root/drivers/tty/serial/amba-pl011.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. get_fifosize_arm
  2. get_fifosize_st
  3. get_fifosize_zte
  4. pl011_reg_to_offset
  5. pl011_read
  6. pl011_write
  7. pl011_fifo_to_tty
  8. pl011_sgbuf_init
  9. pl011_sgbuf_free
  10. pl011_dma_probe
  11. pl011_dma_remove
  12. pl011_dma_tx_callback
  13. pl011_dma_tx_refill
  14. pl011_dma_tx_irq
  15. pl011_dma_tx_stop
  16. pl011_dma_tx_start
  17. pl011_dma_flush_buffer
  18. pl011_dma_rx_trigger_dma
  19. pl011_dma_rx_chars
  20. pl011_dma_rx_irq
  21. pl011_dma_rx_callback
  22. pl011_dma_rx_stop
  23. pl011_dma_rx_poll
  24. pl011_dma_startup
  25. pl011_dma_shutdown
  26. pl011_dma_rx_available
  27. pl011_dma_rx_running
  28. pl011_dma_probe
  29. pl011_dma_remove
  30. pl011_dma_startup
  31. pl011_dma_shutdown
  32. pl011_dma_tx_irq
  33. pl011_dma_tx_stop
  34. pl011_dma_tx_start
  35. pl011_dma_rx_irq
  36. pl011_dma_rx_stop
  37. pl011_dma_rx_trigger_dma
  38. pl011_dma_rx_available
  39. pl011_dma_rx_running
  40. pl011_stop_tx
  41. pl011_start_tx_pio
  42. pl011_start_tx
  43. pl011_stop_rx
  44. pl011_enable_ms
  45. pl011_rx_chars
  46. pl011_tx_char
  47. pl011_tx_chars
  48. pl011_modem_status
  49. check_apply_cts_event_workaround
  50. pl011_int
  51. pl011_tx_empty
  52. pl011_get_mctrl
  53. pl011_set_mctrl
  54. pl011_break_ctl
  55. pl011_quiesce_irqs
  56. pl011_get_poll_char
  57. pl011_put_poll_char
  58. pl011_hwinit
  59. pl011_split_lcrh
  60. pl011_write_lcr_h
  61. pl011_allocate_irq
  62. pl011_enable_interrupts
  63. pl011_startup
  64. sbsa_uart_startup
  65. pl011_shutdown_channel
  66. pl011_disable_uart
  67. pl011_disable_interrupts
  68. pl011_shutdown
  69. sbsa_uart_shutdown
  70. pl011_setup_status_masks
  71. pl011_set_termios
  72. sbsa_uart_set_termios
  73. pl011_type
  74. pl011_release_port
  75. pl011_request_port
  76. pl011_config_port
  77. pl011_verify_port
  78. sbsa_uart_set_mctrl
  79. sbsa_uart_get_mctrl
  80. pl011_console_putchar
  81. pl011_console_write
  82. pl011_console_get_options
  83. pl011_console_setup
  84. pl011_console_match
  85. qdf2400_e44_putc
  86. qdf2400_e44_early_write
  87. pl011_putc
  88. pl011_early_write
  89. pl011_early_console_setup
  90. qdf2400_e44_early_console_setup
  91. pl011_probe_dt_alias
  92. pl011_unregister_port
  93. pl011_find_free_port
  94. pl011_setup_port
  95. pl011_register_port
  96. pl011_probe
  97. pl011_remove
  98. pl011_suspend
  99. pl011_resume
  100. sbsa_uart_probe
  101. sbsa_uart_remove
  102. pl011_init
  103. pl011_exit

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  *  Driver for AMBA serial ports
   4  *
   5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
   6  *
   7  *  Copyright 1999 ARM Limited
   8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
   9  *  Copyright (C) 2010 ST-Ericsson SA
  10  *
  11  * This is a generic driver for ARM AMBA-type serial ports.  They
  12  * have a lot of 16550-like features, but are not register compatible.
  13  * Note that although they do have CTS, DCD and DSR inputs, they do
  14  * not have an RI input, nor do they have DTR or RTS outputs.  If
  15  * required, these have to be supplied via some other means (eg, GPIO)
  16  * and hooked into this driver.
  17  */
  18 
  19 
  20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  21 #define SUPPORT_SYSRQ
  22 #endif
  23 
  24 #include <linux/module.h>
  25 #include <linux/ioport.h>
  26 #include <linux/init.h>
  27 #include <linux/console.h>
  28 #include <linux/sysrq.h>
  29 #include <linux/device.h>
  30 #include <linux/tty.h>
  31 #include <linux/tty_flip.h>
  32 #include <linux/serial_core.h>
  33 #include <linux/serial.h>
  34 #include <linux/amba/bus.h>
  35 #include <linux/amba/serial.h>
  36 #include <linux/clk.h>
  37 #include <linux/slab.h>
  38 #include <linux/dmaengine.h>
  39 #include <linux/dma-mapping.h>
  40 #include <linux/scatterlist.h>
  41 #include <linux/delay.h>
  42 #include <linux/types.h>
  43 #include <linux/of.h>
  44 #include <linux/of_device.h>
  45 #include <linux/pinctrl/consumer.h>
  46 #include <linux/sizes.h>
  47 #include <linux/io.h>
  48 #include <linux/acpi.h>
  49 
  50 #include "amba-pl011.h"
  51 
  52 #define UART_NR                 14
  53 
  54 #define SERIAL_AMBA_MAJOR       204
  55 #define SERIAL_AMBA_MINOR       64
  56 #define SERIAL_AMBA_NR          UART_NR
  57 
  58 #define AMBA_ISR_PASS_LIMIT     256
  59 
  60 #define UART_DR_ERROR           (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
  61 #define UART_DUMMY_DR_RX        (1 << 16)
  62 
  63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
  64         [REG_DR] = UART01x_DR,
  65         [REG_FR] = UART01x_FR,
  66         [REG_LCRH_RX] = UART011_LCRH,
  67         [REG_LCRH_TX] = UART011_LCRH,
  68         [REG_IBRD] = UART011_IBRD,
  69         [REG_FBRD] = UART011_FBRD,
  70         [REG_CR] = UART011_CR,
  71         [REG_IFLS] = UART011_IFLS,
  72         [REG_IMSC] = UART011_IMSC,
  73         [REG_RIS] = UART011_RIS,
  74         [REG_MIS] = UART011_MIS,
  75         [REG_ICR] = UART011_ICR,
  76         [REG_DMACR] = UART011_DMACR,
  77 };
  78 
  79 /* There is by now at least one vendor with differing details, so handle it */
  80 struct vendor_data {
  81         const u16               *reg_offset;
  82         unsigned int            ifls;
  83         unsigned int            fr_busy;
  84         unsigned int            fr_dsr;
  85         unsigned int            fr_cts;
  86         unsigned int            fr_ri;
  87         unsigned int            inv_fr;
  88         bool                    access_32b;
  89         bool                    oversampling;
  90         bool                    dma_threshold;
  91         bool                    cts_event_workaround;
  92         bool                    always_enabled;
  93         bool                    fixed_options;
  94 
  95         unsigned int (*get_fifosize)(struct amba_device *dev);
  96 };
  97 
  98 static unsigned int get_fifosize_arm(struct amba_device *dev)
  99 {
 100         return amba_rev(dev) < 3 ? 16 : 32;
 101 }
 102 
 103 static struct vendor_data vendor_arm = {
 104         .reg_offset             = pl011_std_offsets,
 105         .ifls                   = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 106         .fr_busy                = UART01x_FR_BUSY,
 107         .fr_dsr                 = UART01x_FR_DSR,
 108         .fr_cts                 = UART01x_FR_CTS,
 109         .fr_ri                  = UART011_FR_RI,
 110         .oversampling           = false,
 111         .dma_threshold          = false,
 112         .cts_event_workaround   = false,
 113         .always_enabled         = false,
 114         .fixed_options          = false,
 115         .get_fifosize           = get_fifosize_arm,
 116 };
 117 
 118 static const struct vendor_data vendor_sbsa = {
 119         .reg_offset             = pl011_std_offsets,
 120         .fr_busy                = UART01x_FR_BUSY,
 121         .fr_dsr                 = UART01x_FR_DSR,
 122         .fr_cts                 = UART01x_FR_CTS,
 123         .fr_ri                  = UART011_FR_RI,
 124         .access_32b             = true,
 125         .oversampling           = false,
 126         .dma_threshold          = false,
 127         .cts_event_workaround   = false,
 128         .always_enabled         = true,
 129         .fixed_options          = true,
 130 };
 131 
 132 #ifdef CONFIG_ACPI_SPCR_TABLE
 133 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
 134         .reg_offset             = pl011_std_offsets,
 135         .fr_busy                = UART011_FR_TXFE,
 136         .fr_dsr                 = UART01x_FR_DSR,
 137         .fr_cts                 = UART01x_FR_CTS,
 138         .fr_ri                  = UART011_FR_RI,
 139         .inv_fr                 = UART011_FR_TXFE,
 140         .access_32b             = true,
 141         .oversampling           = false,
 142         .dma_threshold          = false,
 143         .cts_event_workaround   = false,
 144         .always_enabled         = true,
 145         .fixed_options          = true,
 146 };
 147 #endif
 148 
 149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
 150         [REG_DR] = UART01x_DR,
 151         [REG_ST_DMAWM] = ST_UART011_DMAWM,
 152         [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
 153         [REG_FR] = UART01x_FR,
 154         [REG_LCRH_RX] = ST_UART011_LCRH_RX,
 155         [REG_LCRH_TX] = ST_UART011_LCRH_TX,
 156         [REG_IBRD] = UART011_IBRD,
 157         [REG_FBRD] = UART011_FBRD,
 158         [REG_CR] = UART011_CR,
 159         [REG_IFLS] = UART011_IFLS,
 160         [REG_IMSC] = UART011_IMSC,
 161         [REG_RIS] = UART011_RIS,
 162         [REG_MIS] = UART011_MIS,
 163         [REG_ICR] = UART011_ICR,
 164         [REG_DMACR] = UART011_DMACR,
 165         [REG_ST_XFCR] = ST_UART011_XFCR,
 166         [REG_ST_XON1] = ST_UART011_XON1,
 167         [REG_ST_XON2] = ST_UART011_XON2,
 168         [REG_ST_XOFF1] = ST_UART011_XOFF1,
 169         [REG_ST_XOFF2] = ST_UART011_XOFF2,
 170         [REG_ST_ITCR] = ST_UART011_ITCR,
 171         [REG_ST_ITIP] = ST_UART011_ITIP,
 172         [REG_ST_ABCR] = ST_UART011_ABCR,
 173         [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
 174 };
 175 
 176 static unsigned int get_fifosize_st(struct amba_device *dev)
 177 {
 178         return 64;
 179 }
 180 
 181 static struct vendor_data vendor_st = {
 182         .reg_offset             = pl011_st_offsets,
 183         .ifls                   = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
 184         .fr_busy                = UART01x_FR_BUSY,
 185         .fr_dsr                 = UART01x_FR_DSR,
 186         .fr_cts                 = UART01x_FR_CTS,
 187         .fr_ri                  = UART011_FR_RI,
 188         .oversampling           = true,
 189         .dma_threshold          = true,
 190         .cts_event_workaround   = true,
 191         .always_enabled         = false,
 192         .fixed_options          = false,
 193         .get_fifosize           = get_fifosize_st,
 194 };
 195 
 196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
 197         [REG_DR] = ZX_UART011_DR,
 198         [REG_FR] = ZX_UART011_FR,
 199         [REG_LCRH_RX] = ZX_UART011_LCRH,
 200         [REG_LCRH_TX] = ZX_UART011_LCRH,
 201         [REG_IBRD] = ZX_UART011_IBRD,
 202         [REG_FBRD] = ZX_UART011_FBRD,
 203         [REG_CR] = ZX_UART011_CR,
 204         [REG_IFLS] = ZX_UART011_IFLS,
 205         [REG_IMSC] = ZX_UART011_IMSC,
 206         [REG_RIS] = ZX_UART011_RIS,
 207         [REG_MIS] = ZX_UART011_MIS,
 208         [REG_ICR] = ZX_UART011_ICR,
 209         [REG_DMACR] = ZX_UART011_DMACR,
 210 };
 211 
 212 static unsigned int get_fifosize_zte(struct amba_device *dev)
 213 {
 214         return 16;
 215 }
 216 
 217 static struct vendor_data vendor_zte = {
 218         .reg_offset             = pl011_zte_offsets,
 219         .access_32b             = true,
 220         .ifls                   = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
 221         .fr_busy                = ZX_UART01x_FR_BUSY,
 222         .fr_dsr                 = ZX_UART01x_FR_DSR,
 223         .fr_cts                 = ZX_UART01x_FR_CTS,
 224         .fr_ri                  = ZX_UART011_FR_RI,
 225         .get_fifosize           = get_fifosize_zte,
 226 };
 227 
 228 /* Deals with DMA transactions */
 229 
 230 struct pl011_sgbuf {
 231         struct scatterlist sg;
 232         char *buf;
 233 };
 234 
 235 struct pl011_dmarx_data {
 236         struct dma_chan         *chan;
 237         struct completion       complete;
 238         bool                    use_buf_b;
 239         struct pl011_sgbuf      sgbuf_a;
 240         struct pl011_sgbuf      sgbuf_b;
 241         dma_cookie_t            cookie;
 242         bool                    running;
 243         struct timer_list       timer;
 244         unsigned int last_residue;
 245         unsigned long last_jiffies;
 246         bool auto_poll_rate;
 247         unsigned int poll_rate;
 248         unsigned int poll_timeout;
 249 };
 250 
 251 struct pl011_dmatx_data {
 252         struct dma_chan         *chan;
 253         struct scatterlist      sg;
 254         char                    *buf;
 255         bool                    queued;
 256 };
 257 
 258 /*
 259  * We wrap our port structure around the generic uart_port.
 260  */
 261 struct uart_amba_port {
 262         struct uart_port        port;
 263         const u16               *reg_offset;
 264         struct clk              *clk;
 265         const struct vendor_data *vendor;
 266         unsigned int            dmacr;          /* dma control reg */
 267         unsigned int            im;             /* interrupt mask */
 268         unsigned int            old_status;
 269         unsigned int            fifosize;       /* vendor-specific */
 270         unsigned int            old_cr;         /* state during shutdown */
 271         unsigned int            fixed_baud;     /* vendor-set fixed baud rate */
 272         char                    type[12];
 273 #ifdef CONFIG_DMA_ENGINE
 274         /* DMA stuff */
 275         bool                    using_tx_dma;
 276         bool                    using_rx_dma;
 277         struct pl011_dmarx_data dmarx;
 278         struct pl011_dmatx_data dmatx;
 279         bool                    dma_probed;
 280 #endif
 281 };
 282 
 283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
 284         unsigned int reg)
 285 {
 286         return uap->reg_offset[reg];
 287 }
 288 
 289 static unsigned int pl011_read(const struct uart_amba_port *uap,
 290         unsigned int reg)
 291 {
 292         void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 293 
 294         return (uap->port.iotype == UPIO_MEM32) ?
 295                 readl_relaxed(addr) : readw_relaxed(addr);
 296 }
 297 
 298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
 299         unsigned int reg)
 300 {
 301         void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
 302 
 303         if (uap->port.iotype == UPIO_MEM32)
 304                 writel_relaxed(val, addr);
 305         else
 306                 writew_relaxed(val, addr);
 307 }
 308 
 309 /*
 310  * Reads up to 256 characters from the FIFO or until it's empty and
 311  * inserts them into the TTY layer. Returns the number of characters
 312  * read from the FIFO.
 313  */
 314 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
 315 {
 316         u16 status;
 317         unsigned int ch, flag, fifotaken;
 318 
 319         for (fifotaken = 0; fifotaken != 256; fifotaken++) {
 320                 status = pl011_read(uap, REG_FR);
 321                 if (status & UART01x_FR_RXFE)
 322                         break;
 323 
 324                 /* Take chars from the FIFO and update status */
 325                 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
 326                 flag = TTY_NORMAL;
 327                 uap->port.icount.rx++;
 328 
 329                 if (unlikely(ch & UART_DR_ERROR)) {
 330                         if (ch & UART011_DR_BE) {
 331                                 ch &= ~(UART011_DR_FE | UART011_DR_PE);
 332                                 uap->port.icount.brk++;
 333                                 if (uart_handle_break(&uap->port))
 334                                         continue;
 335                         } else if (ch & UART011_DR_PE)
 336                                 uap->port.icount.parity++;
 337                         else if (ch & UART011_DR_FE)
 338                                 uap->port.icount.frame++;
 339                         if (ch & UART011_DR_OE)
 340                                 uap->port.icount.overrun++;
 341 
 342                         ch &= uap->port.read_status_mask;
 343 
 344                         if (ch & UART011_DR_BE)
 345                                 flag = TTY_BREAK;
 346                         else if (ch & UART011_DR_PE)
 347                                 flag = TTY_PARITY;
 348                         else if (ch & UART011_DR_FE)
 349                                 flag = TTY_FRAME;
 350                 }
 351 
 352                 if (uart_handle_sysrq_char(&uap->port, ch & 255))
 353                         continue;
 354 
 355                 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
 356         }
 357 
 358         return fifotaken;
 359 }
 360 
 361 
 362 /*
 363  * All the DMA operation mode stuff goes inside this ifdef.
 364  * This assumes that you have a generic DMA device interface,
 365  * no custom DMA interfaces are supported.
 366  */
 367 #ifdef CONFIG_DMA_ENGINE
 368 
 369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
 370 
 371 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
 372         enum dma_data_direction dir)
 373 {
 374         dma_addr_t dma_addr;
 375 
 376         sg->buf = dma_alloc_coherent(chan->device->dev,
 377                 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
 378         if (!sg->buf)
 379                 return -ENOMEM;
 380 
 381         sg_init_table(&sg->sg, 1);
 382         sg_set_page(&sg->sg, phys_to_page(dma_addr),
 383                 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
 384         sg_dma_address(&sg->sg) = dma_addr;
 385         sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
 386 
 387         return 0;
 388 }
 389 
 390 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
 391         enum dma_data_direction dir)
 392 {
 393         if (sg->buf) {
 394                 dma_free_coherent(chan->device->dev,
 395                         PL011_DMA_BUFFER_SIZE, sg->buf,
 396                         sg_dma_address(&sg->sg));
 397         }
 398 }
 399 
 400 static void pl011_dma_probe(struct uart_amba_port *uap)
 401 {
 402         /* DMA is the sole user of the platform data right now */
 403         struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
 404         struct device *dev = uap->port.dev;
 405         struct dma_slave_config tx_conf = {
 406                 .dst_addr = uap->port.mapbase +
 407                                  pl011_reg_to_offset(uap, REG_DR),
 408                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 409                 .direction = DMA_MEM_TO_DEV,
 410                 .dst_maxburst = uap->fifosize >> 1,
 411                 .device_fc = false,
 412         };
 413         struct dma_chan *chan;
 414         dma_cap_mask_t mask;
 415 
 416         uap->dma_probed = true;
 417         chan = dma_request_slave_channel_reason(dev, "tx");
 418         if (IS_ERR(chan)) {
 419                 if (PTR_ERR(chan) == -EPROBE_DEFER) {
 420                         uap->dma_probed = false;
 421                         return;
 422                 }
 423 
 424                 /* We need platform data */
 425                 if (!plat || !plat->dma_filter) {
 426                         dev_info(uap->port.dev, "no DMA platform data\n");
 427                         return;
 428                 }
 429 
 430                 /* Try to acquire a generic DMA engine slave TX channel */
 431                 dma_cap_zero(mask);
 432                 dma_cap_set(DMA_SLAVE, mask);
 433 
 434                 chan = dma_request_channel(mask, plat->dma_filter,
 435                                                 plat->dma_tx_param);
 436                 if (!chan) {
 437                         dev_err(uap->port.dev, "no TX DMA channel!\n");
 438                         return;
 439                 }
 440         }
 441 
 442         dmaengine_slave_config(chan, &tx_conf);
 443         uap->dmatx.chan = chan;
 444 
 445         dev_info(uap->port.dev, "DMA channel TX %s\n",
 446                  dma_chan_name(uap->dmatx.chan));
 447 
 448         /* Optionally make use of an RX channel as well */
 449         chan = dma_request_slave_channel(dev, "rx");
 450 
 451         if (!chan && plat && plat->dma_rx_param) {
 452                 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
 453 
 454                 if (!chan) {
 455                         dev_err(uap->port.dev, "no RX DMA channel!\n");
 456                         return;
 457                 }
 458         }
 459 
 460         if (chan) {
 461                 struct dma_slave_config rx_conf = {
 462                         .src_addr = uap->port.mapbase +
 463                                 pl011_reg_to_offset(uap, REG_DR),
 464                         .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 465                         .direction = DMA_DEV_TO_MEM,
 466                         .src_maxburst = uap->fifosize >> 2,
 467                         .device_fc = false,
 468                 };
 469                 struct dma_slave_caps caps;
 470 
 471                 /*
 472                  * Some DMA controllers provide information on their capabilities.
 473                  * If the controller does, check for suitable residue processing
 474                  * otherwise assime all is well.
 475                  */
 476                 if (0 == dma_get_slave_caps(chan, &caps)) {
 477                         if (caps.residue_granularity ==
 478                                         DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
 479                                 dma_release_channel(chan);
 480                                 dev_info(uap->port.dev,
 481                                         "RX DMA disabled - no residue processing\n");
 482                                 return;
 483                         }
 484                 }
 485                 dmaengine_slave_config(chan, &rx_conf);
 486                 uap->dmarx.chan = chan;
 487 
 488                 uap->dmarx.auto_poll_rate = false;
 489                 if (plat && plat->dma_rx_poll_enable) {
 490                         /* Set poll rate if specified. */
 491                         if (plat->dma_rx_poll_rate) {
 492                                 uap->dmarx.auto_poll_rate = false;
 493                                 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
 494                         } else {
 495                                 /*
 496                                  * 100 ms defaults to poll rate if not
 497                                  * specified. This will be adjusted with
 498                                  * the baud rate at set_termios.
 499                                  */
 500                                 uap->dmarx.auto_poll_rate = true;
 501                                 uap->dmarx.poll_rate =  100;
 502                         }
 503                         /* 3 secs defaults poll_timeout if not specified. */
 504                         if (plat->dma_rx_poll_timeout)
 505                                 uap->dmarx.poll_timeout =
 506                                         plat->dma_rx_poll_timeout;
 507                         else
 508                                 uap->dmarx.poll_timeout = 3000;
 509                 } else if (!plat && dev->of_node) {
 510                         uap->dmarx.auto_poll_rate = of_property_read_bool(
 511                                                 dev->of_node, "auto-poll");
 512                         if (uap->dmarx.auto_poll_rate) {
 513                                 u32 x;
 514 
 515                                 if (0 == of_property_read_u32(dev->of_node,
 516                                                 "poll-rate-ms", &x))
 517                                         uap->dmarx.poll_rate = x;
 518                                 else
 519                                         uap->dmarx.poll_rate = 100;
 520                                 if (0 == of_property_read_u32(dev->of_node,
 521                                                 "poll-timeout-ms", &x))
 522                                         uap->dmarx.poll_timeout = x;
 523                                 else
 524                                         uap->dmarx.poll_timeout = 3000;
 525                         }
 526                 }
 527                 dev_info(uap->port.dev, "DMA channel RX %s\n",
 528                          dma_chan_name(uap->dmarx.chan));
 529         }
 530 }
 531 
 532 static void pl011_dma_remove(struct uart_amba_port *uap)
 533 {
 534         if (uap->dmatx.chan)
 535                 dma_release_channel(uap->dmatx.chan);
 536         if (uap->dmarx.chan)
 537                 dma_release_channel(uap->dmarx.chan);
 538 }
 539 
 540 /* Forward declare these for the refill routine */
 541 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
 542 static void pl011_start_tx_pio(struct uart_amba_port *uap);
 543 
 544 /*
 545  * The current DMA TX buffer has been sent.
 546  * Try to queue up another DMA buffer.
 547  */
 548 static void pl011_dma_tx_callback(void *data)
 549 {
 550         struct uart_amba_port *uap = data;
 551         struct pl011_dmatx_data *dmatx = &uap->dmatx;
 552         unsigned long flags;
 553         u16 dmacr;
 554 
 555         spin_lock_irqsave(&uap->port.lock, flags);
 556         if (uap->dmatx.queued)
 557                 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
 558                              DMA_TO_DEVICE);
 559 
 560         dmacr = uap->dmacr;
 561         uap->dmacr = dmacr & ~UART011_TXDMAE;
 562         pl011_write(uap->dmacr, uap, REG_DMACR);
 563 
 564         /*
 565          * If TX DMA was disabled, it means that we've stopped the DMA for
 566          * some reason (eg, XOFF received, or we want to send an X-char.)
 567          *
 568          * Note: we need to be careful here of a potential race between DMA
 569          * and the rest of the driver - if the driver disables TX DMA while
 570          * a TX buffer completing, we must update the tx queued status to
 571          * get further refills (hence we check dmacr).
 572          */
 573         if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
 574             uart_circ_empty(&uap->port.state->xmit)) {
 575                 uap->dmatx.queued = false;
 576                 spin_unlock_irqrestore(&uap->port.lock, flags);
 577                 return;
 578         }
 579 
 580         if (pl011_dma_tx_refill(uap) <= 0)
 581                 /*
 582                  * We didn't queue a DMA buffer for some reason, but we
 583                  * have data pending to be sent.  Re-enable the TX IRQ.
 584                  */
 585                 pl011_start_tx_pio(uap);
 586 
 587         spin_unlock_irqrestore(&uap->port.lock, flags);
 588 }
 589 
 590 /*
 591  * Try to refill the TX DMA buffer.
 592  * Locking: called with port lock held and IRQs disabled.
 593  * Returns:
 594  *   1 if we queued up a TX DMA buffer.
 595  *   0 if we didn't want to handle this by DMA
 596  *  <0 on error
 597  */
 598 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
 599 {
 600         struct pl011_dmatx_data *dmatx = &uap->dmatx;
 601         struct dma_chan *chan = dmatx->chan;
 602         struct dma_device *dma_dev = chan->device;
 603         struct dma_async_tx_descriptor *desc;
 604         struct circ_buf *xmit = &uap->port.state->xmit;
 605         unsigned int count;
 606 
 607         /*
 608          * Try to avoid the overhead involved in using DMA if the
 609          * transaction fits in the first half of the FIFO, by using
 610          * the standard interrupt handling.  This ensures that we
 611          * issue a uart_write_wakeup() at the appropriate time.
 612          */
 613         count = uart_circ_chars_pending(xmit);
 614         if (count < (uap->fifosize >> 1)) {
 615                 uap->dmatx.queued = false;
 616                 return 0;
 617         }
 618 
 619         /*
 620          * Bodge: don't send the last character by DMA, as this
 621          * will prevent XON from notifying us to restart DMA.
 622          */
 623         count -= 1;
 624 
 625         /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
 626         if (count > PL011_DMA_BUFFER_SIZE)
 627                 count = PL011_DMA_BUFFER_SIZE;
 628 
 629         if (xmit->tail < xmit->head)
 630                 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
 631         else {
 632                 size_t first = UART_XMIT_SIZE - xmit->tail;
 633                 size_t second;
 634 
 635                 if (first > count)
 636                         first = count;
 637                 second = count - first;
 638 
 639                 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
 640                 if (second)
 641                         memcpy(&dmatx->buf[first], &xmit->buf[0], second);
 642         }
 643 
 644         dmatx->sg.length = count;
 645 
 646         if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
 647                 uap->dmatx.queued = false;
 648                 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
 649                 return -EBUSY;
 650         }
 651 
 652         desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
 653                                              DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 654         if (!desc) {
 655                 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
 656                 uap->dmatx.queued = false;
 657                 /*
 658                  * If DMA cannot be used right now, we complete this
 659                  * transaction via IRQ and let the TTY layer retry.
 660                  */
 661                 dev_dbg(uap->port.dev, "TX DMA busy\n");
 662                 return -EBUSY;
 663         }
 664 
 665         /* Some data to go along to the callback */
 666         desc->callback = pl011_dma_tx_callback;
 667         desc->callback_param = uap;
 668 
 669         /* All errors should happen at prepare time */
 670         dmaengine_submit(desc);
 671 
 672         /* Fire the DMA transaction */
 673         dma_dev->device_issue_pending(chan);
 674 
 675         uap->dmacr |= UART011_TXDMAE;
 676         pl011_write(uap->dmacr, uap, REG_DMACR);
 677         uap->dmatx.queued = true;
 678 
 679         /*
 680          * Now we know that DMA will fire, so advance the ring buffer
 681          * with the stuff we just dispatched.
 682          */
 683         xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
 684         uap->port.icount.tx += count;
 685 
 686         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
 687                 uart_write_wakeup(&uap->port);
 688 
 689         return 1;
 690 }
 691 
 692 /*
 693  * We received a transmit interrupt without a pending X-char but with
 694  * pending characters.
 695  * Locking: called with port lock held and IRQs disabled.
 696  * Returns:
 697  *   false if we want to use PIO to transmit
 698  *   true if we queued a DMA buffer
 699  */
 700 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
 701 {
 702         if (!uap->using_tx_dma)
 703                 return false;
 704 
 705         /*
 706          * If we already have a TX buffer queued, but received a
 707          * TX interrupt, it will be because we've just sent an X-char.
 708          * Ensure the TX DMA is enabled and the TX IRQ is disabled.
 709          */
 710         if (uap->dmatx.queued) {
 711                 uap->dmacr |= UART011_TXDMAE;
 712                 pl011_write(uap->dmacr, uap, REG_DMACR);
 713                 uap->im &= ~UART011_TXIM;
 714                 pl011_write(uap->im, uap, REG_IMSC);
 715                 return true;
 716         }
 717 
 718         /*
 719          * We don't have a TX buffer queued, so try to queue one.
 720          * If we successfully queued a buffer, mask the TX IRQ.
 721          */
 722         if (pl011_dma_tx_refill(uap) > 0) {
 723                 uap->im &= ~UART011_TXIM;
 724                 pl011_write(uap->im, uap, REG_IMSC);
 725                 return true;
 726         }
 727         return false;
 728 }
 729 
 730 /*
 731  * Stop the DMA transmit (eg, due to received XOFF).
 732  * Locking: called with port lock held and IRQs disabled.
 733  */
 734 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
 735 {
 736         if (uap->dmatx.queued) {
 737                 uap->dmacr &= ~UART011_TXDMAE;
 738                 pl011_write(uap->dmacr, uap, REG_DMACR);
 739         }
 740 }
 741 
 742 /*
 743  * Try to start a DMA transmit, or in the case of an XON/OFF
 744  * character queued for send, try to get that character out ASAP.
 745  * Locking: called with port lock held and IRQs disabled.
 746  * Returns:
 747  *   false if we want the TX IRQ to be enabled
 748  *   true if we have a buffer queued
 749  */
 750 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
 751 {
 752         u16 dmacr;
 753 
 754         if (!uap->using_tx_dma)
 755                 return false;
 756 
 757         if (!uap->port.x_char) {
 758                 /* no X-char, try to push chars out in DMA mode */
 759                 bool ret = true;
 760 
 761                 if (!uap->dmatx.queued) {
 762                         if (pl011_dma_tx_refill(uap) > 0) {
 763                                 uap->im &= ~UART011_TXIM;
 764                                 pl011_write(uap->im, uap, REG_IMSC);
 765                         } else
 766                                 ret = false;
 767                 } else if (!(uap->dmacr & UART011_TXDMAE)) {
 768                         uap->dmacr |= UART011_TXDMAE;
 769                         pl011_write(uap->dmacr, uap, REG_DMACR);
 770                 }
 771                 return ret;
 772         }
 773 
 774         /*
 775          * We have an X-char to send.  Disable DMA to prevent it loading
 776          * the TX fifo, and then see if we can stuff it into the FIFO.
 777          */
 778         dmacr = uap->dmacr;
 779         uap->dmacr &= ~UART011_TXDMAE;
 780         pl011_write(uap->dmacr, uap, REG_DMACR);
 781 
 782         if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
 783                 /*
 784                  * No space in the FIFO, so enable the transmit interrupt
 785                  * so we know when there is space.  Note that once we've
 786                  * loaded the character, we should just re-enable DMA.
 787                  */
 788                 return false;
 789         }
 790 
 791         pl011_write(uap->port.x_char, uap, REG_DR);
 792         uap->port.icount.tx++;
 793         uap->port.x_char = 0;
 794 
 795         /* Success - restore the DMA state */
 796         uap->dmacr = dmacr;
 797         pl011_write(dmacr, uap, REG_DMACR);
 798 
 799         return true;
 800 }
 801 
 802 /*
 803  * Flush the transmit buffer.
 804  * Locking: called with port lock held and IRQs disabled.
 805  */
 806 static void pl011_dma_flush_buffer(struct uart_port *port)
 807 __releases(&uap->port.lock)
 808 __acquires(&uap->port.lock)
 809 {
 810         struct uart_amba_port *uap =
 811             container_of(port, struct uart_amba_port, port);
 812 
 813         if (!uap->using_tx_dma)
 814                 return;
 815 
 816         dmaengine_terminate_async(uap->dmatx.chan);
 817 
 818         if (uap->dmatx.queued) {
 819                 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
 820                              DMA_TO_DEVICE);
 821                 uap->dmatx.queued = false;
 822                 uap->dmacr &= ~UART011_TXDMAE;
 823                 pl011_write(uap->dmacr, uap, REG_DMACR);
 824         }
 825 }
 826 
 827 static void pl011_dma_rx_callback(void *data);
 828 
 829 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
 830 {
 831         struct dma_chan *rxchan = uap->dmarx.chan;
 832         struct pl011_dmarx_data *dmarx = &uap->dmarx;
 833         struct dma_async_tx_descriptor *desc;
 834         struct pl011_sgbuf *sgbuf;
 835 
 836         if (!rxchan)
 837                 return -EIO;
 838 
 839         /* Start the RX DMA job */
 840         sgbuf = uap->dmarx.use_buf_b ?
 841                 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 842         desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
 843                                         DMA_DEV_TO_MEM,
 844                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 845         /*
 846          * If the DMA engine is busy and cannot prepare a
 847          * channel, no big deal, the driver will fall back
 848          * to interrupt mode as a result of this error code.
 849          */
 850         if (!desc) {
 851                 uap->dmarx.running = false;
 852                 dmaengine_terminate_all(rxchan);
 853                 return -EBUSY;
 854         }
 855 
 856         /* Some data to go along to the callback */
 857         desc->callback = pl011_dma_rx_callback;
 858         desc->callback_param = uap;
 859         dmarx->cookie = dmaengine_submit(desc);
 860         dma_async_issue_pending(rxchan);
 861 
 862         uap->dmacr |= UART011_RXDMAE;
 863         pl011_write(uap->dmacr, uap, REG_DMACR);
 864         uap->dmarx.running = true;
 865 
 866         uap->im &= ~UART011_RXIM;
 867         pl011_write(uap->im, uap, REG_IMSC);
 868 
 869         return 0;
 870 }
 871 
 872 /*
 873  * This is called when either the DMA job is complete, or
 874  * the FIFO timeout interrupt occurred. This must be called
 875  * with the port spinlock uap->port.lock held.
 876  */
 877 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
 878                                u32 pending, bool use_buf_b,
 879                                bool readfifo)
 880 {
 881         struct tty_port *port = &uap->port.state->port;
 882         struct pl011_sgbuf *sgbuf = use_buf_b ?
 883                 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
 884         int dma_count = 0;
 885         u32 fifotaken = 0; /* only used for vdbg() */
 886 
 887         struct pl011_dmarx_data *dmarx = &uap->dmarx;
 888         int dmataken = 0;
 889 
 890         if (uap->dmarx.poll_rate) {
 891                 /* The data can be taken by polling */
 892                 dmataken = sgbuf->sg.length - dmarx->last_residue;
 893                 /* Recalculate the pending size */
 894                 if (pending >= dmataken)
 895                         pending -= dmataken;
 896         }
 897 
 898         /* Pick the remain data from the DMA */
 899         if (pending) {
 900 
 901                 /*
 902                  * First take all chars in the DMA pipe, then look in the FIFO.
 903                  * Note that tty_insert_flip_buf() tries to take as many chars
 904                  * as it can.
 905                  */
 906                 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
 907                                 pending);
 908 
 909                 uap->port.icount.rx += dma_count;
 910                 if (dma_count < pending)
 911                         dev_warn(uap->port.dev,
 912                                  "couldn't insert all characters (TTY is full?)\n");
 913         }
 914 
 915         /* Reset the last_residue for Rx DMA poll */
 916         if (uap->dmarx.poll_rate)
 917                 dmarx->last_residue = sgbuf->sg.length;
 918 
 919         /*
 920          * Only continue with trying to read the FIFO if all DMA chars have
 921          * been taken first.
 922          */
 923         if (dma_count == pending && readfifo) {
 924                 /* Clear any error flags */
 925                 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
 926                             UART011_FEIS, uap, REG_ICR);
 927 
 928                 /*
 929                  * If we read all the DMA'd characters, and we had an
 930                  * incomplete buffer, that could be due to an rx error, or
 931                  * maybe we just timed out. Read any pending chars and check
 932                  * the error status.
 933                  *
 934                  * Error conditions will only occur in the FIFO, these will
 935                  * trigger an immediate interrupt and stop the DMA job, so we
 936                  * will always find the error in the FIFO, never in the DMA
 937                  * buffer.
 938                  */
 939                 fifotaken = pl011_fifo_to_tty(uap);
 940         }
 941 
 942         spin_unlock(&uap->port.lock);
 943         dev_vdbg(uap->port.dev,
 944                  "Took %d chars from DMA buffer and %d chars from the FIFO\n",
 945                  dma_count, fifotaken);
 946         tty_flip_buffer_push(port);
 947         spin_lock(&uap->port.lock);
 948 }
 949 
 950 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
 951 {
 952         struct pl011_dmarx_data *dmarx = &uap->dmarx;
 953         struct dma_chan *rxchan = dmarx->chan;
 954         struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
 955                 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
 956         size_t pending;
 957         struct dma_tx_state state;
 958         enum dma_status dmastat;
 959 
 960         /*
 961          * Pause the transfer so we can trust the current counter,
 962          * do this before we pause the PL011 block, else we may
 963          * overflow the FIFO.
 964          */
 965         if (dmaengine_pause(rxchan))
 966                 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 967         dmastat = rxchan->device->device_tx_status(rxchan,
 968                                                    dmarx->cookie, &state);
 969         if (dmastat != DMA_PAUSED)
 970                 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
 971 
 972         /* Disable RX DMA - incoming data will wait in the FIFO */
 973         uap->dmacr &= ~UART011_RXDMAE;
 974         pl011_write(uap->dmacr, uap, REG_DMACR);
 975         uap->dmarx.running = false;
 976 
 977         pending = sgbuf->sg.length - state.residue;
 978         BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
 979         /* Then we terminate the transfer - we now know our residue */
 980         dmaengine_terminate_all(rxchan);
 981 
 982         /*
 983          * This will take the chars we have so far and insert
 984          * into the framework.
 985          */
 986         pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
 987 
 988         /* Switch buffer & re-trigger DMA job */
 989         dmarx->use_buf_b = !dmarx->use_buf_b;
 990         if (pl011_dma_rx_trigger_dma(uap)) {
 991                 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
 992                         "fall back to interrupt mode\n");
 993                 uap->im |= UART011_RXIM;
 994                 pl011_write(uap->im, uap, REG_IMSC);
 995         }
 996 }
 997 
 998 static void pl011_dma_rx_callback(void *data)
 999 {
1000         struct uart_amba_port *uap = data;
1001         struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002         struct dma_chan *rxchan = dmarx->chan;
1003         bool lastbuf = dmarx->use_buf_b;
1004         struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005                 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006         size_t pending;
1007         struct dma_tx_state state;
1008         int ret;
1009 
1010         /*
1011          * This completion interrupt occurs typically when the
1012          * RX buffer is totally stuffed but no timeout has yet
1013          * occurred. When that happens, we just want the RX
1014          * routine to flush out the secondary DMA buffer while
1015          * we immediately trigger the next DMA job.
1016          */
1017         spin_lock_irq(&uap->port.lock);
1018         /*
1019          * Rx data can be taken by the UART interrupts during
1020          * the DMA irq handler. So we check the residue here.
1021          */
1022         rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023         pending = sgbuf->sg.length - state.residue;
1024         BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025         /* Then we terminate the transfer - we now know our residue */
1026         dmaengine_terminate_all(rxchan);
1027 
1028         uap->dmarx.running = false;
1029         dmarx->use_buf_b = !lastbuf;
1030         ret = pl011_dma_rx_trigger_dma(uap);
1031 
1032         pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033         spin_unlock_irq(&uap->port.lock);
1034         /*
1035          * Do this check after we picked the DMA chars so we don't
1036          * get some IRQ immediately from RX.
1037          */
1038         if (ret) {
1039                 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040                         "fall back to interrupt mode\n");
1041                 uap->im |= UART011_RXIM;
1042                 pl011_write(uap->im, uap, REG_IMSC);
1043         }
1044 }
1045 
1046 /*
1047  * Stop accepting received characters, when we're shutting down or
1048  * suspending this port.
1049  * Locking: called with port lock held and IRQs disabled.
1050  */
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052 {
1053         /* FIXME.  Just disable the DMA enable */
1054         uap->dmacr &= ~UART011_RXDMAE;
1055         pl011_write(uap->dmacr, uap, REG_DMACR);
1056 }
1057 
1058 /*
1059  * Timer handler for Rx DMA polling.
1060  * Every polling, It checks the residue in the dma buffer and transfer
1061  * data to the tty. Also, last_residue is updated for the next polling.
1062  */
1063 static void pl011_dma_rx_poll(struct timer_list *t)
1064 {
1065         struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1066         struct tty_port *port = &uap->port.state->port;
1067         struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068         struct dma_chan *rxchan = uap->dmarx.chan;
1069         unsigned long flags = 0;
1070         unsigned int dmataken = 0;
1071         unsigned int size = 0;
1072         struct pl011_sgbuf *sgbuf;
1073         int dma_count;
1074         struct dma_tx_state state;
1075 
1076         sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077         rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078         if (likely(state.residue < dmarx->last_residue)) {
1079                 dmataken = sgbuf->sg.length - dmarx->last_residue;
1080                 size = dmarx->last_residue - state.residue;
1081                 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082                                 size);
1083                 if (dma_count == size)
1084                         dmarx->last_residue =  state.residue;
1085                 dmarx->last_jiffies = jiffies;
1086         }
1087         tty_flip_buffer_push(port);
1088 
1089         /*
1090          * If no data is received in poll_timeout, the driver will fall back
1091          * to interrupt mode. We will retrigger DMA at the first interrupt.
1092          */
1093         if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094                         > uap->dmarx.poll_timeout) {
1095 
1096                 spin_lock_irqsave(&uap->port.lock, flags);
1097                 pl011_dma_rx_stop(uap);
1098                 uap->im |= UART011_RXIM;
1099                 pl011_write(uap->im, uap, REG_IMSC);
1100                 spin_unlock_irqrestore(&uap->port.lock, flags);
1101 
1102                 uap->dmarx.running = false;
1103                 dmaengine_terminate_all(rxchan);
1104                 del_timer(&uap->dmarx.timer);
1105         } else {
1106                 mod_timer(&uap->dmarx.timer,
1107                         jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108         }
1109 }
1110 
1111 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 {
1113         int ret;
1114 
1115         if (!uap->dma_probed)
1116                 pl011_dma_probe(uap);
1117 
1118         if (!uap->dmatx.chan)
1119                 return;
1120 
1121         uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122         if (!uap->dmatx.buf) {
1123                 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124                 uap->port.fifosize = uap->fifosize;
1125                 return;
1126         }
1127 
1128         sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129 
1130         /* The DMA buffer is now the FIFO the TTY subsystem can use */
1131         uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132         uap->using_tx_dma = true;
1133 
1134         if (!uap->dmarx.chan)
1135                 goto skip_rx;
1136 
1137         /* Allocate and map DMA RX buffers */
1138         ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139                                DMA_FROM_DEVICE);
1140         if (ret) {
1141                 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142                         "RX buffer A", ret);
1143                 goto skip_rx;
1144         }
1145 
1146         ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147                                DMA_FROM_DEVICE);
1148         if (ret) {
1149                 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150                         "RX buffer B", ret);
1151                 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152                                  DMA_FROM_DEVICE);
1153                 goto skip_rx;
1154         }
1155 
1156         uap->using_rx_dma = true;
1157 
1158 skip_rx:
1159         /* Turn on DMA error (RX/TX will be enabled on demand) */
1160         uap->dmacr |= UART011_DMAONERR;
1161         pl011_write(uap->dmacr, uap, REG_DMACR);
1162 
1163         /*
1164          * ST Micro variants has some specific dma burst threshold
1165          * compensation. Set this to 16 bytes, so burst will only
1166          * be issued above/below 16 bytes.
1167          */
1168         if (uap->vendor->dma_threshold)
1169                 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170                             uap, REG_ST_DMAWM);
1171 
1172         if (uap->using_rx_dma) {
1173                 if (pl011_dma_rx_trigger_dma(uap))
1174                         dev_dbg(uap->port.dev, "could not trigger initial "
1175                                 "RX DMA job, fall back to interrupt mode\n");
1176                 if (uap->dmarx.poll_rate) {
1177                         timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1178                         mod_timer(&uap->dmarx.timer,
1179                                 jiffies +
1180                                 msecs_to_jiffies(uap->dmarx.poll_rate));
1181                         uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1182                         uap->dmarx.last_jiffies = jiffies;
1183                 }
1184         }
1185 }
1186 
1187 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1188 {
1189         if (!(uap->using_tx_dma || uap->using_rx_dma))
1190                 return;
1191 
1192         /* Disable RX and TX DMA */
1193         while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1194                 cpu_relax();
1195 
1196         spin_lock_irq(&uap->port.lock);
1197         uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1198         pl011_write(uap->dmacr, uap, REG_DMACR);
1199         spin_unlock_irq(&uap->port.lock);
1200 
1201         if (uap->using_tx_dma) {
1202                 /* In theory, this should already be done by pl011_dma_flush_buffer */
1203                 dmaengine_terminate_all(uap->dmatx.chan);
1204                 if (uap->dmatx.queued) {
1205                         dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1206                                      DMA_TO_DEVICE);
1207                         uap->dmatx.queued = false;
1208                 }
1209 
1210                 kfree(uap->dmatx.buf);
1211                 uap->using_tx_dma = false;
1212         }
1213 
1214         if (uap->using_rx_dma) {
1215                 dmaengine_terminate_all(uap->dmarx.chan);
1216                 /* Clean up the RX DMA */
1217                 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1218                 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1219                 if (uap->dmarx.poll_rate)
1220                         del_timer_sync(&uap->dmarx.timer);
1221                 uap->using_rx_dma = false;
1222         }
1223 }
1224 
1225 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1226 {
1227         return uap->using_rx_dma;
1228 }
1229 
1230 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1231 {
1232         return uap->using_rx_dma && uap->dmarx.running;
1233 }
1234 
1235 #else
1236 /* Blank functions if the DMA engine is not available */
1237 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1238 {
1239 }
1240 
1241 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1246 {
1247 }
1248 
1249 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1250 {
1251 }
1252 
1253 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1254 {
1255         return false;
1256 }
1257 
1258 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1259 {
1260 }
1261 
1262 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1263 {
1264         return false;
1265 }
1266 
1267 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1268 {
1269 }
1270 
1271 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1272 {
1273 }
1274 
1275 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1276 {
1277         return -EIO;
1278 }
1279 
1280 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1281 {
1282         return false;
1283 }
1284 
1285 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1286 {
1287         return false;
1288 }
1289 
1290 #define pl011_dma_flush_buffer  NULL
1291 #endif
1292 
1293 static void pl011_stop_tx(struct uart_port *port)
1294 {
1295         struct uart_amba_port *uap =
1296             container_of(port, struct uart_amba_port, port);
1297 
1298         uap->im &= ~UART011_TXIM;
1299         pl011_write(uap->im, uap, REG_IMSC);
1300         pl011_dma_tx_stop(uap);
1301 }
1302 
1303 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1304 
1305 /* Start TX with programmed I/O only (no DMA) */
1306 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1307 {
1308         if (pl011_tx_chars(uap, false)) {
1309                 uap->im |= UART011_TXIM;
1310                 pl011_write(uap->im, uap, REG_IMSC);
1311         }
1312 }
1313 
1314 static void pl011_start_tx(struct uart_port *port)
1315 {
1316         struct uart_amba_port *uap =
1317             container_of(port, struct uart_amba_port, port);
1318 
1319         if (!pl011_dma_tx_start(uap))
1320                 pl011_start_tx_pio(uap);
1321 }
1322 
1323 static void pl011_stop_rx(struct uart_port *port)
1324 {
1325         struct uart_amba_port *uap =
1326             container_of(port, struct uart_amba_port, port);
1327 
1328         uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1329                      UART011_PEIM|UART011_BEIM|UART011_OEIM);
1330         pl011_write(uap->im, uap, REG_IMSC);
1331 
1332         pl011_dma_rx_stop(uap);
1333 }
1334 
1335 static void pl011_enable_ms(struct uart_port *port)
1336 {
1337         struct uart_amba_port *uap =
1338             container_of(port, struct uart_amba_port, port);
1339 
1340         uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1341         pl011_write(uap->im, uap, REG_IMSC);
1342 }
1343 
1344 static void pl011_rx_chars(struct uart_amba_port *uap)
1345 __releases(&uap->port.lock)
1346 __acquires(&uap->port.lock)
1347 {
1348         pl011_fifo_to_tty(uap);
1349 
1350         spin_unlock(&uap->port.lock);
1351         tty_flip_buffer_push(&uap->port.state->port);
1352         /*
1353          * If we were temporarily out of DMA mode for a while,
1354          * attempt to switch back to DMA mode again.
1355          */
1356         if (pl011_dma_rx_available(uap)) {
1357                 if (pl011_dma_rx_trigger_dma(uap)) {
1358                         dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1359                                 "fall back to interrupt mode again\n");
1360                         uap->im |= UART011_RXIM;
1361                         pl011_write(uap->im, uap, REG_IMSC);
1362                 } else {
1363 #ifdef CONFIG_DMA_ENGINE
1364                         /* Start Rx DMA poll */
1365                         if (uap->dmarx.poll_rate) {
1366                                 uap->dmarx.last_jiffies = jiffies;
1367                                 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1368                                 mod_timer(&uap->dmarx.timer,
1369                                         jiffies +
1370                                         msecs_to_jiffies(uap->dmarx.poll_rate));
1371                         }
1372 #endif
1373                 }
1374         }
1375         spin_lock(&uap->port.lock);
1376 }
1377 
1378 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1379                           bool from_irq)
1380 {
1381         if (unlikely(!from_irq) &&
1382             pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1383                 return false; /* unable to transmit character */
1384 
1385         pl011_write(c, uap, REG_DR);
1386         uap->port.icount.tx++;
1387 
1388         return true;
1389 }
1390 
1391 /* Returns true if tx interrupts have to be (kept) enabled  */
1392 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1393 {
1394         struct circ_buf *xmit = &uap->port.state->xmit;
1395         int count = uap->fifosize >> 1;
1396 
1397         if (uap->port.x_char) {
1398                 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1399                         return true;
1400                 uap->port.x_char = 0;
1401                 --count;
1402         }
1403         if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1404                 pl011_stop_tx(&uap->port);
1405                 return false;
1406         }
1407 
1408         /* If we are using DMA mode, try to send some characters. */
1409         if (pl011_dma_tx_irq(uap))
1410                 return true;
1411 
1412         do {
1413                 if (likely(from_irq) && count-- == 0)
1414                         break;
1415 
1416                 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1417                         break;
1418 
1419                 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1420         } while (!uart_circ_empty(xmit));
1421 
1422         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1423                 uart_write_wakeup(&uap->port);
1424 
1425         if (uart_circ_empty(xmit)) {
1426                 pl011_stop_tx(&uap->port);
1427                 return false;
1428         }
1429         return true;
1430 }
1431 
1432 static void pl011_modem_status(struct uart_amba_port *uap)
1433 {
1434         unsigned int status, delta;
1435 
1436         status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1437 
1438         delta = status ^ uap->old_status;
1439         uap->old_status = status;
1440 
1441         if (!delta)
1442                 return;
1443 
1444         if (delta & UART01x_FR_DCD)
1445                 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1446 
1447         if (delta & uap->vendor->fr_dsr)
1448                 uap->port.icount.dsr++;
1449 
1450         if (delta & uap->vendor->fr_cts)
1451                 uart_handle_cts_change(&uap->port,
1452                                        status & uap->vendor->fr_cts);
1453 
1454         wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1455 }
1456 
1457 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1458 {
1459         unsigned int dummy_read;
1460 
1461         if (!uap->vendor->cts_event_workaround)
1462                 return;
1463 
1464         /* workaround to make sure that all bits are unlocked.. */
1465         pl011_write(0x00, uap, REG_ICR);
1466 
1467         /*
1468          * WA: introduce 26ns(1 uart clk) delay before W1C;
1469          * single apb access will incur 2 pclk(133.12Mhz) delay,
1470          * so add 2 dummy reads
1471          */
1472         dummy_read = pl011_read(uap, REG_ICR);
1473         dummy_read = pl011_read(uap, REG_ICR);
1474 }
1475 
1476 static irqreturn_t pl011_int(int irq, void *dev_id)
1477 {
1478         struct uart_amba_port *uap = dev_id;
1479         unsigned long flags;
1480         unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1481         int handled = 0;
1482 
1483         spin_lock_irqsave(&uap->port.lock, flags);
1484         status = pl011_read(uap, REG_RIS) & uap->im;
1485         if (status) {
1486                 do {
1487                         check_apply_cts_event_workaround(uap);
1488 
1489                         pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1490                                                UART011_RXIS),
1491                                     uap, REG_ICR);
1492 
1493                         if (status & (UART011_RTIS|UART011_RXIS)) {
1494                                 if (pl011_dma_rx_running(uap))
1495                                         pl011_dma_rx_irq(uap);
1496                                 else
1497                                         pl011_rx_chars(uap);
1498                         }
1499                         if (status & (UART011_DSRMIS|UART011_DCDMIS|
1500                                       UART011_CTSMIS|UART011_RIMIS))
1501                                 pl011_modem_status(uap);
1502                         if (status & UART011_TXIS)
1503                                 pl011_tx_chars(uap, true);
1504 
1505                         if (pass_counter-- == 0)
1506                                 break;
1507 
1508                         status = pl011_read(uap, REG_RIS) & uap->im;
1509                 } while (status != 0);
1510                 handled = 1;
1511         }
1512 
1513         spin_unlock_irqrestore(&uap->port.lock, flags);
1514 
1515         return IRQ_RETVAL(handled);
1516 }
1517 
1518 static unsigned int pl011_tx_empty(struct uart_port *port)
1519 {
1520         struct uart_amba_port *uap =
1521             container_of(port, struct uart_amba_port, port);
1522 
1523         /* Allow feature register bits to be inverted to work around errata */
1524         unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1525 
1526         return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1527                                                         0 : TIOCSER_TEMT;
1528 }
1529 
1530 static unsigned int pl011_get_mctrl(struct uart_port *port)
1531 {
1532         struct uart_amba_port *uap =
1533             container_of(port, struct uart_amba_port, port);
1534         unsigned int result = 0;
1535         unsigned int status = pl011_read(uap, REG_FR);
1536 
1537 #define TIOCMBIT(uartbit, tiocmbit)     \
1538         if (status & uartbit)           \
1539                 result |= tiocmbit
1540 
1541         TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1542         TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1543         TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1544         TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1545 #undef TIOCMBIT
1546         return result;
1547 }
1548 
1549 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1550 {
1551         struct uart_amba_port *uap =
1552             container_of(port, struct uart_amba_port, port);
1553         unsigned int cr;
1554 
1555         cr = pl011_read(uap, REG_CR);
1556 
1557 #define TIOCMBIT(tiocmbit, uartbit)             \
1558         if (mctrl & tiocmbit)           \
1559                 cr |= uartbit;          \
1560         else                            \
1561                 cr &= ~uartbit
1562 
1563         TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1564         TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1565         TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1566         TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1567         TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1568 
1569         if (port->status & UPSTAT_AUTORTS) {
1570                 /* We need to disable auto-RTS if we want to turn RTS off */
1571                 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1572         }
1573 #undef TIOCMBIT
1574 
1575         pl011_write(cr, uap, REG_CR);
1576 }
1577 
1578 static void pl011_break_ctl(struct uart_port *port, int break_state)
1579 {
1580         struct uart_amba_port *uap =
1581             container_of(port, struct uart_amba_port, port);
1582         unsigned long flags;
1583         unsigned int lcr_h;
1584 
1585         spin_lock_irqsave(&uap->port.lock, flags);
1586         lcr_h = pl011_read(uap, REG_LCRH_TX);
1587         if (break_state == -1)
1588                 lcr_h |= UART01x_LCRH_BRK;
1589         else
1590                 lcr_h &= ~UART01x_LCRH_BRK;
1591         pl011_write(lcr_h, uap, REG_LCRH_TX);
1592         spin_unlock_irqrestore(&uap->port.lock, flags);
1593 }
1594 
1595 #ifdef CONFIG_CONSOLE_POLL
1596 
1597 static void pl011_quiesce_irqs(struct uart_port *port)
1598 {
1599         struct uart_amba_port *uap =
1600             container_of(port, struct uart_amba_port, port);
1601 
1602         pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1603         /*
1604          * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1605          * we simply mask it. start_tx() will unmask it.
1606          *
1607          * Note we can race with start_tx(), and if the race happens, the
1608          * polling user might get another interrupt just after we clear it.
1609          * But it should be OK and can happen even w/o the race, e.g.
1610          * controller immediately got some new data and raised the IRQ.
1611          *
1612          * And whoever uses polling routines assumes that it manages the device
1613          * (including tx queue), so we're also fine with start_tx()'s caller
1614          * side.
1615          */
1616         pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1617                     REG_IMSC);
1618 }
1619 
1620 static int pl011_get_poll_char(struct uart_port *port)
1621 {
1622         struct uart_amba_port *uap =
1623             container_of(port, struct uart_amba_port, port);
1624         unsigned int status;
1625 
1626         /*
1627          * The caller might need IRQs lowered, e.g. if used with KDB NMI
1628          * debugger.
1629          */
1630         pl011_quiesce_irqs(port);
1631 
1632         status = pl011_read(uap, REG_FR);
1633         if (status & UART01x_FR_RXFE)
1634                 return NO_POLL_CHAR;
1635 
1636         return pl011_read(uap, REG_DR);
1637 }
1638 
1639 static void pl011_put_poll_char(struct uart_port *port,
1640                          unsigned char ch)
1641 {
1642         struct uart_amba_port *uap =
1643             container_of(port, struct uart_amba_port, port);
1644 
1645         while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1646                 cpu_relax();
1647 
1648         pl011_write(ch, uap, REG_DR);
1649 }
1650 
1651 #endif /* CONFIG_CONSOLE_POLL */
1652 
1653 static int pl011_hwinit(struct uart_port *port)
1654 {
1655         struct uart_amba_port *uap =
1656             container_of(port, struct uart_amba_port, port);
1657         int retval;
1658 
1659         /* Optionaly enable pins to be muxed in and configured */
1660         pinctrl_pm_select_default_state(port->dev);
1661 
1662         /*
1663          * Try to enable the clock producer.
1664          */
1665         retval = clk_prepare_enable(uap->clk);
1666         if (retval)
1667                 return retval;
1668 
1669         uap->port.uartclk = clk_get_rate(uap->clk);
1670 
1671         /* Clear pending error and receive interrupts */
1672         pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1673                     UART011_FEIS | UART011_RTIS | UART011_RXIS,
1674                     uap, REG_ICR);
1675 
1676         /*
1677          * Save interrupts enable mask, and enable RX interrupts in case if
1678          * the interrupt is used for NMI entry.
1679          */
1680         uap->im = pl011_read(uap, REG_IMSC);
1681         pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1682 
1683         if (dev_get_platdata(uap->port.dev)) {
1684                 struct amba_pl011_data *plat;
1685 
1686                 plat = dev_get_platdata(uap->port.dev);
1687                 if (plat->init)
1688                         plat->init();
1689         }
1690         return 0;
1691 }
1692 
1693 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1694 {
1695         return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1696                pl011_reg_to_offset(uap, REG_LCRH_TX);
1697 }
1698 
1699 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1700 {
1701         pl011_write(lcr_h, uap, REG_LCRH_RX);
1702         if (pl011_split_lcrh(uap)) {
1703                 int i;
1704                 /*
1705                  * Wait 10 PCLKs before writing LCRH_TX register,
1706                  * to get this delay write read only register 10 times
1707                  */
1708                 for (i = 0; i < 10; ++i)
1709                         pl011_write(0xff, uap, REG_MIS);
1710                 pl011_write(lcr_h, uap, REG_LCRH_TX);
1711         }
1712 }
1713 
1714 static int pl011_allocate_irq(struct uart_amba_port *uap)
1715 {
1716         pl011_write(uap->im, uap, REG_IMSC);
1717 
1718         return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1719 }
1720 
1721 /*
1722  * Enable interrupts, only timeouts when using DMA
1723  * if initial RX DMA job failed, start in interrupt mode
1724  * as well.
1725  */
1726 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1727 {
1728         unsigned int i;
1729 
1730         spin_lock_irq(&uap->port.lock);
1731 
1732         /* Clear out any spuriously appearing RX interrupts */
1733         pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1734 
1735         /*
1736          * RXIS is asserted only when the RX FIFO transitions from below
1737          * to above the trigger threshold.  If the RX FIFO is already
1738          * full to the threshold this can't happen and RXIS will now be
1739          * stuck off.  Drain the RX FIFO explicitly to fix this:
1740          */
1741         for (i = 0; i < uap->fifosize * 2; ++i) {
1742                 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1743                         break;
1744 
1745                 pl011_read(uap, REG_DR);
1746         }
1747 
1748         uap->im = UART011_RTIM;
1749         if (!pl011_dma_rx_running(uap))
1750                 uap->im |= UART011_RXIM;
1751         pl011_write(uap->im, uap, REG_IMSC);
1752         spin_unlock_irq(&uap->port.lock);
1753 }
1754 
1755 static int pl011_startup(struct uart_port *port)
1756 {
1757         struct uart_amba_port *uap =
1758             container_of(port, struct uart_amba_port, port);
1759         unsigned int cr;
1760         int retval;
1761 
1762         retval = pl011_hwinit(port);
1763         if (retval)
1764                 goto clk_dis;
1765 
1766         retval = pl011_allocate_irq(uap);
1767         if (retval)
1768                 goto clk_dis;
1769 
1770         pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1771 
1772         spin_lock_irq(&uap->port.lock);
1773 
1774         /* restore RTS and DTR */
1775         cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1776         cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1777         pl011_write(cr, uap, REG_CR);
1778 
1779         spin_unlock_irq(&uap->port.lock);
1780 
1781         /*
1782          * initialise the old status of the modem signals
1783          */
1784         uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1785 
1786         /* Startup DMA */
1787         pl011_dma_startup(uap);
1788 
1789         pl011_enable_interrupts(uap);
1790 
1791         return 0;
1792 
1793  clk_dis:
1794         clk_disable_unprepare(uap->clk);
1795         return retval;
1796 }
1797 
1798 static int sbsa_uart_startup(struct uart_port *port)
1799 {
1800         struct uart_amba_port *uap =
1801                 container_of(port, struct uart_amba_port, port);
1802         int retval;
1803 
1804         retval = pl011_hwinit(port);
1805         if (retval)
1806                 return retval;
1807 
1808         retval = pl011_allocate_irq(uap);
1809         if (retval)
1810                 return retval;
1811 
1812         /* The SBSA UART does not support any modem status lines. */
1813         uap->old_status = 0;
1814 
1815         pl011_enable_interrupts(uap);
1816 
1817         return 0;
1818 }
1819 
1820 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1821                                         unsigned int lcrh)
1822 {
1823       unsigned long val;
1824 
1825       val = pl011_read(uap, lcrh);
1826       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1827       pl011_write(val, uap, lcrh);
1828 }
1829 
1830 /*
1831  * disable the port. It should not disable RTS and DTR.
1832  * Also RTS and DTR state should be preserved to restore
1833  * it during startup().
1834  */
1835 static void pl011_disable_uart(struct uart_amba_port *uap)
1836 {
1837         unsigned int cr;
1838 
1839         uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1840         spin_lock_irq(&uap->port.lock);
1841         cr = pl011_read(uap, REG_CR);
1842         uap->old_cr = cr;
1843         cr &= UART011_CR_RTS | UART011_CR_DTR;
1844         cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1845         pl011_write(cr, uap, REG_CR);
1846         spin_unlock_irq(&uap->port.lock);
1847 
1848         /*
1849          * disable break condition and fifos
1850          */
1851         pl011_shutdown_channel(uap, REG_LCRH_RX);
1852         if (pl011_split_lcrh(uap))
1853                 pl011_shutdown_channel(uap, REG_LCRH_TX);
1854 }
1855 
1856 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1857 {
1858         spin_lock_irq(&uap->port.lock);
1859 
1860         /* mask all interrupts and clear all pending ones */
1861         uap->im = 0;
1862         pl011_write(uap->im, uap, REG_IMSC);
1863         pl011_write(0xffff, uap, REG_ICR);
1864 
1865         spin_unlock_irq(&uap->port.lock);
1866 }
1867 
1868 static void pl011_shutdown(struct uart_port *port)
1869 {
1870         struct uart_amba_port *uap =
1871                 container_of(port, struct uart_amba_port, port);
1872 
1873         pl011_disable_interrupts(uap);
1874 
1875         pl011_dma_shutdown(uap);
1876 
1877         free_irq(uap->port.irq, uap);
1878 
1879         pl011_disable_uart(uap);
1880 
1881         /*
1882          * Shut down the clock producer
1883          */
1884         clk_disable_unprepare(uap->clk);
1885         /* Optionally let pins go into sleep states */
1886         pinctrl_pm_select_sleep_state(port->dev);
1887 
1888         if (dev_get_platdata(uap->port.dev)) {
1889                 struct amba_pl011_data *plat;
1890 
1891                 plat = dev_get_platdata(uap->port.dev);
1892                 if (plat->exit)
1893                         plat->exit();
1894         }
1895 
1896         if (uap->port.ops->flush_buffer)
1897                 uap->port.ops->flush_buffer(port);
1898 }
1899 
1900 static void sbsa_uart_shutdown(struct uart_port *port)
1901 {
1902         struct uart_amba_port *uap =
1903                 container_of(port, struct uart_amba_port, port);
1904 
1905         pl011_disable_interrupts(uap);
1906 
1907         free_irq(uap->port.irq, uap);
1908 
1909         if (uap->port.ops->flush_buffer)
1910                 uap->port.ops->flush_buffer(port);
1911 }
1912 
1913 static void
1914 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1915 {
1916         port->read_status_mask = UART011_DR_OE | 255;
1917         if (termios->c_iflag & INPCK)
1918                 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1919         if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1920                 port->read_status_mask |= UART011_DR_BE;
1921 
1922         /*
1923          * Characters to ignore
1924          */
1925         port->ignore_status_mask = 0;
1926         if (termios->c_iflag & IGNPAR)
1927                 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1928         if (termios->c_iflag & IGNBRK) {
1929                 port->ignore_status_mask |= UART011_DR_BE;
1930                 /*
1931                  * If we're ignoring parity and break indicators,
1932                  * ignore overruns too (for real raw support).
1933                  */
1934                 if (termios->c_iflag & IGNPAR)
1935                         port->ignore_status_mask |= UART011_DR_OE;
1936         }
1937 
1938         /*
1939          * Ignore all characters if CREAD is not set.
1940          */
1941         if ((termios->c_cflag & CREAD) == 0)
1942                 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1943 }
1944 
1945 static void
1946 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1947                      struct ktermios *old)
1948 {
1949         struct uart_amba_port *uap =
1950             container_of(port, struct uart_amba_port, port);
1951         unsigned int lcr_h, old_cr;
1952         unsigned long flags;
1953         unsigned int baud, quot, clkdiv;
1954 
1955         if (uap->vendor->oversampling)
1956                 clkdiv = 8;
1957         else
1958                 clkdiv = 16;
1959 
1960         /*
1961          * Ask the core to calculate the divisor for us.
1962          */
1963         baud = uart_get_baud_rate(port, termios, old, 0,
1964                                   port->uartclk / clkdiv);
1965 #ifdef CONFIG_DMA_ENGINE
1966         /*
1967          * Adjust RX DMA polling rate with baud rate if not specified.
1968          */
1969         if (uap->dmarx.auto_poll_rate)
1970                 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1971 #endif
1972 
1973         if (baud > port->uartclk/16)
1974                 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1975         else
1976                 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1977 
1978         switch (termios->c_cflag & CSIZE) {
1979         case CS5:
1980                 lcr_h = UART01x_LCRH_WLEN_5;
1981                 break;
1982         case CS6:
1983                 lcr_h = UART01x_LCRH_WLEN_6;
1984                 break;
1985         case CS7:
1986                 lcr_h = UART01x_LCRH_WLEN_7;
1987                 break;
1988         default: // CS8
1989                 lcr_h = UART01x_LCRH_WLEN_8;
1990                 break;
1991         }
1992         if (termios->c_cflag & CSTOPB)
1993                 lcr_h |= UART01x_LCRH_STP2;
1994         if (termios->c_cflag & PARENB) {
1995                 lcr_h |= UART01x_LCRH_PEN;
1996                 if (!(termios->c_cflag & PARODD))
1997                         lcr_h |= UART01x_LCRH_EPS;
1998                 if (termios->c_cflag & CMSPAR)
1999                         lcr_h |= UART011_LCRH_SPS;
2000         }
2001         if (uap->fifosize > 1)
2002                 lcr_h |= UART01x_LCRH_FEN;
2003 
2004         spin_lock_irqsave(&port->lock, flags);
2005 
2006         /*
2007          * Update the per-port timeout.
2008          */
2009         uart_update_timeout(port, termios->c_cflag, baud);
2010 
2011         pl011_setup_status_masks(port, termios);
2012 
2013         if (UART_ENABLE_MS(port, termios->c_cflag))
2014                 pl011_enable_ms(port);
2015 
2016         /* first, disable everything */
2017         old_cr = pl011_read(uap, REG_CR);
2018         pl011_write(0, uap, REG_CR);
2019 
2020         if (termios->c_cflag & CRTSCTS) {
2021                 if (old_cr & UART011_CR_RTS)
2022                         old_cr |= UART011_CR_RTSEN;
2023 
2024                 old_cr |= UART011_CR_CTSEN;
2025                 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2026         } else {
2027                 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2028                 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2029         }
2030 
2031         if (uap->vendor->oversampling) {
2032                 if (baud > port->uartclk / 16)
2033                         old_cr |= ST_UART011_CR_OVSFACT;
2034                 else
2035                         old_cr &= ~ST_UART011_CR_OVSFACT;
2036         }
2037 
2038         /*
2039          * Workaround for the ST Micro oversampling variants to
2040          * increase the bitrate slightly, by lowering the divisor,
2041          * to avoid delayed sampling of start bit at high speeds,
2042          * else we see data corruption.
2043          */
2044         if (uap->vendor->oversampling) {
2045                 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2046                         quot -= 1;
2047                 else if ((baud > 3250000) && (quot > 2))
2048                         quot -= 2;
2049         }
2050         /* Set baud rate */
2051         pl011_write(quot & 0x3f, uap, REG_FBRD);
2052         pl011_write(quot >> 6, uap, REG_IBRD);
2053 
2054         /*
2055          * ----------v----------v----------v----------v-----
2056          * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2057          * REG_FBRD & REG_IBRD.
2058          * ----------^----------^----------^----------^-----
2059          */
2060         pl011_write_lcr_h(uap, lcr_h);
2061         pl011_write(old_cr, uap, REG_CR);
2062 
2063         spin_unlock_irqrestore(&port->lock, flags);
2064 }
2065 
2066 static void
2067 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2068                       struct ktermios *old)
2069 {
2070         struct uart_amba_port *uap =
2071             container_of(port, struct uart_amba_port, port);
2072         unsigned long flags;
2073 
2074         tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2075 
2076         /* The SBSA UART only supports 8n1 without hardware flow control. */
2077         termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2078         termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2079         termios->c_cflag |= CS8 | CLOCAL;
2080 
2081         spin_lock_irqsave(&port->lock, flags);
2082         uart_update_timeout(port, CS8, uap->fixed_baud);
2083         pl011_setup_status_masks(port, termios);
2084         spin_unlock_irqrestore(&port->lock, flags);
2085 }
2086 
2087 static const char *pl011_type(struct uart_port *port)
2088 {
2089         struct uart_amba_port *uap =
2090             container_of(port, struct uart_amba_port, port);
2091         return uap->port.type == PORT_AMBA ? uap->type : NULL;
2092 }
2093 
2094 /*
2095  * Release the memory region(s) being used by 'port'
2096  */
2097 static void pl011_release_port(struct uart_port *port)
2098 {
2099         release_mem_region(port->mapbase, SZ_4K);
2100 }
2101 
2102 /*
2103  * Request the memory region(s) being used by 'port'
2104  */
2105 static int pl011_request_port(struct uart_port *port)
2106 {
2107         return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2108                         != NULL ? 0 : -EBUSY;
2109 }
2110 
2111 /*
2112  * Configure/autoconfigure the port.
2113  */
2114 static void pl011_config_port(struct uart_port *port, int flags)
2115 {
2116         if (flags & UART_CONFIG_TYPE) {
2117                 port->type = PORT_AMBA;
2118                 pl011_request_port(port);
2119         }
2120 }
2121 
2122 /*
2123  * verify the new serial_struct (for TIOCSSERIAL).
2124  */
2125 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2126 {
2127         int ret = 0;
2128         if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2129                 ret = -EINVAL;
2130         if (ser->irq < 0 || ser->irq >= nr_irqs)
2131                 ret = -EINVAL;
2132         if (ser->baud_base < 9600)
2133                 ret = -EINVAL;
2134         return ret;
2135 }
2136 
2137 static const struct uart_ops amba_pl011_pops = {
2138         .tx_empty       = pl011_tx_empty,
2139         .set_mctrl      = pl011_set_mctrl,
2140         .get_mctrl      = pl011_get_mctrl,
2141         .stop_tx        = pl011_stop_tx,
2142         .start_tx       = pl011_start_tx,
2143         .stop_rx        = pl011_stop_rx,
2144         .enable_ms      = pl011_enable_ms,
2145         .break_ctl      = pl011_break_ctl,
2146         .startup        = pl011_startup,
2147         .shutdown       = pl011_shutdown,
2148         .flush_buffer   = pl011_dma_flush_buffer,
2149         .set_termios    = pl011_set_termios,
2150         .type           = pl011_type,
2151         .release_port   = pl011_release_port,
2152         .request_port   = pl011_request_port,
2153         .config_port    = pl011_config_port,
2154         .verify_port    = pl011_verify_port,
2155 #ifdef CONFIG_CONSOLE_POLL
2156         .poll_init     = pl011_hwinit,
2157         .poll_get_char = pl011_get_poll_char,
2158         .poll_put_char = pl011_put_poll_char,
2159 #endif
2160 };
2161 
2162 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2163 {
2164 }
2165 
2166 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2167 {
2168         return 0;
2169 }
2170 
2171 static const struct uart_ops sbsa_uart_pops = {
2172         .tx_empty       = pl011_tx_empty,
2173         .set_mctrl      = sbsa_uart_set_mctrl,
2174         .get_mctrl      = sbsa_uart_get_mctrl,
2175         .stop_tx        = pl011_stop_tx,
2176         .start_tx       = pl011_start_tx,
2177         .stop_rx        = pl011_stop_rx,
2178         .startup        = sbsa_uart_startup,
2179         .shutdown       = sbsa_uart_shutdown,
2180         .set_termios    = sbsa_uart_set_termios,
2181         .type           = pl011_type,
2182         .release_port   = pl011_release_port,
2183         .request_port   = pl011_request_port,
2184         .config_port    = pl011_config_port,
2185         .verify_port    = pl011_verify_port,
2186 #ifdef CONFIG_CONSOLE_POLL
2187         .poll_init     = pl011_hwinit,
2188         .poll_get_char = pl011_get_poll_char,
2189         .poll_put_char = pl011_put_poll_char,
2190 #endif
2191 };
2192 
2193 static struct uart_amba_port *amba_ports[UART_NR];
2194 
2195 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2196 
2197 static void pl011_console_putchar(struct uart_port *port, int ch)
2198 {
2199         struct uart_amba_port *uap =
2200             container_of(port, struct uart_amba_port, port);
2201 
2202         while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2203                 cpu_relax();
2204         pl011_write(ch, uap, REG_DR);
2205 }
2206 
2207 static void
2208 pl011_console_write(struct console *co, const char *s, unsigned int count)
2209 {
2210         struct uart_amba_port *uap = amba_ports[co->index];
2211         unsigned int old_cr = 0, new_cr;
2212         unsigned long flags;
2213         int locked = 1;
2214 
2215         clk_enable(uap->clk);
2216 
2217         local_irq_save(flags);
2218         if (uap->port.sysrq)
2219                 locked = 0;
2220         else if (oops_in_progress)
2221                 locked = spin_trylock(&uap->port.lock);
2222         else
2223                 spin_lock(&uap->port.lock);
2224 
2225         /*
2226          *      First save the CR then disable the interrupts
2227          */
2228         if (!uap->vendor->always_enabled) {
2229                 old_cr = pl011_read(uap, REG_CR);
2230                 new_cr = old_cr & ~UART011_CR_CTSEN;
2231                 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2232                 pl011_write(new_cr, uap, REG_CR);
2233         }
2234 
2235         uart_console_write(&uap->port, s, count, pl011_console_putchar);
2236 
2237         /*
2238          *      Finally, wait for transmitter to become empty and restore the
2239          *      TCR. Allow feature register bits to be inverted to work around
2240          *      errata.
2241          */
2242         while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2243                                                 & uap->vendor->fr_busy)
2244                 cpu_relax();
2245         if (!uap->vendor->always_enabled)
2246                 pl011_write(old_cr, uap, REG_CR);
2247 
2248         if (locked)
2249                 spin_unlock(&uap->port.lock);
2250         local_irq_restore(flags);
2251 
2252         clk_disable(uap->clk);
2253 }
2254 
2255 static void __init
2256 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2257                              int *parity, int *bits)
2258 {
2259         if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2260                 unsigned int lcr_h, ibrd, fbrd;
2261 
2262                 lcr_h = pl011_read(uap, REG_LCRH_TX);
2263 
2264                 *parity = 'n';
2265                 if (lcr_h & UART01x_LCRH_PEN) {
2266                         if (lcr_h & UART01x_LCRH_EPS)
2267                                 *parity = 'e';
2268                         else
2269                                 *parity = 'o';
2270                 }
2271 
2272                 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2273                         *bits = 7;
2274                 else
2275                         *bits = 8;
2276 
2277                 ibrd = pl011_read(uap, REG_IBRD);
2278                 fbrd = pl011_read(uap, REG_FBRD);
2279 
2280                 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2281 
2282                 if (uap->vendor->oversampling) {
2283                         if (pl011_read(uap, REG_CR)
2284                                   & ST_UART011_CR_OVSFACT)
2285                                 *baud *= 2;
2286                 }
2287         }
2288 }
2289 
2290 static int __init pl011_console_setup(struct console *co, char *options)
2291 {
2292         struct uart_amba_port *uap;
2293         int baud = 38400;
2294         int bits = 8;
2295         int parity = 'n';
2296         int flow = 'n';
2297         int ret;
2298 
2299         /*
2300          * Check whether an invalid uart number has been specified, and
2301          * if so, search for the first available port that does have
2302          * console support.
2303          */
2304         if (co->index >= UART_NR)
2305                 co->index = 0;
2306         uap = amba_ports[co->index];
2307         if (!uap)
2308                 return -ENODEV;
2309 
2310         /* Allow pins to be muxed in and configured */
2311         pinctrl_pm_select_default_state(uap->port.dev);
2312 
2313         ret = clk_prepare(uap->clk);
2314         if (ret)
2315                 return ret;
2316 
2317         if (dev_get_platdata(uap->port.dev)) {
2318                 struct amba_pl011_data *plat;
2319 
2320                 plat = dev_get_platdata(uap->port.dev);
2321                 if (plat->init)
2322                         plat->init();
2323         }
2324 
2325         uap->port.uartclk = clk_get_rate(uap->clk);
2326 
2327         if (uap->vendor->fixed_options) {
2328                 baud = uap->fixed_baud;
2329         } else {
2330                 if (options)
2331                         uart_parse_options(options,
2332                                            &baud, &parity, &bits, &flow);
2333                 else
2334                         pl011_console_get_options(uap, &baud, &parity, &bits);
2335         }
2336 
2337         return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2338 }
2339 
2340 /**
2341  *      pl011_console_match - non-standard console matching
2342  *      @co:      registering console
2343  *      @name:    name from console command line
2344  *      @idx:     index from console command line
2345  *      @options: ptr to option string from console command line
2346  *
2347  *      Only attempts to match console command lines of the form:
2348  *          console=pl011,mmio|mmio32,<addr>[,<options>]
2349  *          console=pl011,0x<addr>[,<options>]
2350  *      This form is used to register an initial earlycon boot console and
2351  *      replace it with the amba_console at pl011 driver init.
2352  *
2353  *      Performs console setup for a match (as required by interface)
2354  *      If no <options> are specified, then assume the h/w is already setup.
2355  *
2356  *      Returns 0 if console matches; otherwise non-zero to use default matching
2357  */
2358 static int __init pl011_console_match(struct console *co, char *name, int idx,
2359                                       char *options)
2360 {
2361         unsigned char iotype;
2362         resource_size_t addr;
2363         int i;
2364 
2365         /*
2366          * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2367          * have a distinct console name, so make sure we check for that.
2368          * The actual implementation of the erratum occurs in the probe
2369          * function.
2370          */
2371         if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2372                 return -ENODEV;
2373 
2374         if (uart_parse_earlycon(options, &iotype, &addr, &options))
2375                 return -ENODEV;
2376 
2377         if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2378                 return -ENODEV;
2379 
2380         /* try to match the port specified on the command line */
2381         for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2382                 struct uart_port *port;
2383 
2384                 if (!amba_ports[i])
2385                         continue;
2386 
2387                 port = &amba_ports[i]->port;
2388 
2389                 if (port->mapbase != addr)
2390                         continue;
2391 
2392                 co->index = i;
2393                 port->cons = co;
2394                 return pl011_console_setup(co, options);
2395         }
2396 
2397         return -ENODEV;
2398 }
2399 
2400 static struct uart_driver amba_reg;
2401 static struct console amba_console = {
2402         .name           = "ttyAMA",
2403         .write          = pl011_console_write,
2404         .device         = uart_console_device,
2405         .setup          = pl011_console_setup,
2406         .match          = pl011_console_match,
2407         .flags          = CON_PRINTBUFFER | CON_ANYTIME,
2408         .index          = -1,
2409         .data           = &amba_reg,
2410 };
2411 
2412 #define AMBA_CONSOLE    (&amba_console)
2413 
2414 static void qdf2400_e44_putc(struct uart_port *port, int c)
2415 {
2416         while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2417                 cpu_relax();
2418         writel(c, port->membase + UART01x_DR);
2419         while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2420                 cpu_relax();
2421 }
2422 
2423 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2424 {
2425         struct earlycon_device *dev = con->data;
2426 
2427         uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2428 }
2429 
2430 static void pl011_putc(struct uart_port *port, int c)
2431 {
2432         while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2433                 cpu_relax();
2434         if (port->iotype == UPIO_MEM32)
2435                 writel(c, port->membase + UART01x_DR);
2436         else
2437                 writeb(c, port->membase + UART01x_DR);
2438         while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2439                 cpu_relax();
2440 }
2441 
2442 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2443 {
2444         struct earlycon_device *dev = con->data;
2445 
2446         uart_console_write(&dev->port, s, n, pl011_putc);
2447 }
2448 
2449 /*
2450  * On non-ACPI systems, earlycon is enabled by specifying
2451  * "earlycon=pl011,<address>" on the kernel command line.
2452  *
2453  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2454  * by specifying only "earlycon" on the command line.  Because it requires
2455  * SPCR, the console starts after ACPI is parsed, which is later than a
2456  * traditional early console.
2457  *
2458  * To get the traditional early console that starts before ACPI is parsed,
2459  * specify the full "earlycon=pl011,<address>" option.
2460  */
2461 static int __init pl011_early_console_setup(struct earlycon_device *device,
2462                                             const char *opt)
2463 {
2464         if (!device->port.membase)
2465                 return -ENODEV;
2466 
2467         device->con->write = pl011_early_write;
2468 
2469         return 0;
2470 }
2471 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2472 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2473 
2474 /*
2475  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2476  * Erratum 44, traditional earlycon can be enabled by specifying
2477  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2478  *
2479  * Alternatively, you can just specify "earlycon", and the early console
2480  * will be enabled with the information from the SPCR table.  In this
2481  * case, the SPCR code will detect the need for the E44 work-around,
2482  * and set the console name to "qdf2400_e44".
2483  */
2484 static int __init
2485 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2486                                 const char *opt)
2487 {
2488         if (!device->port.membase)
2489                 return -ENODEV;
2490 
2491         device->con->write = qdf2400_e44_early_write;
2492         return 0;
2493 }
2494 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2495 
2496 #else
2497 #define AMBA_CONSOLE    NULL
2498 #endif
2499 
2500 static struct uart_driver amba_reg = {
2501         .owner                  = THIS_MODULE,
2502         .driver_name            = "ttyAMA",
2503         .dev_name               = "ttyAMA",
2504         .major                  = SERIAL_AMBA_MAJOR,
2505         .minor                  = SERIAL_AMBA_MINOR,
2506         .nr                     = UART_NR,
2507         .cons                   = AMBA_CONSOLE,
2508 };
2509 
2510 static int pl011_probe_dt_alias(int index, struct device *dev)
2511 {
2512         struct device_node *np;
2513         static bool seen_dev_with_alias = false;
2514         static bool seen_dev_without_alias = false;
2515         int ret = index;
2516 
2517         if (!IS_ENABLED(CONFIG_OF))
2518                 return ret;
2519 
2520         np = dev->of_node;
2521         if (!np)
2522                 return ret;
2523 
2524         ret = of_alias_get_id(np, "serial");
2525         if (ret < 0) {
2526                 seen_dev_without_alias = true;
2527                 ret = index;
2528         } else {
2529                 seen_dev_with_alias = true;
2530                 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2531                         dev_warn(dev, "requested serial port %d  not available.\n", ret);
2532                         ret = index;
2533                 }
2534         }
2535 
2536         if (seen_dev_with_alias && seen_dev_without_alias)
2537                 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2538 
2539         return ret;
2540 }
2541 
2542 /* unregisters the driver also if no more ports are left */
2543 static void pl011_unregister_port(struct uart_amba_port *uap)
2544 {
2545         int i;
2546         bool busy = false;
2547 
2548         for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2549                 if (amba_ports[i] == uap)
2550                         amba_ports[i] = NULL;
2551                 else if (amba_ports[i])
2552                         busy = true;
2553         }
2554         pl011_dma_remove(uap);
2555         if (!busy)
2556                 uart_unregister_driver(&amba_reg);
2557 }
2558 
2559 static int pl011_find_free_port(void)
2560 {
2561         int i;
2562 
2563         for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2564                 if (amba_ports[i] == NULL)
2565                         return i;
2566 
2567         return -EBUSY;
2568 }
2569 
2570 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2571                             struct resource *mmiobase, int index)
2572 {
2573         void __iomem *base;
2574 
2575         base = devm_ioremap_resource(dev, mmiobase);
2576         if (IS_ERR(base))
2577                 return PTR_ERR(base);
2578 
2579         index = pl011_probe_dt_alias(index, dev);
2580 
2581         uap->old_cr = 0;
2582         uap->port.dev = dev;
2583         uap->port.mapbase = mmiobase->start;
2584         uap->port.membase = base;
2585         uap->port.fifosize = uap->fifosize;
2586         uap->port.flags = UPF_BOOT_AUTOCONF;
2587         uap->port.line = index;
2588 
2589         amba_ports[index] = uap;
2590 
2591         return 0;
2592 }
2593 
2594 static int pl011_register_port(struct uart_amba_port *uap)
2595 {
2596         int ret;
2597 
2598         /* Ensure interrupts from this UART are masked and cleared */
2599         pl011_write(0, uap, REG_IMSC);
2600         pl011_write(0xffff, uap, REG_ICR);
2601 
2602         if (!amba_reg.state) {
2603                 ret = uart_register_driver(&amba_reg);
2604                 if (ret < 0) {
2605                         dev_err(uap->port.dev,
2606                                 "Failed to register AMBA-PL011 driver\n");
2607                         return ret;
2608                 }
2609         }
2610 
2611         ret = uart_add_one_port(&amba_reg, &uap->port);
2612         if (ret)
2613                 pl011_unregister_port(uap);
2614 
2615         return ret;
2616 }
2617 
2618 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2619 {
2620         struct uart_amba_port *uap;
2621         struct vendor_data *vendor = id->data;
2622         int portnr, ret;
2623 
2624         portnr = pl011_find_free_port();
2625         if (portnr < 0)
2626                 return portnr;
2627 
2628         uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2629                            GFP_KERNEL);
2630         if (!uap)
2631                 return -ENOMEM;
2632 
2633         uap->clk = devm_clk_get(&dev->dev, NULL);
2634         if (IS_ERR(uap->clk))
2635                 return PTR_ERR(uap->clk);
2636 
2637         uap->reg_offset = vendor->reg_offset;
2638         uap->vendor = vendor;
2639         uap->fifosize = vendor->get_fifosize(dev);
2640         uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2641         uap->port.irq = dev->irq[0];
2642         uap->port.ops = &amba_pl011_pops;
2643 
2644         snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2645 
2646         ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2647         if (ret)
2648                 return ret;
2649 
2650         amba_set_drvdata(dev, uap);
2651 
2652         return pl011_register_port(uap);
2653 }
2654 
2655 static int pl011_remove(struct amba_device *dev)
2656 {
2657         struct uart_amba_port *uap = amba_get_drvdata(dev);
2658 
2659         uart_remove_one_port(&amba_reg, &uap->port);
2660         pl011_unregister_port(uap);
2661         return 0;
2662 }
2663 
2664 #ifdef CONFIG_PM_SLEEP
2665 static int pl011_suspend(struct device *dev)
2666 {
2667         struct uart_amba_port *uap = dev_get_drvdata(dev);
2668 
2669         if (!uap)
2670                 return -EINVAL;
2671 
2672         return uart_suspend_port(&amba_reg, &uap->port);
2673 }
2674 
2675 static int pl011_resume(struct device *dev)
2676 {
2677         struct uart_amba_port *uap = dev_get_drvdata(dev);
2678 
2679         if (!uap)
2680                 return -EINVAL;
2681 
2682         return uart_resume_port(&amba_reg, &uap->port);
2683 }
2684 #endif
2685 
2686 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2687 
2688 static int sbsa_uart_probe(struct platform_device *pdev)
2689 {
2690         struct uart_amba_port *uap;
2691         struct resource *r;
2692         int portnr, ret;
2693         int baudrate;
2694 
2695         /*
2696          * Check the mandatory baud rate parameter in the DT node early
2697          * so that we can easily exit with the error.
2698          */
2699         if (pdev->dev.of_node) {
2700                 struct device_node *np = pdev->dev.of_node;
2701 
2702                 ret = of_property_read_u32(np, "current-speed", &baudrate);
2703                 if (ret)
2704                         return ret;
2705         } else {
2706                 baudrate = 115200;
2707         }
2708 
2709         portnr = pl011_find_free_port();
2710         if (portnr < 0)
2711                 return portnr;
2712 
2713         uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2714                            GFP_KERNEL);
2715         if (!uap)
2716                 return -ENOMEM;
2717 
2718         ret = platform_get_irq(pdev, 0);
2719         if (ret < 0)
2720                 return ret;
2721         uap->port.irq   = ret;
2722 
2723 #ifdef CONFIG_ACPI_SPCR_TABLE
2724         if (qdf2400_e44_present) {
2725                 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2726                 uap->vendor = &vendor_qdt_qdf2400_e44;
2727         } else
2728 #endif
2729                 uap->vendor = &vendor_sbsa;
2730 
2731         uap->reg_offset = uap->vendor->reg_offset;
2732         uap->fifosize   = 32;
2733         uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2734         uap->port.ops   = &sbsa_uart_pops;
2735         uap->fixed_baud = baudrate;
2736 
2737         snprintf(uap->type, sizeof(uap->type), "SBSA");
2738 
2739         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2740 
2741         ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2742         if (ret)
2743                 return ret;
2744 
2745         platform_set_drvdata(pdev, uap);
2746 
2747         return pl011_register_port(uap);
2748 }
2749 
2750 static int sbsa_uart_remove(struct platform_device *pdev)
2751 {
2752         struct uart_amba_port *uap = platform_get_drvdata(pdev);
2753 
2754         uart_remove_one_port(&amba_reg, &uap->port);
2755         pl011_unregister_port(uap);
2756         return 0;
2757 }
2758 
2759 static const struct of_device_id sbsa_uart_of_match[] = {
2760         { .compatible = "arm,sbsa-uart", },
2761         {},
2762 };
2763 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2764 
2765 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2766         { "ARMH0011", 0 },
2767         {},
2768 };
2769 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2770 
2771 static struct platform_driver arm_sbsa_uart_platform_driver = {
2772         .probe          = sbsa_uart_probe,
2773         .remove         = sbsa_uart_remove,
2774         .driver = {
2775                 .name   = "sbsa-uart",
2776                 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2777                 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2778                 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2779         },
2780 };
2781 
2782 static const struct amba_id pl011_ids[] = {
2783         {
2784                 .id     = 0x00041011,
2785                 .mask   = 0x000fffff,
2786                 .data   = &vendor_arm,
2787         },
2788         {
2789                 .id     = 0x00380802,
2790                 .mask   = 0x00ffffff,
2791                 .data   = &vendor_st,
2792         },
2793         {
2794                 .id     = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2795                 .mask   = 0x00ffffff,
2796                 .data   = &vendor_zte,
2797         },
2798         { 0, 0 },
2799 };
2800 
2801 MODULE_DEVICE_TABLE(amba, pl011_ids);
2802 
2803 static struct amba_driver pl011_driver = {
2804         .drv = {
2805                 .name   = "uart-pl011",
2806                 .pm     = &pl011_dev_pm_ops,
2807                 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2808         },
2809         .id_table       = pl011_ids,
2810         .probe          = pl011_probe,
2811         .remove         = pl011_remove,
2812 };
2813 
2814 static int __init pl011_init(void)
2815 {
2816         printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2817 
2818         if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2819                 pr_warn("could not register SBSA UART platform driver\n");
2820         return amba_driver_register(&pl011_driver);
2821 }
2822 
2823 static void __exit pl011_exit(void)
2824 {
2825         platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2826         amba_driver_unregister(&pl011_driver);
2827 }
2828 
2829 /*
2830  * While this can be a module, if builtin it's most likely the console
2831  * So let's leave module_exit but move module_init to an earlier place
2832  */
2833 arch_initcall(pl011_init);
2834 module_exit(pl011_exit);
2835 
2836 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2837 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2838 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */