intel_dig_port->dp;
7141         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7142         struct drm_device *dev = intel_encoder->base.dev;
7143         struct drm_i915_private *dev_priv = to_i915(dev);
7144         enum port port = intel_encoder->port;
7145         enum phy phy = intel_port_to_phy(dev_priv, port);
7146         int type;
7147 
7148         /* Initialize the work for modeset in case of link train failure */
7149         INIT_WORK(&intel_connector->modeset_retry_work,
7150                   intel_dp_modeset_retry_work_fn);
7151 
7152         if (WARN(intel_dig_port->max_lanes < 1,
7153                  "Not enough lanes (%d) for DP on port %c\n",
7154                  intel_dig_port->max_lanes, port_name(port)))
7155                 return false;
7156 
7157         intel_dp_set_source_rates(intel_dp);
7158 
7159         intel_dp->reset_link_params = true;
7160         intel_dp->pps_pipe = INVALID_PIPE;
7161         intel_dp->active_pipe = INVALID_PIPE;
7162 
7163         /* Preserve the current hw state. */
7164         intel_dp->DP = I915_READ(intel_dp->output_reg);
7165         intel_dp->attached_connector = intel_connector;
7166 
7167         if (intel_dp_is_port_edp(dev_priv, port)) {
7168                 /*
7169                  * Currently we don't support eDP on TypeC ports, although in
7170                  * theory it could work on TypeC legacy ports.
7171                  */
7172                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7173                 type = DRM_MODE_CONNECTOR_eDP;
7174         } else {
7175                 type = DRM_MODE_CONNECTOR_DisplayPort;
7176         }
7177 
7178         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7179                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7180 
7181         /*
7182          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7183          * for DP the encoder type can be set by the caller to
7184          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7185          */
7186         if (type == DRM_MODE_CONNECTOR_eDP)
7187                 intel_encoder->type = INTEL_OUTPUT_EDP;
7188 
7189         /* eDP only on port B and/or C on vlv/chv */
7190         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7191                     intel_dp_is_edp(intel_dp) &&
7192                     port != PORT_B && port != PORT_C))
7193                 return false;
7194 
7195         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7196                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7197                         port_name(port));
7198 
7199         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7200         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7201 
7202         if (!HAS_GMCH(dev_priv))
7203                 connector->interlace_allowed = true;
7204         connector->doublescan_allowed = 0;
7205 
7206         if (INTEL_GEN(dev_priv) >= 11)
7207                 connector->ycbcr_420_allowed = true;
7208 
7209         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7210 
7211         intel_dp_aux_init(intel_dp);
7212 
7213         intel_connector_attach_encoder(intel_connector, intel_encoder);
7214 
7215         if (HAS_DDI(dev_priv))
7216                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7217         else
7218                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7219 
7220         /* init MST on ports that can support it */
7221         intel_dp_mst_encoder_init(intel_dig_port,
7222                                   intel_connector->base.base.id);
7223 
7224         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7225                 intel_dp_aux_fini(intel_dp);
7226                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7227                 goto fail;
7228         }
7229 
7230         intel_dp_add_properties(intel_dp, connector);
7231 
7232         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7233                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7234                 if (ret)
7235                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7236         }
7237 
7238         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7239          * 0xd.  Failure to do so will result in spurious interrupts being
7240          * generated on the port when a cable is not attached.
7241          */
7242         if (IS_G45(dev_priv)) {
7243                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7244                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7245         }
7246 
7247         return true;
7248 
7249 fail:
7250         drm_connector_cleanup(connector);
7251 
7252         return false;
7253 }
7254 
7255 bool intel_dp_init(struct drm_i915_private *dev_priv,
7256                    i915_reg_t output_reg,
7257                    enum port port)
7258 {
7259         struct intel_digital_port *intel_dig_port;
7260         struct intel_encoder *intel_encoder;
7261         struct drm_encoder *encoder;
7262         struct intel_connector *intel_connector;
7263 
7264         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7265         if (!intel_dig_port)
7266                 return false;
7267 
7268         intel_connector = intel_connector_alloc();
7269         if (!intel_connector)
7270                 goto err_connector_alloc;
7271 
7272         intel_encoder = &intel_dig_port->base;
7273         encoder = &intel_encoder->base;
7274 
7275         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7276                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7277                              "DP %c", port_name(port)))
7278                 goto err_encoder_init;
7279 
7280         intel_encoder->hotplug = intel_dp_hotplug;
7281         intel_encoder->compute_config = intel_dp_compute_config;
7282         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7283         intel_encoder->get_config = intel_dp_get_config;
7284         intel_encoder->update_pipe = intel_panel_update_backlight;
7285         intel_encoder->suspend = intel_dp_encoder_suspend;
7286         if (IS_CHERRYVIEW(dev_priv)) {
7287                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7288                 intel_encoder->pre_enable = chv_pre_enable_dp;
7289                 intel_encoder->enable = vlv_enable_dp;
7290                 intel_encoder->disable = vlv_disable_dp;
7291                 intel_encoder->post_disable = chv_post_disable_dp;
7292                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7293         } else if (IS_VALLEYVIEW(dev_priv)) {
7294                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7295                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7296                 intel_encoder->enable = vlv_enable_dp;
7297                 intel_encoder->disable = vlv_disable_dp;
7298                 intel_encoder->post_disable = vlv_post_disable_dp;
7299         } else {
7300                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7301                 intel_encoder->enable = g4x_enable_dp;
7302                 intel_encoder->disable = g4x_disable_dp;
7303                 intel_encoder->post_disable = g4x_post_disable_dp;
7304         }
7305 
7306         intel_dig_port->dp.output_reg = output_reg;
7307         intel_dig_port->max_lanes = 4;
7308 
7309         intel_encoder->type = INTEL_OUTPUT_DP;
7310         intel_encoder->power_domain = intel_port_to_power_domain(port);
7311         if (IS_CHERRYVIEW(dev_priv)) {
7312                 if (port == PORT_D)
7313                         intel_encoder->crtc_mask = 1 << 2;
7314                 else
7315                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7316         } else {
7317                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7318         }
7319         intel_encoder->cloneable = 0;
7320         intel_encoder->port = port;
7321 
7322         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7323 
7324         if (port != PORT_A)
7325                 intel_infoframe_init(intel_dig_port);
7326 
7327         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7328         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7329                 goto err_init_connector;
7330 
7331         return true;
7332 
7333 err_init_connector:
7334         drm_encoder_cleanup(encoder);
7335 err_encoder_init:
7336         kfree(intel_connector);
7337 err_connector_alloc:
7338         kfree(intel_dig_port);
7339         return false;
7340 }
7341 
7342 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7343 {
7344         struct intel_encoder *encoder;
7345 
7346         for_each_intel_encoder(&dev_priv->drm, encoder) {
7347                 struct intel_dp *intel_dp;
7348 
7349                 if (encoder->type != INTEL_OUTPUT_DDI)
7350                         continue;
7351 
7352                 intel_dp = enc_to_intel_dp(&encoder->base);
7353 
7354                 if (!intel_dp->can_mst)
7355                         continue;
7356 
7357                 if (intel_dp->is_mst)
7358                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7359         }
7360 }
7361 
7362 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7363 {
7364         struct intel_encoder *encoder;
7365 
7366         for_each_intel_encoder(&dev_priv->drm, encoder) {
7367                 struct intel_dp *intel_dp;
7368                 int ret;
7369 
7370                 if (encoder->type != INTEL_OUTPUT_DDI)
7371                         continue;
7372 
7373                 intel_dp = enc_to_intel_dp(&encoder->base);
7374 
7375                 if (!intel_dp->can_mst)
7376                         continue;
7377 
7378                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7379                 if (ret) {
7380                         intel_dp->is_mst = false;
7381                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7382                                                         false);
7383                 }
7384         }
7385 }

/* [<][>][^][v][top][bottom][index][help] */