root/drivers/soc/fsl/dpio/qbman-portal.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. qbman_read_register
  2. qbman_write_register
  3. qbman_get_cmd
  4. qbman_set_swp_cfg
  5. qbman_swp_init
  6. qbman_swp_finish
  7. qbman_swp_interrupt_read_status
  8. qbman_swp_interrupt_clear_status
  9. qbman_swp_interrupt_get_trigger
  10. qbman_swp_interrupt_set_trigger
  11. qbman_swp_interrupt_get_inhibit
  12. qbman_swp_interrupt_set_inhibit
  13. qbman_swp_mc_start
  14. qbman_swp_mc_submit
  15. qbman_swp_mc_result
  16. qbman_eq_desc_clear
  17. qbman_eq_desc_set_no_orp
  18. qbman_eq_desc_set_fq
  19. qbman_eq_desc_set_qd
  20. qbman_write_eqcr_am_rt_register
  21. qbman_swp_enqueue
  22. qbman_swp_push_get
  23. qbman_swp_push_set
  24. qbman_pull_desc_clear
  25. qbman_pull_desc_set_storage
  26. qbman_pull_desc_set_numframes
  27. qbman_pull_desc_set_fq
  28. qbman_pull_desc_set_wq
  29. qbman_pull_desc_set_channel
  30. qbman_swp_pull
  31. qbman_swp_dqrr_next
  32. qbman_swp_dqrr_consume
  33. qbman_result_has_new_result
  34. qbman_release_desc_clear
  35. qbman_release_desc_set_bpid
  36. qbman_release_desc_set_rcdi
  37. qbman_swp_release
  38. qbman_swp_acquire
  39. qbman_swp_alt_fq_state
  40. qbman_swp_CDAN_set
  41. qbman_fq_query_state
  42. qbman_fq_state_frame_count
  43. qbman_fq_state_byte_count
  44. qbman_bp_query
  45. qbman_bp_info_num_free_bufs

   1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2 /*
   3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
   4  * Copyright 2016 NXP
   5  *
   6  */
   7 
   8 #include <asm/cacheflush.h>
   9 #include <linux/io.h>
  10 #include <linux/slab.h>
  11 #include <soc/fsl/dpaa2-global.h>
  12 
  13 #include "qbman-portal.h"
  14 
  15 #define QMAN_REV_4000   0x04000000
  16 #define QMAN_REV_4100   0x04010000
  17 #define QMAN_REV_4101   0x04010001
  18 #define QMAN_REV_5000   0x05000000
  19 
  20 #define QMAN_REV_MASK   0xffff0000
  21 
  22 /* All QBMan command and result structures use this "valid bit" encoding */
  23 #define QB_VALID_BIT ((u32)0x80)
  24 
  25 /* QBMan portal management command codes */
  26 #define QBMAN_MC_ACQUIRE       0x30
  27 #define QBMAN_WQCHAN_CONFIGURE 0x46
  28 
  29 /* CINH register offsets */
  30 #define QBMAN_CINH_SWP_EQCR_PI      0x800
  31 #define QBMAN_CINH_SWP_EQAR    0x8c0
  32 #define QBMAN_CINH_SWP_CR_RT        0x900
  33 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
  34 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
  35 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
  36 #define QBMAN_CINH_SWP_DQPI    0xa00
  37 #define QBMAN_CINH_SWP_DCAP    0xac0
  38 #define QBMAN_CINH_SWP_SDQCR   0xb00
  39 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
  40 #define QBMAN_CINH_SWP_RCR_PI       0xc00
  41 #define QBMAN_CINH_SWP_RAR     0xcc0
  42 #define QBMAN_CINH_SWP_ISR     0xe00
  43 #define QBMAN_CINH_SWP_IER     0xe40
  44 #define QBMAN_CINH_SWP_ISDR    0xe80
  45 #define QBMAN_CINH_SWP_IIR     0xec0
  46 
  47 /* CENA register offsets */
  48 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
  49 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
  50 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
  51 #define QBMAN_CENA_SWP_CR      0x600
  52 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
  53 #define QBMAN_CENA_SWP_VDQCR   0x780
  54 
  55 /* CENA register offsets in memory-backed mode */
  56 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
  57 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
  58 #define QBMAN_CENA_SWP_CR_MEM       0x1600
  59 #define QBMAN_CENA_SWP_RR_MEM       0x1680
  60 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
  61 
  62 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
  63 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
  64 
  65 /* Define token used to determine if response written to memory is valid */
  66 #define QMAN_DQ_TOKEN_VALID 1
  67 
  68 /* SDQCR attribute codes */
  69 #define QB_SDQCR_FC_SHIFT   29
  70 #define QB_SDQCR_FC_MASK    0x1
  71 #define QB_SDQCR_DCT_SHIFT  24
  72 #define QB_SDQCR_DCT_MASK   0x3
  73 #define QB_SDQCR_TOK_SHIFT  16
  74 #define QB_SDQCR_TOK_MASK   0xff
  75 #define QB_SDQCR_SRC_SHIFT  0
  76 #define QB_SDQCR_SRC_MASK   0xffff
  77 
  78 /* opaque token for static dequeues */
  79 #define QMAN_SDQCR_TOKEN    0xbb
  80 
  81 enum qbman_sdqcr_dct {
  82         qbman_sdqcr_dct_null = 0,
  83         qbman_sdqcr_dct_prio_ics,
  84         qbman_sdqcr_dct_active_ics,
  85         qbman_sdqcr_dct_active
  86 };
  87 
  88 enum qbman_sdqcr_fc {
  89         qbman_sdqcr_fc_one = 0,
  90         qbman_sdqcr_fc_up_to_3 = 1
  91 };
  92 
  93 /* Portal Access */
  94 
  95 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
  96 {
  97         return readl_relaxed(p->addr_cinh + offset);
  98 }
  99 
 100 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
 101                                         u32 value)
 102 {
 103         writel_relaxed(value, p->addr_cinh + offset);
 104 }
 105 
 106 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
 107 {
 108         return p->addr_cena + offset;
 109 }
 110 
 111 #define QBMAN_CINH_SWP_CFG   0xd00
 112 
 113 #define SWP_CFG_DQRR_MF_SHIFT 20
 114 #define SWP_CFG_EST_SHIFT     16
 115 #define SWP_CFG_CPBS_SHIFT    15
 116 #define SWP_CFG_WN_SHIFT      14
 117 #define SWP_CFG_RPM_SHIFT     12
 118 #define SWP_CFG_DCM_SHIFT     10
 119 #define SWP_CFG_EPM_SHIFT     8
 120 #define SWP_CFG_VPM_SHIFT     7
 121 #define SWP_CFG_CPM_SHIFT     6
 122 #define SWP_CFG_SD_SHIFT      5
 123 #define SWP_CFG_SP_SHIFT      4
 124 #define SWP_CFG_SE_SHIFT      3
 125 #define SWP_CFG_DP_SHIFT      2
 126 #define SWP_CFG_DE_SHIFT      1
 127 #define SWP_CFG_EP_SHIFT      0
 128 
 129 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
 130                                     u8 epm, int sd, int sp, int se,
 131                                     int dp, int de, int ep)
 132 {
 133         return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
 134                 est << SWP_CFG_EST_SHIFT |
 135                 wn << SWP_CFG_WN_SHIFT |
 136                 rpm << SWP_CFG_RPM_SHIFT |
 137                 dcm << SWP_CFG_DCM_SHIFT |
 138                 epm << SWP_CFG_EPM_SHIFT |
 139                 sd << SWP_CFG_SD_SHIFT |
 140                 sp << SWP_CFG_SP_SHIFT |
 141                 se << SWP_CFG_SE_SHIFT |
 142                 dp << SWP_CFG_DP_SHIFT |
 143                 de << SWP_CFG_DE_SHIFT |
 144                 ep << SWP_CFG_EP_SHIFT);
 145 }
 146 
 147 #define QMAN_RT_MODE       0x00000100
 148 
 149 /**
 150  * qbman_swp_init() - Create a functional object representing the given
 151  *                    QBMan portal descriptor.
 152  * @d: the given qbman swp descriptor
 153  *
 154  * Return qbman_swp portal for success, NULL if the object cannot
 155  * be created.
 156  */
 157 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
 158 {
 159         struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
 160         u32 reg;
 161 
 162         if (!p)
 163                 return NULL;
 164         p->desc = d;
 165         p->mc.valid_bit = QB_VALID_BIT;
 166         p->sdq = 0;
 167         p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
 168         p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
 169         p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
 170         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
 171                 p->mr.valid_bit = QB_VALID_BIT;
 172 
 173         atomic_set(&p->vdq.available, 1);
 174         p->vdq.valid_bit = QB_VALID_BIT;
 175         p->dqrr.next_idx = 0;
 176         p->dqrr.valid_bit = QB_VALID_BIT;
 177 
 178         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
 179                 p->dqrr.dqrr_size = 4;
 180                 p->dqrr.reset_bug = 1;
 181         } else {
 182                 p->dqrr.dqrr_size = 8;
 183                 p->dqrr.reset_bug = 0;
 184         }
 185 
 186         p->addr_cena = d->cena_bar;
 187         p->addr_cinh = d->cinh_bar;
 188 
 189         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
 190                 memset(p->addr_cena, 0, 64 * 1024);
 191 
 192         reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
 193                                 1, /* Writes Non-cacheable */
 194                                 0, /* EQCR_CI stashing threshold */
 195                                 3, /* RPM: Valid bit mode, RCR in array mode */
 196                                 2, /* DCM: Discrete consumption ack mode */
 197                                 3, /* EPM: Valid bit mode, EQCR in array mode */
 198                                 1, /* mem stashing drop enable == TRUE */
 199                                 1, /* mem stashing priority == TRUE */
 200                                 1, /* mem stashing enable == TRUE */
 201                                 1, /* dequeue stashing priority == TRUE */
 202                                 0, /* dequeue stashing enable == FALSE */
 203                                 0); /* EQCR_CI stashing priority == FALSE */
 204         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
 205                 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
 206                        1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
 207                        1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
 208 
 209         qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
 210         reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
 211         if (!reg) {
 212                 pr_err("qbman: the portal is not enabled!\n");
 213                 kfree(p);
 214                 return NULL;
 215         }
 216 
 217         if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
 218                 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
 219                 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
 220         }
 221         /*
 222          * SDQCR needs to be initialized to 0 when no channels are
 223          * being dequeued from or else the QMan HW will indicate an
 224          * error.  The values that were calculated above will be
 225          * applied when dequeues from a specific channel are enabled.
 226          */
 227         qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
 228         return p;
 229 }
 230 
 231 /**
 232  * qbman_swp_finish() - Create and destroy a functional object representing
 233  *                      the given QBMan portal descriptor.
 234  * @p: the qbman_swp object to be destroyed
 235  */
 236 void qbman_swp_finish(struct qbman_swp *p)
 237 {
 238         kfree(p);
 239 }
 240 
 241 /**
 242  * qbman_swp_interrupt_read_status()
 243  * @p: the given software portal
 244  *
 245  * Return the value in the SWP_ISR register.
 246  */
 247 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
 248 {
 249         return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
 250 }
 251 
 252 /**
 253  * qbman_swp_interrupt_clear_status()
 254  * @p: the given software portal
 255  * @mask: The mask to clear in SWP_ISR register
 256  */
 257 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
 258 {
 259         qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
 260 }
 261 
 262 /**
 263  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
 264  * @p: the given software portal
 265  *
 266  * Return the value in the SWP_IER register.
 267  */
 268 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
 269 {
 270         return qbman_read_register(p, QBMAN_CINH_SWP_IER);
 271 }
 272 
 273 /**
 274  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
 275  * @p: the given software portal
 276  * @mask: The mask of bits to enable in SWP_IER
 277  */
 278 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
 279 {
 280         qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
 281 }
 282 
 283 /**
 284  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
 285  * @p: the given software portal object
 286  *
 287  * Return the value in the SWP_IIR register.
 288  */
 289 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
 290 {
 291         return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
 292 }
 293 
 294 /**
 295  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
 296  * @p: the given software portal object
 297  * @mask: The mask to set in SWP_IIR register
 298  */
 299 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
 300 {
 301         qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
 302 }
 303 
 304 /*
 305  * Different management commands all use this common base layer of code to issue
 306  * commands and poll for results.
 307  */
 308 
 309 /*
 310  * Returns a pointer to where the caller should fill in their management command
 311  * (caller should ignore the verb byte)
 312  */
 313 void *qbman_swp_mc_start(struct qbman_swp *p)
 314 {
 315         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
 316                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
 317         else
 318                 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
 319 }
 320 
 321 /*
 322  * Commits merges in the caller-supplied command verb (which should not include
 323  * the valid-bit) and submits the command to hardware
 324  */
 325 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
 326 {
 327         u8 *v = cmd;
 328 
 329         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
 330                 dma_wmb();
 331                 *v = cmd_verb | p->mc.valid_bit;
 332         } else {
 333                 *v = cmd_verb | p->mc.valid_bit;
 334                 dma_wmb();
 335                 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
 336         }
 337 }
 338 
 339 /*
 340  * Checks for a completed response (returns non-NULL if only if the response
 341  * is complete).
 342  */
 343 void *qbman_swp_mc_result(struct qbman_swp *p)
 344 {
 345         u32 *ret, verb;
 346 
 347         if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
 348                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
 349                 /* Remove the valid-bit - command completed if the rest
 350                  * is non-zero.
 351                  */
 352                 verb = ret[0] & ~QB_VALID_BIT;
 353                 if (!verb)
 354                         return NULL;
 355                 p->mc.valid_bit ^= QB_VALID_BIT;
 356         } else {
 357                 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
 358                 /* Command completed if the valid bit is toggled */
 359                 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
 360                         return NULL;
 361                 /* Command completed if the rest is non-zero */
 362                 verb = ret[0] & ~QB_VALID_BIT;
 363                 if (!verb)
 364                         return NULL;
 365                 p->mr.valid_bit ^= QB_VALID_BIT;
 366         }
 367 
 368         return ret;
 369 }
 370 
 371 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
 372 enum qb_enqueue_commands {
 373         enqueue_empty = 0,
 374         enqueue_response_always = 1,
 375         enqueue_rejects_to_fq = 2
 376 };
 377 
 378 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
 379 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
 380 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
 381 
 382 /**
 383  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
 384  *                         default/starting state.
 385  */
 386 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
 387 {
 388         memset(d, 0, sizeof(*d));
 389 }
 390 
 391 /**
 392  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
 393  * @d:                the enqueue descriptor.
 394  * @response_success: 1 = enqueue with response always; 0 = enqueue with
 395  *                    rejections returned on a FQ.
 396  */
 397 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
 398 {
 399         d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
 400         if (respond_success)
 401                 d->verb |= enqueue_response_always;
 402         else
 403                 d->verb |= enqueue_rejects_to_fq;
 404 }
 405 
 406 /*
 407  * Exactly one of the following descriptor "targets" should be set. (Calling any
 408  * one of these will replace the effect of any prior call to one of these.)
 409  *   -enqueue to a frame queue
 410  *   -enqueue to a queuing destination
 411  */
 412 
 413 /**
 414  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
 415  * @d:    the enqueue descriptor
 416  * @fqid: the id of the frame queue to be enqueued
 417  */
 418 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
 419 {
 420         d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
 421         d->tgtid = cpu_to_le32(fqid);
 422 }
 423 
 424 /**
 425  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
 426  * @d:       the enqueue descriptor
 427  * @qdid:    the id of the queuing destination to be enqueued
 428  * @qd_bin:  the queuing destination bin
 429  * @qd_prio: the queuing destination priority
 430  */
 431 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
 432                           u32 qd_bin, u32 qd_prio)
 433 {
 434         d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
 435         d->tgtid = cpu_to_le32(qdid);
 436         d->qdbin = cpu_to_le16(qd_bin);
 437         d->qpri = qd_prio;
 438 }
 439 
 440 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
 441 #define EQAR_VB(eqar)      ((eqar) & 0x80)
 442 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
 443 
 444 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
 445                                                    u8 idx)
 446 {
 447         if (idx < 16)
 448                 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
 449                                      QMAN_RT_MODE);
 450         else
 451                 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
 452                                      (idx - 16) * 4,
 453                                      QMAN_RT_MODE);
 454 }
 455 
 456 /**
 457  * qbman_swp_enqueue() - Issue an enqueue command
 458  * @s:  the software portal used for enqueue
 459  * @d:  the enqueue descriptor
 460  * @fd: the frame descriptor to be enqueued
 461  *
 462  * Please note that 'fd' should only be NULL if the "action" of the
 463  * descriptor is "orp_hole" or "orp_nesn".
 464  *
 465  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
 466  */
 467 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
 468                       const struct dpaa2_fd *fd)
 469 {
 470         struct qbman_eq_desc *p;
 471         u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
 472 
 473         if (!EQAR_SUCCESS(eqar))
 474                 return -EBUSY;
 475 
 476         p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
 477         memcpy(&p->dca, &d->dca, 31);
 478         memcpy(&p->fd, fd, sizeof(*fd));
 479 
 480         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
 481                 /* Set the verb byte, have to substitute in the valid-bit */
 482                 dma_wmb();
 483                 p->verb = d->verb | EQAR_VB(eqar);
 484         } else {
 485                 p->verb = d->verb | EQAR_VB(eqar);
 486                 dma_wmb();
 487                 qbman_write_eqcr_am_rt_register(s, EQAR_IDX(eqar));
 488         }
 489 
 490         return 0;
 491 }
 492 
 493 /* Static (push) dequeue */
 494 
 495 /**
 496  * qbman_swp_push_get() - Get the push dequeue setup
 497  * @p:           the software portal object
 498  * @channel_idx: the channel index to query
 499  * @enabled:     returned boolean to show whether the push dequeue is enabled
 500  *               for the given channel
 501  */
 502 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
 503 {
 504         u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
 505 
 506         WARN_ON(channel_idx > 15);
 507         *enabled = src | (1 << channel_idx);
 508 }
 509 
 510 /**
 511  * qbman_swp_push_set() - Enable or disable push dequeue
 512  * @p:           the software portal object
 513  * @channel_idx: the channel index (0 to 15)
 514  * @enable:      enable or disable push dequeue
 515  */
 516 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
 517 {
 518         u16 dqsrc;
 519 
 520         WARN_ON(channel_idx > 15);
 521         if (enable)
 522                 s->sdq |= 1 << channel_idx;
 523         else
 524                 s->sdq &= ~(1 << channel_idx);
 525 
 526         /* Read make the complete src map.  If no channels are enabled
 527          * the SDQCR must be 0 or else QMan will assert errors
 528          */
 529         dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
 530         if (dqsrc != 0)
 531                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
 532         else
 533                 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
 534 }
 535 
 536 #define QB_VDQCR_VERB_DCT_SHIFT    0
 537 #define QB_VDQCR_VERB_DT_SHIFT     2
 538 #define QB_VDQCR_VERB_RLS_SHIFT    4
 539 #define QB_VDQCR_VERB_WAE_SHIFT    5
 540 
 541 enum qb_pull_dt_e {
 542         qb_pull_dt_channel,
 543         qb_pull_dt_workqueue,
 544         qb_pull_dt_framequeue
 545 };
 546 
 547 /**
 548  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
 549  *                           default/starting state
 550  * @d: the pull dequeue descriptor to be cleared
 551  */
 552 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
 553 {
 554         memset(d, 0, sizeof(*d));
 555 }
 556 
 557 /**
 558  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
 559  * @d:            the pull dequeue descriptor to be set
 560  * @storage:      the pointer of the memory to store the dequeue result
 561  * @storage_phys: the physical address of the storage memory
 562  * @stash:        to indicate whether write allocate is enabled
 563  *
 564  * If not called, or if called with 'storage' as NULL, the result pull dequeues
 565  * will produce results to DQRR. If 'storage' is non-NULL, then results are
 566  * produced to the given memory location (using the DMA address which
 567  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
 568  * those writes to main-memory express a cache-warming attribute.
 569  */
 570 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
 571                                  struct dpaa2_dq *storage,
 572                                  dma_addr_t storage_phys,
 573                                  int stash)
 574 {
 575         /* save the virtual address */
 576         d->rsp_addr_virt = (u64)(uintptr_t)storage;
 577 
 578         if (!storage) {
 579                 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
 580                 return;
 581         }
 582         d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
 583         if (stash)
 584                 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
 585         else
 586                 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
 587 
 588         d->rsp_addr = cpu_to_le64(storage_phys);
 589 }
 590 
 591 /**
 592  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
 593  * @d:         the pull dequeue descriptor to be set
 594  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
 595  */
 596 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
 597 {
 598         d->numf = numframes - 1;
 599 }
 600 
 601 /*
 602  * Exactly one of the following descriptor "actions" should be set. (Calling any
 603  * one of these will replace the effect of any prior call to one of these.)
 604  * - pull dequeue from the given frame queue (FQ)
 605  * - pull dequeue from any FQ in the given work queue (WQ)
 606  * - pull dequeue from any FQ in any WQ in the given channel
 607  */
 608 
 609 /**
 610  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
 611  * @fqid: the frame queue index of the given FQ
 612  */
 613 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
 614 {
 615         d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
 616         d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
 617         d->dq_src = cpu_to_le32(fqid);
 618 }
 619 
 620 /**
 621  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
 622  * @wqid: composed of channel id and wqid within the channel
 623  * @dct:  the dequeue command type
 624  */
 625 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
 626                             enum qbman_pull_type_e dct)
 627 {
 628         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
 629         d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
 630         d->dq_src = cpu_to_le32(wqid);
 631 }
 632 
 633 /**
 634  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
 635  *                                 dequeues
 636  * @chid: the channel id to be dequeued
 637  * @dct:  the dequeue command type
 638  */
 639 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
 640                                  enum qbman_pull_type_e dct)
 641 {
 642         d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
 643         d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
 644         d->dq_src = cpu_to_le32(chid);
 645 }
 646 
 647 /**
 648  * qbman_swp_pull() - Issue the pull dequeue command
 649  * @s: the software portal object
 650  * @d: the software portal descriptor which has been configured with
 651  *     the set of qbman_pull_desc_set_*() calls
 652  *
 653  * Return 0 for success, and -EBUSY if the software portal is not ready
 654  * to do pull dequeue.
 655  */
 656 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
 657 {
 658         struct qbman_pull_desc *p;
 659 
 660         if (!atomic_dec_and_test(&s->vdq.available)) {
 661                 atomic_inc(&s->vdq.available);
 662                 return -EBUSY;
 663         }
 664         s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
 665         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
 666                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
 667         else
 668                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
 669         p->numf = d->numf;
 670         p->tok = QMAN_DQ_TOKEN_VALID;
 671         p->dq_src = d->dq_src;
 672         p->rsp_addr = d->rsp_addr;
 673         p->rsp_addr_virt = d->rsp_addr_virt;
 674 
 675         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
 676                 dma_wmb();
 677                 /* Set the verb byte, have to substitute in the valid-bit */
 678                 p->verb = d->verb | s->vdq.valid_bit;
 679                 s->vdq.valid_bit ^= QB_VALID_BIT;
 680         } else {
 681                 p->verb = d->verb | s->vdq.valid_bit;
 682                 s->vdq.valid_bit ^= QB_VALID_BIT;
 683                 dma_wmb();
 684                 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
 685         }
 686 
 687         return 0;
 688 }
 689 
 690 #define QMAN_DQRR_PI_MASK   0xf
 691 
 692 /**
 693  * qbman_swp_dqrr_next() - Get an valid DQRR entry
 694  * @s: the software portal object
 695  *
 696  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
 697  * only once, so repeated calls can return a sequence of DQRR entries, without
 698  * requiring they be consumed immediately or in any particular order.
 699  */
 700 const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
 701 {
 702         u32 verb;
 703         u32 response_verb;
 704         u32 flags;
 705         struct dpaa2_dq *p;
 706 
 707         /* Before using valid-bit to detect if something is there, we have to
 708          * handle the case of the DQRR reset bug...
 709          */
 710         if (unlikely(s->dqrr.reset_bug)) {
 711                 /*
 712                  * We pick up new entries by cache-inhibited producer index,
 713                  * which means that a non-coherent mapping would require us to
 714                  * invalidate and read *only* once that PI has indicated that
 715                  * there's an entry here. The first trip around the DQRR ring
 716                  * will be much less efficient than all subsequent trips around
 717                  * it...
 718                  */
 719                 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
 720                         QMAN_DQRR_PI_MASK;
 721 
 722                 /* there are new entries if pi != next_idx */
 723                 if (pi == s->dqrr.next_idx)
 724                         return NULL;
 725 
 726                 /*
 727                  * if next_idx is/was the last ring index, and 'pi' is
 728                  * different, we can disable the workaround as all the ring
 729                  * entries have now been DMA'd to so valid-bit checking is
 730                  * repaired. Note: this logic needs to be based on next_idx
 731                  * (which increments one at a time), rather than on pi (which
 732                  * can burst and wrap-around between our snapshots of it).
 733                  */
 734                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
 735                         pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
 736                                  s->dqrr.next_idx, pi);
 737                         s->dqrr.reset_bug = 0;
 738                 }
 739                 prefetch(qbman_get_cmd(s,
 740                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
 741         }
 742 
 743         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
 744                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
 745         else
 746                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
 747         verb = p->dq.verb;
 748 
 749         /*
 750          * If the valid-bit isn't of the expected polarity, nothing there. Note,
 751          * in the DQRR reset bug workaround, we shouldn't need to skip these
 752          * check, because we've already determined that a new entry is available
 753          * and we've invalidated the cacheline before reading it, so the
 754          * valid-bit behaviour is repaired and should tell us what we already
 755          * knew from reading PI.
 756          */
 757         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
 758                 prefetch(qbman_get_cmd(s,
 759                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
 760                 return NULL;
 761         }
 762         /*
 763          * There's something there. Move "next_idx" attention to the next ring
 764          * entry (and prefetch it) before returning what we found.
 765          */
 766         s->dqrr.next_idx++;
 767         s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
 768         if (!s->dqrr.next_idx)
 769                 s->dqrr.valid_bit ^= QB_VALID_BIT;
 770 
 771         /*
 772          * If this is the final response to a volatile dequeue command
 773          * indicate that the vdq is available
 774          */
 775         flags = p->dq.stat;
 776         response_verb = verb & QBMAN_RESULT_MASK;
 777         if ((response_verb == QBMAN_RESULT_DQ) &&
 778             (flags & DPAA2_DQ_STAT_VOLATILE) &&
 779             (flags & DPAA2_DQ_STAT_EXPIRED))
 780                 atomic_inc(&s->vdq.available);
 781 
 782         prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
 783 
 784         return p;
 785 }
 786 
 787 /**
 788  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
 789  *                             qbman_swp_dqrr_next().
 790  * @s: the software portal object
 791  * @dq: the DQRR entry to be consumed
 792  */
 793 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
 794 {
 795         qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
 796 }
 797 
 798 /**
 799  * qbman_result_has_new_result() - Check and get the dequeue response from the
 800  *                                 dq storage memory set in pull dequeue command
 801  * @s: the software portal object
 802  * @dq: the dequeue result read from the memory
 803  *
 804  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
 805  * dequeue result.
 806  *
 807  * Only used for user-provided storage of dequeue results, not DQRR. For
 808  * efficiency purposes, the driver will perform any required endianness
 809  * conversion to ensure that the user's dequeue result storage is in host-endian
 810  * format. As such, once the user has called qbman_result_has_new_result() and
 811  * been returned a valid dequeue result, they should not call it again on
 812  * the same memory location (except of course if another dequeue command has
 813  * been executed to produce a new result to that location).
 814  */
 815 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
 816 {
 817         if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
 818                 return 0;
 819 
 820         /*
 821          * Set token to be 0 so we will detect change back to 1
 822          * next time the looping is traversed. Const is cast away here
 823          * as we want users to treat the dequeue responses as read only.
 824          */
 825         ((struct dpaa2_dq *)dq)->dq.tok = 0;
 826 
 827         /*
 828          * Determine whether VDQCR is available based on whether the
 829          * current result is sitting in the first storage location of
 830          * the busy command.
 831          */
 832         if (s->vdq.storage == dq) {
 833                 s->vdq.storage = NULL;
 834                 atomic_inc(&s->vdq.available);
 835         }
 836 
 837         return 1;
 838 }
 839 
 840 /**
 841  * qbman_release_desc_clear() - Clear the contents of a descriptor to
 842  *                              default/starting state.
 843  */
 844 void qbman_release_desc_clear(struct qbman_release_desc *d)
 845 {
 846         memset(d, 0, sizeof(*d));
 847         d->verb = 1 << 5; /* Release Command Valid */
 848 }
 849 
 850 /**
 851  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
 852  */
 853 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
 854 {
 855         d->bpid = cpu_to_le16(bpid);
 856 }
 857 
 858 /**
 859  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
 860  * interrupt source should be asserted after the release command is completed.
 861  */
 862 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
 863 {
 864         if (enable)
 865                 d->verb |= 1 << 6;
 866         else
 867                 d->verb &= ~(1 << 6);
 868 }
 869 
 870 #define RAR_IDX(rar)     ((rar) & 0x7)
 871 #define RAR_VB(rar)      ((rar) & 0x80)
 872 #define RAR_SUCCESS(rar) ((rar) & 0x100)
 873 
 874 /**
 875  * qbman_swp_release() - Issue a buffer release command
 876  * @s:           the software portal object
 877  * @d:           the release descriptor
 878  * @buffers:     a pointer pointing to the buffer address to be released
 879  * @num_buffers: number of buffers to be released,  must be less than 8
 880  *
 881  * Return 0 for success, -EBUSY if the release command ring is not ready.
 882  */
 883 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
 884                       const u64 *buffers, unsigned int num_buffers)
 885 {
 886         int i;
 887         struct qbman_release_desc *p;
 888         u32 rar;
 889 
 890         if (!num_buffers || (num_buffers > 7))
 891                 return -EINVAL;
 892 
 893         rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
 894         if (!RAR_SUCCESS(rar))
 895                 return -EBUSY;
 896 
 897         /* Start the release command */
 898         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
 899                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
 900         else
 901                 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
 902         /* Copy the caller's buffer pointers to the command */
 903         for (i = 0; i < num_buffers; i++)
 904                 p->buf[i] = cpu_to_le64(buffers[i]);
 905         p->bpid = d->bpid;
 906 
 907         if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
 908                 /*
 909                  * Set the verb byte, have to substitute in the valid-bit
 910                  * and the number of buffers.
 911                  */
 912                 dma_wmb();
 913                 p->verb = d->verb | RAR_VB(rar) | num_buffers;
 914         } else {
 915                 p->verb = d->verb | RAR_VB(rar) | num_buffers;
 916                 dma_wmb();
 917                 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
 918                                      RAR_IDX(rar)  * 4, QMAN_RT_MODE);
 919         }
 920 
 921         return 0;
 922 }
 923 
 924 struct qbman_acquire_desc {
 925         u8 verb;
 926         u8 reserved;
 927         __le16 bpid;
 928         u8 num;
 929         u8 reserved2[59];
 930 };
 931 
 932 struct qbman_acquire_rslt {
 933         u8 verb;
 934         u8 rslt;
 935         __le16 reserved;
 936         u8 num;
 937         u8 reserved2[3];
 938         __le64 buf[7];
 939 };
 940 
 941 /**
 942  * qbman_swp_acquire() - Issue a buffer acquire command
 943  * @s:           the software portal object
 944  * @bpid:        the buffer pool index
 945  * @buffers:     a pointer pointing to the acquired buffer addresses
 946  * @num_buffers: number of buffers to be acquired, must be less than 8
 947  *
 948  * Return 0 for success, or negative error code if the acquire command
 949  * fails.
 950  */
 951 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
 952                       unsigned int num_buffers)
 953 {
 954         struct qbman_acquire_desc *p;
 955         struct qbman_acquire_rslt *r;
 956         int i;
 957 
 958         if (!num_buffers || (num_buffers > 7))
 959                 return -EINVAL;
 960 
 961         /* Start the management command */
 962         p = qbman_swp_mc_start(s);
 963 
 964         if (!p)
 965                 return -EBUSY;
 966 
 967         /* Encode the caller-provided attributes */
 968         p->bpid = cpu_to_le16(bpid);
 969         p->num = num_buffers;
 970 
 971         /* Complete the management command */
 972         r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
 973         if (unlikely(!r)) {
 974                 pr_err("qbman: acquire from BPID %d failed, no response\n",
 975                        bpid);
 976                 return -EIO;
 977         }
 978 
 979         /* Decode the outcome */
 980         WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
 981 
 982         /* Determine success or failure */
 983         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
 984                 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
 985                        bpid, r->rslt);
 986                 return -EIO;
 987         }
 988 
 989         WARN_ON(r->num > num_buffers);
 990 
 991         /* Copy the acquired buffers to the caller's array */
 992         for (i = 0; i < r->num; i++)
 993                 buffers[i] = le64_to_cpu(r->buf[i]);
 994 
 995         return (int)r->num;
 996 }
 997 
 998 struct qbman_alt_fq_state_desc {
 999         u8 verb;
1000         u8 reserved[3];
1001         __le32 fqid;
1002         u8 reserved2[56];
1003 };
1004 
1005 struct qbman_alt_fq_state_rslt {
1006         u8 verb;
1007         u8 rslt;
1008         u8 reserved[62];
1009 };
1010 
1011 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1012 
1013 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1014                            u8 alt_fq_verb)
1015 {
1016         struct qbman_alt_fq_state_desc *p;
1017         struct qbman_alt_fq_state_rslt *r;
1018 
1019         /* Start the management command */
1020         p = qbman_swp_mc_start(s);
1021         if (!p)
1022                 return -EBUSY;
1023 
1024         p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1025 
1026         /* Complete the management command */
1027         r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1028         if (unlikely(!r)) {
1029                 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1030                        alt_fq_verb);
1031                 return -EIO;
1032         }
1033 
1034         /* Decode the outcome */
1035         WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1036 
1037         /* Determine success or failure */
1038         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1039                 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1040                        fqid, r->verb, r->rslt);
1041                 return -EIO;
1042         }
1043 
1044         return 0;
1045 }
1046 
1047 struct qbman_cdan_ctrl_desc {
1048         u8 verb;
1049         u8 reserved;
1050         __le16 ch;
1051         u8 we;
1052         u8 ctrl;
1053         __le16 reserved2;
1054         __le64 cdan_ctx;
1055         u8 reserved3[48];
1056 
1057 };
1058 
1059 struct qbman_cdan_ctrl_rslt {
1060         u8 verb;
1061         u8 rslt;
1062         __le16 ch;
1063         u8 reserved[60];
1064 };
1065 
1066 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1067                        u8 we_mask, u8 cdan_en,
1068                        u64 ctx)
1069 {
1070         struct qbman_cdan_ctrl_desc *p = NULL;
1071         struct qbman_cdan_ctrl_rslt *r = NULL;
1072 
1073         /* Start the management command */
1074         p = qbman_swp_mc_start(s);
1075         if (!p)
1076                 return -EBUSY;
1077 
1078         /* Encode the caller-provided attributes */
1079         p->ch = cpu_to_le16(channelid);
1080         p->we = we_mask;
1081         if (cdan_en)
1082                 p->ctrl = 1;
1083         else
1084                 p->ctrl = 0;
1085         p->cdan_ctx = cpu_to_le64(ctx);
1086 
1087         /* Complete the management command */
1088         r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1089         if (unlikely(!r)) {
1090                 pr_err("qbman: wqchan config failed, no response\n");
1091                 return -EIO;
1092         }
1093 
1094         WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1095 
1096         /* Determine success or failure */
1097         if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1098                 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1099                        channelid, r->rslt);
1100                 return -EIO;
1101         }
1102 
1103         return 0;
1104 }
1105 
1106 #define QBMAN_RESPONSE_VERB_MASK        0x7f
1107 #define QBMAN_FQ_QUERY_NP               0x45
1108 #define QBMAN_BP_QUERY                  0x32
1109 
1110 struct qbman_fq_query_desc {
1111         u8 verb;
1112         u8 reserved[3];
1113         __le32 fqid;
1114         u8 reserved2[56];
1115 };
1116 
1117 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1118                          struct qbman_fq_query_np_rslt *r)
1119 {
1120         struct qbman_fq_query_desc *p;
1121         void *resp;
1122 
1123         p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1124         if (!p)
1125                 return -EBUSY;
1126 
1127         /* FQID is a 24 bit value */
1128         p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1129         resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1130         if (!resp) {
1131                 pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1132                        fqid);
1133                 return -EIO;
1134         }
1135         *r = *(struct qbman_fq_query_np_rslt *)resp;
1136         /* Decode the outcome */
1137         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1138 
1139         /* Determine success or failure */
1140         if (r->rslt != QBMAN_MC_RSLT_OK) {
1141                 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1142                        p->fqid, r->rslt);
1143                 return -EIO;
1144         }
1145 
1146         return 0;
1147 }
1148 
1149 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1150 {
1151         return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1152 }
1153 
1154 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1155 {
1156         return le32_to_cpu(r->byte_cnt);
1157 }
1158 
1159 struct qbman_bp_query_desc {
1160         u8 verb;
1161         u8 reserved;
1162         __le16 bpid;
1163         u8 reserved2[60];
1164 };
1165 
1166 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1167                    struct qbman_bp_query_rslt *r)
1168 {
1169         struct qbman_bp_query_desc *p;
1170         void *resp;
1171 
1172         p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1173         if (!p)
1174                 return -EBUSY;
1175 
1176         p->bpid = cpu_to_le16(bpid);
1177         resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1178         if (!resp) {
1179                 pr_err("qbman: Query BPID %d fields failed, no response\n",
1180                        bpid);
1181                 return -EIO;
1182         }
1183         *r = *(struct qbman_bp_query_rslt *)resp;
1184         /* Decode the outcome */
1185         WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1186 
1187         /* Determine success or failure */
1188         if (r->rslt != QBMAN_MC_RSLT_OK) {
1189                 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1190                        bpid, r->rslt);
1191                 return -EIO;
1192         }
1193 
1194         return 0;
1195 }
1196 
1197 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1198 {
1199         return le32_to_cpu(a->fill);
1200 }

/* [<][>][^][v][top][bottom][index][help] */