This source file includes following definitions.
- kbd_defleds
- register_keyboard_notifier
- unregister_keyboard_notifier
- getkeycode_helper
- getkeycode
- setkeycode_helper
- setkeycode
- kd_sound_helper
- kd_nosound
- kd_mksound
- kbd_rate_helper
- kbd_rate
- put_queue
- puts_queue
- applkey
- to_utf8
- do_compute_shiftstate
- compute_shiftstate
- handle_diacr
- fn_enter
- fn_caps_toggle
- fn_caps_on
- fn_show_ptregs
- fn_hold
- fn_num
- fn_bare_num
- fn_lastcons
- fn_dec_console
- fn_inc_console
- fn_send_intr
- fn_scroll_forw
- fn_scroll_back
- fn_show_mem
- fn_show_state
- fn_boot_it
- fn_compose
- fn_spawn_con
- fn_SAK
- fn_null
- k_ignore
- k_spec
- k_lowercase
- k_unicode
- k_deadunicode
- k_self
- k_dead2
- k_dead
- k_cons
- k_fn
- k_cur
- k_pad
- k_shift
- k_meta
- k_ascii
- k_lock
- k_slock
- k_brlcommit
- k_brl
- kbd_led_trigger_activate
- kbd_propagate_led_state
- kbd_update_leds_helper
- kbd_init_leds
- kbd_update_leds_helper
- kbd_propagate_led_state
- kbd_init_leds
- getledstate
- setledstate
- getleds
- vt_get_leds
- vt_set_led_state
- vt_kbd_con_start
- vt_kbd_con_stop
- kbd_bh
- emulate_raw
- emulate_raw
- kbd_rawcode
- kbd_keycode
- kbd_event
- kbd_match
- kbd_connect
- kbd_disconnect
- kbd_start
- kbd_init
- vt_do_diacrit
- vt_do_kdskbmode
- vt_do_kdskbmeta
- vt_do_kbkeycode_ioctl
- vt_do_kdsk_ioctl
- vt_do_kdgkb_ioctl
- vt_do_kdskled
- vt_do_kdgkbmode
- vt_do_kdgkbmeta
- vt_reset_unicode
- vt_get_shift_state
- vt_reset_keyboard
- vt_get_kbd_mode_bit
- vt_set_kbd_mode_bit
- vt_clr_kbd_mode_bit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/consolemap.h>
29 #include <linux/module.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/debug.h>
32 #include <linux/tty.h>
33 #include <linux/tty_flip.h>
34 #include <linux/mm.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/leds.h>
39
40 #include <linux/kbd_kern.h>
41 #include <linux/kbd_diacr.h>
42 #include <linux/vt_kern.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
45 #include <linux/notifier.h>
46 #include <linux/jiffies.h>
47 #include <linux/uaccess.h>
48
49 #include <asm/irq_regs.h>
50
51 extern void ctrl_alt_del(void);
52
53
54
55
56
57 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
58
59 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
60 #include <asm/kbdleds.h>
61 #else
62 static inline int kbd_defleds(void)
63 {
64 return 0;
65 }
66 #endif
67
68 #define KBD_DEFLOCK 0
69
70
71
72
73
74 #define K_HANDLERS\
75 k_self, k_fn, k_spec, k_pad,\
76 k_dead, k_cons, k_cur, k_shift,\
77 k_meta, k_ascii, k_lock, k_lowercase,\
78 k_slock, k_dead2, k_brl, k_ignore
79
80 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
81 char up_flag);
82 static k_handler_fn K_HANDLERS;
83 static k_handler_fn *k_handler[16] = { K_HANDLERS };
84
85 #define FN_HANDLERS\
86 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
87 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
88 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
89 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
90 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
91
92 typedef void (fn_handler_fn)(struct vc_data *vc);
93 static fn_handler_fn FN_HANDLERS;
94 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
95
96
97
98
99
100 struct vt_spawn_console vt_spawn_con = {
101 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
102 .pid = NULL,
103 .sig = 0,
104 };
105
106
107
108
109
110
111 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
112 static struct kbd_struct *kbd = kbd_table;
113
114
115 static const int max_vals[] = {
116 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
117 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
118 255, NR_LOCK - 1, 255, NR_BRL - 1
119 };
120
121 static const int NR_TYPES = ARRAY_SIZE(max_vals);
122
123 static struct input_handler kbd_handler;
124 static DEFINE_SPINLOCK(kbd_event_lock);
125 static DEFINE_SPINLOCK(led_lock);
126 static DEFINE_SPINLOCK(func_buf_lock);
127 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];
128 static unsigned char shift_down[NR_SHIFT];
129 static bool dead_key_next;
130
131
132 static bool npadch_active;
133 static unsigned int npadch_value;
134
135 static unsigned int diacr;
136 static char rep;
137
138 static int shift_state = 0;
139
140 static unsigned int ledstate = -1U;
141 static unsigned char ledioctl;
142
143
144
145
146 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
147
148 int register_keyboard_notifier(struct notifier_block *nb)
149 {
150 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
151 }
152 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
153
154 int unregister_keyboard_notifier(struct notifier_block *nb)
155 {
156 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
157 }
158 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
159
160
161
162
163
164
165
166
167
168
169
170 struct getset_keycode_data {
171 struct input_keymap_entry ke;
172 int error;
173 };
174
175 static int getkeycode_helper(struct input_handle *handle, void *data)
176 {
177 struct getset_keycode_data *d = data;
178
179 d->error = input_get_keycode(handle->dev, &d->ke);
180
181 return d->error == 0;
182 }
183
184 static int getkeycode(unsigned int scancode)
185 {
186 struct getset_keycode_data d = {
187 .ke = {
188 .flags = 0,
189 .len = sizeof(scancode),
190 .keycode = 0,
191 },
192 .error = -ENODEV,
193 };
194
195 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
196
197 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
198
199 return d.error ?: d.ke.keycode;
200 }
201
202 static int setkeycode_helper(struct input_handle *handle, void *data)
203 {
204 struct getset_keycode_data *d = data;
205
206 d->error = input_set_keycode(handle->dev, &d->ke);
207
208 return d->error == 0;
209 }
210
211 static int setkeycode(unsigned int scancode, unsigned int keycode)
212 {
213 struct getset_keycode_data d = {
214 .ke = {
215 .flags = 0,
216 .len = sizeof(scancode),
217 .keycode = keycode,
218 },
219 .error = -ENODEV,
220 };
221
222 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
223
224 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
225
226 return d.error;
227 }
228
229
230
231
232
233
234 static int kd_sound_helper(struct input_handle *handle, void *data)
235 {
236 unsigned int *hz = data;
237 struct input_dev *dev = handle->dev;
238
239 if (test_bit(EV_SND, dev->evbit)) {
240 if (test_bit(SND_TONE, dev->sndbit)) {
241 input_inject_event(handle, EV_SND, SND_TONE, *hz);
242 if (*hz)
243 return 0;
244 }
245 if (test_bit(SND_BELL, dev->sndbit))
246 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
247 }
248
249 return 0;
250 }
251
252 static void kd_nosound(struct timer_list *unused)
253 {
254 static unsigned int zero;
255
256 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
257 }
258
259 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
260
261 void kd_mksound(unsigned int hz, unsigned int ticks)
262 {
263 del_timer_sync(&kd_mksound_timer);
264
265 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
266
267 if (hz && ticks)
268 mod_timer(&kd_mksound_timer, jiffies + ticks);
269 }
270 EXPORT_SYMBOL(kd_mksound);
271
272
273
274
275
276 static int kbd_rate_helper(struct input_handle *handle, void *data)
277 {
278 struct input_dev *dev = handle->dev;
279 struct kbd_repeat *rpt = data;
280
281 if (test_bit(EV_REP, dev->evbit)) {
282
283 if (rpt[0].delay > 0)
284 input_inject_event(handle,
285 EV_REP, REP_DELAY, rpt[0].delay);
286 if (rpt[0].period > 0)
287 input_inject_event(handle,
288 EV_REP, REP_PERIOD, rpt[0].period);
289
290 rpt[1].delay = dev->rep[REP_DELAY];
291 rpt[1].period = dev->rep[REP_PERIOD];
292 }
293
294 return 0;
295 }
296
297 int kbd_rate(struct kbd_repeat *rpt)
298 {
299 struct kbd_repeat data[2] = { *rpt };
300
301 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
302 *rpt = data[1];
303
304 return 0;
305 }
306
307
308
309
310 static void put_queue(struct vc_data *vc, int ch)
311 {
312 tty_insert_flip_char(&vc->port, ch, 0);
313 tty_schedule_flip(&vc->port);
314 }
315
316 static void puts_queue(struct vc_data *vc, char *cp)
317 {
318 while (*cp) {
319 tty_insert_flip_char(&vc->port, *cp, 0);
320 cp++;
321 }
322 tty_schedule_flip(&vc->port);
323 }
324
325 static void applkey(struct vc_data *vc, int key, char mode)
326 {
327 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
328
329 buf[1] = (mode ? 'O' : '[');
330 buf[2] = key;
331 puts_queue(vc, buf);
332 }
333
334
335
336
337
338
339
340 static void to_utf8(struct vc_data *vc, uint c)
341 {
342 if (c < 0x80)
343
344 put_queue(vc, c);
345 else if (c < 0x800) {
346
347 put_queue(vc, 0xc0 | (c >> 6));
348 put_queue(vc, 0x80 | (c & 0x3f));
349 } else if (c < 0x10000) {
350 if (c >= 0xD800 && c < 0xE000)
351 return;
352 if (c == 0xFFFF)
353 return;
354
355 put_queue(vc, 0xe0 | (c >> 12));
356 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
357 put_queue(vc, 0x80 | (c & 0x3f));
358 } else if (c < 0x110000) {
359
360 put_queue(vc, 0xf0 | (c >> 18));
361 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
362 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
363 put_queue(vc, 0x80 | (c & 0x3f));
364 }
365 }
366
367
368
369
370
371
372
373
374 static void do_compute_shiftstate(void)
375 {
376 unsigned int k, sym, val;
377
378 shift_state = 0;
379 memset(shift_down, 0, sizeof(shift_down));
380
381 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
382 sym = U(key_maps[0][k]);
383 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
384 continue;
385
386 val = KVAL(sym);
387 if (val == KVAL(K_CAPSSHIFT))
388 val = KVAL(K_SHIFT);
389
390 shift_down[val]++;
391 shift_state |= BIT(val);
392 }
393 }
394
395
396 void compute_shiftstate(void)
397 {
398 unsigned long flags;
399 spin_lock_irqsave(&kbd_event_lock, flags);
400 do_compute_shiftstate();
401 spin_unlock_irqrestore(&kbd_event_lock, flags);
402 }
403
404
405
406
407
408
409
410
411 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
412 {
413 unsigned int d = diacr;
414 unsigned int i;
415
416 diacr = 0;
417
418 if ((d & ~0xff) == BRL_UC_ROW) {
419 if ((ch & ~0xff) == BRL_UC_ROW)
420 return d | ch;
421 } else {
422 for (i = 0; i < accent_table_size; i++)
423 if (accent_table[i].diacr == d && accent_table[i].base == ch)
424 return accent_table[i].result;
425 }
426
427 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
428 return d;
429
430 if (kbd->kbdmode == VC_UNICODE)
431 to_utf8(vc, d);
432 else {
433 int c = conv_uni_to_8bit(d);
434 if (c != -1)
435 put_queue(vc, c);
436 }
437
438 return ch;
439 }
440
441
442
443
444 static void fn_enter(struct vc_data *vc)
445 {
446 if (diacr) {
447 if (kbd->kbdmode == VC_UNICODE)
448 to_utf8(vc, diacr);
449 else {
450 int c = conv_uni_to_8bit(diacr);
451 if (c != -1)
452 put_queue(vc, c);
453 }
454 diacr = 0;
455 }
456
457 put_queue(vc, 13);
458 if (vc_kbd_mode(kbd, VC_CRLF))
459 put_queue(vc, 10);
460 }
461
462 static void fn_caps_toggle(struct vc_data *vc)
463 {
464 if (rep)
465 return;
466
467 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
468 }
469
470 static void fn_caps_on(struct vc_data *vc)
471 {
472 if (rep)
473 return;
474
475 set_vc_kbd_led(kbd, VC_CAPSLOCK);
476 }
477
478 static void fn_show_ptregs(struct vc_data *vc)
479 {
480 struct pt_regs *regs = get_irq_regs();
481
482 if (regs)
483 show_regs(regs);
484 }
485
486 static void fn_hold(struct vc_data *vc)
487 {
488 struct tty_struct *tty = vc->port.tty;
489
490 if (rep || !tty)
491 return;
492
493
494
495
496
497
498 if (tty->stopped)
499 start_tty(tty);
500 else
501 stop_tty(tty);
502 }
503
504 static void fn_num(struct vc_data *vc)
505 {
506 if (vc_kbd_mode(kbd, VC_APPLIC))
507 applkey(vc, 'P', 1);
508 else
509 fn_bare_num(vc);
510 }
511
512
513
514
515
516
517
518 static void fn_bare_num(struct vc_data *vc)
519 {
520 if (!rep)
521 chg_vc_kbd_led(kbd, VC_NUMLOCK);
522 }
523
524 static void fn_lastcons(struct vc_data *vc)
525 {
526
527 set_console(last_console);
528 }
529
530 static void fn_dec_console(struct vc_data *vc)
531 {
532 int i, cur = fg_console;
533
534
535 if (want_console != -1)
536 cur = want_console;
537
538 for (i = cur - 1; i != cur; i--) {
539 if (i == -1)
540 i = MAX_NR_CONSOLES - 1;
541 if (vc_cons_allocated(i))
542 break;
543 }
544 set_console(i);
545 }
546
547 static void fn_inc_console(struct vc_data *vc)
548 {
549 int i, cur = fg_console;
550
551
552 if (want_console != -1)
553 cur = want_console;
554
555 for (i = cur+1; i != cur; i++) {
556 if (i == MAX_NR_CONSOLES)
557 i = 0;
558 if (vc_cons_allocated(i))
559 break;
560 }
561 set_console(i);
562 }
563
564 static void fn_send_intr(struct vc_data *vc)
565 {
566 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
567 tty_schedule_flip(&vc->port);
568 }
569
570 static void fn_scroll_forw(struct vc_data *vc)
571 {
572 scrollfront(vc, 0);
573 }
574
575 static void fn_scroll_back(struct vc_data *vc)
576 {
577 scrollback(vc);
578 }
579
580 static void fn_show_mem(struct vc_data *vc)
581 {
582 show_mem(0, NULL);
583 }
584
585 static void fn_show_state(struct vc_data *vc)
586 {
587 show_state();
588 }
589
590 static void fn_boot_it(struct vc_data *vc)
591 {
592 ctrl_alt_del();
593 }
594
595 static void fn_compose(struct vc_data *vc)
596 {
597 dead_key_next = true;
598 }
599
600 static void fn_spawn_con(struct vc_data *vc)
601 {
602 spin_lock(&vt_spawn_con.lock);
603 if (vt_spawn_con.pid)
604 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
605 put_pid(vt_spawn_con.pid);
606 vt_spawn_con.pid = NULL;
607 }
608 spin_unlock(&vt_spawn_con.lock);
609 }
610
611 static void fn_SAK(struct vc_data *vc)
612 {
613 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
614 schedule_work(SAK_work);
615 }
616
617 static void fn_null(struct vc_data *vc)
618 {
619 do_compute_shiftstate();
620 }
621
622
623
624
625 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
626 {
627 }
628
629 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
630 {
631 if (up_flag)
632 return;
633 if (value >= ARRAY_SIZE(fn_handler))
634 return;
635 if ((kbd->kbdmode == VC_RAW ||
636 kbd->kbdmode == VC_MEDIUMRAW ||
637 kbd->kbdmode == VC_OFF) &&
638 value != KVAL(K_SAK))
639 return;
640 fn_handler[value](vc);
641 }
642
643 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
644 {
645 pr_err("k_lowercase was called - impossible\n");
646 }
647
648 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
649 {
650 if (up_flag)
651 return;
652
653 if (diacr)
654 value = handle_diacr(vc, value);
655
656 if (dead_key_next) {
657 dead_key_next = false;
658 diacr = value;
659 return;
660 }
661 if (kbd->kbdmode == VC_UNICODE)
662 to_utf8(vc, value);
663 else {
664 int c = conv_uni_to_8bit(value);
665 if (c != -1)
666 put_queue(vc, c);
667 }
668 }
669
670
671
672
673
674
675 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
676 {
677 if (up_flag)
678 return;
679
680 diacr = (diacr ? handle_diacr(vc, value) : value);
681 }
682
683 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
684 {
685 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
686 }
687
688 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
689 {
690 k_deadunicode(vc, value, up_flag);
691 }
692
693
694
695
696 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
697 {
698 static const unsigned char ret_diacr[NR_DEAD] = {
699 '`',
700 '\'',
701 '^',
702 '~',
703 '"',
704 ',',
705 '_',
706 'U',
707 '.',
708 '*',
709 '=',
710 'c',
711 'k',
712 'i',
713 '#',
714 'o',
715 '!',
716 '?',
717 '+',
718 '-',
719 ')',
720 '(',
721 ':',
722 'n',
723 ';',
724 '$',
725 '@',
726 };
727
728 k_deadunicode(vc, ret_diacr[value], up_flag);
729 }
730
731 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
732 {
733 if (up_flag)
734 return;
735
736 set_console(value);
737 }
738
739 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
740 {
741 if (up_flag)
742 return;
743
744 if ((unsigned)value < ARRAY_SIZE(func_table)) {
745 if (func_table[value])
746 puts_queue(vc, func_table[value]);
747 } else
748 pr_err("k_fn called with value=%d\n", value);
749 }
750
751 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
752 {
753 static const char cur_chars[] = "BDCA";
754
755 if (up_flag)
756 return;
757
758 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
759 }
760
761 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
762 {
763 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
764 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
765
766 if (up_flag)
767 return;
768
769
770 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
771 applkey(vc, app_map[value], 1);
772 return;
773 }
774
775 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
776
777 switch (value) {
778 case KVAL(K_PCOMMA):
779 case KVAL(K_PDOT):
780 k_fn(vc, KVAL(K_REMOVE), 0);
781 return;
782 case KVAL(K_P0):
783 k_fn(vc, KVAL(K_INSERT), 0);
784 return;
785 case KVAL(K_P1):
786 k_fn(vc, KVAL(K_SELECT), 0);
787 return;
788 case KVAL(K_P2):
789 k_cur(vc, KVAL(K_DOWN), 0);
790 return;
791 case KVAL(K_P3):
792 k_fn(vc, KVAL(K_PGDN), 0);
793 return;
794 case KVAL(K_P4):
795 k_cur(vc, KVAL(K_LEFT), 0);
796 return;
797 case KVAL(K_P6):
798 k_cur(vc, KVAL(K_RIGHT), 0);
799 return;
800 case KVAL(K_P7):
801 k_fn(vc, KVAL(K_FIND), 0);
802 return;
803 case KVAL(K_P8):
804 k_cur(vc, KVAL(K_UP), 0);
805 return;
806 case KVAL(K_P9):
807 k_fn(vc, KVAL(K_PGUP), 0);
808 return;
809 case KVAL(K_P5):
810 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
811 return;
812 }
813 }
814
815 put_queue(vc, pad_chars[value]);
816 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
817 put_queue(vc, 10);
818 }
819
820 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
821 {
822 int old_state = shift_state;
823
824 if (rep)
825 return;
826
827
828
829
830 if (value == KVAL(K_CAPSSHIFT)) {
831 value = KVAL(K_SHIFT);
832 if (!up_flag)
833 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
834 }
835
836 if (up_flag) {
837
838
839
840
841 if (shift_down[value])
842 shift_down[value]--;
843 } else
844 shift_down[value]++;
845
846 if (shift_down[value])
847 shift_state |= (1 << value);
848 else
849 shift_state &= ~(1 << value);
850
851
852 if (up_flag && shift_state != old_state && npadch_active) {
853 if (kbd->kbdmode == VC_UNICODE)
854 to_utf8(vc, npadch_value);
855 else
856 put_queue(vc, npadch_value & 0xff);
857 npadch_active = false;
858 }
859 }
860
861 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
862 {
863 if (up_flag)
864 return;
865
866 if (vc_kbd_mode(kbd, VC_META)) {
867 put_queue(vc, '\033');
868 put_queue(vc, value);
869 } else
870 put_queue(vc, value | 0x80);
871 }
872
873 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
874 {
875 unsigned int base;
876
877 if (up_flag)
878 return;
879
880 if (value < 10) {
881
882 base = 10;
883 } else {
884
885 value -= 10;
886 base = 16;
887 }
888
889 if (!npadch_active) {
890 npadch_value = 0;
891 npadch_active = true;
892 }
893
894 npadch_value = npadch_value * base + value;
895 }
896
897 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
898 {
899 if (up_flag || rep)
900 return;
901
902 chg_vc_kbd_lock(kbd, value);
903 }
904
905 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
906 {
907 k_shift(vc, value, up_flag);
908 if (up_flag || rep)
909 return;
910
911 chg_vc_kbd_slock(kbd, value);
912
913 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
914 kbd->slockstate = 0;
915 chg_vc_kbd_slock(kbd, value);
916 }
917 }
918
919
920 static unsigned brl_timeout = 300;
921 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
922 module_param(brl_timeout, uint, 0644);
923
924 static unsigned brl_nbchords = 1;
925 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
926 module_param(brl_nbchords, uint, 0644);
927
928 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
929 {
930 static unsigned long chords;
931 static unsigned committed;
932
933 if (!brl_nbchords)
934 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
935 else {
936 committed |= pattern;
937 chords++;
938 if (chords == brl_nbchords) {
939 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
940 chords = 0;
941 committed = 0;
942 }
943 }
944 }
945
946 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
947 {
948 static unsigned pressed, committing;
949 static unsigned long releasestart;
950
951 if (kbd->kbdmode != VC_UNICODE) {
952 if (!up_flag)
953 pr_warn("keyboard mode must be unicode for braille patterns\n");
954 return;
955 }
956
957 if (!value) {
958 k_unicode(vc, BRL_UC_ROW, up_flag);
959 return;
960 }
961
962 if (value > 8)
963 return;
964
965 if (!up_flag) {
966 pressed |= 1 << (value - 1);
967 if (!brl_timeout)
968 committing = pressed;
969 } else if (brl_timeout) {
970 if (!committing ||
971 time_after(jiffies,
972 releasestart + msecs_to_jiffies(brl_timeout))) {
973 committing = pressed;
974 releasestart = jiffies;
975 }
976 pressed &= ~(1 << (value - 1));
977 if (!pressed && committing) {
978 k_brlcommit(vc, committing, 0);
979 committing = 0;
980 }
981 } else {
982 if (committing) {
983 k_brlcommit(vc, committing, 0);
984 committing = 0;
985 }
986 pressed &= ~(1 << (value - 1));
987 }
988 }
989
990 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
991
992 struct kbd_led_trigger {
993 struct led_trigger trigger;
994 unsigned int mask;
995 };
996
997 static int kbd_led_trigger_activate(struct led_classdev *cdev)
998 {
999 struct kbd_led_trigger *trigger =
1000 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1001
1002 tasklet_disable(&keyboard_tasklet);
1003 if (ledstate != -1U)
1004 led_trigger_event(&trigger->trigger,
1005 ledstate & trigger->mask ?
1006 LED_FULL : LED_OFF);
1007 tasklet_enable(&keyboard_tasklet);
1008
1009 return 0;
1010 }
1011
1012 #define KBD_LED_TRIGGER(_led_bit, _name) { \
1013 .trigger = { \
1014 .name = _name, \
1015 .activate = kbd_led_trigger_activate, \
1016 }, \
1017 .mask = BIT(_led_bit), \
1018 }
1019
1020 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1021 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1022
1023 static struct kbd_led_trigger kbd_led_triggers[] = {
1024 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1025 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1026 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1027 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1028
1029 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1030 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1031 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1032 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1033 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1034 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1035 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1036 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1037 };
1038
1039 static void kbd_propagate_led_state(unsigned int old_state,
1040 unsigned int new_state)
1041 {
1042 struct kbd_led_trigger *trigger;
1043 unsigned int changed = old_state ^ new_state;
1044 int i;
1045
1046 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1047 trigger = &kbd_led_triggers[i];
1048
1049 if (changed & trigger->mask)
1050 led_trigger_event(&trigger->trigger,
1051 new_state & trigger->mask ?
1052 LED_FULL : LED_OFF);
1053 }
1054 }
1055
1056 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1057 {
1058 unsigned int led_state = *(unsigned int *)data;
1059
1060 if (test_bit(EV_LED, handle->dev->evbit))
1061 kbd_propagate_led_state(~led_state, led_state);
1062
1063 return 0;
1064 }
1065
1066 static void kbd_init_leds(void)
1067 {
1068 int error;
1069 int i;
1070
1071 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1072 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1073 if (error)
1074 pr_err("error %d while registering trigger %s\n",
1075 error, kbd_led_triggers[i].trigger.name);
1076 }
1077 }
1078
1079 #else
1080
1081 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1082 {
1083 unsigned int leds = *(unsigned int *)data;
1084
1085 if (test_bit(EV_LED, handle->dev->evbit)) {
1086 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1087 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1088 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1089 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1090 }
1091
1092 return 0;
1093 }
1094
1095 static void kbd_propagate_led_state(unsigned int old_state,
1096 unsigned int new_state)
1097 {
1098 input_handler_for_each_handle(&kbd_handler, &new_state,
1099 kbd_update_leds_helper);
1100 }
1101
1102 static void kbd_init_leds(void)
1103 {
1104 }
1105
1106 #endif
1107
1108
1109
1110
1111
1112
1113 static unsigned char getledstate(void)
1114 {
1115 return ledstate & 0xff;
1116 }
1117
1118 void setledstate(struct kbd_struct *kb, unsigned int led)
1119 {
1120 unsigned long flags;
1121 spin_lock_irqsave(&led_lock, flags);
1122 if (!(led & ~7)) {
1123 ledioctl = led;
1124 kb->ledmode = LED_SHOW_IOCTL;
1125 } else
1126 kb->ledmode = LED_SHOW_FLAGS;
1127
1128 set_leds();
1129 spin_unlock_irqrestore(&led_lock, flags);
1130 }
1131
1132 static inline unsigned char getleds(void)
1133 {
1134 struct kbd_struct *kb = kbd_table + fg_console;
1135
1136 if (kb->ledmode == LED_SHOW_IOCTL)
1137 return ledioctl;
1138
1139 return kb->ledflagstate;
1140 }
1141
1142
1143
1144
1145
1146
1147
1148
1149 int vt_get_leds(int console, int flag)
1150 {
1151 struct kbd_struct *kb = kbd_table + console;
1152 int ret;
1153 unsigned long flags;
1154
1155 spin_lock_irqsave(&led_lock, flags);
1156 ret = vc_kbd_led(kb, flag);
1157 spin_unlock_irqrestore(&led_lock, flags);
1158
1159 return ret;
1160 }
1161 EXPORT_SYMBOL_GPL(vt_get_leds);
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171 void vt_set_led_state(int console, int leds)
1172 {
1173 struct kbd_struct *kb = kbd_table + console;
1174 setledstate(kb, leds);
1175 }
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190 void vt_kbd_con_start(int console)
1191 {
1192 struct kbd_struct *kb = kbd_table + console;
1193 unsigned long flags;
1194 spin_lock_irqsave(&led_lock, flags);
1195 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1196 set_leds();
1197 spin_unlock_irqrestore(&led_lock, flags);
1198 }
1199
1200
1201
1202
1203
1204
1205
1206
1207 void vt_kbd_con_stop(int console)
1208 {
1209 struct kbd_struct *kb = kbd_table + console;
1210 unsigned long flags;
1211 spin_lock_irqsave(&led_lock, flags);
1212 set_vc_kbd_led(kb, VC_SCROLLOCK);
1213 set_leds();
1214 spin_unlock_irqrestore(&led_lock, flags);
1215 }
1216
1217
1218
1219
1220
1221
1222
1223 static void kbd_bh(unsigned long dummy)
1224 {
1225 unsigned int leds;
1226 unsigned long flags;
1227
1228 spin_lock_irqsave(&led_lock, flags);
1229 leds = getleds();
1230 leds |= (unsigned int)kbd->lockstate << 8;
1231 spin_unlock_irqrestore(&led_lock, flags);
1232
1233 if (leds != ledstate) {
1234 kbd_propagate_led_state(ledstate, leds);
1235 ledstate = leds;
1236 }
1237 }
1238
1239 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1240
1241 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1242 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1243 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1244 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1245
1246 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1247 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1248
1249 static const unsigned short x86_keycodes[256] =
1250 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1251 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1252 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1253 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1254 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1255 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1256 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1257 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1258 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1259 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1260 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1261 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1262 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1263 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1264 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1265
1266 #ifdef CONFIG_SPARC
1267 static int sparc_l1_a_state;
1268 extern void sun_do_break(void);
1269 #endif
1270
1271 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1272 unsigned char up_flag)
1273 {
1274 int code;
1275
1276 switch (keycode) {
1277
1278 case KEY_PAUSE:
1279 put_queue(vc, 0xe1);
1280 put_queue(vc, 0x1d | up_flag);
1281 put_queue(vc, 0x45 | up_flag);
1282 break;
1283
1284 case KEY_HANGEUL:
1285 if (!up_flag)
1286 put_queue(vc, 0xf2);
1287 break;
1288
1289 case KEY_HANJA:
1290 if (!up_flag)
1291 put_queue(vc, 0xf1);
1292 break;
1293
1294 case KEY_SYSRQ:
1295
1296
1297
1298
1299
1300
1301 if (test_bit(KEY_LEFTALT, key_down) ||
1302 test_bit(KEY_RIGHTALT, key_down)) {
1303 put_queue(vc, 0x54 | up_flag);
1304 } else {
1305 put_queue(vc, 0xe0);
1306 put_queue(vc, 0x2a | up_flag);
1307 put_queue(vc, 0xe0);
1308 put_queue(vc, 0x37 | up_flag);
1309 }
1310 break;
1311
1312 default:
1313 if (keycode > 255)
1314 return -1;
1315
1316 code = x86_keycodes[keycode];
1317 if (!code)
1318 return -1;
1319
1320 if (code & 0x100)
1321 put_queue(vc, 0xe0);
1322 put_queue(vc, (code & 0x7f) | up_flag);
1323
1324 break;
1325 }
1326
1327 return 0;
1328 }
1329
1330 #else
1331
1332 #define HW_RAW(dev) 0
1333
1334 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1335 {
1336 if (keycode > 127)
1337 return -1;
1338
1339 put_queue(vc, keycode | up_flag);
1340 return 0;
1341 }
1342 #endif
1343
1344 static void kbd_rawcode(unsigned char data)
1345 {
1346 struct vc_data *vc = vc_cons[fg_console].d;
1347
1348 kbd = kbd_table + vc->vc_num;
1349 if (kbd->kbdmode == VC_RAW)
1350 put_queue(vc, data);
1351 }
1352
1353 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1354 {
1355 struct vc_data *vc = vc_cons[fg_console].d;
1356 unsigned short keysym, *key_map;
1357 unsigned char type;
1358 bool raw_mode;
1359 struct tty_struct *tty;
1360 int shift_final;
1361 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1362 int rc;
1363
1364 tty = vc->port.tty;
1365
1366 if (tty && (!tty->driver_data)) {
1367
1368 tty->driver_data = vc;
1369 }
1370
1371 kbd = kbd_table + vc->vc_num;
1372
1373 #ifdef CONFIG_SPARC
1374 if (keycode == KEY_STOP)
1375 sparc_l1_a_state = down;
1376 #endif
1377
1378 rep = (down == 2);
1379
1380 raw_mode = (kbd->kbdmode == VC_RAW);
1381 if (raw_mode && !hw_raw)
1382 if (emulate_raw(vc, keycode, !down << 7))
1383 if (keycode < BTN_MISC && printk_ratelimit())
1384 pr_warn("can't emulate rawmode for keycode %d\n",
1385 keycode);
1386
1387 #ifdef CONFIG_SPARC
1388 if (keycode == KEY_A && sparc_l1_a_state) {
1389 sparc_l1_a_state = false;
1390 sun_do_break();
1391 }
1392 #endif
1393
1394 if (kbd->kbdmode == VC_MEDIUMRAW) {
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404 if (keycode < 128) {
1405 put_queue(vc, keycode | (!down << 7));
1406 } else {
1407 put_queue(vc, !down << 7);
1408 put_queue(vc, (keycode >> 7) | 0x80);
1409 put_queue(vc, keycode | 0x80);
1410 }
1411 raw_mode = true;
1412 }
1413
1414 if (down)
1415 set_bit(keycode, key_down);
1416 else
1417 clear_bit(keycode, key_down);
1418
1419 if (rep &&
1420 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1421 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1422
1423
1424
1425
1426
1427 return;
1428 }
1429
1430 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1431 param.ledstate = kbd->ledflagstate;
1432 key_map = key_maps[shift_final];
1433
1434 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1435 KBD_KEYCODE, ¶m);
1436 if (rc == NOTIFY_STOP || !key_map) {
1437 atomic_notifier_call_chain(&keyboard_notifier_list,
1438 KBD_UNBOUND_KEYCODE, ¶m);
1439 do_compute_shiftstate();
1440 kbd->slockstate = 0;
1441 return;
1442 }
1443
1444 if (keycode < NR_KEYS)
1445 keysym = key_map[keycode];
1446 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1447 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1448 else
1449 return;
1450
1451 type = KTYP(keysym);
1452
1453 if (type < 0xf0) {
1454 param.value = keysym;
1455 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1456 KBD_UNICODE, ¶m);
1457 if (rc != NOTIFY_STOP)
1458 if (down && !raw_mode)
1459 k_unicode(vc, keysym, !down);
1460 return;
1461 }
1462
1463 type -= 0xf0;
1464
1465 if (type == KT_LETTER) {
1466 type = KT_LATIN;
1467 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1468 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1469 if (key_map)
1470 keysym = key_map[keycode];
1471 }
1472 }
1473
1474 param.value = keysym;
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYSYM, ¶m);
1477 if (rc == NOTIFY_STOP)
1478 return;
1479
1480 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1481 return;
1482
1483 (*k_handler[type])(vc, keysym & 0xff, !down);
1484
1485 param.ledstate = kbd->ledflagstate;
1486 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1487
1488 if (type != KT_SLOCK)
1489 kbd->slockstate = 0;
1490 }
1491
1492 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1493 unsigned int event_code, int value)
1494 {
1495
1496 spin_lock(&kbd_event_lock);
1497
1498 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1499 kbd_rawcode(value);
1500 if (event_type == EV_KEY && event_code <= KEY_MAX)
1501 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1502
1503 spin_unlock(&kbd_event_lock);
1504
1505 tasklet_schedule(&keyboard_tasklet);
1506 do_poke_blanked_console = 1;
1507 schedule_console_callback();
1508 }
1509
1510 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1511 {
1512 int i;
1513
1514 if (test_bit(EV_SND, dev->evbit))
1515 return true;
1516
1517 if (test_bit(EV_KEY, dev->evbit)) {
1518 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1519 if (test_bit(i, dev->keybit))
1520 return true;
1521 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1522 if (test_bit(i, dev->keybit))
1523 return true;
1524 }
1525
1526 return false;
1527 }
1528
1529
1530
1531
1532
1533
1534
1535 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1536 const struct input_device_id *id)
1537 {
1538 struct input_handle *handle;
1539 int error;
1540
1541 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1542 if (!handle)
1543 return -ENOMEM;
1544
1545 handle->dev = dev;
1546 handle->handler = handler;
1547 handle->name = "kbd";
1548
1549 error = input_register_handle(handle);
1550 if (error)
1551 goto err_free_handle;
1552
1553 error = input_open_device(handle);
1554 if (error)
1555 goto err_unregister_handle;
1556
1557 return 0;
1558
1559 err_unregister_handle:
1560 input_unregister_handle(handle);
1561 err_free_handle:
1562 kfree(handle);
1563 return error;
1564 }
1565
1566 static void kbd_disconnect(struct input_handle *handle)
1567 {
1568 input_close_device(handle);
1569 input_unregister_handle(handle);
1570 kfree(handle);
1571 }
1572
1573
1574
1575
1576
1577 static void kbd_start(struct input_handle *handle)
1578 {
1579 tasklet_disable(&keyboard_tasklet);
1580
1581 if (ledstate != -1U)
1582 kbd_update_leds_helper(handle, &ledstate);
1583
1584 tasklet_enable(&keyboard_tasklet);
1585 }
1586
1587 static const struct input_device_id kbd_ids[] = {
1588 {
1589 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1590 .evbit = { BIT_MASK(EV_KEY) },
1591 },
1592
1593 {
1594 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1595 .evbit = { BIT_MASK(EV_SND) },
1596 },
1597
1598 { },
1599 };
1600
1601 MODULE_DEVICE_TABLE(input, kbd_ids);
1602
1603 static struct input_handler kbd_handler = {
1604 .event = kbd_event,
1605 .match = kbd_match,
1606 .connect = kbd_connect,
1607 .disconnect = kbd_disconnect,
1608 .start = kbd_start,
1609 .name = "kbd",
1610 .id_table = kbd_ids,
1611 };
1612
1613 int __init kbd_init(void)
1614 {
1615 int i;
1616 int error;
1617
1618 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1619 kbd_table[i].ledflagstate = kbd_defleds();
1620 kbd_table[i].default_ledflagstate = kbd_defleds();
1621 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1622 kbd_table[i].lockstate = KBD_DEFLOCK;
1623 kbd_table[i].slockstate = 0;
1624 kbd_table[i].modeflags = KBD_DEFMODE;
1625 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1626 }
1627
1628 kbd_init_leds();
1629
1630 error = input_register_handler(&kbd_handler);
1631 if (error)
1632 return error;
1633
1634 tasklet_enable(&keyboard_tasklet);
1635 tasklet_schedule(&keyboard_tasklet);
1636
1637 return 0;
1638 }
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1652 {
1653 unsigned long flags;
1654 int asize;
1655 int ret = 0;
1656
1657 switch (cmd) {
1658 case KDGKBDIACR:
1659 {
1660 struct kbdiacrs __user *a = udp;
1661 struct kbdiacr *dia;
1662 int i;
1663
1664 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1665 GFP_KERNEL);
1666 if (!dia)
1667 return -ENOMEM;
1668
1669
1670
1671 spin_lock_irqsave(&kbd_event_lock, flags);
1672
1673 asize = accent_table_size;
1674 for (i = 0; i < asize; i++) {
1675 dia[i].diacr = conv_uni_to_8bit(
1676 accent_table[i].diacr);
1677 dia[i].base = conv_uni_to_8bit(
1678 accent_table[i].base);
1679 dia[i].result = conv_uni_to_8bit(
1680 accent_table[i].result);
1681 }
1682 spin_unlock_irqrestore(&kbd_event_lock, flags);
1683
1684 if (put_user(asize, &a->kb_cnt))
1685 ret = -EFAULT;
1686 else if (copy_to_user(a->kbdiacr, dia,
1687 asize * sizeof(struct kbdiacr)))
1688 ret = -EFAULT;
1689 kfree(dia);
1690 return ret;
1691 }
1692 case KDGKBDIACRUC:
1693 {
1694 struct kbdiacrsuc __user *a = udp;
1695 void *buf;
1696
1697 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1698 GFP_KERNEL);
1699 if (buf == NULL)
1700 return -ENOMEM;
1701
1702
1703
1704 spin_lock_irqsave(&kbd_event_lock, flags);
1705
1706 asize = accent_table_size;
1707 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1708
1709 spin_unlock_irqrestore(&kbd_event_lock, flags);
1710
1711 if (put_user(asize, &a->kb_cnt))
1712 ret = -EFAULT;
1713 else if (copy_to_user(a->kbdiacruc, buf,
1714 asize*sizeof(struct kbdiacruc)))
1715 ret = -EFAULT;
1716 kfree(buf);
1717 return ret;
1718 }
1719
1720 case KDSKBDIACR:
1721 {
1722 struct kbdiacrs __user *a = udp;
1723 struct kbdiacr *dia = NULL;
1724 unsigned int ct;
1725 int i;
1726
1727 if (!perm)
1728 return -EPERM;
1729 if (get_user(ct, &a->kb_cnt))
1730 return -EFAULT;
1731 if (ct >= MAX_DIACR)
1732 return -EINVAL;
1733
1734 if (ct) {
1735
1736 dia = memdup_user(a->kbdiacr,
1737 sizeof(struct kbdiacr) * ct);
1738 if (IS_ERR(dia))
1739 return PTR_ERR(dia);
1740
1741 }
1742
1743 spin_lock_irqsave(&kbd_event_lock, flags);
1744 accent_table_size = ct;
1745 for (i = 0; i < ct; i++) {
1746 accent_table[i].diacr =
1747 conv_8bit_to_uni(dia[i].diacr);
1748 accent_table[i].base =
1749 conv_8bit_to_uni(dia[i].base);
1750 accent_table[i].result =
1751 conv_8bit_to_uni(dia[i].result);
1752 }
1753 spin_unlock_irqrestore(&kbd_event_lock, flags);
1754 kfree(dia);
1755 return 0;
1756 }
1757
1758 case KDSKBDIACRUC:
1759 {
1760 struct kbdiacrsuc __user *a = udp;
1761 unsigned int ct;
1762 void *buf = NULL;
1763
1764 if (!perm)
1765 return -EPERM;
1766
1767 if (get_user(ct, &a->kb_cnt))
1768 return -EFAULT;
1769
1770 if (ct >= MAX_DIACR)
1771 return -EINVAL;
1772
1773 if (ct) {
1774 buf = memdup_user(a->kbdiacruc,
1775 ct * sizeof(struct kbdiacruc));
1776 if (IS_ERR(buf))
1777 return PTR_ERR(buf);
1778 }
1779 spin_lock_irqsave(&kbd_event_lock, flags);
1780 if (ct)
1781 memcpy(accent_table, buf,
1782 ct * sizeof(struct kbdiacruc));
1783 accent_table_size = ct;
1784 spin_unlock_irqrestore(&kbd_event_lock, flags);
1785 kfree(buf);
1786 return 0;
1787 }
1788 }
1789 return ret;
1790 }
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800 int vt_do_kdskbmode(int console, unsigned int arg)
1801 {
1802 struct kbd_struct *kb = kbd_table + console;
1803 int ret = 0;
1804 unsigned long flags;
1805
1806 spin_lock_irqsave(&kbd_event_lock, flags);
1807 switch(arg) {
1808 case K_RAW:
1809 kb->kbdmode = VC_RAW;
1810 break;
1811 case K_MEDIUMRAW:
1812 kb->kbdmode = VC_MEDIUMRAW;
1813 break;
1814 case K_XLATE:
1815 kb->kbdmode = VC_XLATE;
1816 do_compute_shiftstate();
1817 break;
1818 case K_UNICODE:
1819 kb->kbdmode = VC_UNICODE;
1820 do_compute_shiftstate();
1821 break;
1822 case K_OFF:
1823 kb->kbdmode = VC_OFF;
1824 break;
1825 default:
1826 ret = -EINVAL;
1827 }
1828 spin_unlock_irqrestore(&kbd_event_lock, flags);
1829 return ret;
1830 }
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840 int vt_do_kdskbmeta(int console, unsigned int arg)
1841 {
1842 struct kbd_struct *kb = kbd_table + console;
1843 int ret = 0;
1844 unsigned long flags;
1845
1846 spin_lock_irqsave(&kbd_event_lock, flags);
1847 switch(arg) {
1848 case K_METABIT:
1849 clr_vc_kbd_mode(kb, VC_META);
1850 break;
1851 case K_ESCPREFIX:
1852 set_vc_kbd_mode(kb, VC_META);
1853 break;
1854 default:
1855 ret = -EINVAL;
1856 }
1857 spin_unlock_irqrestore(&kbd_event_lock, flags);
1858 return ret;
1859 }
1860
1861 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1862 int perm)
1863 {
1864 struct kbkeycode tmp;
1865 int kc = 0;
1866
1867 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1868 return -EFAULT;
1869 switch (cmd) {
1870 case KDGETKEYCODE:
1871 kc = getkeycode(tmp.scancode);
1872 if (kc >= 0)
1873 kc = put_user(kc, &user_kbkc->keycode);
1874 break;
1875 case KDSETKEYCODE:
1876 if (!perm)
1877 return -EPERM;
1878 kc = setkeycode(tmp.scancode, tmp.keycode);
1879 break;
1880 }
1881 return kc;
1882 }
1883
1884 #define i (tmp.kb_index)
1885 #define s (tmp.kb_table)
1886 #define v (tmp.kb_value)
1887
1888 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1889 int console)
1890 {
1891 struct kbd_struct *kb = kbd_table + console;
1892 struct kbentry tmp;
1893 ushort *key_map, *new_map, val, ov;
1894 unsigned long flags;
1895
1896 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1897 return -EFAULT;
1898
1899 if (!capable(CAP_SYS_TTY_CONFIG))
1900 perm = 0;
1901
1902 switch (cmd) {
1903 case KDGKBENT:
1904
1905 spin_lock_irqsave(&kbd_event_lock, flags);
1906 key_map = key_maps[s];
1907 if (key_map) {
1908 val = U(key_map[i]);
1909 if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1910 val = K_HOLE;
1911 } else
1912 val = (i ? K_HOLE : K_NOSUCHMAP);
1913 spin_unlock_irqrestore(&kbd_event_lock, flags);
1914 return put_user(val, &user_kbe->kb_value);
1915 case KDSKBENT:
1916 if (!perm)
1917 return -EPERM;
1918 if (!i && v == K_NOSUCHMAP) {
1919 spin_lock_irqsave(&kbd_event_lock, flags);
1920
1921 key_map = key_maps[s];
1922 if (s && key_map) {
1923 key_maps[s] = NULL;
1924 if (key_map[0] == U(K_ALLOCATED)) {
1925 kfree(key_map);
1926 keymap_count--;
1927 }
1928 }
1929 spin_unlock_irqrestore(&kbd_event_lock, flags);
1930 break;
1931 }
1932
1933 if (KTYP(v) < NR_TYPES) {
1934 if (KVAL(v) > max_vals[KTYP(v)])
1935 return -EINVAL;
1936 } else
1937 if (kb->kbdmode != VC_UNICODE)
1938 return -EINVAL;
1939
1940
1941 #if !defined(__mc68000__) && !defined(__powerpc__)
1942
1943 if (!i)
1944 break;
1945 #endif
1946
1947 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1948 if (!new_map)
1949 return -ENOMEM;
1950 spin_lock_irqsave(&kbd_event_lock, flags);
1951 key_map = key_maps[s];
1952 if (key_map == NULL) {
1953 int j;
1954
1955 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1956 !capable(CAP_SYS_RESOURCE)) {
1957 spin_unlock_irqrestore(&kbd_event_lock, flags);
1958 kfree(new_map);
1959 return -EPERM;
1960 }
1961 key_maps[s] = new_map;
1962 key_map = new_map;
1963 key_map[0] = U(K_ALLOCATED);
1964 for (j = 1; j < NR_KEYS; j++)
1965 key_map[j] = U(K_HOLE);
1966 keymap_count++;
1967 } else
1968 kfree(new_map);
1969
1970 ov = U(key_map[i]);
1971 if (v == ov)
1972 goto out;
1973
1974
1975
1976 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1977 spin_unlock_irqrestore(&kbd_event_lock, flags);
1978 return -EPERM;
1979 }
1980 key_map[i] = U(v);
1981 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1982 do_compute_shiftstate();
1983 out:
1984 spin_unlock_irqrestore(&kbd_event_lock, flags);
1985 break;
1986 }
1987 return 0;
1988 }
1989 #undef i
1990 #undef s
1991 #undef v
1992
1993
1994 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1995 {
1996 struct kbsentry *kbs;
1997 char *p;
1998 u_char *q;
1999 u_char __user *up;
2000 int sz, fnw_sz;
2001 int delta;
2002 char *first_free, *fj, *fnw;
2003 int i, j, k;
2004 int ret;
2005 unsigned long flags;
2006
2007 if (!capable(CAP_SYS_TTY_CONFIG))
2008 perm = 0;
2009
2010 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
2011 if (!kbs) {
2012 ret = -ENOMEM;
2013 goto reterr;
2014 }
2015
2016
2017 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
2018 ret = -EFAULT;
2019 goto reterr;
2020 }
2021 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
2022 i = kbs->kb_func;
2023
2024 switch (cmd) {
2025 case KDGKBSENT:
2026 sz = sizeof(kbs->kb_string) - 1;
2027
2028 up = user_kdgkb->kb_string;
2029 p = func_table[i];
2030 if(p)
2031 for ( ; *p && sz; p++, sz--)
2032 if (put_user(*p, up++)) {
2033 ret = -EFAULT;
2034 goto reterr;
2035 }
2036 if (put_user('\0', up)) {
2037 ret = -EFAULT;
2038 goto reterr;
2039 }
2040 kfree(kbs);
2041 return ((p && *p) ? -EOVERFLOW : 0);
2042 case KDSKBSENT:
2043 if (!perm) {
2044 ret = -EPERM;
2045 goto reterr;
2046 }
2047
2048 fnw = NULL;
2049 fnw_sz = 0;
2050
2051 again:
2052 spin_lock_irqsave(&func_buf_lock, flags);
2053 q = func_table[i];
2054
2055
2056 first_free = funcbufptr + (funcbufsize - funcbufleft);
2057 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
2058 ;
2059 if (j < MAX_NR_FUNC)
2060 fj = func_table[j];
2061 else
2062 fj = first_free;
2063
2064 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
2065
2066 if (delta <= funcbufleft) {
2067 if (j < MAX_NR_FUNC) {
2068
2069 memmove(fj + delta, fj, first_free - fj);
2070 for (k = j; k < MAX_NR_FUNC; k++)
2071 if (func_table[k])
2072 func_table[k] += delta;
2073 }
2074 if (!q)
2075 func_table[i] = fj;
2076 funcbufleft -= delta;
2077 } else {
2078 sz = 256;
2079 while (sz < funcbufsize - funcbufleft + delta)
2080 sz <<= 1;
2081 if (fnw_sz != sz) {
2082 spin_unlock_irqrestore(&func_buf_lock, flags);
2083 kfree(fnw);
2084 fnw = kmalloc(sz, GFP_KERNEL);
2085 fnw_sz = sz;
2086 if (!fnw) {
2087 ret = -ENOMEM;
2088 goto reterr;
2089 }
2090 goto again;
2091 }
2092
2093 if (!q)
2094 func_table[i] = fj;
2095
2096 if (fj > funcbufptr)
2097 memmove(fnw, funcbufptr, fj - funcbufptr);
2098 for (k = 0; k < j; k++)
2099 if (func_table[k])
2100 func_table[k] = fnw + (func_table[k] - funcbufptr);
2101
2102
2103 if (first_free > fj) {
2104 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2105 for (k = j; k < MAX_NR_FUNC; k++)
2106 if (func_table[k])
2107 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2108 }
2109 if (funcbufptr != func_buf)
2110 kfree(funcbufptr);
2111 funcbufptr = fnw;
2112 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2113 funcbufsize = sz;
2114 }
2115
2116 strcpy(func_table[i], kbs->kb_string);
2117 spin_unlock_irqrestore(&func_buf_lock, flags);
2118 break;
2119 }
2120 ret = 0;
2121 reterr:
2122 kfree(kbs);
2123 return ret;
2124 }
2125
2126 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2127 {
2128 struct kbd_struct *kb = kbd_table + console;
2129 unsigned long flags;
2130 unsigned char ucval;
2131
2132 switch(cmd) {
2133
2134
2135 case KDGKBLED:
2136 spin_lock_irqsave(&kbd_event_lock, flags);
2137 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2138 spin_unlock_irqrestore(&kbd_event_lock, flags);
2139 return put_user(ucval, (char __user *)arg);
2140
2141 case KDSKBLED:
2142 if (!perm)
2143 return -EPERM;
2144 if (arg & ~0x77)
2145 return -EINVAL;
2146 spin_lock_irqsave(&led_lock, flags);
2147 kb->ledflagstate = (arg & 7);
2148 kb->default_ledflagstate = ((arg >> 4) & 7);
2149 set_leds();
2150 spin_unlock_irqrestore(&led_lock, flags);
2151 return 0;
2152
2153
2154
2155 case KDGETLED:
2156 ucval = getledstate();
2157 return put_user(ucval, (char __user *)arg);
2158
2159 case KDSETLED:
2160 if (!perm)
2161 return -EPERM;
2162 setledstate(kb, arg);
2163 return 0;
2164 }
2165 return -ENOIOCTLCMD;
2166 }
2167
2168 int vt_do_kdgkbmode(int console)
2169 {
2170 struct kbd_struct *kb = kbd_table + console;
2171
2172 switch (kb->kbdmode) {
2173 case VC_RAW:
2174 return K_RAW;
2175 case VC_MEDIUMRAW:
2176 return K_MEDIUMRAW;
2177 case VC_UNICODE:
2178 return K_UNICODE;
2179 case VC_OFF:
2180 return K_OFF;
2181 default:
2182 return K_XLATE;
2183 }
2184 }
2185
2186
2187
2188
2189
2190
2191
2192 int vt_do_kdgkbmeta(int console)
2193 {
2194 struct kbd_struct *kb = kbd_table + console;
2195
2196 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2197 }
2198
2199
2200
2201
2202
2203
2204
2205 void vt_reset_unicode(int console)
2206 {
2207 unsigned long flags;
2208
2209 spin_lock_irqsave(&kbd_event_lock, flags);
2210 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2211 spin_unlock_irqrestore(&kbd_event_lock, flags);
2212 }
2213
2214
2215
2216
2217
2218
2219
2220 int vt_get_shift_state(void)
2221 {
2222
2223 return shift_state;
2224 }
2225
2226
2227
2228
2229
2230
2231
2232
2233 void vt_reset_keyboard(int console)
2234 {
2235 struct kbd_struct *kb = kbd_table + console;
2236 unsigned long flags;
2237
2238 spin_lock_irqsave(&kbd_event_lock, flags);
2239 set_vc_kbd_mode(kb, VC_REPEAT);
2240 clr_vc_kbd_mode(kb, VC_CKMODE);
2241 clr_vc_kbd_mode(kb, VC_APPLIC);
2242 clr_vc_kbd_mode(kb, VC_CRLF);
2243 kb->lockstate = 0;
2244 kb->slockstate = 0;
2245 spin_lock(&led_lock);
2246 kb->ledmode = LED_SHOW_FLAGS;
2247 kb->ledflagstate = kb->default_ledflagstate;
2248 spin_unlock(&led_lock);
2249
2250
2251 spin_unlock_irqrestore(&kbd_event_lock, flags);
2252 }
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263 int vt_get_kbd_mode_bit(int console, int bit)
2264 {
2265 struct kbd_struct *kb = kbd_table + console;
2266 return vc_kbd_mode(kb, bit);
2267 }
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278 void vt_set_kbd_mode_bit(int console, int bit)
2279 {
2280 struct kbd_struct *kb = kbd_table + console;
2281 unsigned long flags;
2282
2283 spin_lock_irqsave(&kbd_event_lock, flags);
2284 set_vc_kbd_mode(kb, bit);
2285 spin_unlock_irqrestore(&kbd_event_lock, flags);
2286 }
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297 void vt_clr_kbd_mode_bit(int console, int bit)
2298 {
2299 struct kbd_struct *kb = kbd_table + console;
2300 unsigned long flags;
2301
2302 spin_lock_irqsave(&kbd_event_lock, flags);
2303 clr_vc_kbd_mode(kb, bit);
2304 spin_unlock_irqrestore(&kbd_event_lock, flags);
2305 }