root/drivers/video/fbdev/sa1100fb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sa1100fb_schedule_work
  2. chan_to_field
  3. palette_pbs
  4. sa1100fb_setpalettereg
  5. sa1100fb_setcolreg
  6. sa1100fb_display_dma_period
  7. sa1100fb_check_var
  8. sa1100fb_set_visual
  9. sa1100fb_set_par
  10. sa1100fb_set_cmap
  11. sa1100fb_blank
  12. sa1100fb_mmap
  13. get_pcd
  14. sa1100fb_activate_var
  15. __sa1100fb_backlight_power
  16. __sa1100fb_lcd_power
  17. sa1100fb_setup_gpio
  18. sa1100fb_enable_controller
  19. sa1100fb_disable_controller
  20. sa1100fb_handle_irq
  21. set_ctrlr_state
  22. sa1100fb_task
  23. sa1100fb_min_dma_period
  24. sa1100fb_freq_transition
  25. sa1100fb_suspend
  26. sa1100fb_resume
  27. sa1100fb_map_video_memory
  28. sa1100fb_init_fbinfo
  29. sa1100fb_probe
  30. sa1100fb_init
  31. sa1100fb_setup

   1 /*
   2  *  linux/drivers/video/sa1100fb.c
   3  *
   4  *  Copyright (C) 1999 Eric A. Thomas
   5  *   Based on acornfb.c Copyright (C) Russell King.
   6  *
   7  * This file is subject to the terms and conditions of the GNU General Public
   8  * License.  See the file COPYING in the main directory of this archive for
   9  * more details.
  10  *
  11  *              StrongARM 1100 LCD Controller Frame Buffer Driver
  12  *
  13  * Please direct your questions and comments on this driver to the following
  14  * email address:
  15  *
  16  *      linux-arm-kernel@lists.arm.linux.org.uk
  17  *
  18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
  19  * following web page for more information:
  20  *
  21  *      http://www.arm.linux.org.uk/developer/patches/info.shtml
  22  *
  23  * Thank you.
  24  *
  25  * Known problems:
  26  *      - With the Neponset plugged into an Assabet, LCD powerdown
  27  *        doesn't work (LCD stays powered up).  Therefore we shouldn't
  28  *        blank the screen.
  29  *      - We don't limit the CPU clock rate nor the mode selection
  30  *        according to the available SDRAM bandwidth.
  31  *
  32  * Other notes:
  33  *      - Linear grayscale palettes and the kernel.
  34  *        Such code does not belong in the kernel.  The kernel frame buffer
  35  *        drivers do not expect a linear colourmap, but a colourmap based on
  36  *        the VT100 standard mapping.
  37  *
  38  *        If your _userspace_ requires a linear colourmap, then the setup of
  39  *        such a colourmap belongs _in userspace_, not in the kernel.  Code
  40  *        to set the colourmap correctly from user space has been sent to
  41  *        David Neuer.  It's around 8 lines of C code, plus another 4 to
  42  *        detect if we are using grayscale.
  43  *
  44  *      - The following must never be specified in a panel definition:
  45  *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
  46  *
  47  *      - The following should be specified:
  48  *           either LCCR0_Color or LCCR0_Mono
  49  *           either LCCR0_Sngl or LCCR0_Dual
  50  *           either LCCR0_Act or LCCR0_Pas
  51  *           either LCCR3_OutEnH or LCCD3_OutEnL
  52  *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
  53  *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
  54  *
  55  * Code Status:
  56  * 1999/04/01:
  57  *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
  58  *        resolutions are working, but only the 8bpp mode is supported.
  59  *        Changes need to be made to the palette encode and decode routines
  60  *        to support 4 and 16 bpp modes.  
  61  *        Driver is not designed to be a module.  The FrameBuffer is statically
  62  *        allocated since dynamic allocation of a 300k buffer cannot be 
  63  *        guaranteed. 
  64  *
  65  * 1999/06/17:
  66  *      - FrameBuffer memory is now allocated at run-time when the
  67  *        driver is initialized.    
  68  *
  69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
  70  *      - Big cleanup for dynamic selection of machine type at run time.
  71  *
  72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
  73  *      - Support for Bitsy aka Compaq iPAQ H3600 added.
  74  *
  75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
  76  *             Jeff Sutherland <jsutherland@accelent.com>
  77  *      - Resolved an issue caused by a change made to the Assabet's PLD 
  78  *        earlier this year which broke the framebuffer driver for newer 
  79  *        Phase 4 Assabets.  Some other parameters were changed to optimize
  80  *        for the Sharp display.
  81  *
  82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
  83  *      - XP860 support added
  84  *
  85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
  86  *      - Allows standard options to be passed on the kernel command line
  87  *        for most common passive displays.
  88  *
  89  * 2000/08/29:
  90  *      - s/save_flags_cli/local_irq_save/
  91  *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
  92  *
  93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
  94  *      - Updated LART stuff. Fixed some minor bugs.
  95  *
  96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
  97  *      - Pangolin support added
  98  *
  99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
 100  *      - Huw Webpanel support added
 101  *
 102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
 103  *      - Freebird add
 104  *
 105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
 106  *             Cliff Brake <cbrake@accelent.com>
 107  *      - Added PM callback
 108  *
 109  * 2001/05/26: <rmk@arm.linux.org.uk>
 110  *      - Fix 16bpp so that (a) we use the right colours rather than some
 111  *        totally random colour depending on what was in page 0, and (b)
 112  *        we don't de-reference a NULL pointer.
 113  *      - remove duplicated implementation of consistent_alloc()
 114  *      - convert dma address types to dma_addr_t
 115  *      - remove unused 'montype' stuff
 116  *      - remove redundant zero inits of init_var after the initial
 117  *        memset.
 118  *      - remove allow_modeset (acornfb idea does not belong here)
 119  *
 120  * 2001/05/28: <rmk@arm.linux.org.uk>
 121  *      - massive cleanup - move machine dependent data into structures
 122  *      - I've left various #warnings in - if you see one, and know
 123  *        the hardware concerned, please get in contact with me.
 124  *
 125  * 2001/05/31: <rmk@arm.linux.org.uk>
 126  *      - Fix LCCR1 HSW value, fix all machine type specifications to
 127  *        keep values in line.  (Please check your machine type specs)
 128  *
 129  * 2001/06/10: <rmk@arm.linux.org.uk>
 130  *      - Fiddle with the LCD controller from task context only; mainly
 131  *        so that we can run with interrupts on, and sleep.
 132  *      - Convert #warnings into #errors.  No pain, no gain. ;)
 133  *
 134  * 2001/06/14: <rmk@arm.linux.org.uk>
 135  *      - Make the palette BPS value for 12bpp come out correctly.
 136  *      - Take notice of "greyscale" on any colour depth.
 137  *      - Make truecolor visuals use the RGB channel encoding information.
 138  *
 139  * 2001/07/02: <rmk@arm.linux.org.uk>
 140  *      - Fix colourmap problems.
 141  *
 142  * 2001/07/13: <abraham@2d3d.co.za>
 143  *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
 144  *        manufactured by Prime View, model no V16C6448AB
 145  *
 146  * 2001/07/23: <rmk@arm.linux.org.uk>
 147  *      - Hand merge version from handhelds.org CVS tree.  See patch
 148  *        notes for 595/1 for more information.
 149  *      - Drop 12bpp (it's 16bpp with different colour register mappings).
 150  *      - This hardware can not do direct colour.  Therefore we don't
 151  *        support it.
 152  *
 153  * 2001/07/27: <rmk@arm.linux.org.uk>
 154  *      - Halve YRES on dual scan LCDs.
 155  *
 156  * 2001/08/22: <rmk@arm.linux.org.uk>
 157  *      - Add b/w iPAQ pixclock value.
 158  *
 159  * 2001/10/12: <rmk@arm.linux.org.uk>
 160  *      - Add patch 681/1 and clean up stork definitions.
 161  */
 162 
 163 #include <linux/module.h>
 164 #include <linux/kernel.h>
 165 #include <linux/sched.h>
 166 #include <linux/errno.h>
 167 #include <linux/string.h>
 168 #include <linux/interrupt.h>
 169 #include <linux/slab.h>
 170 #include <linux/mm.h>
 171 #include <linux/fb.h>
 172 #include <linux/delay.h>
 173 #include <linux/init.h>
 174 #include <linux/ioport.h>
 175 #include <linux/cpufreq.h>
 176 #include <linux/gpio.h>
 177 #include <linux/platform_device.h>
 178 #include <linux/dma-mapping.h>
 179 #include <linux/mutex.h>
 180 #include <linux/io.h>
 181 #include <linux/clk.h>
 182 
 183 #include <video/sa1100fb.h>
 184 
 185 #include <mach/hardware.h>
 186 #include <asm/mach-types.h>
 187 #include <mach/shannon.h>
 188 
 189 /*
 190  * Complain if VAR is out of range.
 191  */
 192 #define DEBUG_VAR 1
 193 
 194 #include "sa1100fb.h"
 195 
 196 static const struct sa1100fb_rgb rgb_4 = {
 197         .red    = { .offset = 0,  .length = 4, },
 198         .green  = { .offset = 0,  .length = 4, },
 199         .blue   = { .offset = 0,  .length = 4, },
 200         .transp = { .offset = 0,  .length = 0, },
 201 };
 202 
 203 static const struct sa1100fb_rgb rgb_8 = {
 204         .red    = { .offset = 0,  .length = 8, },
 205         .green  = { .offset = 0,  .length = 8, },
 206         .blue   = { .offset = 0,  .length = 8, },
 207         .transp = { .offset = 0,  .length = 0, },
 208 };
 209 
 210 static const struct sa1100fb_rgb def_rgb_16 = {
 211         .red    = { .offset = 11, .length = 5, },
 212         .green  = { .offset = 5,  .length = 6, },
 213         .blue   = { .offset = 0,  .length = 5, },
 214         .transp = { .offset = 0,  .length = 0, },
 215 };
 216 
 217 
 218 
 219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
 220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
 221 
 222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
 223 {
 224         unsigned long flags;
 225 
 226         local_irq_save(flags);
 227         /*
 228          * We need to handle two requests being made at the same time.
 229          * There are two important cases:
 230          *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
 231          *     We must perform the unblanking, which will do our REENABLE for us.
 232          *  2. When we are blanking, but immediately unblank before we have
 233          *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
 234          */
 235         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
 236                 state = (u_int) -1;
 237         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
 238                 state = C_REENABLE;
 239 
 240         if (state != (u_int)-1) {
 241                 fbi->task_state = state;
 242                 schedule_work(&fbi->task);
 243         }
 244         local_irq_restore(flags);
 245 }
 246 
 247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
 248 {
 249         chan &= 0xffff;
 250         chan >>= 16 - bf->length;
 251         return chan << bf->offset;
 252 }
 253 
 254 /*
 255  * Convert bits-per-pixel to a hardware palette PBS value.
 256  */
 257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
 258 {
 259         int ret = 0;
 260         switch (var->bits_per_pixel) {
 261         case 4:  ret = 0 << 12; break;
 262         case 8:  ret = 1 << 12; break;
 263         case 16: ret = 2 << 12; break;
 264         }
 265         return ret;
 266 }
 267 
 268 static int
 269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
 270                        u_int trans, struct fb_info *info)
 271 {
 272         struct sa1100fb_info *fbi =
 273                 container_of(info, struct sa1100fb_info, fb);
 274         u_int val, ret = 1;
 275 
 276         if (regno < fbi->palette_size) {
 277                 val = ((red >> 4) & 0xf00);
 278                 val |= ((green >> 8) & 0x0f0);
 279                 val |= ((blue >> 12) & 0x00f);
 280 
 281                 if (regno == 0)
 282                         val |= palette_pbs(&fbi->fb.var);
 283 
 284                 fbi->palette_cpu[regno] = val;
 285                 ret = 0;
 286         }
 287         return ret;
 288 }
 289 
 290 static int
 291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
 292                    u_int trans, struct fb_info *info)
 293 {
 294         struct sa1100fb_info *fbi =
 295                 container_of(info, struct sa1100fb_info, fb);
 296         unsigned int val;
 297         int ret = 1;
 298 
 299         /*
 300          * If inverse mode was selected, invert all the colours
 301          * rather than the register number.  The register number
 302          * is what you poke into the framebuffer to produce the
 303          * colour you requested.
 304          */
 305         if (fbi->inf->cmap_inverse) {
 306                 red   = 0xffff - red;
 307                 green = 0xffff - green;
 308                 blue  = 0xffff - blue;
 309         }
 310 
 311         /*
 312          * If greyscale is true, then we convert the RGB value
 313          * to greyscale no mater what visual we are using.
 314          */
 315         if (fbi->fb.var.grayscale)
 316                 red = green = blue = (19595 * red + 38470 * green +
 317                                         7471 * blue) >> 16;
 318 
 319         switch (fbi->fb.fix.visual) {
 320         case FB_VISUAL_TRUECOLOR:
 321                 /*
 322                  * 12 or 16-bit True Colour.  We encode the RGB value
 323                  * according to the RGB bitfield information.
 324                  */
 325                 if (regno < 16) {
 326                         val  = chan_to_field(red, &fbi->fb.var.red);
 327                         val |= chan_to_field(green, &fbi->fb.var.green);
 328                         val |= chan_to_field(blue, &fbi->fb.var.blue);
 329 
 330                         fbi->pseudo_palette[regno] = val;
 331                         ret = 0;
 332                 }
 333                 break;
 334 
 335         case FB_VISUAL_STATIC_PSEUDOCOLOR:
 336         case FB_VISUAL_PSEUDOCOLOR:
 337                 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
 338                 break;
 339         }
 340 
 341         return ret;
 342 }
 343 
 344 #ifdef CONFIG_CPU_FREQ
 345 /*
 346  *  sa1100fb_display_dma_period()
 347  *    Calculate the minimum period (in picoseconds) between two DMA
 348  *    requests for the LCD controller.  If we hit this, it means we're
 349  *    doing nothing but LCD DMA.
 350  */
 351 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
 352 {
 353         /*
 354          * Period = pixclock * bits_per_byte * bytes_per_transfer
 355          *              / memory_bits_per_pixel;
 356          */
 357         return var->pixclock * 8 * 16 / var->bits_per_pixel;
 358 }
 359 #endif
 360 
 361 /*
 362  *  sa1100fb_check_var():
 363  *    Round up in the following order: bits_per_pixel, xres,
 364  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
 365  *    bitfields, horizontal timing, vertical timing.
 366  */
 367 static int
 368 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 369 {
 370         struct sa1100fb_info *fbi =
 371                 container_of(info, struct sa1100fb_info, fb);
 372         int rgbidx;
 373 
 374         if (var->xres < MIN_XRES)
 375                 var->xres = MIN_XRES;
 376         if (var->yres < MIN_YRES)
 377                 var->yres = MIN_YRES;
 378         if (var->xres > fbi->inf->xres)
 379                 var->xres = fbi->inf->xres;
 380         if (var->yres > fbi->inf->yres)
 381                 var->yres = fbi->inf->yres;
 382         var->xres_virtual = max(var->xres_virtual, var->xres);
 383         var->yres_virtual = max(var->yres_virtual, var->yres);
 384 
 385         dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
 386         switch (var->bits_per_pixel) {
 387         case 4:
 388                 rgbidx = RGB_4;
 389                 break;
 390         case 8:
 391                 rgbidx = RGB_8;
 392                 break;
 393         case 16:
 394                 rgbidx = RGB_16;
 395                 break;
 396         default:
 397                 return -EINVAL;
 398         }
 399 
 400         /*
 401          * Copy the RGB parameters for this display
 402          * from the machine specific parameters.
 403          */
 404         var->red    = fbi->rgb[rgbidx]->red;
 405         var->green  = fbi->rgb[rgbidx]->green;
 406         var->blue   = fbi->rgb[rgbidx]->blue;
 407         var->transp = fbi->rgb[rgbidx]->transp;
 408 
 409         dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
 410                 var->red.length, var->green.length, var->blue.length,
 411                 var->transp.length);
 412 
 413         dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
 414                 var->red.offset, var->green.offset, var->blue.offset,
 415                 var->transp.offset);
 416 
 417 #ifdef CONFIG_CPU_FREQ
 418         dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
 419                 sa1100fb_display_dma_period(var),
 420                 clk_get_rate(fbi->clk) / 1000);
 421 #endif
 422 
 423         return 0;
 424 }
 425 
 426 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
 427 {
 428         if (fbi->inf->set_visual)
 429                 fbi->inf->set_visual(visual);
 430 }
 431 
 432 /*
 433  * sa1100fb_set_par():
 434  *      Set the user defined part of the display for the specified console
 435  */
 436 static int sa1100fb_set_par(struct fb_info *info)
 437 {
 438         struct sa1100fb_info *fbi =
 439                 container_of(info, struct sa1100fb_info, fb);
 440         struct fb_var_screeninfo *var = &info->var;
 441         unsigned long palette_mem_size;
 442 
 443         dev_dbg(fbi->dev, "set_par\n");
 444 
 445         if (var->bits_per_pixel == 16)
 446                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
 447         else if (!fbi->inf->cmap_static)
 448                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
 449         else {
 450                 /*
 451                  * Some people have weird ideas about wanting static
 452                  * pseudocolor maps.  I suspect their user space
 453                  * applications are broken.
 454                  */
 455                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
 456         }
 457 
 458         fbi->fb.fix.line_length = var->xres_virtual *
 459                                   var->bits_per_pixel / 8;
 460         fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
 461 
 462         palette_mem_size = fbi->palette_size * sizeof(u16);
 463 
 464         dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
 465 
 466         fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
 467         fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
 468 
 469         /*
 470          * Set (any) board control register to handle new color depth
 471          */
 472         sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
 473         sa1100fb_activate_var(var, fbi);
 474 
 475         return 0;
 476 }
 477 
 478 #if 0
 479 static int
 480 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
 481                   struct fb_info *info)
 482 {
 483         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
 484 
 485         /*
 486          * Make sure the user isn't doing something stupid.
 487          */
 488         if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
 489                 return -EINVAL;
 490 
 491         return gen_set_cmap(cmap, kspc, con, info);
 492 }
 493 #endif
 494 
 495 /*
 496  * Formal definition of the VESA spec:
 497  *  On
 498  *      This refers to the state of the display when it is in full operation
 499  *  Stand-By
 500  *      This defines an optional operating state of minimal power reduction with
 501  *      the shortest recovery time
 502  *  Suspend
 503  *      This refers to a level of power management in which substantial power
 504  *      reduction is achieved by the display.  The display can have a longer 
 505  *      recovery time from this state than from the Stand-by state
 506  *  Off
 507  *      This indicates that the display is consuming the lowest level of power
 508  *      and is non-operational. Recovery from this state may optionally require
 509  *      the user to manually power on the monitor
 510  *
 511  *  Now, the fbdev driver adds an additional state, (blank), where they
 512  *  turn off the video (maybe by colormap tricks), but don't mess with the
 513  *  video itself: think of it semantically between on and Stand-By.
 514  *
 515  *  So here's what we should do in our fbdev blank routine:
 516  *
 517  *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
 518  *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
 519  *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
 520  *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
 521  *
 522  *  This will match the matrox implementation.
 523  */
 524 /*
 525  * sa1100fb_blank():
 526  *      Blank the display by setting all palette values to zero.  Note, the 
 527  *      12 and 16 bpp modes don't really use the palette, so this will not
 528  *      blank the display in all modes.  
 529  */
 530 static int sa1100fb_blank(int blank, struct fb_info *info)
 531 {
 532         struct sa1100fb_info *fbi =
 533                 container_of(info, struct sa1100fb_info, fb);
 534         int i;
 535 
 536         dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
 537 
 538         switch (blank) {
 539         case FB_BLANK_POWERDOWN:
 540         case FB_BLANK_VSYNC_SUSPEND:
 541         case FB_BLANK_HSYNC_SUSPEND:
 542         case FB_BLANK_NORMAL:
 543                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 544                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 545                         for (i = 0; i < fbi->palette_size; i++)
 546                                 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
 547                 sa1100fb_schedule_work(fbi, C_DISABLE);
 548                 break;
 549 
 550         case FB_BLANK_UNBLANK:
 551                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
 552                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
 553                         fb_set_cmap(&fbi->fb.cmap, info);
 554                 sa1100fb_schedule_work(fbi, C_ENABLE);
 555         }
 556         return 0;
 557 }
 558 
 559 static int sa1100fb_mmap(struct fb_info *info,
 560                          struct vm_area_struct *vma)
 561 {
 562         struct sa1100fb_info *fbi =
 563                 container_of(info, struct sa1100fb_info, fb);
 564         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
 565 
 566         if (off < info->fix.smem_len) {
 567                 vma->vm_pgoff += 1; /* skip over the palette */
 568                 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
 569                                    fbi->map_size);
 570         }
 571 
 572         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 573 
 574         return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
 575 }
 576 
 577 static struct fb_ops sa1100fb_ops = {
 578         .owner          = THIS_MODULE,
 579         .fb_check_var   = sa1100fb_check_var,
 580         .fb_set_par     = sa1100fb_set_par,
 581 //      .fb_set_cmap    = sa1100fb_set_cmap,
 582         .fb_setcolreg   = sa1100fb_setcolreg,
 583         .fb_fillrect    = cfb_fillrect,
 584         .fb_copyarea    = cfb_copyarea,
 585         .fb_imageblit   = cfb_imageblit,
 586         .fb_blank       = sa1100fb_blank,
 587         .fb_mmap        = sa1100fb_mmap,
 588 };
 589 
 590 /*
 591  * Calculate the PCD value from the clock rate (in picoseconds).
 592  * We take account of the PPCR clock setting.
 593  */
 594 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
 595                 unsigned int pixclock)
 596 {
 597         unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
 598 
 599         pcd *= pixclock;
 600         pcd /= 10000000;
 601 
 602         return pcd + 1; /* make up for integer math truncations */
 603 }
 604 
 605 /*
 606  * sa1100fb_activate_var():
 607  *      Configures LCD Controller based on entries in var parameter.  Settings are      
 608  *      only written to the controller if changes were made.  
 609  */
 610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
 611 {
 612         struct sa1100fb_lcd_reg new_regs;
 613         u_int half_screen_size, yres, pcd;
 614         u_long flags;
 615 
 616         dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
 617 
 618         dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
 619                 var->xres, var->hsync_len,
 620                 var->left_margin, var->right_margin);
 621         dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
 622                 var->yres, var->vsync_len,
 623                 var->upper_margin, var->lower_margin);
 624 
 625 #if DEBUG_VAR
 626         if (var->xres < 16        || var->xres > 1024)
 627                 dev_err(fbi->dev, "%s: invalid xres %d\n",
 628                         fbi->fb.fix.id, var->xres);
 629         if (var->hsync_len < 1    || var->hsync_len > 64)
 630                 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
 631                         fbi->fb.fix.id, var->hsync_len);
 632         if (var->left_margin < 1  || var->left_margin > 255)
 633                 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
 634                         fbi->fb.fix.id, var->left_margin);
 635         if (var->right_margin < 1 || var->right_margin > 255)
 636                 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
 637                         fbi->fb.fix.id, var->right_margin);
 638         if (var->yres < 1         || var->yres > 1024)
 639                 dev_err(fbi->dev, "%s: invalid yres %d\n",
 640                         fbi->fb.fix.id, var->yres);
 641         if (var->vsync_len < 1    || var->vsync_len > 64)
 642                 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
 643                         fbi->fb.fix.id, var->vsync_len);
 644         if (var->upper_margin < 0 || var->upper_margin > 255)
 645                 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
 646                         fbi->fb.fix.id, var->upper_margin);
 647         if (var->lower_margin < 0 || var->lower_margin > 255)
 648                 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
 649                         fbi->fb.fix.id, var->lower_margin);
 650 #endif
 651 
 652         new_regs.lccr0 = fbi->inf->lccr0 |
 653                 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
 654                 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
 655 
 656         new_regs.lccr1 =
 657                 LCCR1_DisWdth(var->xres) +
 658                 LCCR1_HorSnchWdth(var->hsync_len) +
 659                 LCCR1_BegLnDel(var->left_margin) +
 660                 LCCR1_EndLnDel(var->right_margin);
 661 
 662         /*
 663          * If we have a dual scan LCD, then we need to halve
 664          * the YRES parameter.
 665          */
 666         yres = var->yres;
 667         if (fbi->inf->lccr0 & LCCR0_Dual)
 668                 yres /= 2;
 669 
 670         new_regs.lccr2 =
 671                 LCCR2_DisHght(yres) +
 672                 LCCR2_VrtSnchWdth(var->vsync_len) +
 673                 LCCR2_BegFrmDel(var->upper_margin) +
 674                 LCCR2_EndFrmDel(var->lower_margin);
 675 
 676         pcd = get_pcd(fbi, var->pixclock);
 677         new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
 678                 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
 679                 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
 680 
 681         dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
 682         dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
 683         dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
 684         dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
 685 
 686         half_screen_size = var->bits_per_pixel;
 687         half_screen_size = half_screen_size * var->xres * var->yres / 16;
 688 
 689         /* Update shadow copy atomically */
 690         local_irq_save(flags);
 691         fbi->dbar1 = fbi->palette_dma;
 692         fbi->dbar2 = fbi->screen_dma + half_screen_size;
 693 
 694         fbi->reg_lccr0 = new_regs.lccr0;
 695         fbi->reg_lccr1 = new_regs.lccr1;
 696         fbi->reg_lccr2 = new_regs.lccr2;
 697         fbi->reg_lccr3 = new_regs.lccr3;
 698         local_irq_restore(flags);
 699 
 700         /*
 701          * Only update the registers if the controller is enabled
 702          * and something has changed.
 703          */
 704         if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
 705             readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
 706             readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
 707             readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
 708             readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
 709             readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
 710                 sa1100fb_schedule_work(fbi, C_REENABLE);
 711 
 712         return 0;
 713 }
 714 
 715 /*
 716  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
 717  * Do not call them directly; set_ctrlr_state does the correct serialisation
 718  * to ensure that things happen in the right way 100% of time time.
 719  *      -- rmk
 720  */
 721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
 722 {
 723         dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
 724 
 725         if (fbi->inf->backlight_power)
 726                 fbi->inf->backlight_power(on);
 727 }
 728 
 729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
 730 {
 731         dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
 732 
 733         if (fbi->inf->lcd_power)
 734                 fbi->inf->lcd_power(on);
 735 }
 736 
 737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
 738 {
 739         u_int mask = 0;
 740 
 741         /*
 742          * Enable GPIO<9:2> for LCD use if:
 743          *  1. Active display, or
 744          *  2. Color Dual Passive display
 745          *
 746          * see table 11.8 on page 11-27 in the SA1100 manual
 747          *   -- Erik.
 748          *
 749          * SA1110 spec update nr. 25 says we can and should
 750          * clear LDD15 to 12 for 4 or 8bpp modes with active
 751          * panels.  
 752          */
 753         if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
 754             (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
 755                 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
 756 
 757                 if (fbi->fb.var.bits_per_pixel > 8 ||
 758                     (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
 759                         mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
 760 
 761         }
 762 
 763         if (mask) {
 764                 unsigned long flags;
 765 
 766                 /*
 767                  * SA-1100 requires the GPIO direction register set
 768                  * appropriately for the alternate function.  Hence
 769                  * we set it here via bitmask rather than excessive
 770                  * fiddling via the GPIO subsystem - and even then
 771                  * we'll still have to deal with GAFR.
 772                  */
 773                 local_irq_save(flags);
 774                 GPDR |= mask;
 775                 GAFR |= mask;
 776                 local_irq_restore(flags);
 777         }
 778 }
 779 
 780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
 781 {
 782         dev_dbg(fbi->dev, "Enabling LCD controller\n");
 783 
 784         /*
 785          * Make sure the mode bits are present in the first palette entry
 786          */
 787         fbi->palette_cpu[0] &= 0xcfff;
 788         fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
 789 
 790         /* enable LCD controller clock */
 791         clk_prepare_enable(fbi->clk);
 792 
 793         /* Sequence from 11.7.10 */
 794         writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
 795         writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
 796         writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
 797         writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
 798         writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
 799         writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
 800         writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
 801 
 802         if (machine_is_shannon())
 803                 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
 804 
 805         dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
 806         dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
 807         dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
 808         dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
 809         dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
 810         dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
 811 }
 812 
 813 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
 814 {
 815         DECLARE_WAITQUEUE(wait, current);
 816         u32 lccr0;
 817 
 818         dev_dbg(fbi->dev, "Disabling LCD controller\n");
 819 
 820         if (machine_is_shannon())
 821                 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
 822 
 823         set_current_state(TASK_UNINTERRUPTIBLE);
 824         add_wait_queue(&fbi->ctrlr_wait, &wait);
 825 
 826         /* Clear LCD Status Register */
 827         writel_relaxed(~0, fbi->base + LCSR);
 828 
 829         lccr0 = readl_relaxed(fbi->base + LCCR0);
 830         lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
 831         writel_relaxed(lccr0, fbi->base + LCCR0);
 832         lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
 833         writel_relaxed(lccr0, fbi->base + LCCR0);
 834 
 835         schedule_timeout(20 * HZ / 1000);
 836         remove_wait_queue(&fbi->ctrlr_wait, &wait);
 837 
 838         /* disable LCD controller clock */
 839         clk_disable_unprepare(fbi->clk);
 840 }
 841 
 842 /*
 843  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
 844  */
 845 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
 846 {
 847         struct sa1100fb_info *fbi = dev_id;
 848         unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
 849 
 850         if (lcsr & LCSR_LDD) {
 851                 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
 852                 writel_relaxed(lccr0, fbi->base + LCCR0);
 853                 wake_up(&fbi->ctrlr_wait);
 854         }
 855 
 856         writel_relaxed(lcsr, fbi->base + LCSR);
 857         return IRQ_HANDLED;
 858 }
 859 
 860 /*
 861  * This function must be called from task context only, since it will
 862  * sleep when disabling the LCD controller, or if we get two contending
 863  * processes trying to alter state.
 864  */
 865 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
 866 {
 867         u_int old_state;
 868 
 869         mutex_lock(&fbi->ctrlr_lock);
 870 
 871         old_state = fbi->state;
 872 
 873         /*
 874          * Hack around fbcon initialisation.
 875          */
 876         if (old_state == C_STARTUP && state == C_REENABLE)
 877                 state = C_ENABLE;
 878 
 879         switch (state) {
 880         case C_DISABLE_CLKCHANGE:
 881                 /*
 882                  * Disable controller for clock change.  If the
 883                  * controller is already disabled, then do nothing.
 884                  */
 885                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
 886                         fbi->state = state;
 887                         sa1100fb_disable_controller(fbi);
 888                 }
 889                 break;
 890 
 891         case C_DISABLE_PM:
 892         case C_DISABLE:
 893                 /*
 894                  * Disable controller
 895                  */
 896                 if (old_state != C_DISABLE) {
 897                         fbi->state = state;
 898 
 899                         __sa1100fb_backlight_power(fbi, 0);
 900                         if (old_state != C_DISABLE_CLKCHANGE)
 901                                 sa1100fb_disable_controller(fbi);
 902                         __sa1100fb_lcd_power(fbi, 0);
 903                 }
 904                 break;
 905 
 906         case C_ENABLE_CLKCHANGE:
 907                 /*
 908                  * Enable the controller after clock change.  Only
 909                  * do this if we were disabled for the clock change.
 910                  */
 911                 if (old_state == C_DISABLE_CLKCHANGE) {
 912                         fbi->state = C_ENABLE;
 913                         sa1100fb_enable_controller(fbi);
 914                 }
 915                 break;
 916 
 917         case C_REENABLE:
 918                 /*
 919                  * Re-enable the controller only if it was already
 920                  * enabled.  This is so we reprogram the control
 921                  * registers.
 922                  */
 923                 if (old_state == C_ENABLE) {
 924                         sa1100fb_disable_controller(fbi);
 925                         sa1100fb_setup_gpio(fbi);
 926                         sa1100fb_enable_controller(fbi);
 927                 }
 928                 break;
 929 
 930         case C_ENABLE_PM:
 931                 /*
 932                  * Re-enable the controller after PM.  This is not
 933                  * perfect - think about the case where we were doing
 934                  * a clock change, and we suspended half-way through.
 935                  */
 936                 if (old_state != C_DISABLE_PM)
 937                         break;
 938                 /* fall through */
 939 
 940         case C_ENABLE:
 941                 /*
 942                  * Power up the LCD screen, enable controller, and
 943                  * turn on the backlight.
 944                  */
 945                 if (old_state != C_ENABLE) {
 946                         fbi->state = C_ENABLE;
 947                         sa1100fb_setup_gpio(fbi);
 948                         __sa1100fb_lcd_power(fbi, 1);
 949                         sa1100fb_enable_controller(fbi);
 950                         __sa1100fb_backlight_power(fbi, 1);
 951                 }
 952                 break;
 953         }
 954         mutex_unlock(&fbi->ctrlr_lock);
 955 }
 956 
 957 /*
 958  * Our LCD controller task (which is called when we blank or unblank)
 959  * via keventd.
 960  */
 961 static void sa1100fb_task(struct work_struct *w)
 962 {
 963         struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
 964         u_int state = xchg(&fbi->task_state, -1);
 965 
 966         set_ctrlr_state(fbi, state);
 967 }
 968 
 969 #ifdef CONFIG_CPU_FREQ
 970 /*
 971  * Calculate the minimum DMA period over all displays that we own.
 972  * This, together with the SDRAM bandwidth defines the slowest CPU
 973  * frequency that can be selected.
 974  */
 975 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
 976 {
 977         /*
 978          * FIXME: we need to verify _all_ consoles.
 979          */
 980         return sa1100fb_display_dma_period(&fbi->fb.var);
 981 }
 982 
 983 /*
 984  * CPU clock speed change handler.  We need to adjust the LCD timing
 985  * parameters when the CPU clock is adjusted by the power management
 986  * subsystem.
 987  */
 988 static int
 989 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
 990                          void *data)
 991 {
 992         struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
 993         u_int pcd;
 994 
 995         switch (val) {
 996         case CPUFREQ_PRECHANGE:
 997                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
 998                 break;
 999 
1000         case CPUFREQ_POSTCHANGE:
1001                 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1002                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1003                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1004                 break;
1005         }
1006         return 0;
1007 }
1008 #endif
1009 
1010 #ifdef CONFIG_PM
1011 /*
1012  * Power management hooks.  Note that we won't be called from IRQ context,
1013  * unlike the blank functions above, so we may sleep.
1014  */
1015 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1016 {
1017         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1018 
1019         set_ctrlr_state(fbi, C_DISABLE_PM);
1020         return 0;
1021 }
1022 
1023 static int sa1100fb_resume(struct platform_device *dev)
1024 {
1025         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1026 
1027         set_ctrlr_state(fbi, C_ENABLE_PM);
1028         return 0;
1029 }
1030 #else
1031 #define sa1100fb_suspend        NULL
1032 #define sa1100fb_resume         NULL
1033 #endif
1034 
1035 /*
1036  * sa1100fb_map_video_memory():
1037  *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1038  *      remapped into a non-cached, non-buffered, memory region to  
1039  *      allow palette and pixel writes to occur without flushing the 
1040  *      cache.  Once this area is remapped, all virtual memory
1041  *      access to the video memory should occur at the new region.
1042  */
1043 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1044 {
1045         /*
1046          * We reserve one page for the palette, plus the size
1047          * of the framebuffer.
1048          */
1049         fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1050         fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1051                                     GFP_KERNEL);
1052 
1053         if (fbi->map_cpu) {
1054                 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1055                 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1056                 /*
1057                  * FIXME: this is actually the wrong thing to place in
1058                  * smem_start.  But fbdev suffers from the problem that
1059                  * it needs an API which doesn't exist (in this case,
1060                  * dma_writecombine_mmap)
1061                  */
1062                 fbi->fb.fix.smem_start = fbi->screen_dma;
1063         }
1064 
1065         return fbi->map_cpu ? 0 : -ENOMEM;
1066 }
1067 
1068 /* Fake monspecs to fill in fbinfo structure */
1069 static struct fb_monspecs monspecs = {
1070         .hfmin  = 30000,
1071         .hfmax  = 70000,
1072         .vfmin  = 50,
1073         .vfmax  = 65,
1074 };
1075 
1076 
1077 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1078 {
1079         struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1080         struct sa1100fb_info *fbi;
1081         unsigned i;
1082 
1083         fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1084         if (!fbi)
1085                 return NULL;
1086 
1087         fbi->dev = dev;
1088 
1089         strcpy(fbi->fb.fix.id, SA1100_NAME);
1090 
1091         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1092         fbi->fb.fix.type_aux    = 0;
1093         fbi->fb.fix.xpanstep    = 0;
1094         fbi->fb.fix.ypanstep    = 0;
1095         fbi->fb.fix.ywrapstep   = 0;
1096         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1097 
1098         fbi->fb.var.nonstd      = 0;
1099         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1100         fbi->fb.var.height      = -1;
1101         fbi->fb.var.width       = -1;
1102         fbi->fb.var.accel_flags = 0;
1103         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1104 
1105         fbi->fb.fbops           = &sa1100fb_ops;
1106         fbi->fb.flags           = FBINFO_DEFAULT;
1107         fbi->fb.monspecs        = monspecs;
1108         fbi->fb.pseudo_palette  = fbi->pseudo_palette;
1109 
1110         fbi->rgb[RGB_4]         = &rgb_4;
1111         fbi->rgb[RGB_8]         = &rgb_8;
1112         fbi->rgb[RGB_16]        = &def_rgb_16;
1113 
1114         /*
1115          * People just don't seem to get this.  We don't support
1116          * anything but correct entries now, so panic if someone
1117          * does something stupid.
1118          */
1119         if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1120             inf->pixclock == 0)
1121                 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1122                         "pixclock.");
1123 
1124         fbi->fb.var.xres                = inf->xres;
1125         fbi->fb.var.xres_virtual        = inf->xres;
1126         fbi->fb.var.yres                = inf->yres;
1127         fbi->fb.var.yres_virtual        = inf->yres;
1128         fbi->fb.var.bits_per_pixel      = inf->bpp;
1129         fbi->fb.var.pixclock            = inf->pixclock;
1130         fbi->fb.var.hsync_len           = inf->hsync_len;
1131         fbi->fb.var.left_margin         = inf->left_margin;
1132         fbi->fb.var.right_margin        = inf->right_margin;
1133         fbi->fb.var.vsync_len           = inf->vsync_len;
1134         fbi->fb.var.upper_margin        = inf->upper_margin;
1135         fbi->fb.var.lower_margin        = inf->lower_margin;
1136         fbi->fb.var.sync                = inf->sync;
1137         fbi->fb.var.grayscale           = inf->cmap_greyscale;
1138         fbi->state                      = C_STARTUP;
1139         fbi->task_state                 = (u_char)-1;
1140         fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1141                                           inf->bpp / 8;
1142         fbi->inf                        = inf;
1143 
1144         /* Copy the RGB bitfield overrides */
1145         for (i = 0; i < NR_RGB; i++)
1146                 if (inf->rgb[i])
1147                         fbi->rgb[i] = inf->rgb[i];
1148 
1149         init_waitqueue_head(&fbi->ctrlr_wait);
1150         INIT_WORK(&fbi->task, sa1100fb_task);
1151         mutex_init(&fbi->ctrlr_lock);
1152 
1153         return fbi;
1154 }
1155 
1156 static int sa1100fb_probe(struct platform_device *pdev)
1157 {
1158         struct sa1100fb_info *fbi;
1159         struct resource *res;
1160         int ret, irq;
1161 
1162         if (!dev_get_platdata(&pdev->dev)) {
1163                 dev_err(&pdev->dev, "no platform LCD data\n");
1164                 return -EINVAL;
1165         }
1166 
1167         irq = platform_get_irq(pdev, 0);
1168         if (irq < 0)
1169                 return -EINVAL;
1170 
1171         fbi = sa1100fb_init_fbinfo(&pdev->dev);
1172         if (!fbi)
1173                 return -ENOMEM;
1174 
1175         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176         fbi->base = devm_ioremap_resource(&pdev->dev, res);
1177         if (IS_ERR(fbi->base))
1178                 return PTR_ERR(fbi->base);
1179 
1180         fbi->clk = devm_clk_get(&pdev->dev, NULL);
1181         if (IS_ERR(fbi->clk))
1182                 return PTR_ERR(fbi->clk);
1183 
1184         ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1185                                "LCD", fbi);
1186         if (ret) {
1187                 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1188                 return ret;
1189         }
1190 
1191         if (machine_is_shannon()) {
1192                 ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN,
1193                         GPIOF_OUT_INIT_LOW, "display enable");
1194                 if (ret)
1195                         return ret;
1196         }
1197 
1198         /* Initialize video memory */
1199         ret = sa1100fb_map_video_memory(fbi);
1200         if (ret)
1201                 return ret;
1202 
1203         /*
1204          * This makes sure that our colour bitfield
1205          * descriptors are correctly initialised.
1206          */
1207         sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1208 
1209         platform_set_drvdata(pdev, fbi);
1210 
1211         ret = register_framebuffer(&fbi->fb);
1212         if (ret < 0) {
1213                 dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1214                             fbi->map_dma);
1215                 return ret;
1216         }
1217 
1218 #ifdef CONFIG_CPU_FREQ
1219         fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1220         cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1221 #endif
1222 
1223         /* This driver cannot be unloaded at the moment */
1224         return 0;
1225 }
1226 
1227 static struct platform_driver sa1100fb_driver = {
1228         .probe          = sa1100fb_probe,
1229         .suspend        = sa1100fb_suspend,
1230         .resume         = sa1100fb_resume,
1231         .driver         = {
1232                 .name   = "sa11x0-fb",
1233         },
1234 };
1235 
1236 int __init sa1100fb_init(void)
1237 {
1238         if (fb_get_options("sa1100fb", NULL))
1239                 return -ENODEV;
1240 
1241         return platform_driver_register(&sa1100fb_driver);
1242 }
1243 
1244 int __init sa1100fb_setup(char *options)
1245 {
1246 #if 0
1247         char *this_opt;
1248 
1249         if (!options || !*options)
1250                 return 0;
1251 
1252         while ((this_opt = strsep(&options, ",")) != NULL) {
1253 
1254                 if (!strncmp(this_opt, "bpp:", 4))
1255                         current_par.max_bpp =
1256                             simple_strtoul(this_opt + 4, NULL, 0);
1257 
1258                 if (!strncmp(this_opt, "lccr0:", 6))
1259                         lcd_shadow.lccr0 =
1260                             simple_strtoul(this_opt + 6, NULL, 0);
1261                 if (!strncmp(this_opt, "lccr1:", 6)) {
1262                         lcd_shadow.lccr1 =
1263                             simple_strtoul(this_opt + 6, NULL, 0);
1264                         current_par.max_xres =
1265                             (lcd_shadow.lccr1 & 0x3ff) + 16;
1266                 }
1267                 if (!strncmp(this_opt, "lccr2:", 6)) {
1268                         lcd_shadow.lccr2 =
1269                             simple_strtoul(this_opt + 6, NULL, 0);
1270                         current_par.max_yres =
1271                             (lcd_shadow.
1272                              lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1273                                                     lccr2 & 0x3ff) +
1274                                                    1) *
1275                             2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1276                 }
1277                 if (!strncmp(this_opt, "lccr3:", 6))
1278                         lcd_shadow.lccr3 =
1279                             simple_strtoul(this_opt + 6, NULL, 0);
1280         }
1281 #endif
1282         return 0;
1283 }
1284 
1285 module_init(sa1100fb_init);
1286 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1287 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */