root/drivers/isdn/hardware/mISDN/hfcpci.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. enable_hwirq
  2. disable_hwirq
  3. release_io_hfcpci
  4. hfcpci_setmode
  5. reset_hfcpci
  6. hfcpci_Timer
  7. Sel_BCS
  8. hfcpci_clear_fifo_rx
  9. hfcpci_clear_fifo_tx
  10. hfcpci_empty_bfifo
  11. receive_dmsg
  12. hfcpci_empty_fifo_trans
  13. main_rec_hfcpci
  14. hfcpci_fill_dfifo
  15. hfcpci_fill_fifo
  16. ph_state_te
  17. handle_nt_timer3
  18. ph_state_nt
  19. ph_state
  20. hfc_l1callback
  21. tx_birq
  22. tx_dirq
  23. hfcpci_int
  24. hfcpci_dbusy_timer
  25. mode_hfcpci
  26. set_hfcpci_rxtest
  27. deactivate_bchannel
  28. channel_bctrl
  29. hfc_bctrl
  30. hfcpci_l2l1D
  31. hfcpci_l2l1B
  32. inithfcpci
  33. init_card
  34. channel_ctrl
  35. open_dchannel
  36. open_bchannel
  37. hfc_dctrl
  38. setup_hw
  39. release_card
  40. setup_card
  41. hfc_probe
  42. hfc_remove_pci
  43. _hfcpci_softirq
  44. hfcpci_softirq
  45. HFC_init
  46. HFC_cleanup

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  *
   4  * hfcpci.c     low level driver for CCD's hfc-pci based cards
   5  *
   6  * Author     Werner Cornelius (werner@isdn4linux.de)
   7  *            based on existing driver for CCD hfc ISA cards
   8  *            type approval valid for HFC-S PCI A based card
   9  *
  10  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
  11  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
  12  *
  13  * Module options:
  14  *
  15  * debug:
  16  *      NOTE: only one poll value must be given for all cards
  17  *      See hfc_pci.h for debug flags.
  18  *
  19  * poll:
  20  *      NOTE: only one poll value must be given for all cards
  21  *      Give the number of samples for each fifo process.
  22  *      By default 128 is used. Decrease to reduce delay, increase to
  23  *      reduce cpu load. If unsure, don't mess with it!
  24  *      A value of 128 will use controller's interrupt. Other values will
  25  *      use kernel timer, because the controller will not allow lower values
  26  *      than 128.
  27  *      Also note that the value depends on the kernel timer frequency.
  28  *      If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
  29  *      If the kernel uses 100 Hz, steps of 80 samples are possible.
  30  *      If the kernel uses 300 Hz, steps of about 26 samples are possible.
  31  */
  32 
  33 #include <linux/interrupt.h>
  34 #include <linux/module.h>
  35 #include <linux/pci.h>
  36 #include <linux/delay.h>
  37 #include <linux/mISDNhw.h>
  38 #include <linux/slab.h>
  39 
  40 #include "hfc_pci.h"
  41 
  42 static const char *hfcpci_revision = "2.0";
  43 
  44 static int HFC_cnt;
  45 static uint debug;
  46 static uint poll, tics;
  47 static struct timer_list hfc_tl;
  48 static unsigned long hfc_jiffies;
  49 
  50 MODULE_AUTHOR("Karsten Keil");
  51 MODULE_LICENSE("GPL");
  52 module_param(debug, uint, S_IRUGO | S_IWUSR);
  53 module_param(poll, uint, S_IRUGO | S_IWUSR);
  54 
  55 enum {
  56         HFC_CCD_2BD0,
  57         HFC_CCD_B000,
  58         HFC_CCD_B006,
  59         HFC_CCD_B007,
  60         HFC_CCD_B008,
  61         HFC_CCD_B009,
  62         HFC_CCD_B00A,
  63         HFC_CCD_B00B,
  64         HFC_CCD_B00C,
  65         HFC_CCD_B100,
  66         HFC_CCD_B700,
  67         HFC_CCD_B701,
  68         HFC_ASUS_0675,
  69         HFC_BERKOM_A1T,
  70         HFC_BERKOM_TCONCEPT,
  71         HFC_ANIGMA_MC145575,
  72         HFC_ZOLTRIX_2BD0,
  73         HFC_DIGI_DF_M_IOM2_E,
  74         HFC_DIGI_DF_M_E,
  75         HFC_DIGI_DF_M_IOM2_A,
  76         HFC_DIGI_DF_M_A,
  77         HFC_ABOCOM_2BD1,
  78         HFC_SITECOM_DC105V2,
  79 };
  80 
  81 struct hfcPCI_hw {
  82         unsigned char           cirm;
  83         unsigned char           ctmt;
  84         unsigned char           clkdel;
  85         unsigned char           states;
  86         unsigned char           conn;
  87         unsigned char           mst_m;
  88         unsigned char           int_m1;
  89         unsigned char           int_m2;
  90         unsigned char           sctrl;
  91         unsigned char           sctrl_r;
  92         unsigned char           sctrl_e;
  93         unsigned char           trm;
  94         unsigned char           fifo_en;
  95         unsigned char           bswapped;
  96         unsigned char           protocol;
  97         int                     nt_timer;
  98         unsigned char __iomem   *pci_io; /* start of PCI IO memory */
  99         dma_addr_t              dmahandle;
 100         void                    *fifos; /* FIFO memory */
 101         int                     last_bfifo_cnt[2];
 102         /* marker saving last b-fifo frame count */
 103         struct timer_list       timer;
 104 };
 105 
 106 #define HFC_CFG_MASTER          1
 107 #define HFC_CFG_SLAVE           2
 108 #define HFC_CFG_PCM             3
 109 #define HFC_CFG_2HFC            4
 110 #define HFC_CFG_SLAVEHFC        5
 111 #define HFC_CFG_NEG_F0          6
 112 #define HFC_CFG_SW_DD_DU        7
 113 
 114 #define FLG_HFC_TIMER_T1        16
 115 #define FLG_HFC_TIMER_T3        17
 116 
 117 #define NT_T1_COUNT     1120    /* number of 3.125ms interrupts (3.5s) */
 118 #define NT_T3_COUNT     31      /* number of 3.125ms interrupts (97 ms) */
 119 #define CLKDEL_TE       0x0e    /* CLKDEL in TE mode */
 120 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode */
 121 
 122 
 123 struct hfc_pci {
 124         u_char                  subtype;
 125         u_char                  chanlimit;
 126         u_char                  initdone;
 127         u_long                  cfg;
 128         u_int                   irq;
 129         u_int                   irqcnt;
 130         struct pci_dev          *pdev;
 131         struct hfcPCI_hw        hw;
 132         spinlock_t              lock;   /* card lock */
 133         struct dchannel         dch;
 134         struct bchannel         bch[2];
 135 };
 136 
 137 /* Interface functions */
 138 static void
 139 enable_hwirq(struct hfc_pci *hc)
 140 {
 141         hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
 142         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
 143 }
 144 
 145 static void
 146 disable_hwirq(struct hfc_pci *hc)
 147 {
 148         hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
 149         Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
 150 }
 151 
 152 /*
 153  * free hardware resources used by driver
 154  */
 155 static void
 156 release_io_hfcpci(struct hfc_pci *hc)
 157 {
 158         /* disable memory mapped ports + busmaster */
 159         pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
 160         del_timer(&hc->hw.timer);
 161         pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
 162         iounmap(hc->hw.pci_io);
 163 }
 164 
 165 /*
 166  * set mode (NT or TE)
 167  */
 168 static void
 169 hfcpci_setmode(struct hfc_pci *hc)
 170 {
 171         if (hc->hw.protocol == ISDN_P_NT_S0) {
 172                 hc->hw.clkdel = CLKDEL_NT;      /* ST-Bit delay for NT-Mode */
 173                 hc->hw.sctrl |= SCTRL_MODE_NT;  /* NT-MODE */
 174                 hc->hw.states = 1;              /* G1 */
 175         } else {
 176                 hc->hw.clkdel = CLKDEL_TE;      /* ST-Bit delay for TE-Mode */
 177                 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
 178                 hc->hw.states = 2;              /* F2 */
 179         }
 180         Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
 181         Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
 182         udelay(10);
 183         Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
 184         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
 185 }
 186 
 187 /*
 188  * function called to reset the HFC PCI chip. A complete software reset of chip
 189  * and fifos is done.
 190  */
 191 static void
 192 reset_hfcpci(struct hfc_pci *hc)
 193 {
 194         u_char  val;
 195         int     cnt = 0;
 196 
 197         printk(KERN_DEBUG "reset_hfcpci: entered\n");
 198         val = Read_hfc(hc, HFCPCI_CHIP_ID);
 199         printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
 200         /* enable memory mapped ports, disable busmaster */
 201         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
 202         disable_hwirq(hc);
 203         /* enable memory ports + busmaster */
 204         pci_write_config_word(hc->pdev, PCI_COMMAND,
 205                               PCI_ENA_MEMIO + PCI_ENA_MASTER);
 206         val = Read_hfc(hc, HFCPCI_STATUS);
 207         printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
 208         hc->hw.cirm = HFCPCI_RESET;     /* Reset On */
 209         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
 210         set_current_state(TASK_UNINTERRUPTIBLE);
 211         mdelay(10);                     /* Timeout 10ms */
 212         hc->hw.cirm = 0;                /* Reset Off */
 213         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
 214         val = Read_hfc(hc, HFCPCI_STATUS);
 215         printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
 216         while (cnt < 50000) { /* max 50000 us */
 217                 udelay(5);
 218                 cnt += 5;
 219                 val = Read_hfc(hc, HFCPCI_STATUS);
 220                 if (!(val & 2))
 221                         break;
 222         }
 223         printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
 224 
 225         hc->hw.fifo_en = 0x30;  /* only D fifos enabled */
 226 
 227         hc->hw.bswapped = 0;    /* no exchange */
 228         hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
 229         hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
 230         hc->hw.sctrl = 0x40;    /* set tx_lo mode, error in datasheet ! */
 231         hc->hw.sctrl_r = 0;
 232         hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;     /* S/T Auto awake */
 233         hc->hw.mst_m = 0;
 234         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
 235                 hc->hw.mst_m |= HFCPCI_MASTER;  /* HFC Master Mode */
 236         if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
 237                 hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
 238         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
 239         Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
 240         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
 241         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
 242 
 243         hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
 244                 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
 245         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
 246 
 247         /* Clear already pending ints */
 248         val = Read_hfc(hc, HFCPCI_INT_S1);
 249 
 250         /* set NT/TE mode */
 251         hfcpci_setmode(hc);
 252 
 253         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
 254         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
 255 
 256         /*
 257          * Init GCI/IOM2 in master mode
 258          * Slots 0 and 1 are set for B-chan 1 and 2
 259          * D- and monitor/CI channel are not enabled
 260          * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
 261          * STIO2 is used as data input, B1+B2 from IOM->ST
 262          * ST B-channel send disabled -> continuous 1s
 263          * The IOM slots are always enabled
 264          */
 265         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
 266                 /* set data flow directions: connect B1,B2: HFC to/from PCM */
 267                 hc->hw.conn = 0x09;
 268         } else {
 269                 hc->hw.conn = 0x36;     /* set data flow directions */
 270                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
 271                         Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
 272                         Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
 273                         Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
 274                         Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
 275                 } else {
 276                         Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
 277                         Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
 278                         Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
 279                         Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
 280                 }
 281         }
 282         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
 283         val = Read_hfc(hc, HFCPCI_INT_S2);
 284 }
 285 
 286 /*
 287  * Timer function called when kernel timer expires
 288  */
 289 static void
 290 hfcpci_Timer(struct timer_list *t)
 291 {
 292         struct hfc_pci *hc = from_timer(hc, t, hw.timer);
 293         hc->hw.timer.expires = jiffies + 75;
 294         /* WD RESET */
 295 /*
 296  *      WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
 297  *      add_timer(&hc->hw.timer);
 298  */
 299 }
 300 
 301 
 302 /*
 303  * select a b-channel entry matching and active
 304  */
 305 static struct bchannel *
 306 Sel_BCS(struct hfc_pci *hc, int channel)
 307 {
 308         if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
 309             (hc->bch[0].nr & channel))
 310                 return &hc->bch[0];
 311         else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
 312                  (hc->bch[1].nr & channel))
 313                 return &hc->bch[1];
 314         else
 315                 return NULL;
 316 }
 317 
 318 /*
 319  * clear the desired B-channel rx fifo
 320  */
 321 static void
 322 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
 323 {
 324         u_char          fifo_state;
 325         struct bzfifo   *bzr;
 326 
 327         if (fifo) {
 328                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
 329                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
 330         } else {
 331                 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
 332                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
 333         }
 334         if (fifo_state)
 335                 hc->hw.fifo_en ^= fifo_state;
 336         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
 337         hc->hw.last_bfifo_cnt[fifo] = 0;
 338         bzr->f1 = MAX_B_FRAMES;
 339         bzr->f2 = bzr->f1;      /* init F pointers to remain constant */
 340         bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
 341         bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
 342                 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
 343         if (fifo_state)
 344                 hc->hw.fifo_en |= fifo_state;
 345         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
 346 }
 347 
 348 /*
 349  * clear the desired B-channel tx fifo
 350  */
 351 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
 352 {
 353         u_char          fifo_state;
 354         struct bzfifo   *bzt;
 355 
 356         if (fifo) {
 357                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
 358                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
 359         } else {
 360                 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
 361                 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
 362         }
 363         if (fifo_state)
 364                 hc->hw.fifo_en ^= fifo_state;
 365         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
 366         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
 367                 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
 368                        "z1(%x) z2(%x) state(%x)\n",
 369                        fifo, bzt->f1, bzt->f2,
 370                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
 371                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
 372                        fifo_state);
 373         bzt->f2 = MAX_B_FRAMES;
 374         bzt->f1 = bzt->f2;      /* init F pointers to remain constant */
 375         bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
 376         bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
 377         if (fifo_state)
 378                 hc->hw.fifo_en |= fifo_state;
 379         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
 380         if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
 381                 printk(KERN_DEBUG
 382                        "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
 383                        fifo, bzt->f1, bzt->f2,
 384                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
 385                        le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
 386 }
 387 
 388 /*
 389  * read a complete B-frame out of the buffer
 390  */
 391 static void
 392 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
 393                    u_char *bdata, int count)
 394 {
 395         u_char          *ptr, *ptr1, new_f2;
 396         int             maxlen, new_z2;
 397         struct zt       *zp;
 398 
 399         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
 400                 printk(KERN_DEBUG "hfcpci_empty_fifo\n");
 401         zp = &bz->za[bz->f2];   /* point to Z-Regs */
 402         new_z2 = le16_to_cpu(zp->z2) + count;   /* new position in fifo */
 403         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
 404                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
 405         new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
 406         if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
 407             (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
 408                 if (bch->debug & DEBUG_HW)
 409                         printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
 410                                "invalid length %d or crc\n", count);
 411 #ifdef ERROR_STATISTIC
 412                 bch->err_inv++;
 413 #endif
 414                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
 415                 bz->f2 = new_f2;        /* next buffer */
 416         } else {
 417                 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
 418                 if (!bch->rx_skb) {
 419                         printk(KERN_WARNING "HFCPCI: receive out of memory\n");
 420                         return;
 421                 }
 422                 count -= 3;
 423                 ptr = skb_put(bch->rx_skb, count);
 424 
 425                 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
 426                         maxlen = count;         /* complete transfer */
 427                 else
 428                         maxlen = B_FIFO_SIZE + B_SUB_VAL -
 429                                 le16_to_cpu(zp->z2);    /* maximum */
 430 
 431                 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
 432                 /* start of data */
 433                 memcpy(ptr, ptr1, maxlen);      /* copy data */
 434                 count -= maxlen;
 435 
 436                 if (count) {    /* rest remaining */
 437                         ptr += maxlen;
 438                         ptr1 = bdata;   /* start of buffer */
 439                         memcpy(ptr, ptr1, count);       /* rest */
 440                 }
 441                 bz->za[new_f2].z2 = cpu_to_le16(new_z2);
 442                 bz->f2 = new_f2;        /* next buffer */
 443                 recv_Bchannel(bch, MISDN_ID_ANY, false);
 444         }
 445 }
 446 
 447 /*
 448  * D-channel receive procedure
 449  */
 450 static int
 451 receive_dmsg(struct hfc_pci *hc)
 452 {
 453         struct dchannel *dch = &hc->dch;
 454         int             maxlen;
 455         int             rcnt, total;
 456         int             count = 5;
 457         u_char          *ptr, *ptr1;
 458         struct dfifo    *df;
 459         struct zt       *zp;
 460 
 461         df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
 462         while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
 463                 zp = &df->za[df->f2 & D_FREG_MASK];
 464                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
 465                 if (rcnt < 0)
 466                         rcnt += D_FIFO_SIZE;
 467                 rcnt++;
 468                 if (dch->debug & DEBUG_HW_DCHANNEL)
 469                         printk(KERN_DEBUG
 470                                "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
 471                                df->f1, df->f2,
 472                                le16_to_cpu(zp->z1),
 473                                le16_to_cpu(zp->z2),
 474                                rcnt);
 475 
 476                 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
 477                     (df->data[le16_to_cpu(zp->z1)])) {
 478                         if (dch->debug & DEBUG_HW)
 479                                 printk(KERN_DEBUG
 480                                        "empty_fifo hfcpci packet inv. len "
 481                                        "%d or crc %d\n",
 482                                        rcnt,
 483                                        df->data[le16_to_cpu(zp->z1)]);
 484 #ifdef ERROR_STATISTIC
 485                         cs->err_rx++;
 486 #endif
 487                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
 488                                 (MAX_D_FRAMES + 1);     /* next buffer */
 489                         df->za[df->f2 & D_FREG_MASK].z2 =
 490                                 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
 491                                             (D_FIFO_SIZE - 1));
 492                 } else {
 493                         dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
 494                         if (!dch->rx_skb) {
 495                                 printk(KERN_WARNING
 496                                        "HFC-PCI: D receive out of memory\n");
 497                                 break;
 498                         }
 499                         total = rcnt;
 500                         rcnt -= 3;
 501                         ptr = skb_put(dch->rx_skb, rcnt);
 502 
 503                         if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
 504                                 maxlen = rcnt;  /* complete transfer */
 505                         else
 506                                 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
 507                         /* maximum */
 508 
 509                         ptr1 = df->data + le16_to_cpu(zp->z2);
 510                         /* start of data */
 511                         memcpy(ptr, ptr1, maxlen);      /* copy data */
 512                         rcnt -= maxlen;
 513 
 514                         if (rcnt) {     /* rest remaining */
 515                                 ptr += maxlen;
 516                                 ptr1 = df->data;        /* start of buffer */
 517                                 memcpy(ptr, ptr1, rcnt);        /* rest */
 518                         }
 519                         df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
 520                                 (MAX_D_FRAMES + 1);     /* next buffer */
 521                         df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
 522                                                                               le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
 523                         recv_Dchannel(dch);
 524                 }
 525         }
 526         return 1;
 527 }
 528 
 529 /*
 530  * check for transparent receive data and read max one 'poll' size if avail
 531  */
 532 static void
 533 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
 534                         struct bzfifo *txbz, u_char *bdata)
 535 {
 536         __le16  *z1r, *z2r, *z1t, *z2t;
 537         int     new_z2, fcnt_rx, fcnt_tx, maxlen;
 538         u_char  *ptr, *ptr1;
 539 
 540         z1r = &rxbz->za[MAX_B_FRAMES].z1;       /* pointer to z reg */
 541         z2r = z1r + 1;
 542         z1t = &txbz->za[MAX_B_FRAMES].z1;
 543         z2t = z1t + 1;
 544 
 545         fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
 546         if (!fcnt_rx)
 547                 return; /* no data avail */
 548 
 549         if (fcnt_rx <= 0)
 550                 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
 551         new_z2 = le16_to_cpu(*z2r) + fcnt_rx;   /* new position in fifo */
 552         if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
 553                 new_z2 -= B_FIFO_SIZE;  /* buffer wrap */
 554 
 555         fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
 556         if (fcnt_tx <= 0)
 557                 fcnt_tx += B_FIFO_SIZE;
 558         /* fcnt_tx contains available bytes in tx-fifo */
 559         fcnt_tx = B_FIFO_SIZE - fcnt_tx;
 560         /* remaining bytes to send (bytes in tx-fifo) */
 561 
 562         if (test_bit(FLG_RX_OFF, &bch->Flags)) {
 563                 bch->dropcnt += fcnt_rx;
 564                 *z2r = cpu_to_le16(new_z2);
 565                 return;
 566         }
 567         maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
 568         if (maxlen < 0) {
 569                 pr_warning("B%d: No bufferspace for %d bytes\n",
 570                            bch->nr, fcnt_rx);
 571         } else {
 572                 ptr = skb_put(bch->rx_skb, fcnt_rx);
 573                 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
 574                         maxlen = fcnt_rx;       /* complete transfer */
 575                 else
 576                         maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
 577                 /* maximum */
 578 
 579                 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
 580                 /* start of data */
 581                 memcpy(ptr, ptr1, maxlen);      /* copy data */
 582                 fcnt_rx -= maxlen;
 583 
 584                 if (fcnt_rx) {  /* rest remaining */
 585                         ptr += maxlen;
 586                         ptr1 = bdata;   /* start of buffer */
 587                         memcpy(ptr, ptr1, fcnt_rx);     /* rest */
 588                 }
 589                 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
 590         }
 591         *z2r = cpu_to_le16(new_z2);             /* new position */
 592 }
 593 
 594 /*
 595  * B-channel main receive routine
 596  */
 597 static void
 598 main_rec_hfcpci(struct bchannel *bch)
 599 {
 600         struct hfc_pci  *hc = bch->hw;
 601         int             rcnt, real_fifo;
 602         int             receive = 0, count = 5;
 603         struct bzfifo   *txbz, *rxbz;
 604         u_char          *bdata;
 605         struct zt       *zp;
 606 
 607         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
 608                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
 609                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
 610                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
 611                 real_fifo = 1;
 612         } else {
 613                 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
 614                 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
 615                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
 616                 real_fifo = 0;
 617         }
 618 Begin:
 619         count--;
 620         if (rxbz->f1 != rxbz->f2) {
 621                 if (bch->debug & DEBUG_HW_BCHANNEL)
 622                         printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
 623                                bch->nr, rxbz->f1, rxbz->f2);
 624                 zp = &rxbz->za[rxbz->f2];
 625 
 626                 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
 627                 if (rcnt < 0)
 628                         rcnt += B_FIFO_SIZE;
 629                 rcnt++;
 630                 if (bch->debug & DEBUG_HW_BCHANNEL)
 631                         printk(KERN_DEBUG
 632                                "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
 633                                bch->nr, le16_to_cpu(zp->z1),
 634                                le16_to_cpu(zp->z2), rcnt);
 635                 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
 636                 rcnt = rxbz->f1 - rxbz->f2;
 637                 if (rcnt < 0)
 638                         rcnt += MAX_B_FRAMES + 1;
 639                 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
 640                         rcnt = 0;
 641                         hfcpci_clear_fifo_rx(hc, real_fifo);
 642                 }
 643                 hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
 644                 if (rcnt > 1)
 645                         receive = 1;
 646                 else
 647                         receive = 0;
 648         } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
 649                 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
 650                 return;
 651         } else
 652                 receive = 0;
 653         if (count && receive)
 654                 goto Begin;
 655 
 656 }
 657 
 658 /*
 659  * D-channel send routine
 660  */
 661 static void
 662 hfcpci_fill_dfifo(struct hfc_pci *hc)
 663 {
 664         struct dchannel *dch = &hc->dch;
 665         int             fcnt;
 666         int             count, new_z1, maxlen;
 667         struct dfifo    *df;
 668         u_char          *src, *dst, new_f1;
 669 
 670         if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
 671                 printk(KERN_DEBUG "%s\n", __func__);
 672 
 673         if (!dch->tx_skb)
 674                 return;
 675         count = dch->tx_skb->len - dch->tx_idx;
 676         if (count <= 0)
 677                 return;
 678         df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
 679 
 680         if (dch->debug & DEBUG_HW_DFIFO)
 681                 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
 682                        df->f1, df->f2,
 683                        le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
 684         fcnt = df->f1 - df->f2; /* frame count actually buffered */
 685         if (fcnt < 0)
 686                 fcnt += (MAX_D_FRAMES + 1);     /* if wrap around */
 687         if (fcnt > (MAX_D_FRAMES - 1)) {
 688                 if (dch->debug & DEBUG_HW_DCHANNEL)
 689                         printk(KERN_DEBUG
 690                                "hfcpci_fill_Dfifo more as 14 frames\n");
 691 #ifdef ERROR_STATISTIC
 692                 cs->err_tx++;
 693 #endif
 694                 return;
 695         }
 696         /* now determine free bytes in FIFO buffer */
 697         maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
 698                 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
 699         if (maxlen <= 0)
 700                 maxlen += D_FIFO_SIZE;  /* count now contains available bytes */
 701 
 702         if (dch->debug & DEBUG_HW_DCHANNEL)
 703                 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
 704                        count, maxlen);
 705         if (count > maxlen) {
 706                 if (dch->debug & DEBUG_HW_DCHANNEL)
 707                         printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
 708                 return;
 709         }
 710         new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
 711                 (D_FIFO_SIZE - 1);
 712         new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
 713         src = dch->tx_skb->data + dch->tx_idx;  /* source pointer */
 714         dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
 715         maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
 716         /* end fifo */
 717         if (maxlen > count)
 718                 maxlen = count; /* limit size */
 719         memcpy(dst, src, maxlen);       /* first copy */
 720 
 721         count -= maxlen;        /* remaining bytes */
 722         if (count) {
 723                 dst = df->data; /* start of buffer */
 724                 src += maxlen;  /* new position */
 725                 memcpy(dst, src, count);
 726         }
 727         df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
 728         /* for next buffer */
 729         df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
 730         /* new pos actual buffer */
 731         df->f1 = new_f1;        /* next frame */
 732         dch->tx_idx = dch->tx_skb->len;
 733 }
 734 
 735 /*
 736  * B-channel send routine
 737  */
 738 static void
 739 hfcpci_fill_fifo(struct bchannel *bch)
 740 {
 741         struct hfc_pci  *hc = bch->hw;
 742         int             maxlen, fcnt;
 743         int             count, new_z1;
 744         struct bzfifo   *bz;
 745         u_char          *bdata;
 746         u_char          new_f1, *src, *dst;
 747         __le16 *z1t, *z2t;
 748 
 749         if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
 750                 printk(KERN_DEBUG "%s\n", __func__);
 751         if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
 752                 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
 753                     !test_bit(FLG_TRANSPARENT, &bch->Flags))
 754                         return;
 755                 count = HFCPCI_FILLEMPTY;
 756         } else {
 757                 count = bch->tx_skb->len - bch->tx_idx;
 758         }
 759         if ((bch->nr & 2) && (!hc->hw.bswapped)) {
 760                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
 761                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
 762         } else {
 763                 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
 764                 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
 765         }
 766 
 767         if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
 768                 z1t = &bz->za[MAX_B_FRAMES].z1;
 769                 z2t = z1t + 1;
 770                 if (bch->debug & DEBUG_HW_BCHANNEL)
 771                         printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
 772                                "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
 773                                le16_to_cpu(*z1t), le16_to_cpu(*z2t));
 774                 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
 775                 if (fcnt <= 0)
 776                         fcnt += B_FIFO_SIZE;
 777                 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
 778                         /* fcnt contains available bytes in fifo */
 779                         if (count > fcnt)
 780                                 count = fcnt;
 781                         new_z1 = le16_to_cpu(*z1t) + count;
 782                         /* new buffer Position */
 783                         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
 784                                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
 785                         dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
 786                         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
 787                         /* end of fifo */
 788                         if (bch->debug & DEBUG_HW_BFIFO)
 789                                 printk(KERN_DEBUG "hfcpci_FFt fillempty "
 790                                        "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
 791                                        fcnt, maxlen, new_z1, dst);
 792                         if (maxlen > count)
 793                                 maxlen = count;         /* limit size */
 794                         memset(dst, bch->fill[0], maxlen); /* first copy */
 795                         count -= maxlen;                /* remaining bytes */
 796                         if (count) {
 797                                 dst = bdata;            /* start of buffer */
 798                                 memset(dst, bch->fill[0], count);
 799                         }
 800                         *z1t = cpu_to_le16(new_z1);     /* now send data */
 801                         return;
 802                 }
 803                 /* fcnt contains available bytes in fifo */
 804                 fcnt = B_FIFO_SIZE - fcnt;
 805                 /* remaining bytes to send (bytes in fifo) */
 806 
 807         next_t_frame:
 808                 count = bch->tx_skb->len - bch->tx_idx;
 809                 /* maximum fill shall be poll*2 */
 810                 if (count > (poll << 1) - fcnt)
 811                         count = (poll << 1) - fcnt;
 812                 if (count <= 0)
 813                         return;
 814                 /* data is suitable for fifo */
 815                 new_z1 = le16_to_cpu(*z1t) + count;
 816                 /* new buffer Position */
 817                 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
 818                         new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
 819                 src = bch->tx_skb->data + bch->tx_idx;
 820                 /* source pointer */
 821                 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
 822                 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
 823                 /* end of fifo */
 824                 if (bch->debug & DEBUG_HW_BFIFO)
 825                         printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
 826                                "maxl(%d) nz1(%x) dst(%p)\n",
 827                                fcnt, maxlen, new_z1, dst);
 828                 fcnt += count;
 829                 bch->tx_idx += count;
 830                 if (maxlen > count)
 831                         maxlen = count;         /* limit size */
 832                 memcpy(dst, src, maxlen);       /* first copy */
 833                 count -= maxlen;        /* remaining bytes */
 834                 if (count) {
 835                         dst = bdata;    /* start of buffer */
 836                         src += maxlen;  /* new position */
 837                         memcpy(dst, src, count);
 838                 }
 839                 *z1t = cpu_to_le16(new_z1);     /* now send data */
 840                 if (bch->tx_idx < bch->tx_skb->len)
 841                         return;
 842                 dev_kfree_skb(bch->tx_skb);
 843                 if (get_next_bframe(bch))
 844                         goto next_t_frame;
 845                 return;
 846         }
 847         if (bch->debug & DEBUG_HW_BCHANNEL)
 848                 printk(KERN_DEBUG
 849                        "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
 850                        __func__, bch->nr, bz->f1, bz->f2,
 851                        bz->za[bz->f1].z1);
 852         fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
 853         if (fcnt < 0)
 854                 fcnt += (MAX_B_FRAMES + 1);     /* if wrap around */
 855         if (fcnt > (MAX_B_FRAMES - 1)) {
 856                 if (bch->debug & DEBUG_HW_BCHANNEL)
 857                         printk(KERN_DEBUG
 858                                "hfcpci_fill_Bfifo more as 14 frames\n");
 859                 return;
 860         }
 861         /* now determine free bytes in FIFO buffer */
 862         maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
 863                 le16_to_cpu(bz->za[bz->f1].z1) - 1;
 864         if (maxlen <= 0)
 865                 maxlen += B_FIFO_SIZE;  /* count now contains available bytes */
 866 
 867         if (bch->debug & DEBUG_HW_BCHANNEL)
 868                 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
 869                        bch->nr, count, maxlen);
 870 
 871         if (maxlen < count) {
 872                 if (bch->debug & DEBUG_HW_BCHANNEL)
 873                         printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
 874                 return;
 875         }
 876         new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
 877         /* new buffer Position */
 878         if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
 879                 new_z1 -= B_FIFO_SIZE;  /* buffer wrap */
 880 
 881         new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
 882         src = bch->tx_skb->data + bch->tx_idx;  /* source pointer */
 883         dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
 884         maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
 885         /* end fifo */
 886         if (maxlen > count)
 887                 maxlen = count; /* limit size */
 888         memcpy(dst, src, maxlen);       /* first copy */
 889 
 890         count -= maxlen;        /* remaining bytes */
 891         if (count) {
 892                 dst = bdata;    /* start of buffer */
 893                 src += maxlen;  /* new position */
 894                 memcpy(dst, src, count);
 895         }
 896         bz->za[new_f1].z1 = cpu_to_le16(new_z1);        /* for next buffer */
 897         bz->f1 = new_f1;        /* next frame */
 898         dev_kfree_skb(bch->tx_skb);
 899         get_next_bframe(bch);
 900 }
 901 
 902 
 903 
 904 /*
 905  * handle L1 state changes TE
 906  */
 907 
 908 static void
 909 ph_state_te(struct dchannel *dch)
 910 {
 911         if (dch->debug)
 912                 printk(KERN_DEBUG "%s: TE newstate %x\n",
 913                        __func__, dch->state);
 914         switch (dch->state) {
 915         case 0:
 916                 l1_event(dch->l1, HW_RESET_IND);
 917                 break;
 918         case 3:
 919                 l1_event(dch->l1, HW_DEACT_IND);
 920                 break;
 921         case 5:
 922         case 8:
 923                 l1_event(dch->l1, ANYSIGNAL);
 924                 break;
 925         case 6:
 926                 l1_event(dch->l1, INFO2);
 927                 break;
 928         case 7:
 929                 l1_event(dch->l1, INFO4_P8);
 930                 break;
 931         }
 932 }
 933 
 934 /*
 935  * handle L1 state changes NT
 936  */
 937 
 938 static void
 939 handle_nt_timer3(struct dchannel *dch) {
 940         struct hfc_pci  *hc = dch->hw;
 941 
 942         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
 943         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
 944         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
 945         hc->hw.nt_timer = 0;
 946         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
 947         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
 948                 hc->hw.mst_m |= HFCPCI_MASTER;
 949         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
 950         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
 951                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
 952 }
 953 
 954 static void
 955 ph_state_nt(struct dchannel *dch)
 956 {
 957         struct hfc_pci  *hc = dch->hw;
 958 
 959         if (dch->debug)
 960                 printk(KERN_DEBUG "%s: NT newstate %x\n",
 961                        __func__, dch->state);
 962         switch (dch->state) {
 963         case 2:
 964                 if (hc->hw.nt_timer < 0) {
 965                         hc->hw.nt_timer = 0;
 966                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
 967                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
 968                         hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
 969                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
 970                         /* Clear already pending ints */
 971                         (void) Read_hfc(hc, HFCPCI_INT_S1);
 972                         Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
 973                         udelay(10);
 974                         Write_hfc(hc, HFCPCI_STATES, 4);
 975                         dch->state = 4;
 976                 } else if (hc->hw.nt_timer == 0) {
 977                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
 978                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
 979                         hc->hw.nt_timer = NT_T1_COUNT;
 980                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
 981                         hc->hw.ctmt |= HFCPCI_TIM3_125;
 982                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
 983                                   HFCPCI_CLTIMER);
 984                         test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
 985                         test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
 986                         /* allow G2 -> G3 transition */
 987                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
 988                 } else {
 989                         Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
 990                 }
 991                 break;
 992         case 1:
 993                 hc->hw.nt_timer = 0;
 994                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
 995                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
 996                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
 997                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
 998                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
 999                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1000                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1001                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1002                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1003                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1004                 break;
1005         case 4:
1006                 hc->hw.nt_timer = 0;
1007                 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008                 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011                 break;
1012         case 3:
1013                 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1014                         if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1015                                                 &dch->Flags)) {
1016                                 handle_nt_timer3(dch);
1017                                 break;
1018                         }
1019                         test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1020                         hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1021                         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1022                         hc->hw.nt_timer = NT_T3_COUNT;
1023                         hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1024                         hc->hw.ctmt |= HFCPCI_TIM3_125;
1025                         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1026                                   HFCPCI_CLTIMER);
1027                 }
1028                 break;
1029         }
1030 }
1031 
1032 static void
1033 ph_state(struct dchannel *dch)
1034 {
1035         struct hfc_pci  *hc = dch->hw;
1036 
1037         if (hc->hw.protocol == ISDN_P_NT_S0) {
1038                 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1039                     hc->hw.nt_timer < 0)
1040                         handle_nt_timer3(dch);
1041                 else
1042                         ph_state_nt(dch);
1043         } else
1044                 ph_state_te(dch);
1045 }
1046 
1047 /*
1048  * Layer 1 callback function
1049  */
1050 static int
1051 hfc_l1callback(struct dchannel *dch, u_int cmd)
1052 {
1053         struct hfc_pci          *hc = dch->hw;
1054 
1055         switch (cmd) {
1056         case INFO3_P8:
1057         case INFO3_P10:
1058                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1059                         hc->hw.mst_m |= HFCPCI_MASTER;
1060                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1061                 break;
1062         case HW_RESET_REQ:
1063                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1064                 /* HFC ST 3 */
1065                 udelay(6);
1066                 Write_hfc(hc, HFCPCI_STATES, 3);        /* HFC ST 2 */
1067                 if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1068                         hc->hw.mst_m |= HFCPCI_MASTER;
1069                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1070                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1071                           HFCPCI_DO_ACTION);
1072                 l1_event(dch->l1, HW_POWERUP_IND);
1073                 break;
1074         case HW_DEACT_REQ:
1075                 hc->hw.mst_m &= ~HFCPCI_MASTER;
1076                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1077                 skb_queue_purge(&dch->squeue);
1078                 if (dch->tx_skb) {
1079                         dev_kfree_skb(dch->tx_skb);
1080                         dch->tx_skb = NULL;
1081                 }
1082                 dch->tx_idx = 0;
1083                 if (dch->rx_skb) {
1084                         dev_kfree_skb(dch->rx_skb);
1085                         dch->rx_skb = NULL;
1086                 }
1087                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1088                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1089                         del_timer(&dch->timer);
1090                 break;
1091         case HW_POWERUP_REQ:
1092                 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1093                 break;
1094         case PH_ACTIVATE_IND:
1095                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1096                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1097                             GFP_ATOMIC);
1098                 break;
1099         case PH_DEACTIVATE_IND:
1100                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1101                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1102                             GFP_ATOMIC);
1103                 break;
1104         default:
1105                 if (dch->debug & DEBUG_HW)
1106                         printk(KERN_DEBUG "%s: unknown command %x\n",
1107                                __func__, cmd);
1108                 return -1;
1109         }
1110         return 0;
1111 }
1112 
1113 /*
1114  * Interrupt handler
1115  */
1116 static inline void
1117 tx_birq(struct bchannel *bch)
1118 {
1119         if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1120                 hfcpci_fill_fifo(bch);
1121         else {
1122                 dev_kfree_skb(bch->tx_skb);
1123                 if (get_next_bframe(bch))
1124                         hfcpci_fill_fifo(bch);
1125         }
1126 }
1127 
1128 static inline void
1129 tx_dirq(struct dchannel *dch)
1130 {
1131         if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1132                 hfcpci_fill_dfifo(dch->hw);
1133         else {
1134                 dev_kfree_skb(dch->tx_skb);
1135                 if (get_next_dframe(dch))
1136                         hfcpci_fill_dfifo(dch->hw);
1137         }
1138 }
1139 
1140 static irqreturn_t
1141 hfcpci_int(int intno, void *dev_id)
1142 {
1143         struct hfc_pci  *hc = dev_id;
1144         u_char          exval;
1145         struct bchannel *bch;
1146         u_char          val, stat;
1147 
1148         spin_lock(&hc->lock);
1149         if (!(hc->hw.int_m2 & 0x08)) {
1150                 spin_unlock(&hc->lock);
1151                 return IRQ_NONE; /* not initialised */
1152         }
1153         stat = Read_hfc(hc, HFCPCI_STATUS);
1154         if (HFCPCI_ANYINT & stat) {
1155                 val = Read_hfc(hc, HFCPCI_INT_S1);
1156                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1157                         printk(KERN_DEBUG
1158                                "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1159         } else {
1160                 /* shared */
1161                 spin_unlock(&hc->lock);
1162                 return IRQ_NONE;
1163         }
1164         hc->irqcnt++;
1165 
1166         if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1167                 printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1168         val &= hc->hw.int_m1;
1169         if (val & 0x40) {       /* state machine irq */
1170                 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1171                 if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172                         printk(KERN_DEBUG "ph_state chg %d->%d\n",
1173                                hc->dch.state, exval);
1174                 hc->dch.state = exval;
1175                 schedule_event(&hc->dch, FLG_PHCHANGE);
1176                 val &= ~0x40;
1177         }
1178         if (val & 0x80) {       /* timer irq */
1179                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1180                         if ((--hc->hw.nt_timer) < 0)
1181                                 schedule_event(&hc->dch, FLG_PHCHANGE);
1182                 }
1183                 val &= ~0x80;
1184                 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1185         }
1186         if (val & 0x08) {       /* B1 rx */
1187                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1188                 if (bch)
1189                         main_rec_hfcpci(bch);
1190                 else if (hc->dch.debug)
1191                         printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1192         }
1193         if (val & 0x10) {       /* B2 rx */
1194                 bch = Sel_BCS(hc, 2);
1195                 if (bch)
1196                         main_rec_hfcpci(bch);
1197                 else if (hc->dch.debug)
1198                         printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1199         }
1200         if (val & 0x01) {       /* B1 tx */
1201                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1202                 if (bch)
1203                         tx_birq(bch);
1204                 else if (hc->dch.debug)
1205                         printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1206         }
1207         if (val & 0x02) {       /* B2 tx */
1208                 bch = Sel_BCS(hc, 2);
1209                 if (bch)
1210                         tx_birq(bch);
1211                 else if (hc->dch.debug)
1212                         printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1213         }
1214         if (val & 0x20)         /* D rx */
1215                 receive_dmsg(hc);
1216         if (val & 0x04) {       /* D tx */
1217                 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1218                         del_timer(&hc->dch.timer);
1219                 tx_dirq(&hc->dch);
1220         }
1221         spin_unlock(&hc->lock);
1222         return IRQ_HANDLED;
1223 }
1224 
1225 /*
1226  * timer callback for D-chan busy resolution. Currently no function
1227  */
1228 static void
1229 hfcpci_dbusy_timer(struct timer_list *t)
1230 {
1231 }
1232 
1233 /*
1234  * activate/deactivate hardware for selected channels and mode
1235  */
1236 static int
1237 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1238 {
1239         struct hfc_pci  *hc = bch->hw;
1240         int             fifo2;
1241         u_char          rx_slot = 0, tx_slot = 0, pcm_mode;
1242 
1243         if (bch->debug & DEBUG_HW_BCHANNEL)
1244                 printk(KERN_DEBUG
1245                        "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1246                        bch->state, protocol, bch->nr, bc);
1247 
1248         fifo2 = bc;
1249         pcm_mode = (bc >> 24) & 0xff;
1250         if (pcm_mode) { /* PCM SLOT USE */
1251                 if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1252                         printk(KERN_WARNING
1253                                "%s: pcm channel id without HFC_CFG_PCM\n",
1254                                __func__);
1255                 rx_slot = (bc >> 8) & 0xff;
1256                 tx_slot = (bc >> 16) & 0xff;
1257                 bc = bc & 0xff;
1258         } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1259                 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1260                        __func__);
1261         if (hc->chanlimit > 1) {
1262                 hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1263                 hc->hw.sctrl_e &= ~0x80;
1264         } else {
1265                 if (bc & 2) {
1266                         if (protocol != ISDN_P_NONE) {
1267                                 hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1268                                 hc->hw.sctrl_e |= 0x80;
1269                         } else {
1270                                 hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1271                                 hc->hw.sctrl_e &= ~0x80;
1272                         }
1273                         fifo2 = 1;
1274                 } else {
1275                         hc->hw.bswapped = 0;    /* B1 and B2 normal mode */
1276                         hc->hw.sctrl_e &= ~0x80;
1277                 }
1278         }
1279         switch (protocol) {
1280         case (-1): /* used for init */
1281                 bch->state = -1;
1282                 bch->nr = bc;
1283                 /* fall through */
1284         case (ISDN_P_NONE):
1285                 if (bch->state == ISDN_P_NONE)
1286                         return 0;
1287                 if (bc & 2) {
1288                         hc->hw.sctrl &= ~SCTRL_B2_ENA;
1289                         hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1290                 } else {
1291                         hc->hw.sctrl &= ~SCTRL_B1_ENA;
1292                         hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1293                 }
1294                 if (fifo2 & 2) {
1295                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1296                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1297                                            HFCPCI_INTS_B2REC);
1298                 } else {
1299                         hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1300                         hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1301                                            HFCPCI_INTS_B1REC);
1302                 }
1303 #ifdef REVERSE_BITORDER
1304                 if (bch->nr & 2)
1305                         hc->hw.cirm &= 0x7f;
1306                 else
1307                         hc->hw.cirm &= 0xbf;
1308 #endif
1309                 bch->state = ISDN_P_NONE;
1310                 bch->nr = bc;
1311                 test_and_clear_bit(FLG_HDLC, &bch->Flags);
1312                 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1313                 break;
1314         case (ISDN_P_B_RAW):
1315                 bch->state = protocol;
1316                 bch->nr = bc;
1317                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1318                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1319                 if (bc & 2) {
1320                         hc->hw.sctrl |= SCTRL_B2_ENA;
1321                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1322 #ifdef REVERSE_BITORDER
1323                         hc->hw.cirm |= 0x80;
1324 #endif
1325                 } else {
1326                         hc->hw.sctrl |= SCTRL_B1_ENA;
1327                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1328 #ifdef REVERSE_BITORDER
1329                         hc->hw.cirm |= 0x40;
1330 #endif
1331                 }
1332                 if (fifo2 & 2) {
1333                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1334                         if (!tics)
1335                                 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1336                                                   HFCPCI_INTS_B2REC);
1337                         hc->hw.ctmt |= 2;
1338                         hc->hw.conn &= ~0x18;
1339                 } else {
1340                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1341                         if (!tics)
1342                                 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1343                                                   HFCPCI_INTS_B1REC);
1344                         hc->hw.ctmt |= 1;
1345                         hc->hw.conn &= ~0x03;
1346                 }
1347                 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1348                 break;
1349         case (ISDN_P_B_HDLC):
1350                 bch->state = protocol;
1351                 bch->nr = bc;
1352                 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1353                 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1354                 if (bc & 2) {
1355                         hc->hw.sctrl |= SCTRL_B2_ENA;
1356                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1357                 } else {
1358                         hc->hw.sctrl |= SCTRL_B1_ENA;
1359                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1360                 }
1361                 if (fifo2 & 2) {
1362                         hc->hw.last_bfifo_cnt[1] = 0;
1363                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1364                         hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1365                                           HFCPCI_INTS_B2REC);
1366                         hc->hw.ctmt &= ~2;
1367                         hc->hw.conn &= ~0x18;
1368                 } else {
1369                         hc->hw.last_bfifo_cnt[0] = 0;
1370                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1371                         hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1372                                           HFCPCI_INTS_B1REC);
1373                         hc->hw.ctmt &= ~1;
1374                         hc->hw.conn &= ~0x03;
1375                 }
1376                 test_and_set_bit(FLG_HDLC, &bch->Flags);
1377                 break;
1378         default:
1379                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1380                 return -ENOPROTOOPT;
1381         }
1382         if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1383                 if ((protocol == ISDN_P_NONE) ||
1384                     (protocol == -1)) { /* init case */
1385                         rx_slot = 0;
1386                         tx_slot = 0;
1387                 } else {
1388                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1389                                 rx_slot |= 0xC0;
1390                                 tx_slot |= 0xC0;
1391                         } else {
1392                                 rx_slot |= 0x80;
1393                                 tx_slot |= 0x80;
1394                         }
1395                 }
1396                 if (bc & 2) {
1397                         hc->hw.conn &= 0xc7;
1398                         hc->hw.conn |= 0x08;
1399                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1400                                __func__, tx_slot);
1401                         printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1402                                __func__, rx_slot);
1403                         Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1404                         Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1405                 } else {
1406                         hc->hw.conn &= 0xf8;
1407                         hc->hw.conn |= 0x01;
1408                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1409                                __func__, tx_slot);
1410                         printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1411                                __func__, rx_slot);
1412                         Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1413                         Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1414                 }
1415         }
1416         Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1417         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1418         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1419         Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1420         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1421         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1422         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1423 #ifdef REVERSE_BITORDER
1424         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1425 #endif
1426         return 0;
1427 }
1428 
1429 static int
1430 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1431 {
1432         struct hfc_pci  *hc = bch->hw;
1433 
1434         if (bch->debug & DEBUG_HW_BCHANNEL)
1435                 printk(KERN_DEBUG
1436                        "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1437                        bch->state, protocol, bch->nr, chan);
1438         if (bch->nr != chan) {
1439                 printk(KERN_DEBUG
1440                        "HFCPCI rxtest wrong channel parameter %x/%x\n",
1441                        bch->nr, chan);
1442                 return -EINVAL;
1443         }
1444         switch (protocol) {
1445         case (ISDN_P_B_RAW):
1446                 bch->state = protocol;
1447                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1448                 if (chan & 2) {
1449                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1450                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1451                         if (!tics)
1452                                 hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1453                         hc->hw.ctmt |= 2;
1454                         hc->hw.conn &= ~0x18;
1455 #ifdef REVERSE_BITORDER
1456                         hc->hw.cirm |= 0x80;
1457 #endif
1458                 } else {
1459                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1460                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1461                         if (!tics)
1462                                 hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1463                         hc->hw.ctmt |= 1;
1464                         hc->hw.conn &= ~0x03;
1465 #ifdef REVERSE_BITORDER
1466                         hc->hw.cirm |= 0x40;
1467 #endif
1468                 }
1469                 break;
1470         case (ISDN_P_B_HDLC):
1471                 bch->state = protocol;
1472                 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1473                 if (chan & 2) {
1474                         hc->hw.sctrl_r |= SCTRL_B2_ENA;
1475                         hc->hw.last_bfifo_cnt[1] = 0;
1476                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1477                         hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1478                         hc->hw.ctmt &= ~2;
1479                         hc->hw.conn &= ~0x18;
1480                 } else {
1481                         hc->hw.sctrl_r |= SCTRL_B1_ENA;
1482                         hc->hw.last_bfifo_cnt[0] = 0;
1483                         hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1484                         hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1485                         hc->hw.ctmt &= ~1;
1486                         hc->hw.conn &= ~0x03;
1487                 }
1488                 break;
1489         default:
1490                 printk(KERN_DEBUG "prot not known %x\n", protocol);
1491                 return -ENOPROTOOPT;
1492         }
1493         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1494         Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1495         Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1496         Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1497         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1498 #ifdef REVERSE_BITORDER
1499         Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1500 #endif
1501         return 0;
1502 }
1503 
1504 static void
1505 deactivate_bchannel(struct bchannel *bch)
1506 {
1507         struct hfc_pci  *hc = bch->hw;
1508         u_long          flags;
1509 
1510         spin_lock_irqsave(&hc->lock, flags);
1511         mISDN_clear_bchannel(bch);
1512         mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1513         spin_unlock_irqrestore(&hc->lock, flags);
1514 }
1515 
1516 /*
1517  * Layer 1 B-channel hardware access
1518  */
1519 static int
1520 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1521 {
1522         return mISDN_ctrl_bchannel(bch, cq);
1523 }
1524 static int
1525 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1526 {
1527         struct bchannel *bch = container_of(ch, struct bchannel, ch);
1528         struct hfc_pci  *hc = bch->hw;
1529         int             ret = -EINVAL;
1530         u_long          flags;
1531 
1532         if (bch->debug & DEBUG_HW)
1533                 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1534         switch (cmd) {
1535         case HW_TESTRX_RAW:
1536                 spin_lock_irqsave(&hc->lock, flags);
1537                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1538                 spin_unlock_irqrestore(&hc->lock, flags);
1539                 break;
1540         case HW_TESTRX_HDLC:
1541                 spin_lock_irqsave(&hc->lock, flags);
1542                 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1543                 spin_unlock_irqrestore(&hc->lock, flags);
1544                 break;
1545         case HW_TESTRX_OFF:
1546                 spin_lock_irqsave(&hc->lock, flags);
1547                 mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1548                 spin_unlock_irqrestore(&hc->lock, flags);
1549                 ret = 0;
1550                 break;
1551         case CLOSE_CHANNEL:
1552                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1553                 deactivate_bchannel(bch);
1554                 ch->protocol = ISDN_P_NONE;
1555                 ch->peer = NULL;
1556                 module_put(THIS_MODULE);
1557                 ret = 0;
1558                 break;
1559         case CONTROL_CHANNEL:
1560                 ret = channel_bctrl(bch, arg);
1561                 break;
1562         default:
1563                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1564                        __func__, cmd);
1565         }
1566         return ret;
1567 }
1568 
1569 /*
1570  * Layer2 -> Layer 1 Dchannel data
1571  */
1572 static int
1573 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1574 {
1575         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1576         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1577         struct hfc_pci          *hc = dch->hw;
1578         int                     ret = -EINVAL;
1579         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1580         unsigned int            id;
1581         u_long                  flags;
1582 
1583         switch (hh->prim) {
1584         case PH_DATA_REQ:
1585                 spin_lock_irqsave(&hc->lock, flags);
1586                 ret = dchannel_senddata(dch, skb);
1587                 if (ret > 0) { /* direct TX */
1588                         id = hh->id; /* skb can be freed */
1589                         hfcpci_fill_dfifo(dch->hw);
1590                         ret = 0;
1591                         spin_unlock_irqrestore(&hc->lock, flags);
1592                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1593                 } else
1594                         spin_unlock_irqrestore(&hc->lock, flags);
1595                 return ret;
1596         case PH_ACTIVATE_REQ:
1597                 spin_lock_irqsave(&hc->lock, flags);
1598                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1599                         ret = 0;
1600                         if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1601                                 hc->hw.mst_m |= HFCPCI_MASTER;
1602                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1603                         if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1604                                 spin_unlock_irqrestore(&hc->lock, flags);
1605                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1606                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1607                                 break;
1608                         }
1609                         test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1610                         Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1611                                   HFCPCI_DO_ACTION | 1);
1612                 } else
1613                         ret = l1_event(dch->l1, hh->prim);
1614                 spin_unlock_irqrestore(&hc->lock, flags);
1615                 break;
1616         case PH_DEACTIVATE_REQ:
1617                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1618                 spin_lock_irqsave(&hc->lock, flags);
1619                 if (hc->hw.protocol == ISDN_P_NT_S0) {
1620                         /* prepare deactivation */
1621                         Write_hfc(hc, HFCPCI_STATES, 0x40);
1622                         skb_queue_purge(&dch->squeue);
1623                         if (dch->tx_skb) {
1624                                 dev_kfree_skb(dch->tx_skb);
1625                                 dch->tx_skb = NULL;
1626                         }
1627                         dch->tx_idx = 0;
1628                         if (dch->rx_skb) {
1629                                 dev_kfree_skb(dch->rx_skb);
1630                                 dch->rx_skb = NULL;
1631                         }
1632                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1633                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1634                                 del_timer(&dch->timer);
1635 #ifdef FIXME
1636                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1637                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1638 #endif
1639                         hc->hw.mst_m &= ~HFCPCI_MASTER;
1640                         Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1641                         ret = 0;
1642                 } else {
1643                         ret = l1_event(dch->l1, hh->prim);
1644                 }
1645                 spin_unlock_irqrestore(&hc->lock, flags);
1646                 break;
1647         }
1648         if (!ret)
1649                 dev_kfree_skb(skb);
1650         return ret;
1651 }
1652 
1653 /*
1654  * Layer2 -> Layer 1 Bchannel data
1655  */
1656 static int
1657 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1658 {
1659         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
1660         struct hfc_pci          *hc = bch->hw;
1661         int                     ret = -EINVAL;
1662         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
1663         unsigned long           flags;
1664 
1665         switch (hh->prim) {
1666         case PH_DATA_REQ:
1667                 spin_lock_irqsave(&hc->lock, flags);
1668                 ret = bchannel_senddata(bch, skb);
1669                 if (ret > 0) { /* direct TX */
1670                         hfcpci_fill_fifo(bch);
1671                         ret = 0;
1672                 }
1673                 spin_unlock_irqrestore(&hc->lock, flags);
1674                 return ret;
1675         case PH_ACTIVATE_REQ:
1676                 spin_lock_irqsave(&hc->lock, flags);
1677                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1678                         ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1679                 else
1680                         ret = 0;
1681                 spin_unlock_irqrestore(&hc->lock, flags);
1682                 if (!ret)
1683                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1684                                     NULL, GFP_KERNEL);
1685                 break;
1686         case PH_DEACTIVATE_REQ:
1687                 deactivate_bchannel(bch);
1688                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1689                             NULL, GFP_KERNEL);
1690                 ret = 0;
1691                 break;
1692         }
1693         if (!ret)
1694                 dev_kfree_skb(skb);
1695         return ret;
1696 }
1697 
1698 /*
1699  * called for card init message
1700  */
1701 
1702 static void
1703 inithfcpci(struct hfc_pci *hc)
1704 {
1705         printk(KERN_DEBUG "inithfcpci: entered\n");
1706         timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1707         hc->chanlimit = 2;
1708         mode_hfcpci(&hc->bch[0], 1, -1);
1709         mode_hfcpci(&hc->bch[1], 2, -1);
1710 }
1711 
1712 
1713 static int
1714 init_card(struct hfc_pci *hc)
1715 {
1716         int     cnt = 3;
1717         u_long  flags;
1718 
1719         printk(KERN_DEBUG "init_card: entered\n");
1720 
1721 
1722         spin_lock_irqsave(&hc->lock, flags);
1723         disable_hwirq(hc);
1724         spin_unlock_irqrestore(&hc->lock, flags);
1725         if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1726                 printk(KERN_WARNING
1727                        "mISDN: couldn't get interrupt %d\n", hc->irq);
1728                 return -EIO;
1729         }
1730         spin_lock_irqsave(&hc->lock, flags);
1731         reset_hfcpci(hc);
1732         while (cnt) {
1733                 inithfcpci(hc);
1734                 /*
1735                  * Finally enable IRQ output
1736                  * this is only allowed, if an IRQ routine is already
1737                  * established for this HFC, so don't do that earlier
1738                  */
1739                 enable_hwirq(hc);
1740                 spin_unlock_irqrestore(&hc->lock, flags);
1741                 /* Timeout 80ms */
1742                 set_current_state(TASK_UNINTERRUPTIBLE);
1743                 schedule_timeout((80 * HZ) / 1000);
1744                 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1745                        hc->irq, hc->irqcnt);
1746                 /* now switch timer interrupt off */
1747                 spin_lock_irqsave(&hc->lock, flags);
1748                 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1749                 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1750                 /* reinit mode reg */
1751                 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1752                 if (!hc->irqcnt) {
1753                         printk(KERN_WARNING
1754                                "HFC PCI: IRQ(%d) getting no interrupts "
1755                                "during init %d\n", hc->irq, 4 - cnt);
1756                         if (cnt == 1)
1757                                 break;
1758                         else {
1759                                 reset_hfcpci(hc);
1760                                 cnt--;
1761                         }
1762                 } else {
1763                         spin_unlock_irqrestore(&hc->lock, flags);
1764                         hc->initdone = 1;
1765                         return 0;
1766                 }
1767         }
1768         disable_hwirq(hc);
1769         spin_unlock_irqrestore(&hc->lock, flags);
1770         free_irq(hc->irq, hc);
1771         return -EIO;
1772 }
1773 
1774 static int
1775 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1776 {
1777         int     ret = 0;
1778         u_char  slot;
1779 
1780         switch (cq->op) {
1781         case MISDN_CTRL_GETOP:
1782                 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1783                          MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1784                 break;
1785         case MISDN_CTRL_LOOP:
1786                 /* channel 0 disabled loop */
1787                 if (cq->channel < 0 || cq->channel > 2) {
1788                         ret = -EINVAL;
1789                         break;
1790                 }
1791                 if (cq->channel & 1) {
1792                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1793                                 slot = 0xC0;
1794                         else
1795                                 slot = 0x80;
1796                         printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1797                                __func__, slot);
1798                         Write_hfc(hc, HFCPCI_B1_SSL, slot);
1799                         Write_hfc(hc, HFCPCI_B1_RSL, slot);
1800                         hc->hw.conn = (hc->hw.conn & ~7) | 6;
1801                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1802                 }
1803                 if (cq->channel & 2) {
1804                         if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1805                                 slot = 0xC1;
1806                         else
1807                                 slot = 0x81;
1808                         printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1809                                __func__, slot);
1810                         Write_hfc(hc, HFCPCI_B2_SSL, slot);
1811                         Write_hfc(hc, HFCPCI_B2_RSL, slot);
1812                         hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1813                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1814                 }
1815                 if (cq->channel & 3)
1816                         hc->hw.trm |= 0x80;     /* enable IOM-loop */
1817                 else {
1818                         hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1819                         Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1820                         hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1821                 }
1822                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1823                 break;
1824         case MISDN_CTRL_CONNECT:
1825                 if (cq->channel == cq->p1) {
1826                         ret = -EINVAL;
1827                         break;
1828                 }
1829                 if (cq->channel < 1 || cq->channel > 2 ||
1830                     cq->p1 < 1 || cq->p1 > 2) {
1831                         ret = -EINVAL;
1832                         break;
1833                 }
1834                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1835                         slot = 0xC0;
1836                 else
1837                         slot = 0x80;
1838                 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1839                        __func__, slot);
1840                 Write_hfc(hc, HFCPCI_B1_SSL, slot);
1841                 Write_hfc(hc, HFCPCI_B2_RSL, slot);
1842                 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1843                         slot = 0xC1;
1844                 else
1845                         slot = 0x81;
1846                 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1847                        __func__, slot);
1848                 Write_hfc(hc, HFCPCI_B2_SSL, slot);
1849                 Write_hfc(hc, HFCPCI_B1_RSL, slot);
1850                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1851                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1852                 hc->hw.trm |= 0x80;
1853                 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1854                 break;
1855         case MISDN_CTRL_DISCONNECT:
1856                 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1857                 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1858                 hc->hw.trm &= 0x7f;     /* disable IOM-loop */
1859                 break;
1860         case MISDN_CTRL_L1_TIMER3:
1861                 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1862                 break;
1863         default:
1864                 printk(KERN_WARNING "%s: unknown Op %x\n",
1865                        __func__, cq->op);
1866                 ret = -EINVAL;
1867                 break;
1868         }
1869         return ret;
1870 }
1871 
1872 static int
1873 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1874               struct channel_req *rq)
1875 {
1876         int err = 0;
1877 
1878         if (debug & DEBUG_HW_OPEN)
1879                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1880                        hc->dch.dev.id, __builtin_return_address(0));
1881         if (rq->protocol == ISDN_P_NONE)
1882                 return -EINVAL;
1883         if (rq->adr.channel == 1) {
1884                 /* TODO: E-Channel */
1885                 return -EINVAL;
1886         }
1887         if (!hc->initdone) {
1888                 if (rq->protocol == ISDN_P_TE_S0) {
1889                         err = create_l1(&hc->dch, hfc_l1callback);
1890                         if (err)
1891                                 return err;
1892                 }
1893                 hc->hw.protocol = rq->protocol;
1894                 ch->protocol = rq->protocol;
1895                 err = init_card(hc);
1896                 if (err)
1897                         return err;
1898         } else {
1899                 if (rq->protocol != ch->protocol) {
1900                         if (hc->hw.protocol == ISDN_P_TE_S0)
1901                                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
1902                         if (rq->protocol == ISDN_P_TE_S0) {
1903                                 err = create_l1(&hc->dch, hfc_l1callback);
1904                                 if (err)
1905                                         return err;
1906                         }
1907                         hc->hw.protocol = rq->protocol;
1908                         ch->protocol = rq->protocol;
1909                         hfcpci_setmode(hc);
1910                 }
1911         }
1912 
1913         if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1914             ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1915                 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1916                             0, NULL, GFP_KERNEL);
1917         }
1918         rq->ch = ch;
1919         if (!try_module_get(THIS_MODULE))
1920                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1921         return 0;
1922 }
1923 
1924 static int
1925 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1926 {
1927         struct bchannel         *bch;
1928 
1929         if (rq->adr.channel == 0 || rq->adr.channel > 2)
1930                 return -EINVAL;
1931         if (rq->protocol == ISDN_P_NONE)
1932                 return -EINVAL;
1933         bch = &hc->bch[rq->adr.channel - 1];
1934         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1935                 return -EBUSY; /* b-channel can be only open once */
1936         bch->ch.protocol = rq->protocol;
1937         rq->ch = &bch->ch; /* TODO: E-channel */
1938         if (!try_module_get(THIS_MODULE))
1939                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
1940         return 0;
1941 }
1942 
1943 /*
1944  * device control function
1945  */
1946 static int
1947 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1948 {
1949         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
1950         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
1951         struct hfc_pci          *hc = dch->hw;
1952         struct channel_req      *rq;
1953         int                     err = 0;
1954 
1955         if (dch->debug & DEBUG_HW)
1956                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
1957                        __func__, cmd, arg);
1958         switch (cmd) {
1959         case OPEN_CHANNEL:
1960                 rq = arg;
1961                 if ((rq->protocol == ISDN_P_TE_S0) ||
1962                     (rq->protocol == ISDN_P_NT_S0))
1963                         err = open_dchannel(hc, ch, rq);
1964                 else
1965                         err = open_bchannel(hc, rq);
1966                 break;
1967         case CLOSE_CHANNEL:
1968                 if (debug & DEBUG_HW_OPEN)
1969                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1970                                __func__, hc->dch.dev.id,
1971                                __builtin_return_address(0));
1972                 module_put(THIS_MODULE);
1973                 break;
1974         case CONTROL_CHANNEL:
1975                 err = channel_ctrl(hc, arg);
1976                 break;
1977         default:
1978                 if (dch->debug & DEBUG_HW)
1979                         printk(KERN_DEBUG "%s: unknown command %x\n",
1980                                __func__, cmd);
1981                 return -EINVAL;
1982         }
1983         return err;
1984 }
1985 
1986 static int
1987 setup_hw(struct hfc_pci *hc)
1988 {
1989         void    *buffer;
1990 
1991         printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
1992         hc->hw.cirm = 0;
1993         hc->dch.state = 0;
1994         pci_set_master(hc->pdev);
1995         if (!hc->irq) {
1996                 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
1997                 return 1;
1998         }
1999         hc->hw.pci_io =
2000                 (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2001 
2002         if (!hc->hw.pci_io) {
2003                 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2004                 return 1;
2005         }
2006         /* Allocate memory for FIFOS */
2007         /* the memory needs to be on a 32k boundary within the first 4G */
2008         pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2009         buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2010         /* We silently assume the address is okay if nonzero */
2011         if (!buffer) {
2012                 printk(KERN_WARNING
2013                        "HFC-PCI: Error allocating memory for FIFO!\n");
2014                 return 1;
2015         }
2016         hc->hw.fifos = buffer;
2017         pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2018         hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2019         if (unlikely(!hc->hw.pci_io)) {
2020                 printk(KERN_WARNING
2021                        "HFC-PCI: Error in ioremap for PCI!\n");
2022                 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos,
2023                                     hc->hw.dmahandle);
2024                 return 1;
2025         }
2026 
2027         printk(KERN_INFO
2028                "HFC-PCI: defined at mem %#lx fifo %p(%pad) IRQ %d HZ %d\n",
2029                (u_long) hc->hw.pci_io, hc->hw.fifos,
2030                &hc->hw.dmahandle, hc->irq, HZ);
2031 
2032         /* enable memory mapped ports, disable busmaster */
2033         pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2034         hc->hw.int_m2 = 0;
2035         disable_hwirq(hc);
2036         hc->hw.int_m1 = 0;
2037         Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2038         /* At this point the needed PCI config is done */
2039         /* fifos are still not enabled */
2040         timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2041         /* default PCM master */
2042         test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2043         return 0;
2044 }
2045 
2046 static void
2047 release_card(struct hfc_pci *hc) {
2048         u_long  flags;
2049 
2050         spin_lock_irqsave(&hc->lock, flags);
2051         hc->hw.int_m2 = 0; /* interrupt output off ! */
2052         disable_hwirq(hc);
2053         mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2054         mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2055         if (hc->dch.timer.function != NULL) {
2056                 del_timer(&hc->dch.timer);
2057                 hc->dch.timer.function = NULL;
2058         }
2059         spin_unlock_irqrestore(&hc->lock, flags);
2060         if (hc->hw.protocol == ISDN_P_TE_S0)
2061                 l1_event(hc->dch.l1, CLOSE_CHANNEL);
2062         if (hc->initdone)
2063                 free_irq(hc->irq, hc);
2064         release_io_hfcpci(hc); /* must release after free_irq! */
2065         mISDN_unregister_device(&hc->dch.dev);
2066         mISDN_freebchannel(&hc->bch[1]);
2067         mISDN_freebchannel(&hc->bch[0]);
2068         mISDN_freedchannel(&hc->dch);
2069         pci_set_drvdata(hc->pdev, NULL);
2070         kfree(hc);
2071 }
2072 
2073 static int
2074 setup_card(struct hfc_pci *card)
2075 {
2076         int             err = -EINVAL;
2077         u_int           i;
2078         char            name[MISDN_MAX_IDLEN];
2079 
2080         card->dch.debug = debug;
2081         spin_lock_init(&card->lock);
2082         mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2083         card->dch.hw = card;
2084         card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2085         card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2086                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2087         card->dch.dev.D.send = hfcpci_l2l1D;
2088         card->dch.dev.D.ctrl = hfc_dctrl;
2089         card->dch.dev.nrbchan = 2;
2090         for (i = 0; i < 2; i++) {
2091                 card->bch[i].nr = i + 1;
2092                 set_channelmap(i + 1, card->dch.dev.channelmap);
2093                 card->bch[i].debug = debug;
2094                 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2095                 card->bch[i].hw = card;
2096                 card->bch[i].ch.send = hfcpci_l2l1B;
2097                 card->bch[i].ch.ctrl = hfc_bctrl;
2098                 card->bch[i].ch.nr = i + 1;
2099                 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2100         }
2101         err = setup_hw(card);
2102         if (err)
2103                 goto error;
2104         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2105         err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2106         if (err)
2107                 goto error;
2108         HFC_cnt++;
2109         printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2110         return 0;
2111 error:
2112         mISDN_freebchannel(&card->bch[1]);
2113         mISDN_freebchannel(&card->bch[0]);
2114         mISDN_freedchannel(&card->dch);
2115         kfree(card);
2116         return err;
2117 }
2118 
2119 /* private data in the PCI devices list */
2120 struct _hfc_map {
2121         u_int   subtype;
2122         u_int   flag;
2123         char    *name;
2124 };
2125 
2126 static const struct _hfc_map hfc_map[] =
2127 {
2128         {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2129         {HFC_CCD_B000, 0, "Billion B000"},
2130         {HFC_CCD_B006, 0, "Billion B006"},
2131         {HFC_CCD_B007, 0, "Billion B007"},
2132         {HFC_CCD_B008, 0, "Billion B008"},
2133         {HFC_CCD_B009, 0, "Billion B009"},
2134         {HFC_CCD_B00A, 0, "Billion B00A"},
2135         {HFC_CCD_B00B, 0, "Billion B00B"},
2136         {HFC_CCD_B00C, 0, "Billion B00C"},
2137         {HFC_CCD_B100, 0, "Seyeon B100"},
2138         {HFC_CCD_B700, 0, "Primux II S0 B700"},
2139         {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2140         {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2141         {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2142         {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2143         {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2144         {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2145         {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2146         {HFC_DIGI_DF_M_IOM2_E, 0,
2147          "Digi International DataFire Micro V IOM2 (Europe)"},
2148         {HFC_DIGI_DF_M_E, 0,
2149          "Digi International DataFire Micro V (Europe)"},
2150         {HFC_DIGI_DF_M_IOM2_A, 0,
2151          "Digi International DataFire Micro V IOM2 (North America)"},
2152         {HFC_DIGI_DF_M_A, 0,
2153          "Digi International DataFire Micro V (North America)"},
2154         {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2155         {},
2156 };
2157 
2158 static const struct pci_device_id hfc_ids[] =
2159 {
2160         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2161           (unsigned long) &hfc_map[0] },
2162         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2163           (unsigned long) &hfc_map[1] },
2164         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2165           (unsigned long) &hfc_map[2] },
2166         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2167           (unsigned long) &hfc_map[3] },
2168         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2169           (unsigned long) &hfc_map[4] },
2170         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2171           (unsigned long) &hfc_map[5] },
2172         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2173           (unsigned long) &hfc_map[6] },
2174         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2175           (unsigned long) &hfc_map[7] },
2176         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2177           (unsigned long) &hfc_map[8] },
2178         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2179           (unsigned long) &hfc_map[9] },
2180         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2181           (unsigned long) &hfc_map[10] },
2182         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2183           (unsigned long) &hfc_map[11] },
2184         { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2185           (unsigned long) &hfc_map[12] },
2186         { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2187           (unsigned long) &hfc_map[13] },
2188         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2189           (unsigned long) &hfc_map[14] },
2190         { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2191           (unsigned long) &hfc_map[15] },
2192         { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2193           (unsigned long) &hfc_map[16] },
2194         { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2195           (unsigned long) &hfc_map[17] },
2196         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2197           (unsigned long) &hfc_map[18] },
2198         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2199           (unsigned long) &hfc_map[19] },
2200         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2201           (unsigned long) &hfc_map[20] },
2202         { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2203           (unsigned long) &hfc_map[21] },
2204         { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2205           (unsigned long) &hfc_map[22] },
2206         {},
2207 };
2208 
2209 static int
2210 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2211 {
2212         int             err = -ENOMEM;
2213         struct hfc_pci  *card;
2214         struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2215 
2216         card = kzalloc(sizeof(struct hfc_pci), GFP_KERNEL);
2217         if (!card) {
2218                 printk(KERN_ERR "No kmem for HFC card\n");
2219                 return err;
2220         }
2221         card->pdev = pdev;
2222         card->subtype = m->subtype;
2223         err = pci_enable_device(pdev);
2224         if (err) {
2225                 kfree(card);
2226                 return err;
2227         }
2228 
2229         printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2230                m->name, pci_name(pdev));
2231 
2232         card->irq = pdev->irq;
2233         pci_set_drvdata(pdev, card);
2234         err = setup_card(card);
2235         if (err)
2236                 pci_set_drvdata(pdev, NULL);
2237         return err;
2238 }
2239 
2240 static void
2241 hfc_remove_pci(struct pci_dev *pdev)
2242 {
2243         struct hfc_pci  *card = pci_get_drvdata(pdev);
2244 
2245         if (card)
2246                 release_card(card);
2247         else
2248                 if (debug)
2249                         printk(KERN_DEBUG "%s: drvdata already removed\n",
2250                                __func__);
2251 }
2252 
2253 
2254 static struct pci_driver hfc_driver = {
2255         .name = "hfcpci",
2256         .probe = hfc_probe,
2257         .remove = hfc_remove_pci,
2258         .id_table = hfc_ids,
2259 };
2260 
2261 static int
2262 _hfcpci_softirq(struct device *dev, void *unused)
2263 {
2264         struct hfc_pci  *hc = dev_get_drvdata(dev);
2265         struct bchannel *bch;
2266         if (hc == NULL)
2267                 return 0;
2268 
2269         if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2270                 spin_lock(&hc->lock);
2271                 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2272                 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2273                         main_rec_hfcpci(bch);
2274                         tx_birq(bch);
2275                 }
2276                 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2277                 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2278                         main_rec_hfcpci(bch);
2279                         tx_birq(bch);
2280                 }
2281                 spin_unlock(&hc->lock);
2282         }
2283         return 0;
2284 }
2285 
2286 static void
2287 hfcpci_softirq(struct timer_list *unused)
2288 {
2289         WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2290                                       _hfcpci_softirq) != 0);
2291 
2292         /* if next event would be in the past ... */
2293         if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2294                 hfc_jiffies = jiffies + 1;
2295         else
2296                 hfc_jiffies += tics;
2297         hfc_tl.expires = hfc_jiffies;
2298         add_timer(&hfc_tl);
2299 }
2300 
2301 static int __init
2302 HFC_init(void)
2303 {
2304         int             err;
2305 
2306         if (!poll)
2307                 poll = HFCPCI_BTRANS_THRESHOLD;
2308 
2309         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2310                 tics = (poll * HZ) / 8000;
2311                 if (tics < 1)
2312                         tics = 1;
2313                 poll = (tics * 8000) / HZ;
2314                 if (poll > 256 || poll < 8) {
2315                         printk(KERN_ERR "%s: Wrong poll value %d not in range "
2316                                "of 8..256.\n", __func__, poll);
2317                         err = -EINVAL;
2318                         return err;
2319                 }
2320         }
2321         if (poll != HFCPCI_BTRANS_THRESHOLD) {
2322                 printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2323                        __func__, poll);
2324                 timer_setup(&hfc_tl, hfcpci_softirq, 0);
2325                 hfc_tl.expires = jiffies + tics;
2326                 hfc_jiffies = hfc_tl.expires;
2327                 add_timer(&hfc_tl);
2328         } else
2329                 tics = 0; /* indicate the use of controller's timer */
2330 
2331         err = pci_register_driver(&hfc_driver);
2332         if (err) {
2333                 if (timer_pending(&hfc_tl))
2334                         del_timer(&hfc_tl);
2335         }
2336 
2337         return err;
2338 }
2339 
2340 static void __exit
2341 HFC_cleanup(void)
2342 {
2343         if (timer_pending(&hfc_tl))
2344                 del_timer(&hfc_tl);
2345 
2346         pci_unregister_driver(&hfc_driver);
2347 }
2348 
2349 module_init(HFC_init);
2350 module_exit(HFC_cleanup);
2351 
2352 MODULE_DEVICE_TABLE(pci, hfc_ids);

/* [<][>][^][v][top][bottom][index][help] */