root/drivers/soc/ti/knav_qmss_queue.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. knav_qmss_device_ready
  2. knav_queue_notify
  3. knav_queue_int_handler
  4. knav_queue_setup_irq
  5. knav_queue_free_irq
  6. knav_queue_is_busy
  7. knav_queue_is_reserved
  8. knav_queue_is_shared
  9. knav_queue_match_type
  10. knav_queue_match_id_to_inst
  11. knav_queue_find_by_id
  12. __knav_queue_open
  13. knav_queue_open_by_id
  14. knav_queue_open_by_type
  15. knav_queue_set_notify
  16. knav_queue_enable_notifier
  17. knav_queue_disable_notifier
  18. knav_queue_set_notifier
  19. knav_gp_set_notify
  20. knav_gp_open_queue
  21. knav_gp_close_queue
  22. knav_queue_get_count
  23. knav_queue_debug_show_instance
  24. knav_queue_debug_show
  25. knav_queue_debug_open
  26. knav_queue_pdsp_wait
  27. knav_queue_flush
  28. knav_queue_open
  29. knav_queue_close
  30. knav_queue_device_control
  31. knav_queue_push
  32. knav_queue_pop
  33. kdesc_fill_pool
  34. kdesc_empty_pool
  35. knav_pool_desc_virt_to_dma
  36. knav_pool_desc_dma_to_virt
  37. knav_pool_create
  38. knav_pool_destroy
  39. knav_pool_desc_get
  40. knav_pool_desc_put
  41. knav_pool_desc_map
  42. knav_pool_desc_unmap
  43. knav_pool_count
  44. knav_queue_setup_region
  45. knav_queue_find_name
  46. knav_queue_setup_regions
  47. knav_get_link_ram
  48. knav_queue_setup_link_ram
  49. knav_setup_queue_range
  50. knav_setup_queue_pools
  51. knav_free_queue_range
  52. knav_free_queue_ranges
  53. knav_queue_free_regions
  54. knav_queue_map_reg
  55. knav_queue_init_qmgrs
  56. knav_queue_init_pdsps
  57. knav_queue_stop_pdsp
  58. knav_queue_load_pdsp
  59. knav_queue_start_pdsp
  60. knav_queue_stop_pdsps
  61. knav_queue_start_pdsps
  62. knav_find_qmgr
  63. knav_queue_init_queue
  64. knav_queue_init_queues
  65. knav_queue_probe
  66. knav_queue_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Keystone Queue Manager subsystem driver
   4  *
   5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
   6  * Authors:     Sandeep Nair <sandeep_n@ti.com>
   7  *              Cyril Chemparathy <cyril@ti.com>
   8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
   9  */
  10 
  11 #include <linux/debugfs.h>
  12 #include <linux/dma-mapping.h>
  13 #include <linux/firmware.h>
  14 #include <linux/interrupt.h>
  15 #include <linux/io.h>
  16 #include <linux/module.h>
  17 #include <linux/of_address.h>
  18 #include <linux/of_device.h>
  19 #include <linux/of_irq.h>
  20 #include <linux/pm_runtime.h>
  21 #include <linux/slab.h>
  22 #include <linux/soc/ti/knav_qmss.h>
  23 
  24 #include "knav_qmss.h"
  25 
  26 static struct knav_device *kdev;
  27 static DEFINE_MUTEX(knav_dev_lock);
  28 
  29 /* Queue manager register indices in DTS */
  30 #define KNAV_QUEUE_PEEK_REG_INDEX       0
  31 #define KNAV_QUEUE_STATUS_REG_INDEX     1
  32 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
  33 #define KNAV_QUEUE_REGION_REG_INDEX     3
  34 #define KNAV_QUEUE_PUSH_REG_INDEX       4
  35 #define KNAV_QUEUE_POP_REG_INDEX        5
  36 
  37 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
  38  * There are no status and vbusm push registers on this version
  39  * of QMSS. Push registers are same as pop, So all indices above 1
  40  * are to be re-defined
  41  */
  42 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
  43 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
  44 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
  45 
  46 /* PDSP register indices in DTS */
  47 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
  48 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
  49 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
  50 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
  51 
  52 #define knav_queue_idx_to_inst(kdev, idx)                       \
  53         (kdev->instances + (idx << kdev->inst_shift))
  54 
  55 #define for_each_handle_rcu(qh, inst)                   \
  56         list_for_each_entry_rcu(qh, &inst->handles, list)
  57 
  58 #define for_each_instance(idx, inst, kdev)              \
  59         for (idx = 0, inst = kdev->instances;           \
  60              idx < (kdev)->num_queues_in_use;                   \
  61              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
  62 
  63 /* All firmware file names end up here. List the firmware file names below.
  64  * Newest followed by older ones. Search is done from start of the array
  65  * until a firmware file is found.
  66  */
  67 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
  68 
  69 static bool device_ready;
  70 bool knav_qmss_device_ready(void)
  71 {
  72         return device_ready;
  73 }
  74 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
  75 
  76 /**
  77  * knav_queue_notify: qmss queue notfier call
  78  *
  79  * @inst:               qmss queue instance like accumulator
  80  */
  81 void knav_queue_notify(struct knav_queue_inst *inst)
  82 {
  83         struct knav_queue *qh;
  84 
  85         if (!inst)
  86                 return;
  87 
  88         rcu_read_lock();
  89         for_each_handle_rcu(qh, inst) {
  90                 if (atomic_read(&qh->notifier_enabled) <= 0)
  91                         continue;
  92                 if (WARN_ON(!qh->notifier_fn))
  93                         continue;
  94                 this_cpu_inc(qh->stats->notifies);
  95                 qh->notifier_fn(qh->notifier_fn_arg);
  96         }
  97         rcu_read_unlock();
  98 }
  99 EXPORT_SYMBOL_GPL(knav_queue_notify);
 100 
 101 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
 102 {
 103         struct knav_queue_inst *inst = _instdata;
 104 
 105         knav_queue_notify(inst);
 106         return IRQ_HANDLED;
 107 }
 108 
 109 static int knav_queue_setup_irq(struct knav_range_info *range,
 110                           struct knav_queue_inst *inst)
 111 {
 112         unsigned queue = inst->id - range->queue_base;
 113         int ret = 0, irq;
 114 
 115         if (range->flags & RANGE_HAS_IRQ) {
 116                 irq = range->irqs[queue].irq;
 117                 ret = request_irq(irq, knav_queue_int_handler, 0,
 118                                         inst->irq_name, inst);
 119                 if (ret)
 120                         return ret;
 121                 disable_irq(irq);
 122                 if (range->irqs[queue].cpu_mask) {
 123                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
 124                         if (ret) {
 125                                 dev_warn(range->kdev->dev,
 126                                          "Failed to set IRQ affinity\n");
 127                                 return ret;
 128                         }
 129                 }
 130         }
 131         return ret;
 132 }
 133 
 134 static void knav_queue_free_irq(struct knav_queue_inst *inst)
 135 {
 136         struct knav_range_info *range = inst->range;
 137         unsigned queue = inst->id - inst->range->queue_base;
 138         int irq;
 139 
 140         if (range->flags & RANGE_HAS_IRQ) {
 141                 irq = range->irqs[queue].irq;
 142                 irq_set_affinity_hint(irq, NULL);
 143                 free_irq(irq, inst);
 144         }
 145 }
 146 
 147 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
 148 {
 149         return !list_empty(&inst->handles);
 150 }
 151 
 152 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
 153 {
 154         return inst->range->flags & RANGE_RESERVED;
 155 }
 156 
 157 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
 158 {
 159         struct knav_queue *tmp;
 160 
 161         rcu_read_lock();
 162         for_each_handle_rcu(tmp, inst) {
 163                 if (tmp->flags & KNAV_QUEUE_SHARED) {
 164                         rcu_read_unlock();
 165                         return true;
 166                 }
 167         }
 168         rcu_read_unlock();
 169         return false;
 170 }
 171 
 172 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
 173                                                 unsigned type)
 174 {
 175         if ((type == KNAV_QUEUE_QPEND) &&
 176             (inst->range->flags & RANGE_HAS_IRQ)) {
 177                 return true;
 178         } else if ((type == KNAV_QUEUE_ACC) &&
 179                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
 180                 return true;
 181         } else if ((type == KNAV_QUEUE_GP) &&
 182                 !(inst->range->flags &
 183                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
 184                 return true;
 185         }
 186         return false;
 187 }
 188 
 189 static inline struct knav_queue_inst *
 190 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
 191 {
 192         struct knav_queue_inst *inst;
 193         int idx;
 194 
 195         for_each_instance(idx, inst, kdev) {
 196                 if (inst->id == id)
 197                         return inst;
 198         }
 199         return NULL;
 200 }
 201 
 202 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
 203 {
 204         if (kdev->base_id <= id &&
 205             kdev->base_id + kdev->num_queues > id) {
 206                 id -= kdev->base_id;
 207                 return knav_queue_match_id_to_inst(kdev, id);
 208         }
 209         return NULL;
 210 }
 211 
 212 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
 213                                       const char *name, unsigned flags)
 214 {
 215         struct knav_queue *qh;
 216         unsigned id;
 217         int ret = 0;
 218 
 219         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
 220         if (!qh)
 221                 return ERR_PTR(-ENOMEM);
 222 
 223         qh->stats = alloc_percpu(struct knav_queue_stats);
 224         if (!qh->stats) {
 225                 ret = -ENOMEM;
 226                 goto err;
 227         }
 228 
 229         qh->flags = flags;
 230         qh->inst = inst;
 231         id = inst->id - inst->qmgr->start_queue;
 232         qh->reg_push = &inst->qmgr->reg_push[id];
 233         qh->reg_pop = &inst->qmgr->reg_pop[id];
 234         qh->reg_peek = &inst->qmgr->reg_peek[id];
 235 
 236         /* first opener? */
 237         if (!knav_queue_is_busy(inst)) {
 238                 struct knav_range_info *range = inst->range;
 239 
 240                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 241                 if (range->ops && range->ops->open_queue)
 242                         ret = range->ops->open_queue(range, inst, flags);
 243 
 244                 if (ret)
 245                         goto err;
 246         }
 247         list_add_tail_rcu(&qh->list, &inst->handles);
 248         return qh;
 249 
 250 err:
 251         if (qh->stats)
 252                 free_percpu(qh->stats);
 253         devm_kfree(inst->kdev->dev, qh);
 254         return ERR_PTR(ret);
 255 }
 256 
 257 static struct knav_queue *
 258 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
 259 {
 260         struct knav_queue_inst *inst;
 261         struct knav_queue *qh;
 262 
 263         mutex_lock(&knav_dev_lock);
 264 
 265         qh = ERR_PTR(-ENODEV);
 266         inst = knav_queue_find_by_id(id);
 267         if (!inst)
 268                 goto unlock_ret;
 269 
 270         qh = ERR_PTR(-EEXIST);
 271         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
 272                 goto unlock_ret;
 273 
 274         qh = ERR_PTR(-EBUSY);
 275         if ((flags & KNAV_QUEUE_SHARED) &&
 276             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
 277                 goto unlock_ret;
 278 
 279         qh = __knav_queue_open(inst, name, flags);
 280 
 281 unlock_ret:
 282         mutex_unlock(&knav_dev_lock);
 283 
 284         return qh;
 285 }
 286 
 287 static struct knav_queue *knav_queue_open_by_type(const char *name,
 288                                                 unsigned type, unsigned flags)
 289 {
 290         struct knav_queue_inst *inst;
 291         struct knav_queue *qh = ERR_PTR(-EINVAL);
 292         int idx;
 293 
 294         mutex_lock(&knav_dev_lock);
 295 
 296         for_each_instance(idx, inst, kdev) {
 297                 if (knav_queue_is_reserved(inst))
 298                         continue;
 299                 if (!knav_queue_match_type(inst, type))
 300                         continue;
 301                 if (knav_queue_is_busy(inst))
 302                         continue;
 303                 qh = __knav_queue_open(inst, name, flags);
 304                 goto unlock_ret;
 305         }
 306 
 307 unlock_ret:
 308         mutex_unlock(&knav_dev_lock);
 309         return qh;
 310 }
 311 
 312 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
 313 {
 314         struct knav_range_info *range = inst->range;
 315 
 316         if (range->ops && range->ops->set_notify)
 317                 range->ops->set_notify(range, inst, enabled);
 318 }
 319 
 320 static int knav_queue_enable_notifier(struct knav_queue *qh)
 321 {
 322         struct knav_queue_inst *inst = qh->inst;
 323         bool first;
 324 
 325         if (WARN_ON(!qh->notifier_fn))
 326                 return -EINVAL;
 327 
 328         /* Adjust the per handle notifier count */
 329         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
 330         if (!first)
 331                 return 0; /* nothing to do */
 332 
 333         /* Now adjust the per instance notifier count */
 334         first = (atomic_inc_return(&inst->num_notifiers) == 1);
 335         if (first)
 336                 knav_queue_set_notify(inst, true);
 337 
 338         return 0;
 339 }
 340 
 341 static int knav_queue_disable_notifier(struct knav_queue *qh)
 342 {
 343         struct knav_queue_inst *inst = qh->inst;
 344         bool last;
 345 
 346         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
 347         if (!last)
 348                 return 0; /* nothing to do */
 349 
 350         last = (atomic_dec_return(&inst->num_notifiers) == 0);
 351         if (last)
 352                 knav_queue_set_notify(inst, false);
 353 
 354         return 0;
 355 }
 356 
 357 static int knav_queue_set_notifier(struct knav_queue *qh,
 358                                 struct knav_queue_notify_config *cfg)
 359 {
 360         knav_queue_notify_fn old_fn = qh->notifier_fn;
 361 
 362         if (!cfg)
 363                 return -EINVAL;
 364 
 365         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
 366                 return -ENOTSUPP;
 367 
 368         if (!cfg->fn && old_fn)
 369                 knav_queue_disable_notifier(qh);
 370 
 371         qh->notifier_fn = cfg->fn;
 372         qh->notifier_fn_arg = cfg->fn_arg;
 373 
 374         if (cfg->fn && !old_fn)
 375                 knav_queue_enable_notifier(qh);
 376 
 377         return 0;
 378 }
 379 
 380 static int knav_gp_set_notify(struct knav_range_info *range,
 381                                struct knav_queue_inst *inst,
 382                                bool enabled)
 383 {
 384         unsigned queue;
 385 
 386         if (range->flags & RANGE_HAS_IRQ) {
 387                 queue = inst->id - range->queue_base;
 388                 if (enabled)
 389                         enable_irq(range->irqs[queue].irq);
 390                 else
 391                         disable_irq_nosync(range->irqs[queue].irq);
 392         }
 393         return 0;
 394 }
 395 
 396 static int knav_gp_open_queue(struct knav_range_info *range,
 397                                 struct knav_queue_inst *inst, unsigned flags)
 398 {
 399         return knav_queue_setup_irq(range, inst);
 400 }
 401 
 402 static int knav_gp_close_queue(struct knav_range_info *range,
 403                                 struct knav_queue_inst *inst)
 404 {
 405         knav_queue_free_irq(inst);
 406         return 0;
 407 }
 408 
 409 struct knav_range_ops knav_gp_range_ops = {
 410         .set_notify     = knav_gp_set_notify,
 411         .open_queue     = knav_gp_open_queue,
 412         .close_queue    = knav_gp_close_queue,
 413 };
 414 
 415 
 416 static int knav_queue_get_count(void *qhandle)
 417 {
 418         struct knav_queue *qh = qhandle;
 419         struct knav_queue_inst *inst = qh->inst;
 420 
 421         return readl_relaxed(&qh->reg_peek[0].entry_count) +
 422                 atomic_read(&inst->desc_count);
 423 }
 424 
 425 static void knav_queue_debug_show_instance(struct seq_file *s,
 426                                         struct knav_queue_inst *inst)
 427 {
 428         struct knav_device *kdev = inst->kdev;
 429         struct knav_queue *qh;
 430         int cpu = 0;
 431         int pushes = 0;
 432         int pops = 0;
 433         int push_errors = 0;
 434         int pop_errors = 0;
 435         int notifies = 0;
 436 
 437         if (!knav_queue_is_busy(inst))
 438                 return;
 439 
 440         seq_printf(s, "\tqueue id %d (%s)\n",
 441                    kdev->base_id + inst->id, inst->name);
 442         for_each_handle_rcu(qh, inst) {
 443                 for_each_possible_cpu(cpu) {
 444                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
 445                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
 446                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
 447                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
 448                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
 449                 }
 450 
 451                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
 452                                 qh,
 453                                 pushes,
 454                                 pops,
 455                                 knav_queue_get_count(qh),
 456                                 notifies,
 457                                 push_errors,
 458                                 pop_errors);
 459         }
 460 }
 461 
 462 static int knav_queue_debug_show(struct seq_file *s, void *v)
 463 {
 464         struct knav_queue_inst *inst;
 465         int idx;
 466 
 467         mutex_lock(&knav_dev_lock);
 468         seq_printf(s, "%s: %u-%u\n",
 469                    dev_name(kdev->dev), kdev->base_id,
 470                    kdev->base_id + kdev->num_queues - 1);
 471         for_each_instance(idx, inst, kdev)
 472                 knav_queue_debug_show_instance(s, inst);
 473         mutex_unlock(&knav_dev_lock);
 474 
 475         return 0;
 476 }
 477 
 478 static int knav_queue_debug_open(struct inode *inode, struct file *file)
 479 {
 480         return single_open(file, knav_queue_debug_show, NULL);
 481 }
 482 
 483 static const struct file_operations knav_queue_debug_ops = {
 484         .open           = knav_queue_debug_open,
 485         .read           = seq_read,
 486         .llseek         = seq_lseek,
 487         .release        = single_release,
 488 };
 489 
 490 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
 491                                         u32 flags)
 492 {
 493         unsigned long end;
 494         u32 val = 0;
 495 
 496         end = jiffies + msecs_to_jiffies(timeout);
 497         while (time_after(end, jiffies)) {
 498                 val = readl_relaxed(addr);
 499                 if (flags)
 500                         val &= flags;
 501                 if (!val)
 502                         break;
 503                 cpu_relax();
 504         }
 505         return val ? -ETIMEDOUT : 0;
 506 }
 507 
 508 
 509 static int knav_queue_flush(struct knav_queue *qh)
 510 {
 511         struct knav_queue_inst *inst = qh->inst;
 512         unsigned id = inst->id - inst->qmgr->start_queue;
 513 
 514         atomic_set(&inst->desc_count, 0);
 515         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
 516         return 0;
 517 }
 518 
 519 /**
 520  * knav_queue_open()    - open a hardware queue
 521  * @name                - name to give the queue handle
 522  * @id                  - desired queue number if any or specifes the type
 523  *                        of queue
 524  * @flags               - the following flags are applicable to queues:
 525  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
 526  *                           exclusive by default.
 527  *                           Subsequent attempts to open a shared queue should
 528  *                           also have this flag.
 529  *
 530  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
 531  * to check the returned value for error codes.
 532  */
 533 void *knav_queue_open(const char *name, unsigned id,
 534                                         unsigned flags)
 535 {
 536         struct knav_queue *qh = ERR_PTR(-EINVAL);
 537 
 538         switch (id) {
 539         case KNAV_QUEUE_QPEND:
 540         case KNAV_QUEUE_ACC:
 541         case KNAV_QUEUE_GP:
 542                 qh = knav_queue_open_by_type(name, id, flags);
 543                 break;
 544 
 545         default:
 546                 qh = knav_queue_open_by_id(name, id, flags);
 547                 break;
 548         }
 549         return qh;
 550 }
 551 EXPORT_SYMBOL_GPL(knav_queue_open);
 552 
 553 /**
 554  * knav_queue_close()   - close a hardware queue handle
 555  * @qh                  - handle to close
 556  */
 557 void knav_queue_close(void *qhandle)
 558 {
 559         struct knav_queue *qh = qhandle;
 560         struct knav_queue_inst *inst = qh->inst;
 561 
 562         while (atomic_read(&qh->notifier_enabled) > 0)
 563                 knav_queue_disable_notifier(qh);
 564 
 565         mutex_lock(&knav_dev_lock);
 566         list_del_rcu(&qh->list);
 567         mutex_unlock(&knav_dev_lock);
 568         synchronize_rcu();
 569         if (!knav_queue_is_busy(inst)) {
 570                 struct knav_range_info *range = inst->range;
 571 
 572                 if (range->ops && range->ops->close_queue)
 573                         range->ops->close_queue(range, inst);
 574         }
 575         free_percpu(qh->stats);
 576         devm_kfree(inst->kdev->dev, qh);
 577 }
 578 EXPORT_SYMBOL_GPL(knav_queue_close);
 579 
 580 /**
 581  * knav_queue_device_control()  - Perform control operations on a queue
 582  * @qh                          - queue handle
 583  * @cmd                         - control commands
 584  * @arg                         - command argument
 585  *
 586  * Returns 0 on success, errno otherwise.
 587  */
 588 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
 589                                 unsigned long arg)
 590 {
 591         struct knav_queue *qh = qhandle;
 592         struct knav_queue_notify_config *cfg;
 593         int ret;
 594 
 595         switch ((int)cmd) {
 596         case KNAV_QUEUE_GET_ID:
 597                 ret = qh->inst->kdev->base_id + qh->inst->id;
 598                 break;
 599 
 600         case KNAV_QUEUE_FLUSH:
 601                 ret = knav_queue_flush(qh);
 602                 break;
 603 
 604         case KNAV_QUEUE_SET_NOTIFIER:
 605                 cfg = (void *)arg;
 606                 ret = knav_queue_set_notifier(qh, cfg);
 607                 break;
 608 
 609         case KNAV_QUEUE_ENABLE_NOTIFY:
 610                 ret = knav_queue_enable_notifier(qh);
 611                 break;
 612 
 613         case KNAV_QUEUE_DISABLE_NOTIFY:
 614                 ret = knav_queue_disable_notifier(qh);
 615                 break;
 616 
 617         case KNAV_QUEUE_GET_COUNT:
 618                 ret = knav_queue_get_count(qh);
 619                 break;
 620 
 621         default:
 622                 ret = -ENOTSUPP;
 623                 break;
 624         }
 625         return ret;
 626 }
 627 EXPORT_SYMBOL_GPL(knav_queue_device_control);
 628 
 629 
 630 
 631 /**
 632  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
 633  * @qh                  - hardware queue handle
 634  * @data                - data to push
 635  * @size                - size of data to push
 636  * @flags               - can be used to pass additional information
 637  *
 638  * Returns 0 on success, errno otherwise.
 639  */
 640 int knav_queue_push(void *qhandle, dma_addr_t dma,
 641                                         unsigned size, unsigned flags)
 642 {
 643         struct knav_queue *qh = qhandle;
 644         u32 val;
 645 
 646         val = (u32)dma | ((size / 16) - 1);
 647         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
 648 
 649         this_cpu_inc(qh->stats->pushes);
 650         return 0;
 651 }
 652 EXPORT_SYMBOL_GPL(knav_queue_push);
 653 
 654 /**
 655  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
 656  * @qh                  - hardware queue handle
 657  * @size                - (optional) size of the data pop'ed.
 658  *
 659  * Returns a DMA address on success, 0 on failure.
 660  */
 661 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
 662 {
 663         struct knav_queue *qh = qhandle;
 664         struct knav_queue_inst *inst = qh->inst;
 665         dma_addr_t dma;
 666         u32 val, idx;
 667 
 668         /* are we accumulated? */
 669         if (inst->descs) {
 670                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
 671                         atomic_inc(&inst->desc_count);
 672                         return 0;
 673                 }
 674                 idx  = atomic_inc_return(&inst->desc_head);
 675                 idx &= ACC_DESCS_MASK;
 676                 val = inst->descs[idx];
 677         } else {
 678                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
 679                 if (unlikely(!val))
 680                         return 0;
 681         }
 682 
 683         dma = val & DESC_PTR_MASK;
 684         if (size)
 685                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
 686 
 687         this_cpu_inc(qh->stats->pops);
 688         return dma;
 689 }
 690 EXPORT_SYMBOL_GPL(knav_queue_pop);
 691 
 692 /* carve out descriptors and push into queue */
 693 static void kdesc_fill_pool(struct knav_pool *pool)
 694 {
 695         struct knav_region *region;
 696         int i;
 697 
 698         region = pool->region;
 699         pool->desc_size = region->desc_size;
 700         for (i = 0; i < pool->num_desc; i++) {
 701                 int index = pool->region_offset + i;
 702                 dma_addr_t dma_addr;
 703                 unsigned dma_size;
 704                 dma_addr = region->dma_start + (region->desc_size * index);
 705                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
 706                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
 707                                            DMA_TO_DEVICE);
 708                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
 709         }
 710 }
 711 
 712 /* pop out descriptors and close the queue */
 713 static void kdesc_empty_pool(struct knav_pool *pool)
 714 {
 715         dma_addr_t dma;
 716         unsigned size;
 717         void *desc;
 718         int i;
 719 
 720         if (!pool->queue)
 721                 return;
 722 
 723         for (i = 0;; i++) {
 724                 dma = knav_queue_pop(pool->queue, &size);
 725                 if (!dma)
 726                         break;
 727                 desc = knav_pool_desc_dma_to_virt(pool, dma);
 728                 if (!desc) {
 729                         dev_dbg(pool->kdev->dev,
 730                                 "couldn't unmap desc, continuing\n");
 731                         continue;
 732                 }
 733         }
 734         WARN_ON(i != pool->num_desc);
 735         knav_queue_close(pool->queue);
 736 }
 737 
 738 
 739 /* Get the DMA address of a descriptor */
 740 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
 741 {
 742         struct knav_pool *pool = ph;
 743         return pool->region->dma_start + (virt - pool->region->virt_start);
 744 }
 745 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
 746 
 747 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
 748 {
 749         struct knav_pool *pool = ph;
 750         return pool->region->virt_start + (dma - pool->region->dma_start);
 751 }
 752 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
 753 
 754 /**
 755  * knav_pool_create()   - Create a pool of descriptors
 756  * @name                - name to give the pool handle
 757  * @num_desc            - numbers of descriptors in the pool
 758  * @region_id           - QMSS region id from which the descriptors are to be
 759  *                        allocated.
 760  *
 761  * Returns a pool handle on success.
 762  * Use IS_ERR_OR_NULL() to identify error values on return.
 763  */
 764 void *knav_pool_create(const char *name,
 765                                         int num_desc, int region_id)
 766 {
 767         struct knav_region *reg_itr, *region = NULL;
 768         struct knav_pool *pool, *pi;
 769         struct list_head *node;
 770         unsigned last_offset;
 771         bool slot_found;
 772         int ret;
 773 
 774         if (!kdev)
 775                 return ERR_PTR(-EPROBE_DEFER);
 776 
 777         if (!kdev->dev)
 778                 return ERR_PTR(-ENODEV);
 779 
 780         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
 781         if (!pool) {
 782                 dev_err(kdev->dev, "out of memory allocating pool\n");
 783                 return ERR_PTR(-ENOMEM);
 784         }
 785 
 786         for_each_region(kdev, reg_itr) {
 787                 if (reg_itr->id != region_id)
 788                         continue;
 789                 region = reg_itr;
 790                 break;
 791         }
 792 
 793         if (!region) {
 794                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
 795                 ret = -EINVAL;
 796                 goto err;
 797         }
 798 
 799         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
 800         if (IS_ERR_OR_NULL(pool->queue)) {
 801                 dev_err(kdev->dev,
 802                         "failed to open queue for pool(%s), error %ld\n",
 803                         name, PTR_ERR(pool->queue));
 804                 ret = PTR_ERR(pool->queue);
 805                 goto err;
 806         }
 807 
 808         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
 809         pool->kdev = kdev;
 810         pool->dev = kdev->dev;
 811 
 812         mutex_lock(&knav_dev_lock);
 813 
 814         if (num_desc > (region->num_desc - region->used_desc)) {
 815                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
 816                         region_id, name);
 817                 ret = -ENOMEM;
 818                 goto err_unlock;
 819         }
 820 
 821         /* Region maintains a sorted (by region offset) list of pools
 822          * use the first free slot which is large enough to accomodate
 823          * the request
 824          */
 825         last_offset = 0;
 826         slot_found = false;
 827         node = &region->pools;
 828         list_for_each_entry(pi, &region->pools, region_inst) {
 829                 if ((pi->region_offset - last_offset) >= num_desc) {
 830                         slot_found = true;
 831                         break;
 832                 }
 833                 last_offset = pi->region_offset + pi->num_desc;
 834         }
 835         node = &pi->region_inst;
 836 
 837         if (slot_found) {
 838                 pool->region = region;
 839                 pool->num_desc = num_desc;
 840                 pool->region_offset = last_offset;
 841                 region->used_desc += num_desc;
 842                 list_add_tail(&pool->list, &kdev->pools);
 843                 list_add_tail(&pool->region_inst, node);
 844         } else {
 845                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
 846                         name, region_id);
 847                 ret = -ENOMEM;
 848                 goto err_unlock;
 849         }
 850 
 851         mutex_unlock(&knav_dev_lock);
 852         kdesc_fill_pool(pool);
 853         return pool;
 854 
 855 err_unlock:
 856         mutex_unlock(&knav_dev_lock);
 857 err:
 858         kfree(pool->name);
 859         devm_kfree(kdev->dev, pool);
 860         return ERR_PTR(ret);
 861 }
 862 EXPORT_SYMBOL_GPL(knav_pool_create);
 863 
 864 /**
 865  * knav_pool_destroy()  - Free a pool of descriptors
 866  * @pool                - pool handle
 867  */
 868 void knav_pool_destroy(void *ph)
 869 {
 870         struct knav_pool *pool = ph;
 871 
 872         if (!pool)
 873                 return;
 874 
 875         if (!pool->region)
 876                 return;
 877 
 878         kdesc_empty_pool(pool);
 879         mutex_lock(&knav_dev_lock);
 880 
 881         pool->region->used_desc -= pool->num_desc;
 882         list_del(&pool->region_inst);
 883         list_del(&pool->list);
 884 
 885         mutex_unlock(&knav_dev_lock);
 886         kfree(pool->name);
 887         devm_kfree(kdev->dev, pool);
 888 }
 889 EXPORT_SYMBOL_GPL(knav_pool_destroy);
 890 
 891 
 892 /**
 893  * knav_pool_desc_get() - Get a descriptor from the pool
 894  * @pool                        - pool handle
 895  *
 896  * Returns descriptor from the pool.
 897  */
 898 void *knav_pool_desc_get(void *ph)
 899 {
 900         struct knav_pool *pool = ph;
 901         dma_addr_t dma;
 902         unsigned size;
 903         void *data;
 904 
 905         dma = knav_queue_pop(pool->queue, &size);
 906         if (unlikely(!dma))
 907                 return ERR_PTR(-ENOMEM);
 908         data = knav_pool_desc_dma_to_virt(pool, dma);
 909         return data;
 910 }
 911 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
 912 
 913 /**
 914  * knav_pool_desc_put() - return a descriptor to the pool
 915  * @pool                        - pool handle
 916  */
 917 void knav_pool_desc_put(void *ph, void *desc)
 918 {
 919         struct knav_pool *pool = ph;
 920         dma_addr_t dma;
 921         dma = knav_pool_desc_virt_to_dma(pool, desc);
 922         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
 923 }
 924 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
 925 
 926 /**
 927  * knav_pool_desc_map() - Map descriptor for DMA transfer
 928  * @pool                        - pool handle
 929  * @desc                        - address of descriptor to map
 930  * @size                        - size of descriptor to map
 931  * @dma                         - DMA address return pointer
 932  * @dma_sz                      - adjusted return pointer
 933  *
 934  * Returns 0 on success, errno otherwise.
 935  */
 936 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
 937                                         dma_addr_t *dma, unsigned *dma_sz)
 938 {
 939         struct knav_pool *pool = ph;
 940         *dma = knav_pool_desc_virt_to_dma(pool, desc);
 941         size = min(size, pool->region->desc_size);
 942         size = ALIGN(size, SMP_CACHE_BYTES);
 943         *dma_sz = size;
 944         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
 945 
 946         /* Ensure the descriptor reaches to the memory */
 947         __iowmb();
 948 
 949         return 0;
 950 }
 951 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
 952 
 953 /**
 954  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
 955  * @pool                        - pool handle
 956  * @dma                         - DMA address of descriptor to unmap
 957  * @dma_sz                      - size of descriptor to unmap
 958  *
 959  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
 960  * error values on return.
 961  */
 962 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
 963 {
 964         struct knav_pool *pool = ph;
 965         unsigned desc_sz;
 966         void *desc;
 967 
 968         desc_sz = min(dma_sz, pool->region->desc_size);
 969         desc = knav_pool_desc_dma_to_virt(pool, dma);
 970         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
 971         prefetch(desc);
 972         return desc;
 973 }
 974 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
 975 
 976 /**
 977  * knav_pool_count()    - Get the number of descriptors in pool.
 978  * @pool                - pool handle
 979  * Returns number of elements in the pool.
 980  */
 981 int knav_pool_count(void *ph)
 982 {
 983         struct knav_pool *pool = ph;
 984         return knav_queue_get_count(pool->queue);
 985 }
 986 EXPORT_SYMBOL_GPL(knav_pool_count);
 987 
 988 static void knav_queue_setup_region(struct knav_device *kdev,
 989                                         struct knav_region *region)
 990 {
 991         unsigned hw_num_desc, hw_desc_size, size;
 992         struct knav_reg_region __iomem  *regs;
 993         struct knav_qmgr_info *qmgr;
 994         struct knav_pool *pool;
 995         int id = region->id;
 996         struct page *page;
 997 
 998         /* unused region? */
 999         if (!region->num_desc) {
1000                 dev_warn(kdev->dev, "unused region %s\n", region->name);
1001                 return;
1002         }
1003 
1004         /* get hardware descriptor value */
1005         hw_num_desc = ilog2(region->num_desc - 1) + 1;
1006 
1007         /* did we force fit ourselves into nothingness? */
1008         if (region->num_desc < 32) {
1009                 region->num_desc = 0;
1010                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1011                          region->name);
1012                 return;
1013         }
1014 
1015         size = region->num_desc * region->desc_size;
1016         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1017                                                 GFP_DMA32);
1018         if (!region->virt_start) {
1019                 region->num_desc = 0;
1020                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1021                         region->name);
1022                 return;
1023         }
1024         region->virt_end = region->virt_start + size;
1025         page = virt_to_page(region->virt_start);
1026 
1027         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1028                                          DMA_BIDIRECTIONAL);
1029         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1030                 dev_err(kdev->dev, "dma map failed for region %s\n",
1031                         region->name);
1032                 goto fail;
1033         }
1034         region->dma_end = region->dma_start + size;
1035 
1036         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1037         if (!pool) {
1038                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1039                 goto fail;
1040         }
1041         pool->num_desc = 0;
1042         pool->region_offset = region->num_desc;
1043         list_add(&pool->region_inst, &region->pools);
1044 
1045         dev_dbg(kdev->dev,
1046                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1047                 region->name, id, region->desc_size, region->num_desc,
1048                 region->link_index, &region->dma_start, &region->dma_end,
1049                 region->virt_start, region->virt_end);
1050 
1051         hw_desc_size = (region->desc_size / 16) - 1;
1052         hw_num_desc -= 5;
1053 
1054         for_each_qmgr(kdev, qmgr) {
1055                 regs = qmgr->reg_region + id;
1056                 writel_relaxed((u32)region->dma_start, &regs->base);
1057                 writel_relaxed(region->link_index, &regs->start_index);
1058                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1059                                &regs->size_count);
1060         }
1061         return;
1062 
1063 fail:
1064         if (region->dma_start)
1065                 dma_unmap_page(kdev->dev, region->dma_start, size,
1066                                 DMA_BIDIRECTIONAL);
1067         if (region->virt_start)
1068                 free_pages_exact(region->virt_start, size);
1069         region->num_desc = 0;
1070         return;
1071 }
1072 
1073 static const char *knav_queue_find_name(struct device_node *node)
1074 {
1075         const char *name;
1076 
1077         if (of_property_read_string(node, "label", &name) < 0)
1078                 name = node->name;
1079         if (!name)
1080                 name = "unknown";
1081         return name;
1082 }
1083 
1084 static int knav_queue_setup_regions(struct knav_device *kdev,
1085                                         struct device_node *regions)
1086 {
1087         struct device *dev = kdev->dev;
1088         struct knav_region *region;
1089         struct device_node *child;
1090         u32 temp[2];
1091         int ret;
1092 
1093         for_each_child_of_node(regions, child) {
1094                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1095                 if (!region) {
1096                         dev_err(dev, "out of memory allocating region\n");
1097                         return -ENOMEM;
1098                 }
1099 
1100                 region->name = knav_queue_find_name(child);
1101                 of_property_read_u32(child, "id", &region->id);
1102                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1103                 if (!ret) {
1104                         region->num_desc  = temp[0];
1105                         region->desc_size = temp[1];
1106                 } else {
1107                         dev_err(dev, "invalid region info %s\n", region->name);
1108                         devm_kfree(dev, region);
1109                         continue;
1110                 }
1111 
1112                 if (!of_get_property(child, "link-index", NULL)) {
1113                         dev_err(dev, "No link info for %s\n", region->name);
1114                         devm_kfree(dev, region);
1115                         continue;
1116                 }
1117                 ret = of_property_read_u32(child, "link-index",
1118                                            &region->link_index);
1119                 if (ret) {
1120                         dev_err(dev, "link index not found for %s\n",
1121                                 region->name);
1122                         devm_kfree(dev, region);
1123                         continue;
1124                 }
1125 
1126                 INIT_LIST_HEAD(&region->pools);
1127                 list_add_tail(&region->list, &kdev->regions);
1128         }
1129         if (list_empty(&kdev->regions)) {
1130                 dev_err(dev, "no valid region information found\n");
1131                 return -ENODEV;
1132         }
1133 
1134         /* Next, we run through the regions and set things up */
1135         for_each_region(kdev, region)
1136                 knav_queue_setup_region(kdev, region);
1137 
1138         return 0;
1139 }
1140 
1141 static int knav_get_link_ram(struct knav_device *kdev,
1142                                        const char *name,
1143                                        struct knav_link_ram_block *block)
1144 {
1145         struct platform_device *pdev = to_platform_device(kdev->dev);
1146         struct device_node *node = pdev->dev.of_node;
1147         u32 temp[2];
1148 
1149         /*
1150          * Note: link ram resources are specified in "entry" sized units. In
1151          * reality, although entries are ~40bits in hardware, we treat them as
1152          * 64-bit entities here.
1153          *
1154          * For example, to specify the internal link ram for Keystone-I class
1155          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1156          *
1157          * This gets a bit weird when other link rams are used.  For example,
1158          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1159          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1160          * which accounts for 64-bits per entry, for 16K entries.
1161          */
1162         if (!of_property_read_u32_array(node, name , temp, 2)) {
1163                 if (temp[0]) {
1164                         /*
1165                          * queue_base specified => using internal or onchip
1166                          * link ram WARNING - we do not "reserve" this block
1167                          */
1168                         block->dma = (dma_addr_t)temp[0];
1169                         block->virt = NULL;
1170                         block->size = temp[1];
1171                 } else {
1172                         block->size = temp[1];
1173                         /* queue_base not specific => allocate requested size */
1174                         block->virt = dmam_alloc_coherent(kdev->dev,
1175                                                   8 * block->size, &block->dma,
1176                                                   GFP_KERNEL);
1177                         if (!block->virt) {
1178                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1179                                 return -ENOMEM;
1180                         }
1181                 }
1182         } else {
1183                 return -ENODEV;
1184         }
1185         return 0;
1186 }
1187 
1188 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1189 {
1190         struct knav_link_ram_block *block;
1191         struct knav_qmgr_info *qmgr;
1192 
1193         for_each_qmgr(kdev, qmgr) {
1194                 block = &kdev->link_rams[0];
1195                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1196                         &block->dma, block->virt, block->size);
1197                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1198                 if (kdev->version == QMSS_66AK2G)
1199                         writel_relaxed(block->size,
1200                                        &qmgr->reg_config->link_ram_size0);
1201                 else
1202                         writel_relaxed(block->size - 1,
1203                                        &qmgr->reg_config->link_ram_size0);
1204                 block++;
1205                 if (!block->size)
1206                         continue;
1207 
1208                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1209                         &block->dma, block->virt, block->size);
1210                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1211         }
1212 
1213         return 0;
1214 }
1215 
1216 static int knav_setup_queue_range(struct knav_device *kdev,
1217                                         struct device_node *node)
1218 {
1219         struct device *dev = kdev->dev;
1220         struct knav_range_info *range;
1221         struct knav_qmgr_info *qmgr;
1222         u32 temp[2], start, end, id, index;
1223         int ret, i;
1224 
1225         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1226         if (!range) {
1227                 dev_err(dev, "out of memory allocating range\n");
1228                 return -ENOMEM;
1229         }
1230 
1231         range->kdev = kdev;
1232         range->name = knav_queue_find_name(node);
1233         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1234         if (!ret) {
1235                 range->queue_base = temp[0] - kdev->base_id;
1236                 range->num_queues = temp[1];
1237         } else {
1238                 dev_err(dev, "invalid queue range %s\n", range->name);
1239                 devm_kfree(dev, range);
1240                 return -EINVAL;
1241         }
1242 
1243         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1244                 struct of_phandle_args oirq;
1245 
1246                 if (of_irq_parse_one(node, i, &oirq))
1247                         break;
1248 
1249                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1250                 if (range->irqs[i].irq == IRQ_NONE)
1251                         break;
1252 
1253                 range->num_irqs++;
1254 
1255                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1256                         unsigned long mask;
1257                         int bit;
1258 
1259                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1260                                                                cpumask_size(), GFP_KERNEL);
1261                         if (!range->irqs[i].cpu_mask)
1262                                 return -ENOMEM;
1263 
1264                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1265                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1266                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1267                 }
1268         }
1269 
1270         range->num_irqs = min(range->num_irqs, range->num_queues);
1271         if (range->num_irqs)
1272                 range->flags |= RANGE_HAS_IRQ;
1273 
1274         if (of_get_property(node, "qalloc-by-id", NULL))
1275                 range->flags |= RANGE_RESERVED;
1276 
1277         if (of_get_property(node, "accumulator", NULL)) {
1278                 ret = knav_init_acc_range(kdev, node, range);
1279                 if (ret < 0) {
1280                         devm_kfree(dev, range);
1281                         return ret;
1282                 }
1283         } else {
1284                 range->ops = &knav_gp_range_ops;
1285         }
1286 
1287         /* set threshold to 1, and flush out the queues */
1288         for_each_qmgr(kdev, qmgr) {
1289                 start = max(qmgr->start_queue, range->queue_base);
1290                 end   = min(qmgr->start_queue + qmgr->num_queues,
1291                             range->queue_base + range->num_queues);
1292                 for (id = start; id < end; id++) {
1293                         index = id - qmgr->start_queue;
1294                         writel_relaxed(THRESH_GTE | 1,
1295                                        &qmgr->reg_peek[index].ptr_size_thresh);
1296                         writel_relaxed(0,
1297                                        &qmgr->reg_push[index].ptr_size_thresh);
1298                 }
1299         }
1300 
1301         list_add_tail(&range->list, &kdev->queue_ranges);
1302         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1303                 range->name, range->queue_base,
1304                 range->queue_base + range->num_queues - 1,
1305                 range->num_irqs,
1306                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1307                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1308                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1309         kdev->num_queues_in_use += range->num_queues;
1310         return 0;
1311 }
1312 
1313 static int knav_setup_queue_pools(struct knav_device *kdev,
1314                                    struct device_node *queue_pools)
1315 {
1316         struct device_node *type, *range;
1317         int ret;
1318 
1319         for_each_child_of_node(queue_pools, type) {
1320                 for_each_child_of_node(type, range) {
1321                         ret = knav_setup_queue_range(kdev, range);
1322                         /* return value ignored, we init the rest... */
1323                 }
1324         }
1325 
1326         /* ... and barf if they all failed! */
1327         if (list_empty(&kdev->queue_ranges)) {
1328                 dev_err(kdev->dev, "no valid queue range found\n");
1329                 return -ENODEV;
1330         }
1331         return 0;
1332 }
1333 
1334 static void knav_free_queue_range(struct knav_device *kdev,
1335                                   struct knav_range_info *range)
1336 {
1337         if (range->ops && range->ops->free_range)
1338                 range->ops->free_range(range);
1339         list_del(&range->list);
1340         devm_kfree(kdev->dev, range);
1341 }
1342 
1343 static void knav_free_queue_ranges(struct knav_device *kdev)
1344 {
1345         struct knav_range_info *range;
1346 
1347         for (;;) {
1348                 range = first_queue_range(kdev);
1349                 if (!range)
1350                         break;
1351                 knav_free_queue_range(kdev, range);
1352         }
1353 }
1354 
1355 static void knav_queue_free_regions(struct knav_device *kdev)
1356 {
1357         struct knav_region *region;
1358         struct knav_pool *pool, *tmp;
1359         unsigned size;
1360 
1361         for (;;) {
1362                 region = first_region(kdev);
1363                 if (!region)
1364                         break;
1365                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1366                         knav_pool_destroy(pool);
1367 
1368                 size = region->virt_end - region->virt_start;
1369                 if (size)
1370                         free_pages_exact(region->virt_start, size);
1371                 list_del(&region->list);
1372                 devm_kfree(kdev->dev, region);
1373         }
1374 }
1375 
1376 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1377                                         struct device_node *node, int index)
1378 {
1379         struct resource res;
1380         void __iomem *regs;
1381         int ret;
1382 
1383         ret = of_address_to_resource(node, index, &res);
1384         if (ret) {
1385                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1386                         node, index);
1387                 return ERR_PTR(ret);
1388         }
1389 
1390         regs = devm_ioremap_resource(kdev->dev, &res);
1391         if (IS_ERR(regs))
1392                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1393                         index, node);
1394         return regs;
1395 }
1396 
1397 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1398                                         struct device_node *qmgrs)
1399 {
1400         struct device *dev = kdev->dev;
1401         struct knav_qmgr_info *qmgr;
1402         struct device_node *child;
1403         u32 temp[2];
1404         int ret;
1405 
1406         for_each_child_of_node(qmgrs, child) {
1407                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1408                 if (!qmgr) {
1409                         dev_err(dev, "out of memory allocating qmgr\n");
1410                         return -ENOMEM;
1411                 }
1412 
1413                 ret = of_property_read_u32_array(child, "managed-queues",
1414                                                  temp, 2);
1415                 if (!ret) {
1416                         qmgr->start_queue = temp[0];
1417                         qmgr->num_queues = temp[1];
1418                 } else {
1419                         dev_err(dev, "invalid qmgr queue range\n");
1420                         devm_kfree(dev, qmgr);
1421                         continue;
1422                 }
1423 
1424                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1425                          qmgr->start_queue, qmgr->num_queues);
1426 
1427                 qmgr->reg_peek =
1428                         knav_queue_map_reg(kdev, child,
1429                                            KNAV_QUEUE_PEEK_REG_INDEX);
1430 
1431                 if (kdev->version == QMSS) {
1432                         qmgr->reg_status =
1433                                 knav_queue_map_reg(kdev, child,
1434                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1435                 }
1436 
1437                 qmgr->reg_config =
1438                         knav_queue_map_reg(kdev, child,
1439                                            (kdev->version == QMSS_66AK2G) ?
1440                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1441                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1442                 qmgr->reg_region =
1443                         knav_queue_map_reg(kdev, child,
1444                                            (kdev->version == QMSS_66AK2G) ?
1445                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1446                                            KNAV_QUEUE_REGION_REG_INDEX);
1447 
1448                 qmgr->reg_push =
1449                         knav_queue_map_reg(kdev, child,
1450                                            (kdev->version == QMSS_66AK2G) ?
1451                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1452                                             KNAV_QUEUE_PUSH_REG_INDEX);
1453 
1454                 if (kdev->version == QMSS) {
1455                         qmgr->reg_pop =
1456                                 knav_queue_map_reg(kdev, child,
1457                                                    KNAV_QUEUE_POP_REG_INDEX);
1458                 }
1459 
1460                 if (IS_ERR(qmgr->reg_peek) ||
1461                     ((kdev->version == QMSS) &&
1462                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1463                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1464                     IS_ERR(qmgr->reg_push)) {
1465                         dev_err(dev, "failed to map qmgr regs\n");
1466                         if (kdev->version == QMSS) {
1467                                 if (!IS_ERR(qmgr->reg_status))
1468                                         devm_iounmap(dev, qmgr->reg_status);
1469                                 if (!IS_ERR(qmgr->reg_pop))
1470                                         devm_iounmap(dev, qmgr->reg_pop);
1471                         }
1472                         if (!IS_ERR(qmgr->reg_peek))
1473                                 devm_iounmap(dev, qmgr->reg_peek);
1474                         if (!IS_ERR(qmgr->reg_config))
1475                                 devm_iounmap(dev, qmgr->reg_config);
1476                         if (!IS_ERR(qmgr->reg_region))
1477                                 devm_iounmap(dev, qmgr->reg_region);
1478                         if (!IS_ERR(qmgr->reg_push))
1479                                 devm_iounmap(dev, qmgr->reg_push);
1480                         devm_kfree(dev, qmgr);
1481                         continue;
1482                 }
1483 
1484                 /* Use same push register for pop as well */
1485                 if (kdev->version == QMSS_66AK2G)
1486                         qmgr->reg_pop = qmgr->reg_push;
1487 
1488                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1489                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1490                          qmgr->start_queue, qmgr->num_queues,
1491                          qmgr->reg_peek, qmgr->reg_status,
1492                          qmgr->reg_config, qmgr->reg_region,
1493                          qmgr->reg_push, qmgr->reg_pop);
1494         }
1495         return 0;
1496 }
1497 
1498 static int knav_queue_init_pdsps(struct knav_device *kdev,
1499                                         struct device_node *pdsps)
1500 {
1501         struct device *dev = kdev->dev;
1502         struct knav_pdsp_info *pdsp;
1503         struct device_node *child;
1504 
1505         for_each_child_of_node(pdsps, child) {
1506                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1507                 if (!pdsp) {
1508                         dev_err(dev, "out of memory allocating pdsp\n");
1509                         return -ENOMEM;
1510                 }
1511                 pdsp->name = knav_queue_find_name(child);
1512                 pdsp->iram =
1513                         knav_queue_map_reg(kdev, child,
1514                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1515                 pdsp->regs =
1516                         knav_queue_map_reg(kdev, child,
1517                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1518                 pdsp->intd =
1519                         knav_queue_map_reg(kdev, child,
1520                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1521                 pdsp->command =
1522                         knav_queue_map_reg(kdev, child,
1523                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1524 
1525                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1526                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1527                         dev_err(dev, "failed to map pdsp %s regs\n",
1528                                 pdsp->name);
1529                         if (!IS_ERR(pdsp->command))
1530                                 devm_iounmap(dev, pdsp->command);
1531                         if (!IS_ERR(pdsp->iram))
1532                                 devm_iounmap(dev, pdsp->iram);
1533                         if (!IS_ERR(pdsp->regs))
1534                                 devm_iounmap(dev, pdsp->regs);
1535                         if (!IS_ERR(pdsp->intd))
1536                                 devm_iounmap(dev, pdsp->intd);
1537                         devm_kfree(dev, pdsp);
1538                         continue;
1539                 }
1540                 of_property_read_u32(child, "id", &pdsp->id);
1541                 list_add_tail(&pdsp->list, &kdev->pdsps);
1542                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1543                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1544                         pdsp->intd);
1545         }
1546         return 0;
1547 }
1548 
1549 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1550                           struct knav_pdsp_info *pdsp)
1551 {
1552         u32 val, timeout = 1000;
1553         int ret;
1554 
1555         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1556         writel_relaxed(val, &pdsp->regs->control);
1557         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1558                                         PDSP_CTRL_RUNNING);
1559         if (ret < 0) {
1560                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1561                 return ret;
1562         }
1563         pdsp->loaded = false;
1564         pdsp->started = false;
1565         return 0;
1566 }
1567 
1568 static int knav_queue_load_pdsp(struct knav_device *kdev,
1569                           struct knav_pdsp_info *pdsp)
1570 {
1571         int i, ret, fwlen;
1572         const struct firmware *fw;
1573         bool found = false;
1574         u32 *fwdata;
1575 
1576         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1577                 if (knav_acc_firmwares[i]) {
1578                         ret = request_firmware_direct(&fw,
1579                                                       knav_acc_firmwares[i],
1580                                                       kdev->dev);
1581                         if (!ret) {
1582                                 found = true;
1583                                 break;
1584                         }
1585                 }
1586         }
1587 
1588         if (!found) {
1589                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1590                 return -ENODEV;
1591         }
1592 
1593         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1594                  knav_acc_firmwares[i]);
1595 
1596         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1597         /* download the firmware */
1598         fwdata = (u32 *)fw->data;
1599         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1600         for (i = 0; i < fwlen; i++)
1601                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1602 
1603         release_firmware(fw);
1604         return 0;
1605 }
1606 
1607 static int knav_queue_start_pdsp(struct knav_device *kdev,
1608                            struct knav_pdsp_info *pdsp)
1609 {
1610         u32 val, timeout = 1000;
1611         int ret;
1612 
1613         /* write a command for sync */
1614         writel_relaxed(0xffffffff, pdsp->command);
1615         while (readl_relaxed(pdsp->command) != 0xffffffff)
1616                 cpu_relax();
1617 
1618         /* soft reset the PDSP */
1619         val  = readl_relaxed(&pdsp->regs->control);
1620         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1621         writel_relaxed(val, &pdsp->regs->control);
1622 
1623         /* enable pdsp */
1624         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1625         writel_relaxed(val, &pdsp->regs->control);
1626 
1627         /* wait for command register to clear */
1628         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1629         if (ret < 0) {
1630                 dev_err(kdev->dev,
1631                         "timed out on pdsp %s command register wait\n",
1632                         pdsp->name);
1633                 return ret;
1634         }
1635         return 0;
1636 }
1637 
1638 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1639 {
1640         struct knav_pdsp_info *pdsp;
1641 
1642         /* disable all pdsps */
1643         for_each_pdsp(kdev, pdsp)
1644                 knav_queue_stop_pdsp(kdev, pdsp);
1645 }
1646 
1647 static int knav_queue_start_pdsps(struct knav_device *kdev)
1648 {
1649         struct knav_pdsp_info *pdsp;
1650         int ret;
1651 
1652         knav_queue_stop_pdsps(kdev);
1653         /* now load them all. We return success even if pdsp
1654          * is not loaded as acc channels are optional on having
1655          * firmware availability in the system. We set the loaded
1656          * and stated flag and when initialize the acc range, check
1657          * it and init the range only if pdsp is started.
1658          */
1659         for_each_pdsp(kdev, pdsp) {
1660                 ret = knav_queue_load_pdsp(kdev, pdsp);
1661                 if (!ret)
1662                         pdsp->loaded = true;
1663         }
1664 
1665         for_each_pdsp(kdev, pdsp) {
1666                 if (pdsp->loaded) {
1667                         ret = knav_queue_start_pdsp(kdev, pdsp);
1668                         if (!ret)
1669                                 pdsp->started = true;
1670                 }
1671         }
1672         return 0;
1673 }
1674 
1675 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1676 {
1677         struct knav_qmgr_info *qmgr;
1678 
1679         for_each_qmgr(kdev, qmgr) {
1680                 if ((id >= qmgr->start_queue) &&
1681                     (id < qmgr->start_queue + qmgr->num_queues))
1682                         return qmgr;
1683         }
1684         return NULL;
1685 }
1686 
1687 static int knav_queue_init_queue(struct knav_device *kdev,
1688                                         struct knav_range_info *range,
1689                                         struct knav_queue_inst *inst,
1690                                         unsigned id)
1691 {
1692         char irq_name[KNAV_NAME_SIZE];
1693         inst->qmgr = knav_find_qmgr(id);
1694         if (!inst->qmgr)
1695                 return -1;
1696 
1697         INIT_LIST_HEAD(&inst->handles);
1698         inst->kdev = kdev;
1699         inst->range = range;
1700         inst->irq_num = -1;
1701         inst->id = id;
1702         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1703         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1704 
1705         if (range->ops && range->ops->init_queue)
1706                 return range->ops->init_queue(range, inst);
1707         else
1708                 return 0;
1709 }
1710 
1711 static int knav_queue_init_queues(struct knav_device *kdev)
1712 {
1713         struct knav_range_info *range;
1714         int size, id, base_idx;
1715         int idx = 0, ret = 0;
1716 
1717         /* how much do we need for instance data? */
1718         size = sizeof(struct knav_queue_inst);
1719 
1720         /* round this up to a power of 2, keep the index to instance
1721          * arithmetic fast.
1722          * */
1723         kdev->inst_shift = order_base_2(size);
1724         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1725         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1726         if (!kdev->instances)
1727                 return -ENOMEM;
1728 
1729         for_each_queue_range(kdev, range) {
1730                 if (range->ops && range->ops->init_range)
1731                         range->ops->init_range(range);
1732                 base_idx = idx;
1733                 for (id = range->queue_base;
1734                      id < range->queue_base + range->num_queues; id++, idx++) {
1735                         ret = knav_queue_init_queue(kdev, range,
1736                                         knav_queue_idx_to_inst(kdev, idx), id);
1737                         if (ret < 0)
1738                                 return ret;
1739                 }
1740                 range->queue_base_inst =
1741                         knav_queue_idx_to_inst(kdev, base_idx);
1742         }
1743         return 0;
1744 }
1745 
1746 /* Match table for of_platform binding */
1747 static const struct of_device_id keystone_qmss_of_match[] = {
1748         {
1749                 .compatible = "ti,keystone-navigator-qmss",
1750         },
1751         {
1752                 .compatible = "ti,66ak2g-navss-qm",
1753                 .data   = (void *)QMSS_66AK2G,
1754         },
1755         {},
1756 };
1757 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1758 
1759 static int knav_queue_probe(struct platform_device *pdev)
1760 {
1761         struct device_node *node = pdev->dev.of_node;
1762         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1763         const struct of_device_id *match;
1764         struct device *dev = &pdev->dev;
1765         u32 temp[2];
1766         int ret;
1767 
1768         if (!node) {
1769                 dev_err(dev, "device tree info unavailable\n");
1770                 return -ENODEV;
1771         }
1772 
1773         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1774         if (!kdev) {
1775                 dev_err(dev, "memory allocation failed\n");
1776                 return -ENOMEM;
1777         }
1778 
1779         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1780         if (match && match->data)
1781                 kdev->version = QMSS_66AK2G;
1782 
1783         platform_set_drvdata(pdev, kdev);
1784         kdev->dev = dev;
1785         INIT_LIST_HEAD(&kdev->queue_ranges);
1786         INIT_LIST_HEAD(&kdev->qmgrs);
1787         INIT_LIST_HEAD(&kdev->pools);
1788         INIT_LIST_HEAD(&kdev->regions);
1789         INIT_LIST_HEAD(&kdev->pdsps);
1790 
1791         pm_runtime_enable(&pdev->dev);
1792         ret = pm_runtime_get_sync(&pdev->dev);
1793         if (ret < 0) {
1794                 dev_err(dev, "Failed to enable QMSS\n");
1795                 return ret;
1796         }
1797 
1798         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1799                 dev_err(dev, "queue-range not specified\n");
1800                 ret = -ENODEV;
1801                 goto err;
1802         }
1803         kdev->base_id    = temp[0];
1804         kdev->num_queues = temp[1];
1805 
1806         /* Initialize queue managers using device tree configuration */
1807         qmgrs =  of_get_child_by_name(node, "qmgrs");
1808         if (!qmgrs) {
1809                 dev_err(dev, "queue manager info not specified\n");
1810                 ret = -ENODEV;
1811                 goto err;
1812         }
1813         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1814         of_node_put(qmgrs);
1815         if (ret)
1816                 goto err;
1817 
1818         /* get pdsp configuration values from device tree */
1819         pdsps =  of_get_child_by_name(node, "pdsps");
1820         if (pdsps) {
1821                 ret = knav_queue_init_pdsps(kdev, pdsps);
1822                 if (ret)
1823                         goto err;
1824 
1825                 ret = knav_queue_start_pdsps(kdev);
1826                 if (ret)
1827                         goto err;
1828         }
1829         of_node_put(pdsps);
1830 
1831         /* get usable queue range values from device tree */
1832         queue_pools = of_get_child_by_name(node, "queue-pools");
1833         if (!queue_pools) {
1834                 dev_err(dev, "queue-pools not specified\n");
1835                 ret = -ENODEV;
1836                 goto err;
1837         }
1838         ret = knav_setup_queue_pools(kdev, queue_pools);
1839         of_node_put(queue_pools);
1840         if (ret)
1841                 goto err;
1842 
1843         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1844         if (ret) {
1845                 dev_err(kdev->dev, "could not setup linking ram\n");
1846                 goto err;
1847         }
1848 
1849         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1850         if (ret) {
1851                 /*
1852                  * nothing really, we have one linking ram already, so we just
1853                  * live within our means
1854                  */
1855         }
1856 
1857         ret = knav_queue_setup_link_ram(kdev);
1858         if (ret)
1859                 goto err;
1860 
1861         regions =  of_get_child_by_name(node, "descriptor-regions");
1862         if (!regions) {
1863                 dev_err(dev, "descriptor-regions not specified\n");
1864                 goto err;
1865         }
1866         ret = knav_queue_setup_regions(kdev, regions);
1867         of_node_put(regions);
1868         if (ret)
1869                 goto err;
1870 
1871         ret = knav_queue_init_queues(kdev);
1872         if (ret < 0) {
1873                 dev_err(dev, "hwqueue initialization failed\n");
1874                 goto err;
1875         }
1876 
1877         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1878                             &knav_queue_debug_ops);
1879         device_ready = true;
1880         return 0;
1881 
1882 err:
1883         knav_queue_stop_pdsps(kdev);
1884         knav_queue_free_regions(kdev);
1885         knav_free_queue_ranges(kdev);
1886         pm_runtime_put_sync(&pdev->dev);
1887         pm_runtime_disable(&pdev->dev);
1888         return ret;
1889 }
1890 
1891 static int knav_queue_remove(struct platform_device *pdev)
1892 {
1893         /* TODO: Free resources */
1894         pm_runtime_put_sync(&pdev->dev);
1895         pm_runtime_disable(&pdev->dev);
1896         return 0;
1897 }
1898 
1899 static struct platform_driver keystone_qmss_driver = {
1900         .probe          = knav_queue_probe,
1901         .remove         = knav_queue_remove,
1902         .driver         = {
1903                 .name   = "keystone-navigator-qmss",
1904                 .of_match_table = keystone_qmss_of_match,
1905         },
1906 };
1907 module_platform_driver(keystone_qmss_driver);
1908 
1909 MODULE_LICENSE("GPL v2");
1910 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1911 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
1912 MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");

/* [<][>][^][v][top][bottom][index][help] */