root/drivers/pci/controller/pci-hyperv.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. hv_pci_generic_compl
  2. get_pcichild
  3. put_pcichild
  4. wait_for_response
  5. devfn_to_wslot
  6. wslot_to_devfn
  7. _hv_pcifront_read_config
  8. hv_pcifront_get_vendor_id
  9. _hv_pcifront_write_config
  10. hv_pcifront_read_config
  11. hv_pcifront_write_config
  12. hv_pci_read_config_compl
  13. hv_read_config_block
  14. hv_pci_write_config_compl
  15. hv_write_config_block
  16. hv_register_block_invalidate
  17. hv_int_desc_free
  18. hv_msi_free
  19. hv_set_affinity
  20. hv_irq_mask
  21. hv_irq_unmask
  22. hv_pci_compose_compl
  23. hv_compose_msi_req_v1
  24. hv_compose_msi_req_v2
  25. hv_compose_msi_msg
  26. hv_msi_domain_ops_get_hwirq
  27. hv_pcie_init_irq_domain
  28. get_bar_size
  29. survey_child_resources
  30. prepopulate_bars
  31. hv_pci_assign_slots
  32. hv_pci_remove_slots
  33. create_root_hv_pci_bus
  34. q_resource_requirements
  35. new_pcichild_device
  36. get_pcichild_wslot
  37. pci_devices_present_work
  38. hv_pci_devices_present
  39. hv_eject_device_work
  40. hv_pci_eject_device
  41. hv_pci_onchannelcallback
  42. hv_pci_protocol_negotiation
  43. hv_pci_free_bridge_windows
  44. hv_pci_allocate_bridge_windows
  45. hv_allocate_config_window
  46. hv_free_config_window
  47. hv_pci_enter_d0
  48. hv_pci_query_relations
  49. hv_send_resources_allocated
  50. hv_send_resources_released
  51. get_hvpcibus
  52. put_hvpcibus
  53. hv_get_dom_num
  54. hv_put_dom_num
  55. hv_pci_probe
  56. hv_pci_bus_exit
  57. hv_pci_remove
  58. exit_hv_pci_drv
  59. init_hv_pci_drv

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (c) Microsoft Corporation.
   4  *
   5  * Author:
   6  *   Jake Oshins <jakeo@microsoft.com>
   7  *
   8  * This driver acts as a paravirtual front-end for PCI Express root buses.
   9  * When a PCI Express function (either an entire device or an SR-IOV
  10  * Virtual Function) is being passed through to the VM, this driver exposes
  11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14  * until a device as been exposed using this driver.
  15  *
  16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17  * the PCI Firmware Specifications.  Thus while each device passed through
  18  * to the VM using this front-end will appear at "device 0", the domain will
  19  * be unique.  Typically, each bus will have one PCI function on it, though
  20  * this driver does support more than one.
  21  *
  22  * In order to map the interrupts from the device through to the guest VM,
  23  * this driver also implements an IRQ Domain, which handles interrupts (either
  24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25  * set up, torn down, or reaffined, this driver communicates with the
  26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27  * interrupt will be delivered to the correct virtual processor at the right
  28  * vector.  This driver does not support level-triggered (line-based)
  29  * interrupts, and will report that the Interrupt Line register in the
  30  * function's configuration space is zero.
  31  *
  32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33  * facilities.  For instance, the configuration space of a function exposed
  34  * by Hyper-V is mapped into a single page of memory space, and the
  35  * read and write handlers for config space must be aware of this mechanism.
  36  * Similarly, device setup and teardown involves messages sent to and from
  37  * the PCI back-end driver in Hyper-V.
  38  */
  39 
  40 #include <linux/kernel.h>
  41 #include <linux/module.h>
  42 #include <linux/pci.h>
  43 #include <linux/delay.h>
  44 #include <linux/semaphore.h>
  45 #include <linux/irqdomain.h>
  46 #include <asm/irqdomain.h>
  47 #include <asm/apic.h>
  48 #include <linux/irq.h>
  49 #include <linux/msi.h>
  50 #include <linux/hyperv.h>
  51 #include <linux/refcount.h>
  52 #include <asm/mshyperv.h>
  53 
  54 /*
  55  * Protocol versions. The low word is the minor version, the high word the
  56  * major version.
  57  */
  58 
  59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62 
  63 enum pci_protocol_version_t {
  64         PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),      /* Win10 */
  65         PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),      /* RS1 */
  66 };
  67 
  68 #define CPU_AFFINITY_ALL        -1ULL
  69 
  70 /*
  71  * Supported protocol versions in the order of probing - highest go
  72  * first.
  73  */
  74 static enum pci_protocol_version_t pci_protocol_versions[] = {
  75         PCI_PROTOCOL_VERSION_1_2,
  76         PCI_PROTOCOL_VERSION_1_1,
  77 };
  78 
  79 /*
  80  * Protocol version negotiated by hv_pci_protocol_negotiation().
  81  */
  82 static enum pci_protocol_version_t pci_protocol_version;
  83 
  84 #define PCI_CONFIG_MMIO_LENGTH  0x2000
  85 #define CFG_PAGE_OFFSET 0x1000
  86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  87 
  88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
  89 
  90 #define STATUS_REVISION_MISMATCH 0xC0000059
  91 
  92 /* space for 32bit serial number as string */
  93 #define SLOT_NAME_SIZE 11
  94 
  95 /*
  96  * Message Types
  97  */
  98 
  99 enum pci_message_type {
 100         /*
 101          * Version 1.1
 102          */
 103         PCI_MESSAGE_BASE                = 0x42490000,
 104         PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 105         PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 106         PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 107         PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 108         PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 109         PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 110         PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 111         PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 112         PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 113         PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 114         PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 115         PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 116         PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 117         PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 118         PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 119         PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 120         PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 121         PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 122         PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 123         PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 124         PCI_RESOURCES_ASSIGNED2         = PCI_MESSAGE_BASE + 0x16,
 125         PCI_CREATE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x17,
 126         PCI_DELETE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x18, /* unused */
 127         PCI_MESSAGE_MAXIMUM
 128 };
 129 
 130 /*
 131  * Structures defining the virtual PCI Express protocol.
 132  */
 133 
 134 union pci_version {
 135         struct {
 136                 u16 minor_version;
 137                 u16 major_version;
 138         } parts;
 139         u32 version;
 140 } __packed;
 141 
 142 /*
 143  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 144  * which is all this driver does.  This representation is the one used in
 145  * Windows, which is what is expected when sending this back and forth with
 146  * the Hyper-V parent partition.
 147  */
 148 union win_slot_encoding {
 149         struct {
 150                 u32     dev:5;
 151                 u32     func:3;
 152                 u32     reserved:24;
 153         } bits;
 154         u32 slot;
 155 } __packed;
 156 
 157 /*
 158  * Pretty much as defined in the PCI Specifications.
 159  */
 160 struct pci_function_description {
 161         u16     v_id;   /* vendor ID */
 162         u16     d_id;   /* device ID */
 163         u8      rev;
 164         u8      prog_intf;
 165         u8      subclass;
 166         u8      base_class;
 167         u32     subsystem_id;
 168         union win_slot_encoding win_slot;
 169         u32     ser;    /* serial number */
 170 } __packed;
 171 
 172 /**
 173  * struct hv_msi_desc
 174  * @vector:             IDT entry
 175  * @delivery_mode:      As defined in Intel's Programmer's
 176  *                      Reference Manual, Volume 3, Chapter 8.
 177  * @vector_count:       Number of contiguous entries in the
 178  *                      Interrupt Descriptor Table that are
 179  *                      occupied by this Message-Signaled
 180  *                      Interrupt. For "MSI", as first defined
 181  *                      in PCI 2.2, this can be between 1 and
 182  *                      32. For "MSI-X," as first defined in PCI
 183  *                      3.0, this must be 1, as each MSI-X table
 184  *                      entry would have its own descriptor.
 185  * @reserved:           Empty space
 186  * @cpu_mask:           All the target virtual processors.
 187  */
 188 struct hv_msi_desc {
 189         u8      vector;
 190         u8      delivery_mode;
 191         u16     vector_count;
 192         u32     reserved;
 193         u64     cpu_mask;
 194 } __packed;
 195 
 196 /**
 197  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 198  * @vector:             IDT entry
 199  * @delivery_mode:      As defined in Intel's Programmer's
 200  *                      Reference Manual, Volume 3, Chapter 8.
 201  * @vector_count:       Number of contiguous entries in the
 202  *                      Interrupt Descriptor Table that are
 203  *                      occupied by this Message-Signaled
 204  *                      Interrupt. For "MSI", as first defined
 205  *                      in PCI 2.2, this can be between 1 and
 206  *                      32. For "MSI-X," as first defined in PCI
 207  *                      3.0, this must be 1, as each MSI-X table
 208  *                      entry would have its own descriptor.
 209  * @processor_count:    number of bits enabled in array.
 210  * @processor_array:    All the target virtual processors.
 211  */
 212 struct hv_msi_desc2 {
 213         u8      vector;
 214         u8      delivery_mode;
 215         u16     vector_count;
 216         u16     processor_count;
 217         u16     processor_array[32];
 218 } __packed;
 219 
 220 /**
 221  * struct tran_int_desc
 222  * @reserved:           unused, padding
 223  * @vector_count:       same as in hv_msi_desc
 224  * @data:               This is the "data payload" value that is
 225  *                      written by the device when it generates
 226  *                      a message-signaled interrupt, either MSI
 227  *                      or MSI-X.
 228  * @address:            This is the address to which the data
 229  *                      payload is written on interrupt
 230  *                      generation.
 231  */
 232 struct tran_int_desc {
 233         u16     reserved;
 234         u16     vector_count;
 235         u32     data;
 236         u64     address;
 237 } __packed;
 238 
 239 /*
 240  * A generic message format for virtual PCI.
 241  * Specific message formats are defined later in the file.
 242  */
 243 
 244 struct pci_message {
 245         u32 type;
 246 } __packed;
 247 
 248 struct pci_child_message {
 249         struct pci_message message_type;
 250         union win_slot_encoding wslot;
 251 } __packed;
 252 
 253 struct pci_incoming_message {
 254         struct vmpacket_descriptor hdr;
 255         struct pci_message message_type;
 256 } __packed;
 257 
 258 struct pci_response {
 259         struct vmpacket_descriptor hdr;
 260         s32 status;                     /* negative values are failures */
 261 } __packed;
 262 
 263 struct pci_packet {
 264         void (*completion_func)(void *context, struct pci_response *resp,
 265                                 int resp_packet_size);
 266         void *compl_ctxt;
 267 
 268         struct pci_message message[0];
 269 };
 270 
 271 /*
 272  * Specific message types supporting the PCI protocol.
 273  */
 274 
 275 /*
 276  * Version negotiation message. Sent from the guest to the host.
 277  * The guest is free to try different versions until the host
 278  * accepts the version.
 279  *
 280  * pci_version: The protocol version requested.
 281  * is_last_attempt: If TRUE, this is the last version guest will request.
 282  * reservedz: Reserved field, set to zero.
 283  */
 284 
 285 struct pci_version_request {
 286         struct pci_message message_type;
 287         u32 protocol_version;
 288 } __packed;
 289 
 290 /*
 291  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 292  * bus (PCI Express port) is ready for action.
 293  */
 294 
 295 struct pci_bus_d0_entry {
 296         struct pci_message message_type;
 297         u32 reserved;
 298         u64 mmio_base;
 299 } __packed;
 300 
 301 struct pci_bus_relations {
 302         struct pci_incoming_message incoming;
 303         u32 device_count;
 304         struct pci_function_description func[0];
 305 } __packed;
 306 
 307 struct pci_q_res_req_response {
 308         struct vmpacket_descriptor hdr;
 309         s32 status;                     /* negative values are failures */
 310         u32 probed_bar[6];
 311 } __packed;
 312 
 313 struct pci_set_power {
 314         struct pci_message message_type;
 315         union win_slot_encoding wslot;
 316         u32 power_state;                /* In Windows terms */
 317         u32 reserved;
 318 } __packed;
 319 
 320 struct pci_set_power_response {
 321         struct vmpacket_descriptor hdr;
 322         s32 status;                     /* negative values are failures */
 323         union win_slot_encoding wslot;
 324         u32 resultant_state;            /* In Windows terms */
 325         u32 reserved;
 326 } __packed;
 327 
 328 struct pci_resources_assigned {
 329         struct pci_message message_type;
 330         union win_slot_encoding wslot;
 331         u8 memory_range[0x14][6];       /* not used here */
 332         u32 msi_descriptors;
 333         u32 reserved[4];
 334 } __packed;
 335 
 336 struct pci_resources_assigned2 {
 337         struct pci_message message_type;
 338         union win_slot_encoding wslot;
 339         u8 memory_range[0x14][6];       /* not used here */
 340         u32 msi_descriptor_count;
 341         u8 reserved[70];
 342 } __packed;
 343 
 344 struct pci_create_interrupt {
 345         struct pci_message message_type;
 346         union win_slot_encoding wslot;
 347         struct hv_msi_desc int_desc;
 348 } __packed;
 349 
 350 struct pci_create_int_response {
 351         struct pci_response response;
 352         u32 reserved;
 353         struct tran_int_desc int_desc;
 354 } __packed;
 355 
 356 struct pci_create_interrupt2 {
 357         struct pci_message message_type;
 358         union win_slot_encoding wslot;
 359         struct hv_msi_desc2 int_desc;
 360 } __packed;
 361 
 362 struct pci_delete_interrupt {
 363         struct pci_message message_type;
 364         union win_slot_encoding wslot;
 365         struct tran_int_desc int_desc;
 366 } __packed;
 367 
 368 /*
 369  * Note: the VM must pass a valid block id, wslot and bytes_requested.
 370  */
 371 struct pci_read_block {
 372         struct pci_message message_type;
 373         u32 block_id;
 374         union win_slot_encoding wslot;
 375         u32 bytes_requested;
 376 } __packed;
 377 
 378 struct pci_read_block_response {
 379         struct vmpacket_descriptor hdr;
 380         u32 status;
 381         u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 382 } __packed;
 383 
 384 /*
 385  * Note: the VM must pass a valid block id, wslot and byte_count.
 386  */
 387 struct pci_write_block {
 388         struct pci_message message_type;
 389         u32 block_id;
 390         union win_slot_encoding wslot;
 391         u32 byte_count;
 392         u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 393 } __packed;
 394 
 395 struct pci_dev_inval_block {
 396         struct pci_incoming_message incoming;
 397         union win_slot_encoding wslot;
 398         u64 block_mask;
 399 } __packed;
 400 
 401 struct pci_dev_incoming {
 402         struct pci_incoming_message incoming;
 403         union win_slot_encoding wslot;
 404 } __packed;
 405 
 406 struct pci_eject_response {
 407         struct pci_message message_type;
 408         union win_slot_encoding wslot;
 409         u32 status;
 410 } __packed;
 411 
 412 static int pci_ring_size = (4 * PAGE_SIZE);
 413 
 414 /*
 415  * Definitions or interrupt steering hypercall.
 416  */
 417 #define HV_PARTITION_ID_SELF            ((u64)-1)
 418 #define HVCALL_RETARGET_INTERRUPT       0x7e
 419 
 420 struct hv_interrupt_entry {
 421         u32     source;                 /* 1 for MSI(-X) */
 422         u32     reserved1;
 423         u32     address;
 424         u32     data;
 425 };
 426 
 427 /*
 428  * flags for hv_device_interrupt_target.flags
 429  */
 430 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST            1
 431 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET        2
 432 
 433 struct hv_device_interrupt_target {
 434         u32     vector;
 435         u32     flags;
 436         union {
 437                 u64              vp_mask;
 438                 struct hv_vpset vp_set;
 439         };
 440 };
 441 
 442 struct retarget_msi_interrupt {
 443         u64     partition_id;           /* use "self" */
 444         u64     device_id;
 445         struct hv_interrupt_entry int_entry;
 446         u64     reserved2;
 447         struct hv_device_interrupt_target int_target;
 448 } __packed __aligned(8);
 449 
 450 /*
 451  * Driver specific state.
 452  */
 453 
 454 enum hv_pcibus_state {
 455         hv_pcibus_init = 0,
 456         hv_pcibus_probed,
 457         hv_pcibus_installed,
 458         hv_pcibus_removed,
 459         hv_pcibus_maximum
 460 };
 461 
 462 struct hv_pcibus_device {
 463         struct pci_sysdata sysdata;
 464         enum hv_pcibus_state state;
 465         refcount_t remove_lock;
 466         struct hv_device *hdev;
 467         resource_size_t low_mmio_space;
 468         resource_size_t high_mmio_space;
 469         struct resource *mem_config;
 470         struct resource *low_mmio_res;
 471         struct resource *high_mmio_res;
 472         struct completion *survey_event;
 473         struct completion remove_event;
 474         struct pci_bus *pci_bus;
 475         spinlock_t config_lock; /* Avoid two threads writing index page */
 476         spinlock_t device_list_lock;    /* Protect lists below */
 477         void __iomem *cfg_addr;
 478 
 479         struct list_head resources_for_children;
 480 
 481         struct list_head children;
 482         struct list_head dr_list;
 483 
 484         struct msi_domain_info msi_info;
 485         struct msi_controller msi_chip;
 486         struct irq_domain *irq_domain;
 487 
 488         spinlock_t retarget_msi_interrupt_lock;
 489 
 490         struct workqueue_struct *wq;
 491 
 492         /* hypercall arg, must not cross page boundary */
 493         struct retarget_msi_interrupt retarget_msi_interrupt_params;
 494 
 495         /*
 496          * Don't put anything here: retarget_msi_interrupt_params must be last
 497          */
 498 };
 499 
 500 /*
 501  * Tracks "Device Relations" messages from the host, which must be both
 502  * processed in order and deferred so that they don't run in the context
 503  * of the incoming packet callback.
 504  */
 505 struct hv_dr_work {
 506         struct work_struct wrk;
 507         struct hv_pcibus_device *bus;
 508 };
 509 
 510 struct hv_dr_state {
 511         struct list_head list_entry;
 512         u32 device_count;
 513         struct pci_function_description func[0];
 514 };
 515 
 516 enum hv_pcichild_state {
 517         hv_pcichild_init = 0,
 518         hv_pcichild_requirements,
 519         hv_pcichild_resourced,
 520         hv_pcichild_ejecting,
 521         hv_pcichild_maximum
 522 };
 523 
 524 struct hv_pci_dev {
 525         /* List protected by pci_rescan_remove_lock */
 526         struct list_head list_entry;
 527         refcount_t refs;
 528         enum hv_pcichild_state state;
 529         struct pci_slot *pci_slot;
 530         struct pci_function_description desc;
 531         bool reported_missing;
 532         struct hv_pcibus_device *hbus;
 533         struct work_struct wrk;
 534 
 535         void (*block_invalidate)(void *context, u64 block_mask);
 536         void *invalidate_context;
 537 
 538         /*
 539          * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 540          * read it back, for each of the BAR offsets within config space.
 541          */
 542         u32 probed_bar[6];
 543 };
 544 
 545 struct hv_pci_compl {
 546         struct completion host_event;
 547         s32 completion_status;
 548 };
 549 
 550 static void hv_pci_onchannelcallback(void *context);
 551 
 552 /**
 553  * hv_pci_generic_compl() - Invoked for a completion packet
 554  * @context:            Set up by the sender of the packet.
 555  * @resp:               The response packet
 556  * @resp_packet_size:   Size in bytes of the packet
 557  *
 558  * This function is used to trigger an event and report status
 559  * for any message for which the completion packet contains a
 560  * status and nothing else.
 561  */
 562 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 563                                  int resp_packet_size)
 564 {
 565         struct hv_pci_compl *comp_pkt = context;
 566 
 567         if (resp_packet_size >= offsetofend(struct pci_response, status))
 568                 comp_pkt->completion_status = resp->status;
 569         else
 570                 comp_pkt->completion_status = -1;
 571 
 572         complete(&comp_pkt->host_event);
 573 }
 574 
 575 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 576                                                 u32 wslot);
 577 
 578 static void get_pcichild(struct hv_pci_dev *hpdev)
 579 {
 580         refcount_inc(&hpdev->refs);
 581 }
 582 
 583 static void put_pcichild(struct hv_pci_dev *hpdev)
 584 {
 585         if (refcount_dec_and_test(&hpdev->refs))
 586                 kfree(hpdev);
 587 }
 588 
 589 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 590 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 591 
 592 /*
 593  * There is no good way to get notified from vmbus_onoffer_rescind(),
 594  * so let's use polling here, since this is not a hot path.
 595  */
 596 static int wait_for_response(struct hv_device *hdev,
 597                              struct completion *comp)
 598 {
 599         while (true) {
 600                 if (hdev->channel->rescind) {
 601                         dev_warn_once(&hdev->device, "The device is gone.\n");
 602                         return -ENODEV;
 603                 }
 604 
 605                 if (wait_for_completion_timeout(comp, HZ / 10))
 606                         break;
 607         }
 608 
 609         return 0;
 610 }
 611 
 612 /**
 613  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 614  * @devfn:      The Linux representation of PCI slot
 615  *
 616  * Windows uses a slightly different representation of PCI slot.
 617  *
 618  * Return: The Windows representation
 619  */
 620 static u32 devfn_to_wslot(int devfn)
 621 {
 622         union win_slot_encoding wslot;
 623 
 624         wslot.slot = 0;
 625         wslot.bits.dev = PCI_SLOT(devfn);
 626         wslot.bits.func = PCI_FUNC(devfn);
 627 
 628         return wslot.slot;
 629 }
 630 
 631 /**
 632  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 633  * @wslot:      The Windows representation of PCI slot
 634  *
 635  * Windows uses a slightly different representation of PCI slot.
 636  *
 637  * Return: The Linux representation
 638  */
 639 static int wslot_to_devfn(u32 wslot)
 640 {
 641         union win_slot_encoding slot_no;
 642 
 643         slot_no.slot = wslot;
 644         return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 645 }
 646 
 647 /*
 648  * PCI Configuration Space for these root PCI buses is implemented as a pair
 649  * of pages in memory-mapped I/O space.  Writing to the first page chooses
 650  * the PCI function being written or read.  Once the first page has been
 651  * written to, the following page maps in the entire configuration space of
 652  * the function.
 653  */
 654 
 655 /**
 656  * _hv_pcifront_read_config() - Internal PCI config read
 657  * @hpdev:      The PCI driver's representation of the device
 658  * @where:      Offset within config space
 659  * @size:       Size of the transfer
 660  * @val:        Pointer to the buffer receiving the data
 661  */
 662 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 663                                      int size, u32 *val)
 664 {
 665         unsigned long flags;
 666         void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 667 
 668         /*
 669          * If the attempt is to read the IDs or the ROM BAR, simulate that.
 670          */
 671         if (where + size <= PCI_COMMAND) {
 672                 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 673         } else if (where >= PCI_CLASS_REVISION && where + size <=
 674                    PCI_CACHE_LINE_SIZE) {
 675                 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 676                        PCI_CLASS_REVISION, size);
 677         } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 678                    PCI_ROM_ADDRESS) {
 679                 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 680                        PCI_SUBSYSTEM_VENDOR_ID, size);
 681         } else if (where >= PCI_ROM_ADDRESS && where + size <=
 682                    PCI_CAPABILITY_LIST) {
 683                 /* ROM BARs are unimplemented */
 684                 *val = 0;
 685         } else if (where >= PCI_INTERRUPT_LINE && where + size <=
 686                    PCI_INTERRUPT_PIN) {
 687                 /*
 688                  * Interrupt Line and Interrupt PIN are hard-wired to zero
 689                  * because this front-end only supports message-signaled
 690                  * interrupts.
 691                  */
 692                 *val = 0;
 693         } else if (where + size <= CFG_PAGE_SIZE) {
 694                 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 695                 /* Choose the function to be read. (See comment above) */
 696                 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 697                 /* Make sure the function was chosen before we start reading. */
 698                 mb();
 699                 /* Read from that function's config space. */
 700                 switch (size) {
 701                 case 1:
 702                         *val = readb(addr);
 703                         break;
 704                 case 2:
 705                         *val = readw(addr);
 706                         break;
 707                 default:
 708                         *val = readl(addr);
 709                         break;
 710                 }
 711                 /*
 712                  * Make sure the read was done before we release the spinlock
 713                  * allowing consecutive reads/writes.
 714                  */
 715                 mb();
 716                 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 717         } else {
 718                 dev_err(&hpdev->hbus->hdev->device,
 719                         "Attempt to read beyond a function's config space.\n");
 720         }
 721 }
 722 
 723 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 724 {
 725         u16 ret;
 726         unsigned long flags;
 727         void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 728                              PCI_VENDOR_ID;
 729 
 730         spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 731 
 732         /* Choose the function to be read. (See comment above) */
 733         writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 734         /* Make sure the function was chosen before we start reading. */
 735         mb();
 736         /* Read from that function's config space. */
 737         ret = readw(addr);
 738         /*
 739          * mb() is not required here, because the spin_unlock_irqrestore()
 740          * is a barrier.
 741          */
 742 
 743         spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 744 
 745         return ret;
 746 }
 747 
 748 /**
 749  * _hv_pcifront_write_config() - Internal PCI config write
 750  * @hpdev:      The PCI driver's representation of the device
 751  * @where:      Offset within config space
 752  * @size:       Size of the transfer
 753  * @val:        The data being transferred
 754  */
 755 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 756                                       int size, u32 val)
 757 {
 758         unsigned long flags;
 759         void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 760 
 761         if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 762             where + size <= PCI_CAPABILITY_LIST) {
 763                 /* SSIDs and ROM BARs are read-only */
 764         } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 765                 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 766                 /* Choose the function to be written. (See comment above) */
 767                 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 768                 /* Make sure the function was chosen before we start writing. */
 769                 wmb();
 770                 /* Write to that function's config space. */
 771                 switch (size) {
 772                 case 1:
 773                         writeb(val, addr);
 774                         break;
 775                 case 2:
 776                         writew(val, addr);
 777                         break;
 778                 default:
 779                         writel(val, addr);
 780                         break;
 781                 }
 782                 /*
 783                  * Make sure the write was done before we release the spinlock
 784                  * allowing consecutive reads/writes.
 785                  */
 786                 mb();
 787                 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 788         } else {
 789                 dev_err(&hpdev->hbus->hdev->device,
 790                         "Attempt to write beyond a function's config space.\n");
 791         }
 792 }
 793 
 794 /**
 795  * hv_pcifront_read_config() - Read configuration space
 796  * @bus: PCI Bus structure
 797  * @devfn: Device/function
 798  * @where: Offset from base
 799  * @size: Byte/word/dword
 800  * @val: Value to be read
 801  *
 802  * Return: PCIBIOS_SUCCESSFUL on success
 803  *         PCIBIOS_DEVICE_NOT_FOUND on failure
 804  */
 805 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 806                                    int where, int size, u32 *val)
 807 {
 808         struct hv_pcibus_device *hbus =
 809                 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 810         struct hv_pci_dev *hpdev;
 811 
 812         hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 813         if (!hpdev)
 814                 return PCIBIOS_DEVICE_NOT_FOUND;
 815 
 816         _hv_pcifront_read_config(hpdev, where, size, val);
 817 
 818         put_pcichild(hpdev);
 819         return PCIBIOS_SUCCESSFUL;
 820 }
 821 
 822 /**
 823  * hv_pcifront_write_config() - Write configuration space
 824  * @bus: PCI Bus structure
 825  * @devfn: Device/function
 826  * @where: Offset from base
 827  * @size: Byte/word/dword
 828  * @val: Value to be written to device
 829  *
 830  * Return: PCIBIOS_SUCCESSFUL on success
 831  *         PCIBIOS_DEVICE_NOT_FOUND on failure
 832  */
 833 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 834                                     int where, int size, u32 val)
 835 {
 836         struct hv_pcibus_device *hbus =
 837             container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 838         struct hv_pci_dev *hpdev;
 839 
 840         hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 841         if (!hpdev)
 842                 return PCIBIOS_DEVICE_NOT_FOUND;
 843 
 844         _hv_pcifront_write_config(hpdev, where, size, val);
 845 
 846         put_pcichild(hpdev);
 847         return PCIBIOS_SUCCESSFUL;
 848 }
 849 
 850 /* PCIe operations */
 851 static struct pci_ops hv_pcifront_ops = {
 852         .read  = hv_pcifront_read_config,
 853         .write = hv_pcifront_write_config,
 854 };
 855 
 856 /*
 857  * Paravirtual backchannel
 858  *
 859  * Hyper-V SR-IOV provides a backchannel mechanism in software for
 860  * communication between a VF driver and a PF driver.  These
 861  * "configuration blocks" are similar in concept to PCI configuration space,
 862  * but instead of doing reads and writes in 32-bit chunks through a very slow
 863  * path, packets of up to 128 bytes can be sent or received asynchronously.
 864  *
 865  * Nearly every SR-IOV device contains just such a communications channel in
 866  * hardware, so using this one in software is usually optional.  Using the
 867  * software channel, however, allows driver implementers to leverage software
 868  * tools that fuzz the communications channel looking for vulnerabilities.
 869  *
 870  * The usage model for these packets puts the responsibility for reading or
 871  * writing on the VF driver.  The VF driver sends a read or a write packet,
 872  * indicating which "block" is being referred to by number.
 873  *
 874  * If the PF driver wishes to initiate communication, it can "invalidate" one or
 875  * more of the first 64 blocks.  This invalidation is delivered via a callback
 876  * supplied by the VF driver by this driver.
 877  *
 878  * No protocol is implied, except that supplied by the PF and VF drivers.
 879  */
 880 
 881 struct hv_read_config_compl {
 882         struct hv_pci_compl comp_pkt;
 883         void *buf;
 884         unsigned int len;
 885         unsigned int bytes_returned;
 886 };
 887 
 888 /**
 889  * hv_pci_read_config_compl() - Invoked when a response packet
 890  * for a read config block operation arrives.
 891  * @context:            Identifies the read config operation
 892  * @resp:               The response packet itself
 893  * @resp_packet_size:   Size in bytes of the response packet
 894  */
 895 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 896                                      int resp_packet_size)
 897 {
 898         struct hv_read_config_compl *comp = context;
 899         struct pci_read_block_response *read_resp =
 900                 (struct pci_read_block_response *)resp;
 901         unsigned int data_len, hdr_len;
 902 
 903         hdr_len = offsetof(struct pci_read_block_response, bytes);
 904         if (resp_packet_size < hdr_len) {
 905                 comp->comp_pkt.completion_status = -1;
 906                 goto out;
 907         }
 908 
 909         data_len = resp_packet_size - hdr_len;
 910         if (data_len > 0 && read_resp->status == 0) {
 911                 comp->bytes_returned = min(comp->len, data_len);
 912                 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 913         } else {
 914                 comp->bytes_returned = 0;
 915         }
 916 
 917         comp->comp_pkt.completion_status = read_resp->status;
 918 out:
 919         complete(&comp->comp_pkt.host_event);
 920 }
 921 
 922 /**
 923  * hv_read_config_block() - Sends a read config block request to
 924  * the back-end driver running in the Hyper-V parent partition.
 925  * @pdev:               The PCI driver's representation for this device.
 926  * @buf:                Buffer into which the config block will be copied.
 927  * @len:                Size in bytes of buf.
 928  * @block_id:           Identifies the config block which has been requested.
 929  * @bytes_returned:     Size which came back from the back-end driver.
 930  *
 931  * Return: 0 on success, -errno on failure
 932  */
 933 int hv_read_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
 934                          unsigned int block_id, unsigned int *bytes_returned)
 935 {
 936         struct hv_pcibus_device *hbus =
 937                 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 938                              sysdata);
 939         struct {
 940                 struct pci_packet pkt;
 941                 char buf[sizeof(struct pci_read_block)];
 942         } pkt;
 943         struct hv_read_config_compl comp_pkt;
 944         struct pci_read_block *read_blk;
 945         int ret;
 946 
 947         if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 948                 return -EINVAL;
 949 
 950         init_completion(&comp_pkt.comp_pkt.host_event);
 951         comp_pkt.buf = buf;
 952         comp_pkt.len = len;
 953 
 954         memset(&pkt, 0, sizeof(pkt));
 955         pkt.pkt.completion_func = hv_pci_read_config_compl;
 956         pkt.pkt.compl_ctxt = &comp_pkt;
 957         read_blk = (struct pci_read_block *)&pkt.pkt.message;
 958         read_blk->message_type.type = PCI_READ_BLOCK;
 959         read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 960         read_blk->block_id = block_id;
 961         read_blk->bytes_requested = len;
 962 
 963         ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 964                                sizeof(*read_blk), (unsigned long)&pkt.pkt,
 965                                VM_PKT_DATA_INBAND,
 966                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 967         if (ret)
 968                 return ret;
 969 
 970         ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 971         if (ret)
 972                 return ret;
 973 
 974         if (comp_pkt.comp_pkt.completion_status != 0 ||
 975             comp_pkt.bytes_returned == 0) {
 976                 dev_err(&hbus->hdev->device,
 977                         "Read Config Block failed: 0x%x, bytes_returned=%d\n",
 978                         comp_pkt.comp_pkt.completion_status,
 979                         comp_pkt.bytes_returned);
 980                 return -EIO;
 981         }
 982 
 983         *bytes_returned = comp_pkt.bytes_returned;
 984         return 0;
 985 }
 986 
 987 /**
 988  * hv_pci_write_config_compl() - Invoked when a response packet for a write
 989  * config block operation arrives.
 990  * @context:            Identifies the write config operation
 991  * @resp:               The response packet itself
 992  * @resp_packet_size:   Size in bytes of the response packet
 993  */
 994 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
 995                                       int resp_packet_size)
 996 {
 997         struct hv_pci_compl *comp_pkt = context;
 998 
 999         comp_pkt->completion_status = resp->status;
1000         complete(&comp_pkt->host_event);
1001 }
1002 
1003 /**
1004  * hv_write_config_block() - Sends a write config block request to the
1005  * back-end driver running in the Hyper-V parent partition.
1006  * @pdev:               The PCI driver's representation for this device.
1007  * @buf:                Buffer from which the config block will be copied.
1008  * @len:                Size in bytes of buf.
1009  * @block_id:           Identifies the config block which is being written.
1010  *
1011  * Return: 0 on success, -errno on failure
1012  */
1013 int hv_write_config_block(struct pci_dev *pdev, void *buf, unsigned int len,
1014                           unsigned int block_id)
1015 {
1016         struct hv_pcibus_device *hbus =
1017                 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1018                              sysdata);
1019         struct {
1020                 struct pci_packet pkt;
1021                 char buf[sizeof(struct pci_write_block)];
1022                 u32 reserved;
1023         } pkt;
1024         struct hv_pci_compl comp_pkt;
1025         struct pci_write_block *write_blk;
1026         u32 pkt_size;
1027         int ret;
1028 
1029         if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1030                 return -EINVAL;
1031 
1032         init_completion(&comp_pkt.host_event);
1033 
1034         memset(&pkt, 0, sizeof(pkt));
1035         pkt.pkt.completion_func = hv_pci_write_config_compl;
1036         pkt.pkt.compl_ctxt = &comp_pkt;
1037         write_blk = (struct pci_write_block *)&pkt.pkt.message;
1038         write_blk->message_type.type = PCI_WRITE_BLOCK;
1039         write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1040         write_blk->block_id = block_id;
1041         write_blk->byte_count = len;
1042         memcpy(write_blk->bytes, buf, len);
1043         pkt_size = offsetof(struct pci_write_block, bytes) + len;
1044         /*
1045          * This quirk is required on some hosts shipped around 2018, because
1046          * these hosts don't check the pkt_size correctly (new hosts have been
1047          * fixed since early 2019). The quirk is also safe on very old hosts
1048          * and new hosts, because, on them, what really matters is the length
1049          * specified in write_blk->byte_count.
1050          */
1051         pkt_size += sizeof(pkt.reserved);
1052 
1053         ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1054                                (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1055                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1056         if (ret)
1057                 return ret;
1058 
1059         ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1060         if (ret)
1061                 return ret;
1062 
1063         if (comp_pkt.completion_status != 0) {
1064                 dev_err(&hbus->hdev->device,
1065                         "Write Config Block failed: 0x%x\n",
1066                         comp_pkt.completion_status);
1067                 return -EIO;
1068         }
1069 
1070         return 0;
1071 }
1072 
1073 /**
1074  * hv_register_block_invalidate() - Invoked when a config block invalidation
1075  * arrives from the back-end driver.
1076  * @pdev:               The PCI driver's representation for this device.
1077  * @context:            Identifies the device.
1078  * @block_invalidate:   Identifies all of the blocks being invalidated.
1079  *
1080  * Return: 0 on success, -errno on failure
1081  */
1082 int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1083                                  void (*block_invalidate)(void *context,
1084                                                           u64 block_mask))
1085 {
1086         struct hv_pcibus_device *hbus =
1087                 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1088                              sysdata);
1089         struct hv_pci_dev *hpdev;
1090 
1091         hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1092         if (!hpdev)
1093                 return -ENODEV;
1094 
1095         hpdev->block_invalidate = block_invalidate;
1096         hpdev->invalidate_context = context;
1097 
1098         put_pcichild(hpdev);
1099         return 0;
1100 
1101 }
1102 
1103 /* Interrupt management hooks */
1104 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1105                              struct tran_int_desc *int_desc)
1106 {
1107         struct pci_delete_interrupt *int_pkt;
1108         struct {
1109                 struct pci_packet pkt;
1110                 u8 buffer[sizeof(struct pci_delete_interrupt)];
1111         } ctxt;
1112 
1113         memset(&ctxt, 0, sizeof(ctxt));
1114         int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1115         int_pkt->message_type.type =
1116                 PCI_DELETE_INTERRUPT_MESSAGE;
1117         int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1118         int_pkt->int_desc = *int_desc;
1119         vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1120                          (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1121         kfree(int_desc);
1122 }
1123 
1124 /**
1125  * hv_msi_free() - Free the MSI.
1126  * @domain:     The interrupt domain pointer
1127  * @info:       Extra MSI-related context
1128  * @irq:        Identifies the IRQ.
1129  *
1130  * The Hyper-V parent partition and hypervisor are tracking the
1131  * messages that are in use, keeping the interrupt redirection
1132  * table up to date.  This callback sends a message that frees
1133  * the IRT entry and related tracking nonsense.
1134  */
1135 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1136                         unsigned int irq)
1137 {
1138         struct hv_pcibus_device *hbus;
1139         struct hv_pci_dev *hpdev;
1140         struct pci_dev *pdev;
1141         struct tran_int_desc *int_desc;
1142         struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1143         struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1144 
1145         pdev = msi_desc_to_pci_dev(msi);
1146         hbus = info->data;
1147         int_desc = irq_data_get_irq_chip_data(irq_data);
1148         if (!int_desc)
1149                 return;
1150 
1151         irq_data->chip_data = NULL;
1152         hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1153         if (!hpdev) {
1154                 kfree(int_desc);
1155                 return;
1156         }
1157 
1158         hv_int_desc_free(hpdev, int_desc);
1159         put_pcichild(hpdev);
1160 }
1161 
1162 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1163                            bool force)
1164 {
1165         struct irq_data *parent = data->parent_data;
1166 
1167         return parent->chip->irq_set_affinity(parent, dest, force);
1168 }
1169 
1170 static void hv_irq_mask(struct irq_data *data)
1171 {
1172         pci_msi_mask_irq(data);
1173 }
1174 
1175 /**
1176  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1177  * affinity.
1178  * @data:       Describes the IRQ
1179  *
1180  * Build new a destination for the MSI and make a hypercall to
1181  * update the Interrupt Redirection Table. "Device Logical ID"
1182  * is built out of this PCI bus's instance GUID and the function
1183  * number of the device.
1184  */
1185 static void hv_irq_unmask(struct irq_data *data)
1186 {
1187         struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1188         struct irq_cfg *cfg = irqd_cfg(data);
1189         struct retarget_msi_interrupt *params;
1190         struct hv_pcibus_device *hbus;
1191         struct cpumask *dest;
1192         cpumask_var_t tmp;
1193         struct pci_bus *pbus;
1194         struct pci_dev *pdev;
1195         unsigned long flags;
1196         u32 var_size = 0;
1197         int cpu, nr_bank;
1198         u64 res;
1199 
1200         dest = irq_data_get_effective_affinity_mask(data);
1201         pdev = msi_desc_to_pci_dev(msi_desc);
1202         pbus = pdev->bus;
1203         hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1204 
1205         spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1206 
1207         params = &hbus->retarget_msi_interrupt_params;
1208         memset(params, 0, sizeof(*params));
1209         params->partition_id = HV_PARTITION_ID_SELF;
1210         params->int_entry.source = 1; /* MSI(-X) */
1211         params->int_entry.address = msi_desc->msg.address_lo;
1212         params->int_entry.data = msi_desc->msg.data;
1213         params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1214                            (hbus->hdev->dev_instance.b[4] << 16) |
1215                            (hbus->hdev->dev_instance.b[7] << 8) |
1216                            (hbus->hdev->dev_instance.b[6] & 0xf8) |
1217                            PCI_FUNC(pdev->devfn);
1218         params->int_target.vector = cfg->vector;
1219 
1220         /*
1221          * Honoring apic->irq_delivery_mode set to dest_Fixed by
1222          * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1223          * spurious interrupt storm. Not doing so does not seem to have a
1224          * negative effect (yet?).
1225          */
1226 
1227         if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1228                 /*
1229                  * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1230                  * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1231                  * with >64 VP support.
1232                  * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1233                  * is not sufficient for this hypercall.
1234                  */
1235                 params->int_target.flags |=
1236                         HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1237 
1238                 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1239                         res = 1;
1240                         goto exit_unlock;
1241                 }
1242 
1243                 cpumask_and(tmp, dest, cpu_online_mask);
1244                 nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1245                 free_cpumask_var(tmp);
1246 
1247                 if (nr_bank <= 0) {
1248                         res = 1;
1249                         goto exit_unlock;
1250                 }
1251 
1252                 /*
1253                  * var-sized hypercall, var-size starts after vp_mask (thus
1254                  * vp_set.format does not count, but vp_set.valid_bank_mask
1255                  * does).
1256                  */
1257                 var_size = 1 + nr_bank;
1258         } else {
1259                 for_each_cpu_and(cpu, dest, cpu_online_mask) {
1260                         params->int_target.vp_mask |=
1261                                 (1ULL << hv_cpu_number_to_vp_number(cpu));
1262                 }
1263         }
1264 
1265         res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1266                               params, NULL);
1267 
1268 exit_unlock:
1269         spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1270 
1271         if (res) {
1272                 dev_err(&hbus->hdev->device,
1273                         "%s() failed: %#llx", __func__, res);
1274                 return;
1275         }
1276 
1277         pci_msi_unmask_irq(data);
1278 }
1279 
1280 struct compose_comp_ctxt {
1281         struct hv_pci_compl comp_pkt;
1282         struct tran_int_desc int_desc;
1283 };
1284 
1285 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1286                                  int resp_packet_size)
1287 {
1288         struct compose_comp_ctxt *comp_pkt = context;
1289         struct pci_create_int_response *int_resp =
1290                 (struct pci_create_int_response *)resp;
1291 
1292         comp_pkt->comp_pkt.completion_status = resp->status;
1293         comp_pkt->int_desc = int_resp->int_desc;
1294         complete(&comp_pkt->comp_pkt.host_event);
1295 }
1296 
1297 static u32 hv_compose_msi_req_v1(
1298         struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1299         u32 slot, u8 vector)
1300 {
1301         int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1302         int_pkt->wslot.slot = slot;
1303         int_pkt->int_desc.vector = vector;
1304         int_pkt->int_desc.vector_count = 1;
1305         int_pkt->int_desc.delivery_mode = dest_Fixed;
1306 
1307         /*
1308          * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1309          * hv_irq_unmask().
1310          */
1311         int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1312 
1313         return sizeof(*int_pkt);
1314 }
1315 
1316 static u32 hv_compose_msi_req_v2(
1317         struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1318         u32 slot, u8 vector)
1319 {
1320         int cpu;
1321 
1322         int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1323         int_pkt->wslot.slot = slot;
1324         int_pkt->int_desc.vector = vector;
1325         int_pkt->int_desc.vector_count = 1;
1326         int_pkt->int_desc.delivery_mode = dest_Fixed;
1327 
1328         /*
1329          * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1330          * by subsequent retarget in hv_irq_unmask().
1331          */
1332         cpu = cpumask_first_and(affinity, cpu_online_mask);
1333         int_pkt->int_desc.processor_array[0] =
1334                 hv_cpu_number_to_vp_number(cpu);
1335         int_pkt->int_desc.processor_count = 1;
1336 
1337         return sizeof(*int_pkt);
1338 }
1339 
1340 /**
1341  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1342  * @data:       Everything about this MSI
1343  * @msg:        Buffer that is filled in by this function
1344  *
1345  * This function unpacks the IRQ looking for target CPU set, IDT
1346  * vector and mode and sends a message to the parent partition
1347  * asking for a mapping for that tuple in this partition.  The
1348  * response supplies a data value and address to which that data
1349  * should be written to trigger that interrupt.
1350  */
1351 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1352 {
1353         struct irq_cfg *cfg = irqd_cfg(data);
1354         struct hv_pcibus_device *hbus;
1355         struct hv_pci_dev *hpdev;
1356         struct pci_bus *pbus;
1357         struct pci_dev *pdev;
1358         struct cpumask *dest;
1359         unsigned long flags;
1360         struct compose_comp_ctxt comp;
1361         struct tran_int_desc *int_desc;
1362         struct {
1363                 struct pci_packet pci_pkt;
1364                 union {
1365                         struct pci_create_interrupt v1;
1366                         struct pci_create_interrupt2 v2;
1367                 } int_pkts;
1368         } __packed ctxt;
1369 
1370         u32 size;
1371         int ret;
1372 
1373         pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1374         dest = irq_data_get_effective_affinity_mask(data);
1375         pbus = pdev->bus;
1376         hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1377         hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1378         if (!hpdev)
1379                 goto return_null_message;
1380 
1381         /* Free any previous message that might have already been composed. */
1382         if (data->chip_data) {
1383                 int_desc = data->chip_data;
1384                 data->chip_data = NULL;
1385                 hv_int_desc_free(hpdev, int_desc);
1386         }
1387 
1388         int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1389         if (!int_desc)
1390                 goto drop_reference;
1391 
1392         memset(&ctxt, 0, sizeof(ctxt));
1393         init_completion(&comp.comp_pkt.host_event);
1394         ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1395         ctxt.pci_pkt.compl_ctxt = &comp;
1396 
1397         switch (pci_protocol_version) {
1398         case PCI_PROTOCOL_VERSION_1_1:
1399                 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1400                                         dest,
1401                                         hpdev->desc.win_slot.slot,
1402                                         cfg->vector);
1403                 break;
1404 
1405         case PCI_PROTOCOL_VERSION_1_2:
1406                 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1407                                         dest,
1408                                         hpdev->desc.win_slot.slot,
1409                                         cfg->vector);
1410                 break;
1411 
1412         default:
1413                 /* As we only negotiate protocol versions known to this driver,
1414                  * this path should never hit. However, this is it not a hot
1415                  * path so we print a message to aid future updates.
1416                  */
1417                 dev_err(&hbus->hdev->device,
1418                         "Unexpected vPCI protocol, update driver.");
1419                 goto free_int_desc;
1420         }
1421 
1422         ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1423                                size, (unsigned long)&ctxt.pci_pkt,
1424                                VM_PKT_DATA_INBAND,
1425                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1426         if (ret) {
1427                 dev_err(&hbus->hdev->device,
1428                         "Sending request for interrupt failed: 0x%x",
1429                         comp.comp_pkt.completion_status);
1430                 goto free_int_desc;
1431         }
1432 
1433         /*
1434          * Since this function is called with IRQ locks held, can't
1435          * do normal wait for completion; instead poll.
1436          */
1437         while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1438                 /* 0xFFFF means an invalid PCI VENDOR ID. */
1439                 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1440                         dev_err_once(&hbus->hdev->device,
1441                                      "the device has gone\n");
1442                         goto free_int_desc;
1443                 }
1444 
1445                 /*
1446                  * When the higher level interrupt code calls us with
1447                  * interrupt disabled, we must poll the channel by calling
1448                  * the channel callback directly when channel->target_cpu is
1449                  * the current CPU. When the higher level interrupt code
1450                  * calls us with interrupt enabled, let's add the
1451                  * local_irq_save()/restore() to avoid race:
1452                  * hv_pci_onchannelcallback() can also run in tasklet.
1453                  */
1454                 local_irq_save(flags);
1455 
1456                 if (hbus->hdev->channel->target_cpu == smp_processor_id())
1457                         hv_pci_onchannelcallback(hbus);
1458 
1459                 local_irq_restore(flags);
1460 
1461                 if (hpdev->state == hv_pcichild_ejecting) {
1462                         dev_err_once(&hbus->hdev->device,
1463                                      "the device is being ejected\n");
1464                         goto free_int_desc;
1465                 }
1466 
1467                 udelay(100);
1468         }
1469 
1470         if (comp.comp_pkt.completion_status < 0) {
1471                 dev_err(&hbus->hdev->device,
1472                         "Request for interrupt failed: 0x%x",
1473                         comp.comp_pkt.completion_status);
1474                 goto free_int_desc;
1475         }
1476 
1477         /*
1478          * Record the assignment so that this can be unwound later. Using
1479          * irq_set_chip_data() here would be appropriate, but the lock it takes
1480          * is already held.
1481          */
1482         *int_desc = comp.int_desc;
1483         data->chip_data = int_desc;
1484 
1485         /* Pass up the result. */
1486         msg->address_hi = comp.int_desc.address >> 32;
1487         msg->address_lo = comp.int_desc.address & 0xffffffff;
1488         msg->data = comp.int_desc.data;
1489 
1490         put_pcichild(hpdev);
1491         return;
1492 
1493 free_int_desc:
1494         kfree(int_desc);
1495 drop_reference:
1496         put_pcichild(hpdev);
1497 return_null_message:
1498         msg->address_hi = 0;
1499         msg->address_lo = 0;
1500         msg->data = 0;
1501 }
1502 
1503 /* HW Interrupt Chip Descriptor */
1504 static struct irq_chip hv_msi_irq_chip = {
1505         .name                   = "Hyper-V PCIe MSI",
1506         .irq_compose_msi_msg    = hv_compose_msi_msg,
1507         .irq_set_affinity       = hv_set_affinity,
1508         .irq_ack                = irq_chip_ack_parent,
1509         .irq_mask               = hv_irq_mask,
1510         .irq_unmask             = hv_irq_unmask,
1511 };
1512 
1513 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1514                                                    msi_alloc_info_t *arg)
1515 {
1516         return arg->msi_hwirq;
1517 }
1518 
1519 static struct msi_domain_ops hv_msi_ops = {
1520         .get_hwirq      = hv_msi_domain_ops_get_hwirq,
1521         .msi_prepare    = pci_msi_prepare,
1522         .set_desc       = pci_msi_set_desc,
1523         .msi_free       = hv_msi_free,
1524 };
1525 
1526 /**
1527  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1528  * @hbus:       The root PCI bus
1529  *
1530  * This function creates an IRQ domain which will be used for
1531  * interrupts from devices that have been passed through.  These
1532  * devices only support MSI and MSI-X, not line-based interrupts
1533  * or simulations of line-based interrupts through PCIe's
1534  * fabric-layer messages.  Because interrupts are remapped, we
1535  * can support multi-message MSI here.
1536  *
1537  * Return: '0' on success and error value on failure
1538  */
1539 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1540 {
1541         hbus->msi_info.chip = &hv_msi_irq_chip;
1542         hbus->msi_info.ops = &hv_msi_ops;
1543         hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1544                 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1545                 MSI_FLAG_PCI_MSIX);
1546         hbus->msi_info.handler = handle_edge_irq;
1547         hbus->msi_info.handler_name = "edge";
1548         hbus->msi_info.data = hbus;
1549         hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1550                                                      &hbus->msi_info,
1551                                                      x86_vector_domain);
1552         if (!hbus->irq_domain) {
1553                 dev_err(&hbus->hdev->device,
1554                         "Failed to build an MSI IRQ domain\n");
1555                 return -ENODEV;
1556         }
1557 
1558         return 0;
1559 }
1560 
1561 /**
1562  * get_bar_size() - Get the address space consumed by a BAR
1563  * @bar_val:    Value that a BAR returned after -1 was written
1564  *              to it.
1565  *
1566  * This function returns the size of the BAR, rounded up to 1
1567  * page.  It has to be rounded up because the hypervisor's page
1568  * table entry that maps the BAR into the VM can't specify an
1569  * offset within a page.  The invariant is that the hypervisor
1570  * must place any BARs of smaller than page length at the
1571  * beginning of a page.
1572  *
1573  * Return:      Size in bytes of the consumed MMIO space.
1574  */
1575 static u64 get_bar_size(u64 bar_val)
1576 {
1577         return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1578                         PAGE_SIZE);
1579 }
1580 
1581 /**
1582  * survey_child_resources() - Total all MMIO requirements
1583  * @hbus:       Root PCI bus, as understood by this driver
1584  */
1585 static void survey_child_resources(struct hv_pcibus_device *hbus)
1586 {
1587         struct hv_pci_dev *hpdev;
1588         resource_size_t bar_size = 0;
1589         unsigned long flags;
1590         struct completion *event;
1591         u64 bar_val;
1592         int i;
1593 
1594         /* If nobody is waiting on the answer, don't compute it. */
1595         event = xchg(&hbus->survey_event, NULL);
1596         if (!event)
1597                 return;
1598 
1599         /* If the answer has already been computed, go with it. */
1600         if (hbus->low_mmio_space || hbus->high_mmio_space) {
1601                 complete(event);
1602                 return;
1603         }
1604 
1605         spin_lock_irqsave(&hbus->device_list_lock, flags);
1606 
1607         /*
1608          * Due to an interesting quirk of the PCI spec, all memory regions
1609          * for a child device are a power of 2 in size and aligned in memory,
1610          * so it's sufficient to just add them up without tracking alignment.
1611          */
1612         list_for_each_entry(hpdev, &hbus->children, list_entry) {
1613                 for (i = 0; i < 6; i++) {
1614                         if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1615                                 dev_err(&hbus->hdev->device,
1616                                         "There's an I/O BAR in this list!\n");
1617 
1618                         if (hpdev->probed_bar[i] != 0) {
1619                                 /*
1620                                  * A probed BAR has all the upper bits set that
1621                                  * can be changed.
1622                                  */
1623 
1624                                 bar_val = hpdev->probed_bar[i];
1625                                 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1626                                         bar_val |=
1627                                         ((u64)hpdev->probed_bar[++i] << 32);
1628                                 else
1629                                         bar_val |= 0xffffffff00000000ULL;
1630 
1631                                 bar_size = get_bar_size(bar_val);
1632 
1633                                 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1634                                         hbus->high_mmio_space += bar_size;
1635                                 else
1636                                         hbus->low_mmio_space += bar_size;
1637                         }
1638                 }
1639         }
1640 
1641         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1642         complete(event);
1643 }
1644 
1645 /**
1646  * prepopulate_bars() - Fill in BARs with defaults
1647  * @hbus:       Root PCI bus, as understood by this driver
1648  *
1649  * The core PCI driver code seems much, much happier if the BARs
1650  * for a device have values upon first scan. So fill them in.
1651  * The algorithm below works down from large sizes to small,
1652  * attempting to pack the assignments optimally. The assumption,
1653  * enforced in other parts of the code, is that the beginning of
1654  * the memory-mapped I/O space will be aligned on the largest
1655  * BAR size.
1656  */
1657 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1658 {
1659         resource_size_t high_size = 0;
1660         resource_size_t low_size = 0;
1661         resource_size_t high_base = 0;
1662         resource_size_t low_base = 0;
1663         resource_size_t bar_size;
1664         struct hv_pci_dev *hpdev;
1665         unsigned long flags;
1666         u64 bar_val;
1667         u32 command;
1668         bool high;
1669         int i;
1670 
1671         if (hbus->low_mmio_space) {
1672                 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1673                 low_base = hbus->low_mmio_res->start;
1674         }
1675 
1676         if (hbus->high_mmio_space) {
1677                 high_size = 1ULL <<
1678                         (63 - __builtin_clzll(hbus->high_mmio_space));
1679                 high_base = hbus->high_mmio_res->start;
1680         }
1681 
1682         spin_lock_irqsave(&hbus->device_list_lock, flags);
1683 
1684         /* Pick addresses for the BARs. */
1685         do {
1686                 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1687                         for (i = 0; i < 6; i++) {
1688                                 bar_val = hpdev->probed_bar[i];
1689                                 if (bar_val == 0)
1690                                         continue;
1691                                 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1692                                 if (high) {
1693                                         bar_val |=
1694                                                 ((u64)hpdev->probed_bar[i + 1]
1695                                                  << 32);
1696                                 } else {
1697                                         bar_val |= 0xffffffffULL << 32;
1698                                 }
1699                                 bar_size = get_bar_size(bar_val);
1700                                 if (high) {
1701                                         if (high_size != bar_size) {
1702                                                 i++;
1703                                                 continue;
1704                                         }
1705                                         _hv_pcifront_write_config(hpdev,
1706                                                 PCI_BASE_ADDRESS_0 + (4 * i),
1707                                                 4,
1708                                                 (u32)(high_base & 0xffffff00));
1709                                         i++;
1710                                         _hv_pcifront_write_config(hpdev,
1711                                                 PCI_BASE_ADDRESS_0 + (4 * i),
1712                                                 4, (u32)(high_base >> 32));
1713                                         high_base += bar_size;
1714                                 } else {
1715                                         if (low_size != bar_size)
1716                                                 continue;
1717                                         _hv_pcifront_write_config(hpdev,
1718                                                 PCI_BASE_ADDRESS_0 + (4 * i),
1719                                                 4,
1720                                                 (u32)(low_base & 0xffffff00));
1721                                         low_base += bar_size;
1722                                 }
1723                         }
1724                         if (high_size <= 1 && low_size <= 1) {
1725                                 /* Set the memory enable bit. */
1726                                 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1727                                                          &command);
1728                                 command |= PCI_COMMAND_MEMORY;
1729                                 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1730                                                           command);
1731                                 break;
1732                         }
1733                 }
1734 
1735                 high_size >>= 1;
1736                 low_size >>= 1;
1737         }  while (high_size || low_size);
1738 
1739         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1740 }
1741 
1742 /*
1743  * Assign entries in sysfs pci slot directory.
1744  *
1745  * Note that this function does not need to lock the children list
1746  * because it is called from pci_devices_present_work which
1747  * is serialized with hv_eject_device_work because they are on the
1748  * same ordered workqueue. Therefore hbus->children list will not change
1749  * even when pci_create_slot sleeps.
1750  */
1751 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1752 {
1753         struct hv_pci_dev *hpdev;
1754         char name[SLOT_NAME_SIZE];
1755         int slot_nr;
1756 
1757         list_for_each_entry(hpdev, &hbus->children, list_entry) {
1758                 if (hpdev->pci_slot)
1759                         continue;
1760 
1761                 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1762                 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1763                 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1764                                           name, NULL);
1765                 if (IS_ERR(hpdev->pci_slot)) {
1766                         pr_warn("pci_create slot %s failed\n", name);
1767                         hpdev->pci_slot = NULL;
1768                 }
1769         }
1770 }
1771 
1772 /*
1773  * Remove entries in sysfs pci slot directory.
1774  */
1775 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1776 {
1777         struct hv_pci_dev *hpdev;
1778 
1779         list_for_each_entry(hpdev, &hbus->children, list_entry) {
1780                 if (!hpdev->pci_slot)
1781                         continue;
1782                 pci_destroy_slot(hpdev->pci_slot);
1783                 hpdev->pci_slot = NULL;
1784         }
1785 }
1786 
1787 /**
1788  * create_root_hv_pci_bus() - Expose a new root PCI bus
1789  * @hbus:       Root PCI bus, as understood by this driver
1790  *
1791  * Return: 0 on success, -errno on failure
1792  */
1793 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1794 {
1795         /* Register the device */
1796         hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1797                                             0, /* bus number is always zero */
1798                                             &hv_pcifront_ops,
1799                                             &hbus->sysdata,
1800                                             &hbus->resources_for_children);
1801         if (!hbus->pci_bus)
1802                 return -ENODEV;
1803 
1804         hbus->pci_bus->msi = &hbus->msi_chip;
1805         hbus->pci_bus->msi->dev = &hbus->hdev->device;
1806 
1807         pci_lock_rescan_remove();
1808         pci_scan_child_bus(hbus->pci_bus);
1809         pci_bus_assign_resources(hbus->pci_bus);
1810         hv_pci_assign_slots(hbus);
1811         pci_bus_add_devices(hbus->pci_bus);
1812         pci_unlock_rescan_remove();
1813         hbus->state = hv_pcibus_installed;
1814         return 0;
1815 }
1816 
1817 struct q_res_req_compl {
1818         struct completion host_event;
1819         struct hv_pci_dev *hpdev;
1820 };
1821 
1822 /**
1823  * q_resource_requirements() - Query Resource Requirements
1824  * @context:            The completion context.
1825  * @resp:               The response that came from the host.
1826  * @resp_packet_size:   The size in bytes of resp.
1827  *
1828  * This function is invoked on completion of a Query Resource
1829  * Requirements packet.
1830  */
1831 static void q_resource_requirements(void *context, struct pci_response *resp,
1832                                     int resp_packet_size)
1833 {
1834         struct q_res_req_compl *completion = context;
1835         struct pci_q_res_req_response *q_res_req =
1836                 (struct pci_q_res_req_response *)resp;
1837         int i;
1838 
1839         if (resp->status < 0) {
1840                 dev_err(&completion->hpdev->hbus->hdev->device,
1841                         "query resource requirements failed: %x\n",
1842                         resp->status);
1843         } else {
1844                 for (i = 0; i < 6; i++) {
1845                         completion->hpdev->probed_bar[i] =
1846                                 q_res_req->probed_bar[i];
1847                 }
1848         }
1849 
1850         complete(&completion->host_event);
1851 }
1852 
1853 /**
1854  * new_pcichild_device() - Create a new child device
1855  * @hbus:       The internal struct tracking this root PCI bus.
1856  * @desc:       The information supplied so far from the host
1857  *              about the device.
1858  *
1859  * This function creates the tracking structure for a new child
1860  * device and kicks off the process of figuring out what it is.
1861  *
1862  * Return: Pointer to the new tracking struct
1863  */
1864 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1865                 struct pci_function_description *desc)
1866 {
1867         struct hv_pci_dev *hpdev;
1868         struct pci_child_message *res_req;
1869         struct q_res_req_compl comp_pkt;
1870         struct {
1871                 struct pci_packet init_packet;
1872                 u8 buffer[sizeof(struct pci_child_message)];
1873         } pkt;
1874         unsigned long flags;
1875         int ret;
1876 
1877         hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1878         if (!hpdev)
1879                 return NULL;
1880 
1881         hpdev->hbus = hbus;
1882 
1883         memset(&pkt, 0, sizeof(pkt));
1884         init_completion(&comp_pkt.host_event);
1885         comp_pkt.hpdev = hpdev;
1886         pkt.init_packet.compl_ctxt = &comp_pkt;
1887         pkt.init_packet.completion_func = q_resource_requirements;
1888         res_req = (struct pci_child_message *)&pkt.init_packet.message;
1889         res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1890         res_req->wslot.slot = desc->win_slot.slot;
1891 
1892         ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1893                                sizeof(struct pci_child_message),
1894                                (unsigned long)&pkt.init_packet,
1895                                VM_PKT_DATA_INBAND,
1896                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1897         if (ret)
1898                 goto error;
1899 
1900         if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1901                 goto error;
1902 
1903         hpdev->desc = *desc;
1904         refcount_set(&hpdev->refs, 1);
1905         get_pcichild(hpdev);
1906         spin_lock_irqsave(&hbus->device_list_lock, flags);
1907 
1908         list_add_tail(&hpdev->list_entry, &hbus->children);
1909         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1910         return hpdev;
1911 
1912 error:
1913         kfree(hpdev);
1914         return NULL;
1915 }
1916 
1917 /**
1918  * get_pcichild_wslot() - Find device from slot
1919  * @hbus:       Root PCI bus, as understood by this driver
1920  * @wslot:      Location on the bus
1921  *
1922  * This function looks up a PCI device and returns the internal
1923  * representation of it.  It acquires a reference on it, so that
1924  * the device won't be deleted while somebody is using it.  The
1925  * caller is responsible for calling put_pcichild() to release
1926  * this reference.
1927  *
1928  * Return:      Internal representation of a PCI device
1929  */
1930 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1931                                              u32 wslot)
1932 {
1933         unsigned long flags;
1934         struct hv_pci_dev *iter, *hpdev = NULL;
1935 
1936         spin_lock_irqsave(&hbus->device_list_lock, flags);
1937         list_for_each_entry(iter, &hbus->children, list_entry) {
1938                 if (iter->desc.win_slot.slot == wslot) {
1939                         hpdev = iter;
1940                         get_pcichild(hpdev);
1941                         break;
1942                 }
1943         }
1944         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1945 
1946         return hpdev;
1947 }
1948 
1949 /**
1950  * pci_devices_present_work() - Handle new list of child devices
1951  * @work:       Work struct embedded in struct hv_dr_work
1952  *
1953  * "Bus Relations" is the Windows term for "children of this
1954  * bus."  The terminology is preserved here for people trying to
1955  * debug the interaction between Hyper-V and Linux.  This
1956  * function is called when the parent partition reports a list
1957  * of functions that should be observed under this PCI Express
1958  * port (bus).
1959  *
1960  * This function updates the list, and must tolerate being
1961  * called multiple times with the same information.  The typical
1962  * number of child devices is one, with very atypical cases
1963  * involving three or four, so the algorithms used here can be
1964  * simple and inefficient.
1965  *
1966  * It must also treat the omission of a previously observed device as
1967  * notification that the device no longer exists.
1968  *
1969  * Note that this function is serialized with hv_eject_device_work(),
1970  * because both are pushed to the ordered workqueue hbus->wq.
1971  */
1972 static void pci_devices_present_work(struct work_struct *work)
1973 {
1974         u32 child_no;
1975         bool found;
1976         struct pci_function_description *new_desc;
1977         struct hv_pci_dev *hpdev;
1978         struct hv_pcibus_device *hbus;
1979         struct list_head removed;
1980         struct hv_dr_work *dr_wrk;
1981         struct hv_dr_state *dr = NULL;
1982         unsigned long flags;
1983 
1984         dr_wrk = container_of(work, struct hv_dr_work, wrk);
1985         hbus = dr_wrk->bus;
1986         kfree(dr_wrk);
1987 
1988         INIT_LIST_HEAD(&removed);
1989 
1990         /* Pull this off the queue and process it if it was the last one. */
1991         spin_lock_irqsave(&hbus->device_list_lock, flags);
1992         while (!list_empty(&hbus->dr_list)) {
1993                 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1994                                       list_entry);
1995                 list_del(&dr->list_entry);
1996 
1997                 /* Throw this away if the list still has stuff in it. */
1998                 if (!list_empty(&hbus->dr_list)) {
1999                         kfree(dr);
2000                         continue;
2001                 }
2002         }
2003         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2004 
2005         if (!dr) {
2006                 put_hvpcibus(hbus);
2007                 return;
2008         }
2009 
2010         /* First, mark all existing children as reported missing. */
2011         spin_lock_irqsave(&hbus->device_list_lock, flags);
2012         list_for_each_entry(hpdev, &hbus->children, list_entry) {
2013                 hpdev->reported_missing = true;
2014         }
2015         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2016 
2017         /* Next, add back any reported devices. */
2018         for (child_no = 0; child_no < dr->device_count; child_no++) {
2019                 found = false;
2020                 new_desc = &dr->func[child_no];
2021 
2022                 spin_lock_irqsave(&hbus->device_list_lock, flags);
2023                 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2024                         if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2025                             (hpdev->desc.v_id == new_desc->v_id) &&
2026                             (hpdev->desc.d_id == new_desc->d_id) &&
2027                             (hpdev->desc.ser == new_desc->ser)) {
2028                                 hpdev->reported_missing = false;
2029                                 found = true;
2030                         }
2031                 }
2032                 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2033 
2034                 if (!found) {
2035                         hpdev = new_pcichild_device(hbus, new_desc);
2036                         if (!hpdev)
2037                                 dev_err(&hbus->hdev->device,
2038                                         "couldn't record a child device.\n");
2039                 }
2040         }
2041 
2042         /* Move missing children to a list on the stack. */
2043         spin_lock_irqsave(&hbus->device_list_lock, flags);
2044         do {
2045                 found = false;
2046                 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2047                         if (hpdev->reported_missing) {
2048                                 found = true;
2049                                 put_pcichild(hpdev);
2050                                 list_move_tail(&hpdev->list_entry, &removed);
2051                                 break;
2052                         }
2053                 }
2054         } while (found);
2055         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2056 
2057         /* Delete everything that should no longer exist. */
2058         while (!list_empty(&removed)) {
2059                 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2060                                          list_entry);
2061                 list_del(&hpdev->list_entry);
2062 
2063                 if (hpdev->pci_slot)
2064                         pci_destroy_slot(hpdev->pci_slot);
2065 
2066                 put_pcichild(hpdev);
2067         }
2068 
2069         switch (hbus->state) {
2070         case hv_pcibus_installed:
2071                 /*
2072                  * Tell the core to rescan bus
2073                  * because there may have been changes.
2074                  */
2075                 pci_lock_rescan_remove();
2076                 pci_scan_child_bus(hbus->pci_bus);
2077                 hv_pci_assign_slots(hbus);
2078                 pci_unlock_rescan_remove();
2079                 break;
2080 
2081         case hv_pcibus_init:
2082         case hv_pcibus_probed:
2083                 survey_child_resources(hbus);
2084                 break;
2085 
2086         default:
2087                 break;
2088         }
2089 
2090         put_hvpcibus(hbus);
2091         kfree(dr);
2092 }
2093 
2094 /**
2095  * hv_pci_devices_present() - Handles list of new children
2096  * @hbus:       Root PCI bus, as understood by this driver
2097  * @relations:  Packet from host listing children
2098  *
2099  * This function is invoked whenever a new list of devices for
2100  * this bus appears.
2101  */
2102 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2103                                    struct pci_bus_relations *relations)
2104 {
2105         struct hv_dr_state *dr;
2106         struct hv_dr_work *dr_wrk;
2107         unsigned long flags;
2108         bool pending_dr;
2109 
2110         dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2111         if (!dr_wrk)
2112                 return;
2113 
2114         dr = kzalloc(offsetof(struct hv_dr_state, func) +
2115                      (sizeof(struct pci_function_description) *
2116                       (relations->device_count)), GFP_NOWAIT);
2117         if (!dr)  {
2118                 kfree(dr_wrk);
2119                 return;
2120         }
2121 
2122         INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2123         dr_wrk->bus = hbus;
2124         dr->device_count = relations->device_count;
2125         if (dr->device_count != 0) {
2126                 memcpy(dr->func, relations->func,
2127                        sizeof(struct pci_function_description) *
2128                        dr->device_count);
2129         }
2130 
2131         spin_lock_irqsave(&hbus->device_list_lock, flags);
2132         /*
2133          * If pending_dr is true, we have already queued a work,
2134          * which will see the new dr. Otherwise, we need to
2135          * queue a new work.
2136          */
2137         pending_dr = !list_empty(&hbus->dr_list);
2138         list_add_tail(&dr->list_entry, &hbus->dr_list);
2139         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2140 
2141         if (pending_dr) {
2142                 kfree(dr_wrk);
2143         } else {
2144                 get_hvpcibus(hbus);
2145                 queue_work(hbus->wq, &dr_wrk->wrk);
2146         }
2147 }
2148 
2149 /**
2150  * hv_eject_device_work() - Asynchronously handles ejection
2151  * @work:       Work struct embedded in internal device struct
2152  *
2153  * This function handles ejecting a device.  Windows will
2154  * attempt to gracefully eject a device, waiting 60 seconds to
2155  * hear back from the guest OS that this completed successfully.
2156  * If this timer expires, the device will be forcibly removed.
2157  */
2158 static void hv_eject_device_work(struct work_struct *work)
2159 {
2160         struct pci_eject_response *ejct_pkt;
2161         struct hv_pcibus_device *hbus;
2162         struct hv_pci_dev *hpdev;
2163         struct pci_dev *pdev;
2164         unsigned long flags;
2165         int wslot;
2166         struct {
2167                 struct pci_packet pkt;
2168                 u8 buffer[sizeof(struct pci_eject_response)];
2169         } ctxt;
2170 
2171         hpdev = container_of(work, struct hv_pci_dev, wrk);
2172         hbus = hpdev->hbus;
2173 
2174         WARN_ON(hpdev->state != hv_pcichild_ejecting);
2175 
2176         /*
2177          * Ejection can come before or after the PCI bus has been set up, so
2178          * attempt to find it and tear down the bus state, if it exists.  This
2179          * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2180          * because hbus->pci_bus may not exist yet.
2181          */
2182         wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2183         pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2184         if (pdev) {
2185                 pci_lock_rescan_remove();
2186                 pci_stop_and_remove_bus_device(pdev);
2187                 pci_dev_put(pdev);
2188                 pci_unlock_rescan_remove();
2189         }
2190 
2191         spin_lock_irqsave(&hbus->device_list_lock, flags);
2192         list_del(&hpdev->list_entry);
2193         spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2194 
2195         if (hpdev->pci_slot)
2196                 pci_destroy_slot(hpdev->pci_slot);
2197 
2198         memset(&ctxt, 0, sizeof(ctxt));
2199         ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2200         ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2201         ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2202         vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2203                          sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2204                          VM_PKT_DATA_INBAND, 0);
2205 
2206         /* For the get_pcichild() in hv_pci_eject_device() */
2207         put_pcichild(hpdev);
2208         /* For the two refs got in new_pcichild_device() */
2209         put_pcichild(hpdev);
2210         put_pcichild(hpdev);
2211         /* hpdev has been freed. Do not use it any more. */
2212 
2213         put_hvpcibus(hbus);
2214 }
2215 
2216 /**
2217  * hv_pci_eject_device() - Handles device ejection
2218  * @hpdev:      Internal device tracking struct
2219  *
2220  * This function is invoked when an ejection packet arrives.  It
2221  * just schedules work so that we don't re-enter the packet
2222  * delivery code handling the ejection.
2223  */
2224 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2225 {
2226         hpdev->state = hv_pcichild_ejecting;
2227         get_pcichild(hpdev);
2228         INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2229         get_hvpcibus(hpdev->hbus);
2230         queue_work(hpdev->hbus->wq, &hpdev->wrk);
2231 }
2232 
2233 /**
2234  * hv_pci_onchannelcallback() - Handles incoming packets
2235  * @context:    Internal bus tracking struct
2236  *
2237  * This function is invoked whenever the host sends a packet to
2238  * this channel (which is private to this root PCI bus).
2239  */
2240 static void hv_pci_onchannelcallback(void *context)
2241 {
2242         const int packet_size = 0x100;
2243         int ret;
2244         struct hv_pcibus_device *hbus = context;
2245         u32 bytes_recvd;
2246         u64 req_id;
2247         struct vmpacket_descriptor *desc;
2248         unsigned char *buffer;
2249         int bufferlen = packet_size;
2250         struct pci_packet *comp_packet;
2251         struct pci_response *response;
2252         struct pci_incoming_message *new_message;
2253         struct pci_bus_relations *bus_rel;
2254         struct pci_dev_inval_block *inval;
2255         struct pci_dev_incoming *dev_message;
2256         struct hv_pci_dev *hpdev;
2257 
2258         buffer = kmalloc(bufferlen, GFP_ATOMIC);
2259         if (!buffer)
2260                 return;
2261 
2262         while (1) {
2263                 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2264                                            bufferlen, &bytes_recvd, &req_id);
2265 
2266                 if (ret == -ENOBUFS) {
2267                         kfree(buffer);
2268                         /* Handle large packet */
2269                         bufferlen = bytes_recvd;
2270                         buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2271                         if (!buffer)
2272                                 return;
2273                         continue;
2274                 }
2275 
2276                 /* Zero length indicates there are no more packets. */
2277                 if (ret || !bytes_recvd)
2278                         break;
2279 
2280                 /*
2281                  * All incoming packets must be at least as large as a
2282                  * response.
2283                  */
2284                 if (bytes_recvd <= sizeof(struct pci_response))
2285                         continue;
2286                 desc = (struct vmpacket_descriptor *)buffer;
2287 
2288                 switch (desc->type) {
2289                 case VM_PKT_COMP:
2290 
2291                         /*
2292                          * The host is trusted, and thus it's safe to interpret
2293                          * this transaction ID as a pointer.
2294                          */
2295                         comp_packet = (struct pci_packet *)req_id;
2296                         response = (struct pci_response *)buffer;
2297                         comp_packet->completion_func(comp_packet->compl_ctxt,
2298                                                      response,
2299                                                      bytes_recvd);
2300                         break;
2301 
2302                 case VM_PKT_DATA_INBAND:
2303 
2304                         new_message = (struct pci_incoming_message *)buffer;
2305                         switch (new_message->message_type.type) {
2306                         case PCI_BUS_RELATIONS:
2307 
2308                                 bus_rel = (struct pci_bus_relations *)buffer;
2309                                 if (bytes_recvd <
2310                                     offsetof(struct pci_bus_relations, func) +
2311                                     (sizeof(struct pci_function_description) *
2312                                      (bus_rel->device_count))) {
2313                                         dev_err(&hbus->hdev->device,
2314                                                 "bus relations too small\n");
2315                                         break;
2316                                 }
2317 
2318                                 hv_pci_devices_present(hbus, bus_rel);
2319                                 break;
2320 
2321                         case PCI_EJECT:
2322 
2323                                 dev_message = (struct pci_dev_incoming *)buffer;
2324                                 hpdev = get_pcichild_wslot(hbus,
2325                                                       dev_message->wslot.slot);
2326                                 if (hpdev) {
2327                                         hv_pci_eject_device(hpdev);
2328                                         put_pcichild(hpdev);
2329                                 }
2330                                 break;
2331 
2332                         case PCI_INVALIDATE_BLOCK:
2333 
2334                                 inval = (struct pci_dev_inval_block *)buffer;
2335                                 hpdev = get_pcichild_wslot(hbus,
2336                                                            inval->wslot.slot);
2337                                 if (hpdev) {
2338                                         if (hpdev->block_invalidate) {
2339                                                 hpdev->block_invalidate(
2340                                                     hpdev->invalidate_context,
2341                                                     inval->block_mask);
2342                                         }
2343                                         put_pcichild(hpdev);
2344                                 }
2345                                 break;
2346 
2347                         default:
2348                                 dev_warn(&hbus->hdev->device,
2349                                         "Unimplemented protocol message %x\n",
2350                                         new_message->message_type.type);
2351                                 break;
2352                         }
2353                         break;
2354 
2355                 default:
2356                         dev_err(&hbus->hdev->device,
2357                                 "unhandled packet type %d, tid %llx len %d\n",
2358                                 desc->type, req_id, bytes_recvd);
2359                         break;
2360                 }
2361         }
2362 
2363         kfree(buffer);
2364 }
2365 
2366 /**
2367  * hv_pci_protocol_negotiation() - Set up protocol
2368  * @hdev:       VMBus's tracking struct for this root PCI bus
2369  *
2370  * This driver is intended to support running on Windows 10
2371  * (server) and later versions. It will not run on earlier
2372  * versions, as they assume that many of the operations which
2373  * Linux needs accomplished with a spinlock held were done via
2374  * asynchronous messaging via VMBus.  Windows 10 increases the
2375  * surface area of PCI emulation so that these actions can take
2376  * place by suspending a virtual processor for their duration.
2377  *
2378  * This function negotiates the channel protocol version,
2379  * failing if the host doesn't support the necessary protocol
2380  * level.
2381  */
2382 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2383 {
2384         struct pci_version_request *version_req;
2385         struct hv_pci_compl comp_pkt;
2386         struct pci_packet *pkt;
2387         int ret;
2388         int i;
2389 
2390         /*
2391          * Initiate the handshake with the host and negotiate
2392          * a version that the host can support. We start with the
2393          * highest version number and go down if the host cannot
2394          * support it.
2395          */
2396         pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2397         if (!pkt)
2398                 return -ENOMEM;
2399 
2400         init_completion(&comp_pkt.host_event);
2401         pkt->completion_func = hv_pci_generic_compl;
2402         pkt->compl_ctxt = &comp_pkt;
2403         version_req = (struct pci_version_request *)&pkt->message;
2404         version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2405 
2406         for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2407                 version_req->protocol_version = pci_protocol_versions[i];
2408                 ret = vmbus_sendpacket(hdev->channel, version_req,
2409                                 sizeof(struct pci_version_request),
2410                                 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2411                                 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2412                 if (!ret)
2413                         ret = wait_for_response(hdev, &comp_pkt.host_event);
2414 
2415                 if (ret) {
2416                         dev_err(&hdev->device,
2417                                 "PCI Pass-through VSP failed to request version: %d",
2418                                 ret);
2419                         goto exit;
2420                 }
2421 
2422                 if (comp_pkt.completion_status >= 0) {
2423                         pci_protocol_version = pci_protocol_versions[i];
2424                         dev_info(&hdev->device,
2425                                 "PCI VMBus probing: Using version %#x\n",
2426                                 pci_protocol_version);
2427                         goto exit;
2428                 }
2429 
2430                 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2431                         dev_err(&hdev->device,
2432                                 "PCI Pass-through VSP failed version request: %#x",
2433                                 comp_pkt.completion_status);
2434                         ret = -EPROTO;
2435                         goto exit;
2436                 }
2437 
2438                 reinit_completion(&comp_pkt.host_event);
2439         }
2440 
2441         dev_err(&hdev->device,
2442                 "PCI pass-through VSP failed to find supported version");
2443         ret = -EPROTO;
2444 
2445 exit:
2446         kfree(pkt);
2447         return ret;
2448 }
2449 
2450 /**
2451  * hv_pci_free_bridge_windows() - Release memory regions for the
2452  * bus
2453  * @hbus:       Root PCI bus, as understood by this driver
2454  */
2455 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2456 {
2457         /*
2458          * Set the resources back to the way they looked when they
2459          * were allocated by setting IORESOURCE_BUSY again.
2460          */
2461 
2462         if (hbus->low_mmio_space && hbus->low_mmio_res) {
2463                 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2464                 vmbus_free_mmio(hbus->low_mmio_res->start,
2465                                 resource_size(hbus->low_mmio_res));
2466         }
2467 
2468         if (hbus->high_mmio_space && hbus->high_mmio_res) {
2469                 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2470                 vmbus_free_mmio(hbus->high_mmio_res->start,
2471                                 resource_size(hbus->high_mmio_res));
2472         }
2473 }
2474 
2475 /**
2476  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2477  * for the bus
2478  * @hbus:       Root PCI bus, as understood by this driver
2479  *
2480  * This function calls vmbus_allocate_mmio(), which is itself a
2481  * bit of a compromise.  Ideally, we might change the pnp layer
2482  * in the kernel such that it comprehends either PCI devices
2483  * which are "grandchildren of ACPI," with some intermediate bus
2484  * node (in this case, VMBus) or change it such that it
2485  * understands VMBus.  The pnp layer, however, has been declared
2486  * deprecated, and not subject to change.
2487  *
2488  * The workaround, implemented here, is to ask VMBus to allocate
2489  * MMIO space for this bus.  VMBus itself knows which ranges are
2490  * appropriate by looking at its own ACPI objects.  Then, after
2491  * these ranges are claimed, they're modified to look like they
2492  * would have looked if the ACPI and pnp code had allocated
2493  * bridge windows.  These descriptors have to exist in this form
2494  * in order to satisfy the code which will get invoked when the
2495  * endpoint PCI function driver calls request_mem_region() or
2496  * request_mem_region_exclusive().
2497  *
2498  * Return: 0 on success, -errno on failure
2499  */
2500 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2501 {
2502         resource_size_t align;
2503         int ret;
2504 
2505         if (hbus->low_mmio_space) {
2506                 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2507                 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2508                                           (u64)(u32)0xffffffff,
2509                                           hbus->low_mmio_space,
2510                                           align, false);
2511                 if (ret) {
2512                         dev_err(&hbus->hdev->device,
2513                                 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2514                                 hbus->low_mmio_space);
2515                         return ret;
2516                 }
2517 
2518                 /* Modify this resource to become a bridge window. */
2519                 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2520                 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2521                 pci_add_resource(&hbus->resources_for_children,
2522                                  hbus->low_mmio_res);
2523         }
2524 
2525         if (hbus->high_mmio_space) {
2526                 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2527                 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2528                                           0x100000000, -1,
2529                                           hbus->high_mmio_space, align,
2530                                           false);
2531                 if (ret) {
2532                         dev_err(&hbus->hdev->device,
2533                                 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2534                                 hbus->high_mmio_space);
2535                         goto release_low_mmio;
2536                 }
2537 
2538                 /* Modify this resource to become a bridge window. */
2539                 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2540                 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2541                 pci_add_resource(&hbus->resources_for_children,
2542                                  hbus->high_mmio_res);
2543         }
2544 
2545         return 0;
2546 
2547 release_low_mmio:
2548         if (hbus->low_mmio_res) {
2549                 vmbus_free_mmio(hbus->low_mmio_res->start,
2550                                 resource_size(hbus->low_mmio_res));
2551         }
2552 
2553         return ret;
2554 }
2555 
2556 /**
2557  * hv_allocate_config_window() - Find MMIO space for PCI Config
2558  * @hbus:       Root PCI bus, as understood by this driver
2559  *
2560  * This function claims memory-mapped I/O space for accessing
2561  * configuration space for the functions on this bus.
2562  *
2563  * Return: 0 on success, -errno on failure
2564  */
2565 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2566 {
2567         int ret;
2568 
2569         /*
2570          * Set up a region of MMIO space to use for accessing configuration
2571          * space.
2572          */
2573         ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2574                                   PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2575         if (ret)
2576                 return ret;
2577 
2578         /*
2579          * vmbus_allocate_mmio() gets used for allocating both device endpoint
2580          * resource claims (those which cannot be overlapped) and the ranges
2581          * which are valid for the children of this bus, which are intended
2582          * to be overlapped by those children.  Set the flag on this claim
2583          * meaning that this region can't be overlapped.
2584          */
2585 
2586         hbus->mem_config->flags |= IORESOURCE_BUSY;
2587 
2588         return 0;
2589 }
2590 
2591 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2592 {
2593         vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2594 }
2595 
2596 /**
2597  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2598  * @hdev:       VMBus's tracking struct for this root PCI bus
2599  *
2600  * Return: 0 on success, -errno on failure
2601  */
2602 static int hv_pci_enter_d0(struct hv_device *hdev)
2603 {
2604         struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2605         struct pci_bus_d0_entry *d0_entry;
2606         struct hv_pci_compl comp_pkt;
2607         struct pci_packet *pkt;
2608         int ret;
2609 
2610         /*
2611          * Tell the host that the bus is ready to use, and moved into the
2612          * powered-on state.  This includes telling the host which region
2613          * of memory-mapped I/O space has been chosen for configuration space
2614          * access.
2615          */
2616         pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2617         if (!pkt)
2618                 return -ENOMEM;
2619 
2620         init_completion(&comp_pkt.host_event);
2621         pkt->completion_func = hv_pci_generic_compl;
2622         pkt->compl_ctxt = &comp_pkt;
2623         d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2624         d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2625         d0_entry->mmio_base = hbus->mem_config->start;
2626 
2627         ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2628                                (unsigned long)pkt, VM_PKT_DATA_INBAND,
2629                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2630         if (!ret)
2631                 ret = wait_for_response(hdev, &comp_pkt.host_event);
2632 
2633         if (ret)
2634                 goto exit;
2635 
2636         if (comp_pkt.completion_status < 0) {
2637                 dev_err(&hdev->device,
2638                         "PCI Pass-through VSP failed D0 Entry with status %x\n",
2639                         comp_pkt.completion_status);
2640                 ret = -EPROTO;
2641                 goto exit;
2642         }
2643 
2644         ret = 0;
2645 
2646 exit:
2647         kfree(pkt);
2648         return ret;
2649 }
2650 
2651 /**
2652  * hv_pci_query_relations() - Ask host to send list of child
2653  * devices
2654  * @hdev:       VMBus's tracking struct for this root PCI bus
2655  *
2656  * Return: 0 on success, -errno on failure
2657  */
2658 static int hv_pci_query_relations(struct hv_device *hdev)
2659 {
2660         struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2661         struct pci_message message;
2662         struct completion comp;
2663         int ret;
2664 
2665         /* Ask the host to send along the list of child devices */
2666         init_completion(&comp);
2667         if (cmpxchg(&hbus->survey_event, NULL, &comp))
2668                 return -ENOTEMPTY;
2669 
2670         memset(&message, 0, sizeof(message));
2671         message.type = PCI_QUERY_BUS_RELATIONS;
2672 
2673         ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2674                                0, VM_PKT_DATA_INBAND, 0);
2675         if (!ret)
2676                 ret = wait_for_response(hdev, &comp);
2677 
2678         return ret;
2679 }
2680 
2681 /**
2682  * hv_send_resources_allocated() - Report local resource choices
2683  * @hdev:       VMBus's tracking struct for this root PCI bus
2684  *
2685  * The host OS is expecting to be sent a request as a message
2686  * which contains all the resources that the device will use.
2687  * The response contains those same resources, "translated"
2688  * which is to say, the values which should be used by the
2689  * hardware, when it delivers an interrupt.  (MMIO resources are
2690  * used in local terms.)  This is nice for Windows, and lines up
2691  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2692  * is deeply expecting to scan an emulated PCI configuration
2693  * space.  So this message is sent here only to drive the state
2694  * machine on the host forward.
2695  *
2696  * Return: 0 on success, -errno on failure
2697  */
2698 static int hv_send_resources_allocated(struct hv_device *hdev)
2699 {
2700         struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2701         struct pci_resources_assigned *res_assigned;
2702         struct pci_resources_assigned2 *res_assigned2;
2703         struct hv_pci_compl comp_pkt;
2704         struct hv_pci_dev *hpdev;
2705         struct pci_packet *pkt;
2706         size_t size_res;
2707         u32 wslot;
2708         int ret;
2709 
2710         size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2711                         ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2712 
2713         pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2714         if (!pkt)
2715                 return -ENOMEM;
2716 
2717         ret = 0;
2718 
2719         for (wslot = 0; wslot < 256; wslot++) {
2720                 hpdev = get_pcichild_wslot(hbus, wslot);
2721                 if (!hpdev)
2722                         continue;
2723 
2724                 memset(pkt, 0, sizeof(*pkt) + size_res);
2725                 init_completion(&comp_pkt.host_event);
2726                 pkt->completion_func = hv_pci_generic_compl;
2727                 pkt->compl_ctxt = &comp_pkt;
2728 
2729                 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2730                         res_assigned =
2731                                 (struct pci_resources_assigned *)&pkt->message;
2732                         res_assigned->message_type.type =
2733                                 PCI_RESOURCES_ASSIGNED;
2734                         res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2735                 } else {
2736                         res_assigned2 =
2737                                 (struct pci_resources_assigned2 *)&pkt->message;
2738                         res_assigned2->message_type.type =
2739                                 PCI_RESOURCES_ASSIGNED2;
2740                         res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2741                 }
2742                 put_pcichild(hpdev);
2743 
2744                 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2745                                 size_res, (unsigned long)pkt,
2746                                 VM_PKT_DATA_INBAND,
2747                                 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2748                 if (!ret)
2749                         ret = wait_for_response(hdev, &comp_pkt.host_event);
2750                 if (ret)
2751                         break;
2752 
2753                 if (comp_pkt.completion_status < 0) {
2754                         ret = -EPROTO;
2755                         dev_err(&hdev->device,
2756                                 "resource allocated returned 0x%x",
2757                                 comp_pkt.completion_status);
2758                         break;
2759                 }
2760         }
2761 
2762         kfree(pkt);
2763         return ret;
2764 }
2765 
2766 /**
2767  * hv_send_resources_released() - Report local resources
2768  * released
2769  * @hdev:       VMBus's tracking struct for this root PCI bus
2770  *
2771  * Return: 0 on success, -errno on failure
2772  */
2773 static int hv_send_resources_released(struct hv_device *hdev)
2774 {
2775         struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2776         struct pci_child_message pkt;
2777         struct hv_pci_dev *hpdev;
2778         u32 wslot;
2779         int ret;
2780 
2781         for (wslot = 0; wslot < 256; wslot++) {
2782                 hpdev = get_pcichild_wslot(hbus, wslot);
2783                 if (!hpdev)
2784                         continue;
2785 
2786                 memset(&pkt, 0, sizeof(pkt));
2787                 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2788                 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2789 
2790                 put_pcichild(hpdev);
2791 
2792                 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2793                                        VM_PKT_DATA_INBAND, 0);
2794                 if (ret)
2795                         return ret;
2796         }
2797 
2798         return 0;
2799 }
2800 
2801 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2802 {
2803         refcount_inc(&hbus->remove_lock);
2804 }
2805 
2806 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2807 {
2808         if (refcount_dec_and_test(&hbus->remove_lock))
2809                 complete(&hbus->remove_event);
2810 }
2811 
2812 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2813 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2814 
2815 /*
2816  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2817  * as invalid for passthrough PCI devices of this driver.
2818  */
2819 #define HVPCI_DOM_INVALID 0
2820 
2821 /**
2822  * hv_get_dom_num() - Get a valid PCI domain number
2823  * Check if the PCI domain number is in use, and return another number if
2824  * it is in use.
2825  *
2826  * @dom: Requested domain number
2827  *
2828  * return: domain number on success, HVPCI_DOM_INVALID on failure
2829  */
2830 static u16 hv_get_dom_num(u16 dom)
2831 {
2832         unsigned int i;
2833 
2834         if (test_and_set_bit(dom, hvpci_dom_map) == 0)
2835                 return dom;
2836 
2837         for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
2838                 if (test_and_set_bit(i, hvpci_dom_map) == 0)
2839                         return i;
2840         }
2841 
2842         return HVPCI_DOM_INVALID;
2843 }
2844 
2845 /**
2846  * hv_put_dom_num() - Mark the PCI domain number as free
2847  * @dom: Domain number to be freed
2848  */
2849 static void hv_put_dom_num(u16 dom)
2850 {
2851         clear_bit(dom, hvpci_dom_map);
2852 }
2853 
2854 /**
2855  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2856  * @hdev:       VMBus's tracking struct for this root PCI bus
2857  * @dev_id:     Identifies the device itself
2858  *
2859  * Return: 0 on success, -errno on failure
2860  */
2861 static int hv_pci_probe(struct hv_device *hdev,
2862                         const struct hv_vmbus_device_id *dev_id)
2863 {
2864         struct hv_pcibus_device *hbus;
2865         u16 dom_req, dom;
2866         char *name;
2867         int ret;
2868 
2869         /*
2870          * hv_pcibus_device contains the hypercall arguments for retargeting in
2871          * hv_irq_unmask(). Those must not cross a page boundary.
2872          */
2873         BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2874 
2875         hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2876         if (!hbus)
2877                 return -ENOMEM;
2878         hbus->state = hv_pcibus_init;
2879 
2880         /*
2881          * The PCI bus "domain" is what is called "segment" in ACPI and other
2882          * specs. Pull it from the instance ID, to get something usually
2883          * unique. In rare cases of collision, we will find out another number
2884          * not in use.
2885          *
2886          * Note that, since this code only runs in a Hyper-V VM, Hyper-V
2887          * together with this guest driver can guarantee that (1) The only
2888          * domain used by Gen1 VMs for something that looks like a physical
2889          * PCI bus (which is actually emulated by the hypervisor) is domain 0.
2890          * (2) There will be no overlap between domains (after fixing possible
2891          * collisions) in the same VM.
2892          */
2893         dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
2894         dom = hv_get_dom_num(dom_req);
2895 
2896         if (dom == HVPCI_DOM_INVALID) {
2897                 dev_err(&hdev->device,
2898                         "Unable to use dom# 0x%hx or other numbers", dom_req);
2899                 ret = -EINVAL;
2900                 goto free_bus;
2901         }
2902 
2903         if (dom != dom_req)
2904                 dev_info(&hdev->device,
2905                          "PCI dom# 0x%hx has collision, using 0x%hx",
2906                          dom_req, dom);
2907 
2908         hbus->sysdata.domain = dom;
2909 
2910         hbus->hdev = hdev;
2911         refcount_set(&hbus->remove_lock, 1);
2912         INIT_LIST_HEAD(&hbus->children);
2913         INIT_LIST_HEAD(&hbus->dr_list);
2914         INIT_LIST_HEAD(&hbus->resources_for_children);
2915         spin_lock_init(&hbus->config_lock);
2916         spin_lock_init(&hbus->device_list_lock);
2917         spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2918         init_completion(&hbus->remove_event);
2919         hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2920                                            hbus->sysdata.domain);
2921         if (!hbus->wq) {
2922                 ret = -ENOMEM;
2923                 goto free_dom;
2924         }
2925 
2926         ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2927                          hv_pci_onchannelcallback, hbus);
2928         if (ret)
2929                 goto destroy_wq;
2930 
2931         hv_set_drvdata(hdev, hbus);
2932 
2933         ret = hv_pci_protocol_negotiation(hdev);
2934         if (ret)
2935                 goto close;
2936 
2937         ret = hv_allocate_config_window(hbus);
2938         if (ret)
2939                 goto close;
2940 
2941         hbus->cfg_addr = ioremap(hbus->mem_config->start,
2942                                  PCI_CONFIG_MMIO_LENGTH);
2943         if (!hbus->cfg_addr) {
2944                 dev_err(&hdev->device,
2945                         "Unable to map a virtual address for config space\n");
2946                 ret = -ENOMEM;
2947                 goto free_config;
2948         }
2949 
2950         name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
2951         if (!name) {
2952                 ret = -ENOMEM;
2953                 goto unmap;
2954         }
2955 
2956         hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
2957         kfree(name);
2958         if (!hbus->sysdata.fwnode) {
2959                 ret = -ENOMEM;
2960                 goto unmap;
2961         }
2962 
2963         ret = hv_pcie_init_irq_domain(hbus);
2964         if (ret)
2965                 goto free_fwnode;
2966 
2967         ret = hv_pci_query_relations(hdev);
2968         if (ret)
2969                 goto free_irq_domain;
2970 
2971         ret = hv_pci_enter_d0(hdev);
2972         if (ret)
2973                 goto free_irq_domain;
2974 
2975         ret = hv_pci_allocate_bridge_windows(hbus);
2976         if (ret)
2977                 goto free_irq_domain;
2978 
2979         ret = hv_send_resources_allocated(hdev);
2980         if (ret)
2981                 goto free_windows;
2982 
2983         prepopulate_bars(hbus);
2984 
2985         hbus->state = hv_pcibus_probed;
2986 
2987         ret = create_root_hv_pci_bus(hbus);
2988         if (ret)
2989                 goto free_windows;
2990 
2991         return 0;
2992 
2993 free_windows:
2994         hv_pci_free_bridge_windows(hbus);
2995 free_irq_domain:
2996         irq_domain_remove(hbus->irq_domain);
2997 free_fwnode:
2998         irq_domain_free_fwnode(hbus->sysdata.fwnode);
2999 unmap:
3000         iounmap(hbus->cfg_addr);
3001 free_config:
3002         hv_free_config_window(hbus);
3003 close:
3004         vmbus_close(hdev->channel);
3005 destroy_wq:
3006         destroy_workqueue(hbus->wq);
3007 free_dom:
3008         hv_put_dom_num(hbus->sysdata.domain);
3009 free_bus:
3010         free_page((unsigned long)hbus);
3011         return ret;
3012 }
3013 
3014 static void hv_pci_bus_exit(struct hv_device *hdev)
3015 {
3016         struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3017         struct {
3018                 struct pci_packet teardown_packet;
3019                 u8 buffer[sizeof(struct pci_message)];
3020         } pkt;
3021         struct pci_bus_relations relations;
3022         struct hv_pci_compl comp_pkt;
3023         int ret;
3024 
3025         /*
3026          * After the host sends the RESCIND_CHANNEL message, it doesn't
3027          * access the per-channel ringbuffer any longer.
3028          */
3029         if (hdev->channel->rescind)
3030                 return;
3031 
3032         /* Delete any children which might still exist. */
3033         memset(&relations, 0, sizeof(relations));
3034         hv_pci_devices_present(hbus, &relations);
3035 
3036         ret = hv_send_resources_released(hdev);
3037         if (ret)
3038                 dev_err(&hdev->device,
3039                         "Couldn't send resources released packet(s)\n");
3040 
3041         memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3042         init_completion(&comp_pkt.host_event);
3043         pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3044         pkt.teardown_packet.compl_ctxt = &comp_pkt;
3045         pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3046 
3047         ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3048                                sizeof(struct pci_message),
3049                                (unsigned long)&pkt.teardown_packet,
3050                                VM_PKT_DATA_INBAND,
3051                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3052         if (!ret)
3053                 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
3054 }
3055 
3056 /**
3057  * hv_pci_remove() - Remove routine for this VMBus channel
3058  * @hdev:       VMBus's tracking struct for this root PCI bus
3059  *
3060  * Return: 0 on success, -errno on failure
3061  */
3062 static int hv_pci_remove(struct hv_device *hdev)
3063 {
3064         struct hv_pcibus_device *hbus;
3065 
3066         hbus = hv_get_drvdata(hdev);
3067         if (hbus->state == hv_pcibus_installed) {
3068                 /* Remove the bus from PCI's point of view. */
3069                 pci_lock_rescan_remove();
3070                 pci_stop_root_bus(hbus->pci_bus);
3071                 hv_pci_remove_slots(hbus);
3072                 pci_remove_root_bus(hbus->pci_bus);
3073                 pci_unlock_rescan_remove();
3074                 hbus->state = hv_pcibus_removed;
3075         }
3076 
3077         hv_pci_bus_exit(hdev);
3078 
3079         vmbus_close(hdev->channel);
3080 
3081         iounmap(hbus->cfg_addr);
3082         hv_free_config_window(hbus);
3083         pci_free_resource_list(&hbus->resources_for_children);
3084         hv_pci_free_bridge_windows(hbus);
3085         irq_domain_remove(hbus->irq_domain);
3086         irq_domain_free_fwnode(hbus->sysdata.fwnode);
3087         put_hvpcibus(hbus);
3088         wait_for_completion(&hbus->remove_event);
3089         destroy_workqueue(hbus->wq);
3090 
3091         hv_put_dom_num(hbus->sysdata.domain);
3092 
3093         free_page((unsigned long)hbus);
3094         return 0;
3095 }
3096 
3097 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3098         /* PCI Pass-through Class ID */
3099         /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3100         { HV_PCIE_GUID, },
3101         { },
3102 };
3103 
3104 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3105 
3106 static struct hv_driver hv_pci_drv = {
3107         .name           = "hv_pci",
3108         .id_table       = hv_pci_id_table,
3109         .probe          = hv_pci_probe,
3110         .remove         = hv_pci_remove,
3111 };
3112 
3113 static void __exit exit_hv_pci_drv(void)
3114 {
3115         vmbus_driver_unregister(&hv_pci_drv);
3116 
3117         hvpci_block_ops.read_block = NULL;
3118         hvpci_block_ops.write_block = NULL;
3119         hvpci_block_ops.reg_blk_invalidate = NULL;
3120 }
3121 
3122 static int __init init_hv_pci_drv(void)
3123 {
3124         /* Set the invalid domain number's bit, so it will not be used */
3125         set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3126 
3127         /* Initialize PCI block r/w interface */
3128         hvpci_block_ops.read_block = hv_read_config_block;
3129         hvpci_block_ops.write_block = hv_write_config_block;
3130         hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3131 
3132         return vmbus_driver_register(&hv_pci_drv);
3133 }
3134 
3135 module_init(init_hv_pci_drv);
3136 module_exit(exit_hv_pci_drv);
3137 
3138 MODULE_DESCRIPTION("Hyper-V PCI");
3139 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */