This source file includes following definitions.
- intel_platform_name
- intel_device_info_dump_flags
- sseu_dump
- intel_device_info_dump_runtime
- sseu_eu_idx
- sseu_get_eus
- sseu_set_eus
- intel_device_info_dump_topology
- compute_eu_total
- gen11_sseu_info_init
- gen10_sseu_info_init
- cherryview_sseu_info_init
- gen9_sseu_info_init
- broadwell_sseu_info_init
- haswell_sseu_info_init
- read_reference_ts_freq
- gen10_get_crystal_clock_freq
- gen11_get_crystal_clock_freq
- read_timestamp_frequency
- find_devid
- intel_device_info_subplatform_init
- intel_device_info_runtime_init
- intel_driver_caps_print
- intel_device_info_init_mmio
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 #include <drm/drm_print.h>
26
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 PLATFORM_NAME(I830),
33 PLATFORM_NAME(I845G),
34 PLATFORM_NAME(I85X),
35 PLATFORM_NAME(I865G),
36 PLATFORM_NAME(I915G),
37 PLATFORM_NAME(I915GM),
38 PLATFORM_NAME(I945G),
39 PLATFORM_NAME(I945GM),
40 PLATFORM_NAME(G33),
41 PLATFORM_NAME(PINEVIEW),
42 PLATFORM_NAME(I965G),
43 PLATFORM_NAME(I965GM),
44 PLATFORM_NAME(G45),
45 PLATFORM_NAME(GM45),
46 PLATFORM_NAME(IRONLAKE),
47 PLATFORM_NAME(SANDYBRIDGE),
48 PLATFORM_NAME(IVYBRIDGE),
49 PLATFORM_NAME(VALLEYVIEW),
50 PLATFORM_NAME(HASWELL),
51 PLATFORM_NAME(BROADWELL),
52 PLATFORM_NAME(CHERRYVIEW),
53 PLATFORM_NAME(SKYLAKE),
54 PLATFORM_NAME(BROXTON),
55 PLATFORM_NAME(KABYLAKE),
56 PLATFORM_NAME(GEMINILAKE),
57 PLATFORM_NAME(COFFEELAKE),
58 PLATFORM_NAME(CANNONLAKE),
59 PLATFORM_NAME(ICELAKE),
60 PLATFORM_NAME(ELKHARTLAKE),
61 PLATFORM_NAME(TIGERLAKE),
62 };
63 #undef PLATFORM_NAME
64
65 const char *intel_platform_name(enum intel_platform platform)
66 {
67 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
68
69 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
70 platform_names[platform] == NULL))
71 return "<unknown>";
72
73 return platform_names[platform];
74 }
75
76 void intel_device_info_dump_flags(const struct intel_device_info *info,
77 struct drm_printer *p)
78 {
79 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
80 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
81 #undef PRINT_FLAG
82
83 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
84 DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
85 #undef PRINT_FLAG
86 }
87
88 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
89 {
90 int s;
91
92 drm_printf(p, "slice total: %u, mask=%04x\n",
93 hweight8(sseu->slice_mask), sseu->slice_mask);
94 drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
95 for (s = 0; s < sseu->max_slices; s++) {
96 drm_printf(p, "slice%d: %u subslices, mask=%04x\n",
97 s, intel_sseu_subslices_per_slice(sseu, s),
98 sseu->subslice_mask[s]);
99 }
100 drm_printf(p, "EU total: %u\n", sseu->eu_total);
101 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
102 drm_printf(p, "has slice power gating: %s\n",
103 yesno(sseu->has_slice_pg));
104 drm_printf(p, "has subslice power gating: %s\n",
105 yesno(sseu->has_subslice_pg));
106 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
107 }
108
109 void intel_device_info_dump_runtime(const struct intel_runtime_info *info,
110 struct drm_printer *p)
111 {
112 sseu_dump(&info->sseu, p);
113
114 drm_printf(p, "CS timestamp frequency: %u kHz\n",
115 info->cs_timestamp_frequency_khz);
116 }
117
118 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
119 int subslice)
120 {
121 int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
122 int slice_stride = sseu->max_subslices * subslice_stride;
123
124 return slice * slice_stride + subslice * subslice_stride;
125 }
126
127 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
128 int subslice)
129 {
130 int i, offset = sseu_eu_idx(sseu, slice, subslice);
131 u16 eu_mask = 0;
132
133 for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
134 eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
135 (i * BITS_PER_BYTE);
136 }
137
138 return eu_mask;
139 }
140
141 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
142 u16 eu_mask)
143 {
144 int i, offset = sseu_eu_idx(sseu, slice, subslice);
145
146 for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) {
147 sseu->eu_mask[offset + i] =
148 (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
149 }
150 }
151
152 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
153 struct drm_printer *p)
154 {
155 int s, ss;
156
157 if (sseu->max_slices == 0) {
158 drm_printf(p, "Unavailable\n");
159 return;
160 }
161
162 for (s = 0; s < sseu->max_slices; s++) {
163 drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
164 s, intel_sseu_subslices_per_slice(sseu, s),
165 sseu->subslice_mask[s]);
166
167 for (ss = 0; ss < sseu->max_subslices; ss++) {
168 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
169
170 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
171 ss, hweight16(enabled_eus), enabled_eus);
172 }
173 }
174 }
175
176 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
177 {
178 u16 i, total = 0;
179
180 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
181 total += hweight8(sseu->eu_mask[i]);
182
183 return total;
184 }
185
186 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
187 {
188 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
189 u8 s_en;
190 u32 ss_en, ss_en_mask;
191 u8 eu_en;
192 int s;
193
194 if (IS_ELKHARTLAKE(dev_priv)) {
195 sseu->max_slices = 1;
196 sseu->max_subslices = 4;
197 sseu->max_eus_per_subslice = 8;
198 } else {
199 sseu->max_slices = 1;
200 sseu->max_subslices = 8;
201 sseu->max_eus_per_subslice = 8;
202 }
203
204 s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
205 ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
206 ss_en_mask = BIT(sseu->max_subslices) - 1;
207 eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
208
209 for (s = 0; s < sseu->max_slices; s++) {
210 if (s_en & BIT(s)) {
211 int ss_idx = sseu->max_subslices * s;
212 int ss;
213
214 sseu->slice_mask |= BIT(s);
215 sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask;
216 for (ss = 0; ss < sseu->max_subslices; ss++) {
217 if (sseu->subslice_mask[s] & BIT(ss))
218 sseu_set_eus(sseu, s, ss, eu_en);
219 }
220 }
221 }
222 sseu->eu_per_subslice = hweight8(eu_en);
223 sseu->eu_total = compute_eu_total(sseu);
224
225
226 sseu->has_slice_pg = 1;
227 sseu->has_subslice_pg = 1;
228 sseu->has_eu_pg = 1;
229 }
230
231 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
232 {
233 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
234 const u32 fuse2 = I915_READ(GEN8_FUSE2);
235 int s, ss;
236 const int eu_mask = 0xff;
237 u32 subslice_mask, eu_en;
238
239 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
240 GEN10_F2_S_ENA_SHIFT;
241 sseu->max_slices = 6;
242 sseu->max_subslices = 4;
243 sseu->max_eus_per_subslice = 8;
244
245 subslice_mask = (1 << 4) - 1;
246 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
247 GEN10_F2_SS_DIS_SHIFT);
248
249
250
251
252
253 sseu->subslice_mask[0] = subslice_mask;
254 for (s = 1; s < sseu->max_slices; s++)
255 sseu->subslice_mask[s] = subslice_mask & 0x3;
256
257
258 eu_en = ~I915_READ(GEN8_EU_DISABLE0);
259 for (ss = 0; ss < sseu->max_subslices; ss++)
260 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
261
262 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
263 eu_en = ~I915_READ(GEN8_EU_DISABLE1);
264 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
265
266 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
267 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
268
269 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
270 eu_en = ~I915_READ(GEN8_EU_DISABLE2);
271 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
272
273 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
274 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
275
276 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
277 eu_en = ~I915_READ(GEN10_EU_DISABLE3);
278 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
279
280
281
282
283 for (s = 0; s < sseu->max_slices; s++) {
284 for (ss = 0; ss < sseu->max_subslices; ss++) {
285 if (sseu_get_eus(sseu, s, ss) == 0)
286 sseu->subslice_mask[s] &= ~BIT(ss);
287 }
288 }
289
290 sseu->eu_total = compute_eu_total(sseu);
291
292
293
294
295
296
297
298 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
299 DIV_ROUND_UP(sseu->eu_total,
300 intel_sseu_subslice_total(sseu)) :
301 0;
302
303
304 sseu->has_slice_pg = 1;
305 sseu->has_subslice_pg = 1;
306 sseu->has_eu_pg = 1;
307 }
308
309 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
310 {
311 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
312 u32 fuse;
313
314 fuse = I915_READ(CHV_FUSE_GT);
315
316 sseu->slice_mask = BIT(0);
317 sseu->max_slices = 1;
318 sseu->max_subslices = 2;
319 sseu->max_eus_per_subslice = 8;
320
321 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
322 u8 disabled_mask =
323 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
324 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
325 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
326 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
327
328 sseu->subslice_mask[0] |= BIT(0);
329 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
330 }
331
332 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
333 u8 disabled_mask =
334 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
335 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
336 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
337 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
338
339 sseu->subslice_mask[0] |= BIT(1);
340 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
341 }
342
343 sseu->eu_total = compute_eu_total(sseu);
344
345
346
347
348
349 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
350 sseu->eu_total /
351 intel_sseu_subslice_total(sseu) :
352 0;
353
354
355
356
357
358 sseu->has_slice_pg = 0;
359 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
360 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
361 }
362
363 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
364 {
365 struct intel_device_info *info = mkwrite_device_info(dev_priv);
366 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
367 int s, ss;
368 u32 fuse2, eu_disable, subslice_mask;
369 const u8 eu_mask = 0xff;
370
371 fuse2 = I915_READ(GEN8_FUSE2);
372 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
373
374
375 sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
376 sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
377 sseu->max_eus_per_subslice = 8;
378
379
380
381
382
383 subslice_mask = (1 << sseu->max_subslices) - 1;
384 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
385 GEN9_F2_SS_DIS_SHIFT);
386
387
388
389
390
391 for (s = 0; s < sseu->max_slices; s++) {
392 if (!(sseu->slice_mask & BIT(s)))
393
394 continue;
395
396 sseu->subslice_mask[s] = subslice_mask;
397
398 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
399 for (ss = 0; ss < sseu->max_subslices; ss++) {
400 int eu_per_ss;
401 u8 eu_disabled_mask;
402
403 if (!(sseu->subslice_mask[s] & BIT(ss)))
404
405 continue;
406
407 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
408
409 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
410
411 eu_per_ss = sseu->max_eus_per_subslice -
412 hweight8(eu_disabled_mask);
413
414
415
416
417
418
419 if (eu_per_ss == 7)
420 sseu->subslice_7eu[s] |= BIT(ss);
421 }
422 }
423
424 sseu->eu_total = compute_eu_total(sseu);
425
426
427
428
429
430
431
432
433 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
434 DIV_ROUND_UP(sseu->eu_total,
435 intel_sseu_subslice_total(sseu)) :
436 0;
437
438
439
440
441
442
443
444
445 sseu->has_slice_pg =
446 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
447 sseu->has_subslice_pg =
448 IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
449 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
450
451 if (IS_GEN9_LP(dev_priv)) {
452 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
453 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
454
455 sseu->min_eu_in_pool = 0;
456 if (info->has_pooled_eu) {
457 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
458 sseu->min_eu_in_pool = 3;
459 else if (IS_SS_DISABLED(1))
460 sseu->min_eu_in_pool = 6;
461 else
462 sseu->min_eu_in_pool = 9;
463 }
464 #undef IS_SS_DISABLED
465 }
466 }
467
468 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
469 {
470 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
471 int s, ss;
472 u32 fuse2, subslice_mask, eu_disable[3];
473
474 fuse2 = I915_READ(GEN8_FUSE2);
475 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
476 sseu->max_slices = 3;
477 sseu->max_subslices = 3;
478 sseu->max_eus_per_subslice = 8;
479
480
481
482
483
484 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
485 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
486 GEN8_F2_SS_DIS_SHIFT);
487
488 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
489 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
490 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
491 (32 - GEN8_EU_DIS0_S1_SHIFT));
492 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
493 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
494 (32 - GEN8_EU_DIS1_S2_SHIFT));
495
496
497
498
499
500 for (s = 0; s < sseu->max_slices; s++) {
501 if (!(sseu->slice_mask & BIT(s)))
502
503 continue;
504
505 sseu->subslice_mask[s] = subslice_mask;
506
507 for (ss = 0; ss < sseu->max_subslices; ss++) {
508 u8 eu_disabled_mask;
509 u32 n_disabled;
510
511 if (!(sseu->subslice_mask[s] & BIT(ss)))
512
513 continue;
514
515 eu_disabled_mask =
516 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
517
518 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
519
520 n_disabled = hweight8(eu_disabled_mask);
521
522
523
524
525 if (sseu->max_eus_per_subslice - n_disabled == 7)
526 sseu->subslice_7eu[s] |= 1 << ss;
527 }
528 }
529
530 sseu->eu_total = compute_eu_total(sseu);
531
532
533
534
535
536
537 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
538 DIV_ROUND_UP(sseu->eu_total,
539 intel_sseu_subslice_total(sseu)) :
540 0;
541
542
543
544
545
546 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
547 sseu->has_subslice_pg = 0;
548 sseu->has_eu_pg = 0;
549 }
550
551 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
552 {
553 struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
554 u32 fuse1;
555 int s, ss;
556
557
558
559
560
561 switch (INTEL_INFO(dev_priv)->gt) {
562 default:
563 MISSING_CASE(INTEL_INFO(dev_priv)->gt);
564
565 case 1:
566 sseu->slice_mask = BIT(0);
567 sseu->subslice_mask[0] = BIT(0);
568 break;
569 case 2:
570 sseu->slice_mask = BIT(0);
571 sseu->subslice_mask[0] = BIT(0) | BIT(1);
572 break;
573 case 3:
574 sseu->slice_mask = BIT(0) | BIT(1);
575 sseu->subslice_mask[0] = BIT(0) | BIT(1);
576 sseu->subslice_mask[1] = BIT(0) | BIT(1);
577 break;
578 }
579
580 sseu->max_slices = hweight8(sseu->slice_mask);
581 sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
582
583 fuse1 = I915_READ(HSW_PAVP_FUSE1);
584 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
585 default:
586 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
587 HSW_F1_EU_DIS_SHIFT);
588
589 case HSW_F1_EU_DIS_10EUS:
590 sseu->eu_per_subslice = 10;
591 break;
592 case HSW_F1_EU_DIS_8EUS:
593 sseu->eu_per_subslice = 8;
594 break;
595 case HSW_F1_EU_DIS_6EUS:
596 sseu->eu_per_subslice = 6;
597 break;
598 }
599 sseu->max_eus_per_subslice = sseu->eu_per_subslice;
600
601 for (s = 0; s < sseu->max_slices; s++) {
602 for (ss = 0; ss < sseu->max_subslices; ss++) {
603 sseu_set_eus(sseu, s, ss,
604 (1UL << sseu->eu_per_subslice) - 1);
605 }
606 }
607
608 sseu->eu_total = compute_eu_total(sseu);
609
610
611 sseu->has_slice_pg = 0;
612 sseu->has_subslice_pg = 0;
613 sseu->has_eu_pg = 0;
614 }
615
616 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
617 {
618 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
619 u32 base_freq, frac_freq;
620
621 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
622 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
623 base_freq *= 1000;
624
625 frac_freq = ((ts_override &
626 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
627 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
628 frac_freq = 1000 / (frac_freq + 1);
629
630 return base_freq + frac_freq;
631 }
632
633 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
634 u32 rpm_config_reg)
635 {
636 u32 f19_2_mhz = 19200;
637 u32 f24_mhz = 24000;
638 u32 crystal_clock = (rpm_config_reg &
639 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
640 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
641
642 switch (crystal_clock) {
643 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
644 return f19_2_mhz;
645 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
646 return f24_mhz;
647 default:
648 MISSING_CASE(crystal_clock);
649 return 0;
650 }
651 }
652
653 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
654 u32 rpm_config_reg)
655 {
656 u32 f19_2_mhz = 19200;
657 u32 f24_mhz = 24000;
658 u32 f25_mhz = 25000;
659 u32 f38_4_mhz = 38400;
660 u32 crystal_clock = (rpm_config_reg &
661 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
662 GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
663
664 switch (crystal_clock) {
665 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
666 return f24_mhz;
667 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
668 return f19_2_mhz;
669 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
670 return f38_4_mhz;
671 case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
672 return f25_mhz;
673 default:
674 MISSING_CASE(crystal_clock);
675 return 0;
676 }
677 }
678
679 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
680 {
681 u32 f12_5_mhz = 12500;
682 u32 f19_2_mhz = 19200;
683 u32 f24_mhz = 24000;
684
685 if (INTEL_GEN(dev_priv) <= 4) {
686
687
688
689
690
691
692 return dev_priv->rawclk_freq / 16;
693 } else if (INTEL_GEN(dev_priv) <= 8) {
694
695
696
697
698
699
700 return f12_5_mhz;
701 } else if (INTEL_GEN(dev_priv) <= 9) {
702 u32 ctc_reg = I915_READ(CTC_MODE);
703 u32 freq = 0;
704
705 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
706 freq = read_reference_ts_freq(dev_priv);
707 } else {
708 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
709
710
711
712
713
714 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
715 CTC_SHIFT_PARAMETER_SHIFT);
716 }
717
718 return freq;
719 } else if (INTEL_GEN(dev_priv) <= 12) {
720 u32 ctc_reg = I915_READ(CTC_MODE);
721 u32 freq = 0;
722
723
724
725
726
727
728 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
729 freq = read_reference_ts_freq(dev_priv);
730 } else {
731 u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
732
733 if (INTEL_GEN(dev_priv) <= 10)
734 freq = gen10_get_crystal_clock_freq(dev_priv,
735 rpm_config_reg);
736 else
737 freq = gen11_get_crystal_clock_freq(dev_priv,
738 rpm_config_reg);
739
740
741
742
743
744 freq >>= 3 - ((rpm_config_reg &
745 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
746 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
747 }
748
749 return freq;
750 }
751
752 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
753 return 0;
754 }
755
756 #undef INTEL_VGA_DEVICE
757 #define INTEL_VGA_DEVICE(id, info) (id)
758
759 static const u16 subplatform_ult_ids[] = {
760 INTEL_HSW_ULT_GT1_IDS(0),
761 INTEL_HSW_ULT_GT2_IDS(0),
762 INTEL_HSW_ULT_GT3_IDS(0),
763 INTEL_BDW_ULT_GT1_IDS(0),
764 INTEL_BDW_ULT_GT2_IDS(0),
765 INTEL_BDW_ULT_GT3_IDS(0),
766 INTEL_BDW_ULT_RSVD_IDS(0),
767 INTEL_SKL_ULT_GT1_IDS(0),
768 INTEL_SKL_ULT_GT2_IDS(0),
769 INTEL_SKL_ULT_GT3_IDS(0),
770 INTEL_KBL_ULT_GT1_IDS(0),
771 INTEL_KBL_ULT_GT2_IDS(0),
772 INTEL_KBL_ULT_GT3_IDS(0),
773 INTEL_CFL_U_GT2_IDS(0),
774 INTEL_CFL_U_GT3_IDS(0),
775 INTEL_WHL_U_GT1_IDS(0),
776 INTEL_WHL_U_GT2_IDS(0),
777 INTEL_WHL_U_GT3_IDS(0),
778 };
779
780 static const u16 subplatform_ulx_ids[] = {
781 INTEL_HSW_ULX_GT1_IDS(0),
782 INTEL_HSW_ULX_GT2_IDS(0),
783 INTEL_BDW_ULX_GT1_IDS(0),
784 INTEL_BDW_ULX_GT2_IDS(0),
785 INTEL_BDW_ULX_GT3_IDS(0),
786 INTEL_BDW_ULX_RSVD_IDS(0),
787 INTEL_SKL_ULX_GT1_IDS(0),
788 INTEL_SKL_ULX_GT2_IDS(0),
789 INTEL_KBL_ULX_GT1_IDS(0),
790 INTEL_KBL_ULX_GT2_IDS(0),
791 INTEL_AML_KBL_GT2_IDS(0),
792 INTEL_AML_CFL_GT2_IDS(0),
793 };
794
795 static const u16 subplatform_portf_ids[] = {
796 INTEL_CNL_PORT_F_IDS(0),
797 INTEL_ICL_PORT_F_IDS(0),
798 };
799
800 static bool find_devid(u16 id, const u16 *p, unsigned int num)
801 {
802 for (; num; num--, p++) {
803 if (*p == id)
804 return true;
805 }
806
807 return false;
808 }
809
810 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
811 {
812 const struct intel_device_info *info = INTEL_INFO(i915);
813 const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
814 const unsigned int pi = __platform_mask_index(rinfo, info->platform);
815 const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
816 u16 devid = INTEL_DEVID(i915);
817 u32 mask = 0;
818
819
820 RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
821
822
823 if (find_devid(devid, subplatform_ult_ids,
824 ARRAY_SIZE(subplatform_ult_ids))) {
825 mask = BIT(INTEL_SUBPLATFORM_ULT);
826 } else if (find_devid(devid, subplatform_ulx_ids,
827 ARRAY_SIZE(subplatform_ulx_ids))) {
828 mask = BIT(INTEL_SUBPLATFORM_ULX);
829 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
830
831 mask |= BIT(INTEL_SUBPLATFORM_ULT);
832 }
833 } else if (find_devid(devid, subplatform_portf_ids,
834 ARRAY_SIZE(subplatform_portf_ids))) {
835 mask = BIT(INTEL_SUBPLATFORM_PORTF);
836 }
837
838 GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
839
840 RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
841 }
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
860 {
861 struct intel_device_info *info = mkwrite_device_info(dev_priv);
862 struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
863 enum pipe pipe;
864
865 if (INTEL_GEN(dev_priv) >= 10) {
866 for_each_pipe(dev_priv, pipe)
867 runtime->num_scalers[pipe] = 2;
868 } else if (IS_GEN(dev_priv, 9)) {
869 runtime->num_scalers[PIPE_A] = 2;
870 runtime->num_scalers[PIPE_B] = 2;
871 runtime->num_scalers[PIPE_C] = 1;
872 }
873
874 BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
875
876 if (INTEL_GEN(dev_priv) >= 11)
877 for_each_pipe(dev_priv, pipe)
878 runtime->num_sprites[pipe] = 6;
879 else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
880 for_each_pipe(dev_priv, pipe)
881 runtime->num_sprites[pipe] = 3;
882 else if (IS_BROXTON(dev_priv)) {
883
884
885
886
887
888
889
890
891
892 runtime->num_sprites[PIPE_A] = 2;
893 runtime->num_sprites[PIPE_B] = 2;
894 runtime->num_sprites[PIPE_C] = 1;
895 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
896 for_each_pipe(dev_priv, pipe)
897 runtime->num_sprites[pipe] = 2;
898 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
899 for_each_pipe(dev_priv, pipe)
900 runtime->num_sprites[pipe] = 1;
901 }
902
903 if (i915_modparams.disable_display) {
904 DRM_INFO("Display disabled (module parameter)\n");
905 info->num_pipes = 0;
906 } else if (HAS_DISPLAY(dev_priv) &&
907 (IS_GEN_RANGE(dev_priv, 7, 8)) &&
908 HAS_PCH_SPLIT(dev_priv)) {
909 u32 fuse_strap = I915_READ(FUSE_STRAP);
910 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
911
912
913
914
915
916
917
918
919
920
921 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
922 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
923 (HAS_PCH_CPT(dev_priv) &&
924 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
925 DRM_INFO("Display fused off, disabling\n");
926 info->num_pipes = 0;
927 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
928 DRM_INFO("PipeC fused off\n");
929 info->num_pipes -= 1;
930 }
931 } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
932 u32 dfsm = I915_READ(SKL_DFSM);
933 u8 enabled_mask = BIT(info->num_pipes) - 1;
934
935 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
936 enabled_mask &= ~BIT(PIPE_A);
937 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
938 enabled_mask &= ~BIT(PIPE_B);
939 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
940 enabled_mask &= ~BIT(PIPE_C);
941 if (INTEL_GEN(dev_priv) >= 12 &&
942 (dfsm & TGL_DFSM_PIPE_D_DISABLE))
943 enabled_mask &= ~BIT(PIPE_D);
944
945
946
947
948
949
950 if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
951 DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
952 enabled_mask);
953 else
954 info->num_pipes = hweight8(enabled_mask);
955 }
956
957
958 if (IS_HASWELL(dev_priv))
959 haswell_sseu_info_init(dev_priv);
960 else if (IS_CHERRYVIEW(dev_priv))
961 cherryview_sseu_info_init(dev_priv);
962 else if (IS_BROADWELL(dev_priv))
963 broadwell_sseu_info_init(dev_priv);
964 else if (IS_GEN(dev_priv, 9))
965 gen9_sseu_info_init(dev_priv);
966 else if (IS_GEN(dev_priv, 10))
967 gen10_sseu_info_init(dev_priv);
968 else if (INTEL_GEN(dev_priv) >= 11)
969 gen11_sseu_info_init(dev_priv);
970
971 if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
972 DRM_INFO("Disabling ppGTT for VT-d support\n");
973 info->ppgtt_type = INTEL_PPGTT_NONE;
974 }
975
976
977 runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
978 }
979
980 void intel_driver_caps_print(const struct intel_driver_caps *caps,
981 struct drm_printer *p)
982 {
983 drm_printf(p, "Has logical contexts? %s\n",
984 yesno(caps->has_logical_contexts));
985 drm_printf(p, "scheduler: %x\n", caps->scheduler);
986 }
987
988
989
990
991
992
993
994 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
995 {
996 struct intel_device_info *info = mkwrite_device_info(dev_priv);
997 unsigned int logical_vdbox = 0;
998 unsigned int i;
999 u32 media_fuse;
1000 u16 vdbox_mask;
1001 u16 vebox_mask;
1002
1003 if (INTEL_GEN(dev_priv) < 11)
1004 return;
1005
1006 media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1007
1008 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1009 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1010 GEN11_GT_VEBOX_DISABLE_SHIFT;
1011
1012 for (i = 0; i < I915_MAX_VCS; i++) {
1013 if (!HAS_ENGINE(dev_priv, _VCS(i)))
1014 continue;
1015
1016 if (!(BIT(i) & vdbox_mask)) {
1017 info->engine_mask &= ~BIT(_VCS(i));
1018 DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1019 continue;
1020 }
1021
1022
1023
1024
1025
1026
1027 if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0)
1028 RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1029 }
1030 DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1031 vdbox_mask, VDBOX_MASK(dev_priv));
1032 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1033
1034 for (i = 0; i < I915_MAX_VECS; i++) {
1035 if (!HAS_ENGINE(dev_priv, _VECS(i)))
1036 continue;
1037
1038 if (!(BIT(i) & vebox_mask)) {
1039 info->engine_mask &= ~BIT(_VECS(i));
1040 DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1041 }
1042 }
1043 DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1044 vebox_mask, VEBOX_MASK(dev_priv));
1045 GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1046 }