root/drivers/base/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sysfs_deprecated_setup
  2. device_links_write_lock
  3. device_links_write_unlock
  4. device_links_read_lock
  5. device_links_read_unlock
  6. device_links_read_lock_held
  7. device_links_write_lock
  8. device_links_write_unlock
  9. device_links_read_lock
  10. device_links_read_unlock
  11. device_links_read_lock_held
  12. device_is_dependent
  13. device_link_init_status
  14. device_reorder_to_tail
  15. device_pm_move_to_tail
  16. device_link_add
  17. device_link_free
  18. __device_link_free_srcu
  19. __device_link_del
  20. __device_link_del
  21. device_link_put_kref
  22. device_link_del
  23. device_link_remove
  24. device_links_missing_supplier
  25. device_links_check_suppliers
  26. device_links_driver_bound
  27. device_link_drop_managed
  28. __device_links_no_driver
  29. device_links_no_driver
  30. device_links_driver_cleanup
  31. device_links_busy
  32. device_links_unbind_consumers
  33. device_links_purge
  34. lock_device_hotplug
  35. unlock_device_hotplug
  36. lock_device_hotplug_sysfs
  37. device_is_not_partition
  38. device_is_not_partition
  39. device_platform_notify
  40. dev_driver_string
  41. dev_attr_show
  42. dev_attr_store
  43. device_store_ulong
  44. device_show_ulong
  45. device_store_int
  46. device_show_int
  47. device_store_bool
  48. device_show_bool
  49. device_release
  50. device_namespace
  51. device_get_ownership
  52. dev_uevent_filter
  53. dev_uevent_name
  54. dev_uevent
  55. uevent_show
  56. uevent_store
  57. online_show
  58. online_store
  59. device_add_groups
  60. device_remove_groups
  61. devm_attr_group_match
  62. devm_attr_group_remove
  63. devm_attr_groups_remove
  64. devm_device_add_group
  65. devm_device_remove_group
  66. devm_device_add_groups
  67. devm_device_remove_groups
  68. device_add_attrs
  69. device_remove_attrs
  70. dev_show
  71. devices_kset_move_before
  72. devices_kset_move_after
  73. devices_kset_move_last
  74. device_create_file
  75. device_remove_file
  76. device_remove_file_self
  77. device_create_bin_file
  78. device_remove_bin_file
  79. klist_children_get
  80. klist_children_put
  81. device_initialize
  82. virtual_device_parent
  83. class_dir_release
  84. class_dir_child_ns_type
  85. class_dir_create_and_add
  86. get_device_parent
  87. live_in_glue_dir
  88. get_glue_dir
  89. cleanup_glue_dir
  90. device_add_class_symlinks
  91. device_remove_class_symlinks
  92. dev_set_name
  93. device_to_dev_kobj
  94. device_create_sys_dev_entry
  95. device_remove_sys_dev_entry
  96. device_private_init
  97. device_add
  98. device_register
  99. get_device
  100. put_device
  101. kill_device
  102. device_del
  103. device_unregister
  104. prev_device
  105. next_device
  106. device_get_devnode
  107. device_for_each_child
  108. device_for_each_child_reverse
  109. device_find_child
  110. device_find_child_by_name
  111. devices_init
  112. device_check_offline
  113. device_offline
  114. device_online
  115. to_root_device
  116. root_device_release
  117. __root_device_register
  118. root_device_unregister
  119. device_create_release
  120. __printf
  121. device_create_vargs
  122. device_create
  123. device_create_with_groups
  124. device_destroy
  125. device_rename
  126. device_move_class_links
  127. device_move
  128. device_shutdown
  129. create_syslog_header
  130. dev_vprintk_emit
  131. dev_printk_emit
  132. __dev_printk
  133. dev_printk
  134. fwnode_is_primary
  135. set_primary_fwnode
  136. set_secondary_fwnode
  137. device_set_of_node_from_dev
  138. device_match_name
  139. device_match_of_node
  140. device_match_fwnode
  141. device_match_devt
  142. device_match_acpi_dev
  143. device_match_any

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * drivers/base/core.c - core driver model code (device registration, etc)
   4  *
   5  * Copyright (c) 2002-3 Patrick Mochel
   6  * Copyright (c) 2002-3 Open Source Development Labs
   7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8  * Copyright (c) 2006 Novell, Inc.
   9  */
  10 
  11 #include <linux/acpi.h>
  12 #include <linux/cpufreq.h>
  13 #include <linux/device.h>
  14 #include <linux/err.h>
  15 #include <linux/fwnode.h>
  16 #include <linux/init.h>
  17 #include <linux/module.h>
  18 #include <linux/slab.h>
  19 #include <linux/string.h>
  20 #include <linux/kdev_t.h>
  21 #include <linux/notifier.h>
  22 #include <linux/of.h>
  23 #include <linux/of_device.h>
  24 #include <linux/genhd.h>
  25 #include <linux/mutex.h>
  26 #include <linux/pm_runtime.h>
  27 #include <linux/netdevice.h>
  28 #include <linux/sched/signal.h>
  29 #include <linux/sysfs.h>
  30 
  31 #include "base.h"
  32 #include "power/power.h"
  33 
  34 #ifdef CONFIG_SYSFS_DEPRECATED
  35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
  36 long sysfs_deprecated = 1;
  37 #else
  38 long sysfs_deprecated = 0;
  39 #endif
  40 static int __init sysfs_deprecated_setup(char *arg)
  41 {
  42         return kstrtol(arg, 10, &sysfs_deprecated);
  43 }
  44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45 #endif
  46 
  47 /* Device links support. */
  48 
  49 #ifdef CONFIG_SRCU
  50 static DEFINE_MUTEX(device_links_lock);
  51 DEFINE_STATIC_SRCU(device_links_srcu);
  52 
  53 static inline void device_links_write_lock(void)
  54 {
  55         mutex_lock(&device_links_lock);
  56 }
  57 
  58 static inline void device_links_write_unlock(void)
  59 {
  60         mutex_unlock(&device_links_lock);
  61 }
  62 
  63 int device_links_read_lock(void)
  64 {
  65         return srcu_read_lock(&device_links_srcu);
  66 }
  67 
  68 void device_links_read_unlock(int idx)
  69 {
  70         srcu_read_unlock(&device_links_srcu, idx);
  71 }
  72 
  73 int device_links_read_lock_held(void)
  74 {
  75         return srcu_read_lock_held(&device_links_srcu);
  76 }
  77 #else /* !CONFIG_SRCU */
  78 static DECLARE_RWSEM(device_links_lock);
  79 
  80 static inline void device_links_write_lock(void)
  81 {
  82         down_write(&device_links_lock);
  83 }
  84 
  85 static inline void device_links_write_unlock(void)
  86 {
  87         up_write(&device_links_lock);
  88 }
  89 
  90 int device_links_read_lock(void)
  91 {
  92         down_read(&device_links_lock);
  93         return 0;
  94 }
  95 
  96 void device_links_read_unlock(int not_used)
  97 {
  98         up_read(&device_links_lock);
  99 }
 100 
 101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
 102 int device_links_read_lock_held(void)
 103 {
 104         return lockdep_is_held(&device_links_lock);
 105 }
 106 #endif
 107 #endif /* !CONFIG_SRCU */
 108 
 109 /**
 110  * device_is_dependent - Check if one device depends on another one
 111  * @dev: Device to check dependencies for.
 112  * @target: Device to check against.
 113  *
 114  * Check if @target depends on @dev or any device dependent on it (its child or
 115  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116  */
 117 static int device_is_dependent(struct device *dev, void *target)
 118 {
 119         struct device_link *link;
 120         int ret;
 121 
 122         if (dev == target)
 123                 return 1;
 124 
 125         ret = device_for_each_child(dev, target, device_is_dependent);
 126         if (ret)
 127                 return ret;
 128 
 129         list_for_each_entry(link, &dev->links.consumers, s_node) {
 130                 if (link->consumer == target)
 131                         return 1;
 132 
 133                 ret = device_is_dependent(link->consumer, target);
 134                 if (ret)
 135                         break;
 136         }
 137         return ret;
 138 }
 139 
 140 static void device_link_init_status(struct device_link *link,
 141                                     struct device *consumer,
 142                                     struct device *supplier)
 143 {
 144         switch (supplier->links.status) {
 145         case DL_DEV_PROBING:
 146                 switch (consumer->links.status) {
 147                 case DL_DEV_PROBING:
 148                         /*
 149                          * A consumer driver can create a link to a supplier
 150                          * that has not completed its probing yet as long as it
 151                          * knows that the supplier is already functional (for
 152                          * example, it has just acquired some resources from the
 153                          * supplier).
 154                          */
 155                         link->status = DL_STATE_CONSUMER_PROBE;
 156                         break;
 157                 default:
 158                         link->status = DL_STATE_DORMANT;
 159                         break;
 160                 }
 161                 break;
 162         case DL_DEV_DRIVER_BOUND:
 163                 switch (consumer->links.status) {
 164                 case DL_DEV_PROBING:
 165                         link->status = DL_STATE_CONSUMER_PROBE;
 166                         break;
 167                 case DL_DEV_DRIVER_BOUND:
 168                         link->status = DL_STATE_ACTIVE;
 169                         break;
 170                 default:
 171                         link->status = DL_STATE_AVAILABLE;
 172                         break;
 173                 }
 174                 break;
 175         case DL_DEV_UNBINDING:
 176                 link->status = DL_STATE_SUPPLIER_UNBIND;
 177                 break;
 178         default:
 179                 link->status = DL_STATE_DORMANT;
 180                 break;
 181         }
 182 }
 183 
 184 static int device_reorder_to_tail(struct device *dev, void *not_used)
 185 {
 186         struct device_link *link;
 187 
 188         /*
 189          * Devices that have not been registered yet will be put to the ends
 190          * of the lists during the registration, so skip them here.
 191          */
 192         if (device_is_registered(dev))
 193                 devices_kset_move_last(dev);
 194 
 195         if (device_pm_initialized(dev))
 196                 device_pm_move_last(dev);
 197 
 198         device_for_each_child(dev, NULL, device_reorder_to_tail);
 199         list_for_each_entry(link, &dev->links.consumers, s_node)
 200                 device_reorder_to_tail(link->consumer, NULL);
 201 
 202         return 0;
 203 }
 204 
 205 /**
 206  * device_pm_move_to_tail - Move set of devices to the end of device lists
 207  * @dev: Device to move
 208  *
 209  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210  *
 211  * It moves the @dev along with all of its children and all of its consumers
 212  * to the ends of the device_kset and dpm_list, recursively.
 213  */
 214 void device_pm_move_to_tail(struct device *dev)
 215 {
 216         int idx;
 217 
 218         idx = device_links_read_lock();
 219         device_pm_lock();
 220         device_reorder_to_tail(dev, NULL);
 221         device_pm_unlock();
 222         device_links_read_unlock(idx);
 223 }
 224 
 225 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226                                DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227                                DL_FLAG_AUTOPROBE_CONSUMER)
 228 
 229 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230                             DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231 
 232 /**
 233  * device_link_add - Create a link between two devices.
 234  * @consumer: Consumer end of the link.
 235  * @supplier: Supplier end of the link.
 236  * @flags: Link flags.
 237  *
 238  * The caller is responsible for the proper synchronization of the link creation
 239  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240  * runtime PM framework to take the link into account.  Second, if the
 241  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242  * be forced into the active metastate and reference-counted upon the creation
 243  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244  * ignored.
 245  *
 246  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247  * expected to release the link returned by it directly with the help of either
 248  * device_link_del() or device_link_remove().
 249  *
 250  * If that flag is not set, however, the caller of this function is handing the
 251  * management of the link over to the driver core entirely and its return value
 252  * can only be used to check whether or not the link is present.  In that case,
 253  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254  * flags can be used to indicate to the driver core when the link can be safely
 255  * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256  * that the link is not going to be used (by the given caller of this function)
 257  * after unbinding the consumer or supplier driver, respectively, from its
 258  * device, so the link can be deleted at that point.  If none of them is set,
 259  * the link will be maintained until one of the devices pointed to by it (either
 260  * the consumer or the supplier) is unregistered.
 261  *
 262  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265  * be used to request the driver core to automaticall probe for a consmer
 266  * driver after successfully binding a driver to the supplier device.
 267  *
 268  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270  * the same time is invalid and will cause NULL to be returned upfront.
 271  * However, if a device link between the given @consumer and @supplier pair
 272  * exists already when this function is called for them, the existing link will
 273  * be returned regardless of its current type and status (the link's flags may
 274  * be modified then).  The caller of this function is then expected to treat
 275  * the link as though it has just been created, so (in particular) if
 276  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277  * explicitly when not needed any more (as stated above).
 278  *
 279  * A side effect of the link creation is re-ordering of dpm_list and the
 280  * devices_kset list by moving the consumer device and all devices depending
 281  * on it to the ends of these lists (that does not happen to devices that have
 282  * not been registered when this function is called).
 283  *
 284  * The supplier device is required to be registered when this function is called
 285  * and NULL will be returned if that is not the case.  The consumer device need
 286  * not be registered, however.
 287  */
 288 struct device_link *device_link_add(struct device *consumer,
 289                                     struct device *supplier, u32 flags)
 290 {
 291         struct device_link *link;
 292 
 293         if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 294             (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 295             (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296              flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297                       DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298                 return NULL;
 299 
 300         if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301                 if (pm_runtime_get_sync(supplier) < 0) {
 302                         pm_runtime_put_noidle(supplier);
 303                         return NULL;
 304                 }
 305         }
 306 
 307         if (!(flags & DL_FLAG_STATELESS))
 308                 flags |= DL_FLAG_MANAGED;
 309 
 310         device_links_write_lock();
 311         device_pm_lock();
 312 
 313         /*
 314          * If the supplier has not been fully registered yet or there is a
 315          * reverse dependency between the consumer and the supplier already in
 316          * the graph, return NULL.
 317          */
 318         if (!device_pm_initialized(supplier)
 319             || device_is_dependent(consumer, supplier)) {
 320                 link = NULL;
 321                 goto out;
 322         }
 323 
 324         /*
 325          * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326          * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327          * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328          */
 329         if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330                 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331 
 332         list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333                 if (link->consumer != consumer)
 334                         continue;
 335 
 336                 if (flags & DL_FLAG_PM_RUNTIME) {
 337                         if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338                                 pm_runtime_new_link(consumer);
 339                                 link->flags |= DL_FLAG_PM_RUNTIME;
 340                         }
 341                         if (flags & DL_FLAG_RPM_ACTIVE)
 342                                 refcount_inc(&link->rpm_active);
 343                 }
 344 
 345                 if (flags & DL_FLAG_STATELESS) {
 346                         link->flags |= DL_FLAG_STATELESS;
 347                         kref_get(&link->kref);
 348                         goto out;
 349                 }
 350 
 351                 /*
 352                  * If the life time of the link following from the new flags is
 353                  * longer than indicated by the flags of the existing link,
 354                  * update the existing link to stay around longer.
 355                  */
 356                 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357                         if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358                                 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359                                 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360                         }
 361                 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362                         link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363                                          DL_FLAG_AUTOREMOVE_SUPPLIER);
 364                 }
 365                 if (!(link->flags & DL_FLAG_MANAGED)) {
 366                         kref_get(&link->kref);
 367                         link->flags |= DL_FLAG_MANAGED;
 368                         device_link_init_status(link, consumer, supplier);
 369                 }
 370                 goto out;
 371         }
 372 
 373         link = kzalloc(sizeof(*link), GFP_KERNEL);
 374         if (!link)
 375                 goto out;
 376 
 377         refcount_set(&link->rpm_active, 1);
 378 
 379         if (flags & DL_FLAG_PM_RUNTIME) {
 380                 if (flags & DL_FLAG_RPM_ACTIVE)
 381                         refcount_inc(&link->rpm_active);
 382 
 383                 pm_runtime_new_link(consumer);
 384         }
 385 
 386         get_device(supplier);
 387         link->supplier = supplier;
 388         INIT_LIST_HEAD(&link->s_node);
 389         get_device(consumer);
 390         link->consumer = consumer;
 391         INIT_LIST_HEAD(&link->c_node);
 392         link->flags = flags;
 393         kref_init(&link->kref);
 394 
 395         /* Determine the initial link state. */
 396         if (flags & DL_FLAG_STATELESS)
 397                 link->status = DL_STATE_NONE;
 398         else
 399                 device_link_init_status(link, consumer, supplier);
 400 
 401         /*
 402          * Some callers expect the link creation during consumer driver probe to
 403          * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404          */
 405         if (link->status == DL_STATE_CONSUMER_PROBE &&
 406             flags & DL_FLAG_PM_RUNTIME)
 407                 pm_runtime_resume(supplier);
 408 
 409         /*
 410          * Move the consumer and all of the devices depending on it to the end
 411          * of dpm_list and the devices_kset list.
 412          *
 413          * It is necessary to hold dpm_list locked throughout all that or else
 414          * we may end up suspending with a wrong ordering of it.
 415          */
 416         device_reorder_to_tail(consumer, NULL);
 417 
 418         list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419         list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420 
 421         dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422 
 423  out:
 424         device_pm_unlock();
 425         device_links_write_unlock();
 426 
 427         if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428                 pm_runtime_put(supplier);
 429 
 430         return link;
 431 }
 432 EXPORT_SYMBOL_GPL(device_link_add);
 433 
 434 static void device_link_free(struct device_link *link)
 435 {
 436         while (refcount_dec_not_one(&link->rpm_active))
 437                 pm_runtime_put(link->supplier);
 438 
 439         put_device(link->consumer);
 440         put_device(link->supplier);
 441         kfree(link);
 442 }
 443 
 444 #ifdef CONFIG_SRCU
 445 static void __device_link_free_srcu(struct rcu_head *rhead)
 446 {
 447         device_link_free(container_of(rhead, struct device_link, rcu_head));
 448 }
 449 
 450 static void __device_link_del(struct kref *kref)
 451 {
 452         struct device_link *link = container_of(kref, struct device_link, kref);
 453 
 454         dev_dbg(link->consumer, "Dropping the link to %s\n",
 455                 dev_name(link->supplier));
 456 
 457         if (link->flags & DL_FLAG_PM_RUNTIME)
 458                 pm_runtime_drop_link(link->consumer);
 459 
 460         list_del_rcu(&link->s_node);
 461         list_del_rcu(&link->c_node);
 462         call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463 }
 464 #else /* !CONFIG_SRCU */
 465 static void __device_link_del(struct kref *kref)
 466 {
 467         struct device_link *link = container_of(kref, struct device_link, kref);
 468 
 469         dev_info(link->consumer, "Dropping the link to %s\n",
 470                  dev_name(link->supplier));
 471 
 472         if (link->flags & DL_FLAG_PM_RUNTIME)
 473                 pm_runtime_drop_link(link->consumer);
 474 
 475         list_del(&link->s_node);
 476         list_del(&link->c_node);
 477         device_link_free(link);
 478 }
 479 #endif /* !CONFIG_SRCU */
 480 
 481 static void device_link_put_kref(struct device_link *link)
 482 {
 483         if (link->flags & DL_FLAG_STATELESS)
 484                 kref_put(&link->kref, __device_link_del);
 485         else
 486                 WARN(1, "Unable to drop a managed device link reference\n");
 487 }
 488 
 489 /**
 490  * device_link_del - Delete a stateless link between two devices.
 491  * @link: Device link to delete.
 492  *
 493  * The caller must ensure proper synchronization of this function with runtime
 494  * PM.  If the link was added multiple times, it needs to be deleted as often.
 495  * Care is required for hotplugged devices:  Their links are purged on removal
 496  * and calling device_link_del() is then no longer allowed.
 497  */
 498 void device_link_del(struct device_link *link)
 499 {
 500         device_links_write_lock();
 501         device_pm_lock();
 502         device_link_put_kref(link);
 503         device_pm_unlock();
 504         device_links_write_unlock();
 505 }
 506 EXPORT_SYMBOL_GPL(device_link_del);
 507 
 508 /**
 509  * device_link_remove - Delete a stateless link between two devices.
 510  * @consumer: Consumer end of the link.
 511  * @supplier: Supplier end of the link.
 512  *
 513  * The caller must ensure proper synchronization of this function with runtime
 514  * PM.
 515  */
 516 void device_link_remove(void *consumer, struct device *supplier)
 517 {
 518         struct device_link *link;
 519 
 520         if (WARN_ON(consumer == supplier))
 521                 return;
 522 
 523         device_links_write_lock();
 524         device_pm_lock();
 525 
 526         list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527                 if (link->consumer == consumer) {
 528                         device_link_put_kref(link);
 529                         break;
 530                 }
 531         }
 532 
 533         device_pm_unlock();
 534         device_links_write_unlock();
 535 }
 536 EXPORT_SYMBOL_GPL(device_link_remove);
 537 
 538 static void device_links_missing_supplier(struct device *dev)
 539 {
 540         struct device_link *link;
 541 
 542         list_for_each_entry(link, &dev->links.suppliers, c_node)
 543                 if (link->status == DL_STATE_CONSUMER_PROBE)
 544                         WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 545 }
 546 
 547 /**
 548  * device_links_check_suppliers - Check presence of supplier drivers.
 549  * @dev: Consumer device.
 550  *
 551  * Check links from this device to any suppliers.  Walk the list of the device's
 552  * links to suppliers and see if all of them are available.  If not, simply
 553  * return -EPROBE_DEFER.
 554  *
 555  * We need to guarantee that the supplier will not go away after the check has
 556  * been positive here.  It only can go away in __device_release_driver() and
 557  * that function  checks the device's links to consumers.  This means we need to
 558  * mark the link as "consumer probe in progress" to make the supplier removal
 559  * wait for us to complete (or bad things may happen).
 560  *
 561  * Links without the DL_FLAG_MANAGED flag set are ignored.
 562  */
 563 int device_links_check_suppliers(struct device *dev)
 564 {
 565         struct device_link *link;
 566         int ret = 0;
 567 
 568         device_links_write_lock();
 569 
 570         list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571                 if (!(link->flags & DL_FLAG_MANAGED))
 572                         continue;
 573 
 574                 if (link->status != DL_STATE_AVAILABLE) {
 575                         device_links_missing_supplier(dev);
 576                         ret = -EPROBE_DEFER;
 577                         break;
 578                 }
 579                 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580         }
 581         dev->links.status = DL_DEV_PROBING;
 582 
 583         device_links_write_unlock();
 584         return ret;
 585 }
 586 
 587 /**
 588  * device_links_driver_bound - Update device links after probing its driver.
 589  * @dev: Device to update the links for.
 590  *
 591  * The probe has been successful, so update links from this device to any
 592  * consumers by changing their status to "available".
 593  *
 594  * Also change the status of @dev's links to suppliers to "active".
 595  *
 596  * Links without the DL_FLAG_MANAGED flag set are ignored.
 597  */
 598 void device_links_driver_bound(struct device *dev)
 599 {
 600         struct device_link *link;
 601 
 602         device_links_write_lock();
 603 
 604         list_for_each_entry(link, &dev->links.consumers, s_node) {
 605                 if (!(link->flags & DL_FLAG_MANAGED))
 606                         continue;
 607 
 608                 /*
 609                  * Links created during consumer probe may be in the "consumer
 610                  * probe" state to start with if the supplier is still probing
 611                  * when they are created and they may become "active" if the
 612                  * consumer probe returns first.  Skip them here.
 613                  */
 614                 if (link->status == DL_STATE_CONSUMER_PROBE ||
 615                     link->status == DL_STATE_ACTIVE)
 616                         continue;
 617 
 618                 WARN_ON(link->status != DL_STATE_DORMANT);
 619                 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620 
 621                 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622                         driver_deferred_probe_add(link->consumer);
 623         }
 624 
 625         list_for_each_entry(link, &dev->links.suppliers, c_node) {
 626                 if (!(link->flags & DL_FLAG_MANAGED))
 627                         continue;
 628 
 629                 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630                 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 631         }
 632 
 633         dev->links.status = DL_DEV_DRIVER_BOUND;
 634 
 635         device_links_write_unlock();
 636 }
 637 
 638 static void device_link_drop_managed(struct device_link *link)
 639 {
 640         link->flags &= ~DL_FLAG_MANAGED;
 641         WRITE_ONCE(link->status, DL_STATE_NONE);
 642         kref_put(&link->kref, __device_link_del);
 643 }
 644 
 645 /**
 646  * __device_links_no_driver - Update links of a device without a driver.
 647  * @dev: Device without a drvier.
 648  *
 649  * Delete all non-persistent links from this device to any suppliers.
 650  *
 651  * Persistent links stay around, but their status is changed to "available",
 652  * unless they already are in the "supplier unbind in progress" state in which
 653  * case they need not be updated.
 654  *
 655  * Links without the DL_FLAG_MANAGED flag set are ignored.
 656  */
 657 static void __device_links_no_driver(struct device *dev)
 658 {
 659         struct device_link *link, *ln;
 660 
 661         list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662                 if (!(link->flags & DL_FLAG_MANAGED))
 663                         continue;
 664 
 665                 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666                         device_link_drop_managed(link);
 667                 else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668                          link->status == DL_STATE_ACTIVE)
 669                         WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 670         }
 671 
 672         dev->links.status = DL_DEV_NO_DRIVER;
 673 }
 674 
 675 /**
 676  * device_links_no_driver - Update links after failing driver probe.
 677  * @dev: Device whose driver has just failed to probe.
 678  *
 679  * Clean up leftover links to consumers for @dev and invoke
 680  * %__device_links_no_driver() to update links to suppliers for it as
 681  * appropriate.
 682  *
 683  * Links without the DL_FLAG_MANAGED flag set are ignored.
 684  */
 685 void device_links_no_driver(struct device *dev)
 686 {
 687         struct device_link *link;
 688 
 689         device_links_write_lock();
 690 
 691         list_for_each_entry(link, &dev->links.consumers, s_node) {
 692                 if (!(link->flags & DL_FLAG_MANAGED))
 693                         continue;
 694 
 695                 /*
 696                  * The probe has failed, so if the status of the link is
 697                  * "consumer probe" or "active", it must have been added by
 698                  * a probing consumer while this device was still probing.
 699                  * Change its state to "dormant", as it represents a valid
 700                  * relationship, but it is not functionally meaningful.
 701                  */
 702                 if (link->status == DL_STATE_CONSUMER_PROBE ||
 703                     link->status == DL_STATE_ACTIVE)
 704                         WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705         }
 706 
 707         __device_links_no_driver(dev);
 708 
 709         device_links_write_unlock();
 710 }
 711 
 712 /**
 713  * device_links_driver_cleanup - Update links after driver removal.
 714  * @dev: Device whose driver has just gone away.
 715  *
 716  * Update links to consumers for @dev by changing their status to "dormant" and
 717  * invoke %__device_links_no_driver() to update links to suppliers for it as
 718  * appropriate.
 719  *
 720  * Links without the DL_FLAG_MANAGED flag set are ignored.
 721  */
 722 void device_links_driver_cleanup(struct device *dev)
 723 {
 724         struct device_link *link, *ln;
 725 
 726         device_links_write_lock();
 727 
 728         list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729                 if (!(link->flags & DL_FLAG_MANAGED))
 730                         continue;
 731 
 732                 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733                 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734 
 735                 /*
 736                  * autoremove the links between this @dev and its consumer
 737                  * devices that are not active, i.e. where the link state
 738                  * has moved to DL_STATE_SUPPLIER_UNBIND.
 739                  */
 740                 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741                     link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742                         device_link_drop_managed(link);
 743 
 744                 WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745         }
 746 
 747         __device_links_no_driver(dev);
 748 
 749         device_links_write_unlock();
 750 }
 751 
 752 /**
 753  * device_links_busy - Check if there are any busy links to consumers.
 754  * @dev: Device to check.
 755  *
 756  * Check each consumer of the device and return 'true' if its link's status
 757  * is one of "consumer probe" or "active" (meaning that the given consumer is
 758  * probing right now or its driver is present).  Otherwise, change the link
 759  * state to "supplier unbind" to prevent the consumer from being probed
 760  * successfully going forward.
 761  *
 762  * Return 'false' if there are no probing or active consumers.
 763  *
 764  * Links without the DL_FLAG_MANAGED flag set are ignored.
 765  */
 766 bool device_links_busy(struct device *dev)
 767 {
 768         struct device_link *link;
 769         bool ret = false;
 770 
 771         device_links_write_lock();
 772 
 773         list_for_each_entry(link, &dev->links.consumers, s_node) {
 774                 if (!(link->flags & DL_FLAG_MANAGED))
 775                         continue;
 776 
 777                 if (link->status == DL_STATE_CONSUMER_PROBE
 778                     || link->status == DL_STATE_ACTIVE) {
 779                         ret = true;
 780                         break;
 781                 }
 782                 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783         }
 784 
 785         dev->links.status = DL_DEV_UNBINDING;
 786 
 787         device_links_write_unlock();
 788         return ret;
 789 }
 790 
 791 /**
 792  * device_links_unbind_consumers - Force unbind consumers of the given device.
 793  * @dev: Device to unbind the consumers of.
 794  *
 795  * Walk the list of links to consumers for @dev and if any of them is in the
 796  * "consumer probe" state, wait for all device probes in progress to complete
 797  * and start over.
 798  *
 799  * If that's not the case, change the status of the link to "supplier unbind"
 800  * and check if the link was in the "active" state.  If so, force the consumer
 801  * driver to unbind and start over (the consumer will not re-probe as we have
 802  * changed the state of the link already).
 803  *
 804  * Links without the DL_FLAG_MANAGED flag set are ignored.
 805  */
 806 void device_links_unbind_consumers(struct device *dev)
 807 {
 808         struct device_link *link;
 809 
 810  start:
 811         device_links_write_lock();
 812 
 813         list_for_each_entry(link, &dev->links.consumers, s_node) {
 814                 enum device_link_state status;
 815 
 816                 if (!(link->flags & DL_FLAG_MANAGED))
 817                         continue;
 818 
 819                 status = link->status;
 820                 if (status == DL_STATE_CONSUMER_PROBE) {
 821                         device_links_write_unlock();
 822 
 823                         wait_for_device_probe();
 824                         goto start;
 825                 }
 826                 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827                 if (status == DL_STATE_ACTIVE) {
 828                         struct device *consumer = link->consumer;
 829 
 830                         get_device(consumer);
 831 
 832                         device_links_write_unlock();
 833 
 834                         device_release_driver_internal(consumer, NULL,
 835                                                        consumer->parent);
 836                         put_device(consumer);
 837                         goto start;
 838                 }
 839         }
 840 
 841         device_links_write_unlock();
 842 }
 843 
 844 /**
 845  * device_links_purge - Delete existing links to other devices.
 846  * @dev: Target device.
 847  */
 848 static void device_links_purge(struct device *dev)
 849 {
 850         struct device_link *link, *ln;
 851 
 852         /*
 853          * Delete all of the remaining links from this device to any other
 854          * devices (either consumers or suppliers).
 855          */
 856         device_links_write_lock();
 857 
 858         list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859                 WARN_ON(link->status == DL_STATE_ACTIVE);
 860                 __device_link_del(&link->kref);
 861         }
 862 
 863         list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864                 WARN_ON(link->status != DL_STATE_DORMANT &&
 865                         link->status != DL_STATE_NONE);
 866                 __device_link_del(&link->kref);
 867         }
 868 
 869         device_links_write_unlock();
 870 }
 871 
 872 /* Device links support end. */
 873 
 874 int (*platform_notify)(struct device *dev) = NULL;
 875 int (*platform_notify_remove)(struct device *dev) = NULL;
 876 static struct kobject *dev_kobj;
 877 struct kobject *sysfs_dev_char_kobj;
 878 struct kobject *sysfs_dev_block_kobj;
 879 
 880 static DEFINE_MUTEX(device_hotplug_lock);
 881 
 882 void lock_device_hotplug(void)
 883 {
 884         mutex_lock(&device_hotplug_lock);
 885 }
 886 
 887 void unlock_device_hotplug(void)
 888 {
 889         mutex_unlock(&device_hotplug_lock);
 890 }
 891 
 892 int lock_device_hotplug_sysfs(void)
 893 {
 894         if (mutex_trylock(&device_hotplug_lock))
 895                 return 0;
 896 
 897         /* Avoid busy looping (5 ms of sleep should do). */
 898         msleep(5);
 899         return restart_syscall();
 900 }
 901 
 902 #ifdef CONFIG_BLOCK
 903 static inline int device_is_not_partition(struct device *dev)
 904 {
 905         return !(dev->type == &part_type);
 906 }
 907 #else
 908 static inline int device_is_not_partition(struct device *dev)
 909 {
 910         return 1;
 911 }
 912 #endif
 913 
 914 static int
 915 device_platform_notify(struct device *dev, enum kobject_action action)
 916 {
 917         int ret;
 918 
 919         ret = acpi_platform_notify(dev, action);
 920         if (ret)
 921                 return ret;
 922 
 923         ret = software_node_notify(dev, action);
 924         if (ret)
 925                 return ret;
 926 
 927         if (platform_notify && action == KOBJ_ADD)
 928                 platform_notify(dev);
 929         else if (platform_notify_remove && action == KOBJ_REMOVE)
 930                 platform_notify_remove(dev);
 931         return 0;
 932 }
 933 
 934 /**
 935  * dev_driver_string - Return a device's driver name, if at all possible
 936  * @dev: struct device to get the name of
 937  *
 938  * Will return the device's driver's name if it is bound to a device.  If
 939  * the device is not bound to a driver, it will return the name of the bus
 940  * it is attached to.  If it is not attached to a bus either, an empty
 941  * string will be returned.
 942  */
 943 const char *dev_driver_string(const struct device *dev)
 944 {
 945         struct device_driver *drv;
 946 
 947         /* dev->driver can change to NULL underneath us because of unbinding,
 948          * so be careful about accessing it.  dev->bus and dev->class should
 949          * never change once they are set, so they don't need special care.
 950          */
 951         drv = READ_ONCE(dev->driver);
 952         return drv ? drv->name :
 953                         (dev->bus ? dev->bus->name :
 954                         (dev->class ? dev->class->name : ""));
 955 }
 956 EXPORT_SYMBOL(dev_driver_string);
 957 
 958 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959 
 960 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961                              char *buf)
 962 {
 963         struct device_attribute *dev_attr = to_dev_attr(attr);
 964         struct device *dev = kobj_to_dev(kobj);
 965         ssize_t ret = -EIO;
 966 
 967         if (dev_attr->show)
 968                 ret = dev_attr->show(dev, dev_attr, buf);
 969         if (ret >= (ssize_t)PAGE_SIZE) {
 970                 printk("dev_attr_show: %pS returned bad count\n",
 971                                 dev_attr->show);
 972         }
 973         return ret;
 974 }
 975 
 976 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977                               const char *buf, size_t count)
 978 {
 979         struct device_attribute *dev_attr = to_dev_attr(attr);
 980         struct device *dev = kobj_to_dev(kobj);
 981         ssize_t ret = -EIO;
 982 
 983         if (dev_attr->store)
 984                 ret = dev_attr->store(dev, dev_attr, buf, count);
 985         return ret;
 986 }
 987 
 988 static const struct sysfs_ops dev_sysfs_ops = {
 989         .show   = dev_attr_show,
 990         .store  = dev_attr_store,
 991 };
 992 
 993 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994 
 995 ssize_t device_store_ulong(struct device *dev,
 996                            struct device_attribute *attr,
 997                            const char *buf, size_t size)
 998 {
 999         struct dev_ext_attribute *ea = to_ext_attr(attr);
1000         int ret;
1001         unsigned long new;
1002 
1003         ret = kstrtoul(buf, 0, &new);
1004         if (ret)
1005                 return ret;
1006         *(unsigned long *)(ea->var) = new;
1007         /* Always return full write size even if we didn't consume all */
1008         return size;
1009 }
1010 EXPORT_SYMBOL_GPL(device_store_ulong);
1011 
1012 ssize_t device_show_ulong(struct device *dev,
1013                           struct device_attribute *attr,
1014                           char *buf)
1015 {
1016         struct dev_ext_attribute *ea = to_ext_attr(attr);
1017         return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018 }
1019 EXPORT_SYMBOL_GPL(device_show_ulong);
1020 
1021 ssize_t device_store_int(struct device *dev,
1022                          struct device_attribute *attr,
1023                          const char *buf, size_t size)
1024 {
1025         struct dev_ext_attribute *ea = to_ext_attr(attr);
1026         int ret;
1027         long new;
1028 
1029         ret = kstrtol(buf, 0, &new);
1030         if (ret)
1031                 return ret;
1032 
1033         if (new > INT_MAX || new < INT_MIN)
1034                 return -EINVAL;
1035         *(int *)(ea->var) = new;
1036         /* Always return full write size even if we didn't consume all */
1037         return size;
1038 }
1039 EXPORT_SYMBOL_GPL(device_store_int);
1040 
1041 ssize_t device_show_int(struct device *dev,
1042                         struct device_attribute *attr,
1043                         char *buf)
1044 {
1045         struct dev_ext_attribute *ea = to_ext_attr(attr);
1046 
1047         return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048 }
1049 EXPORT_SYMBOL_GPL(device_show_int);
1050 
1051 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052                           const char *buf, size_t size)
1053 {
1054         struct dev_ext_attribute *ea = to_ext_attr(attr);
1055 
1056         if (strtobool(buf, ea->var) < 0)
1057                 return -EINVAL;
1058 
1059         return size;
1060 }
1061 EXPORT_SYMBOL_GPL(device_store_bool);
1062 
1063 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064                          char *buf)
1065 {
1066         struct dev_ext_attribute *ea = to_ext_attr(attr);
1067 
1068         return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069 }
1070 EXPORT_SYMBOL_GPL(device_show_bool);
1071 
1072 /**
1073  * device_release - free device structure.
1074  * @kobj: device's kobject.
1075  *
1076  * This is called once the reference count for the object
1077  * reaches 0. We forward the call to the device's release
1078  * method, which should handle actually freeing the structure.
1079  */
1080 static void device_release(struct kobject *kobj)
1081 {
1082         struct device *dev = kobj_to_dev(kobj);
1083         struct device_private *p = dev->p;
1084 
1085         /*
1086          * Some platform devices are driven without driver attached
1087          * and managed resources may have been acquired.  Make sure
1088          * all resources are released.
1089          *
1090          * Drivers still can add resources into device after device
1091          * is deleted but alive, so release devres here to avoid
1092          * possible memory leak.
1093          */
1094         devres_release_all(dev);
1095 
1096         if (dev->release)
1097                 dev->release(dev);
1098         else if (dev->type && dev->type->release)
1099                 dev->type->release(dev);
1100         else if (dev->class && dev->class->dev_release)
1101                 dev->class->dev_release(dev);
1102         else
1103                 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104                         dev_name(dev));
1105         kfree(p);
1106 }
1107 
1108 static const void *device_namespace(struct kobject *kobj)
1109 {
1110         struct device *dev = kobj_to_dev(kobj);
1111         const void *ns = NULL;
1112 
1113         if (dev->class && dev->class->ns_type)
1114                 ns = dev->class->namespace(dev);
1115 
1116         return ns;
1117 }
1118 
1119 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120 {
1121         struct device *dev = kobj_to_dev(kobj);
1122 
1123         if (dev->class && dev->class->get_ownership)
1124                 dev->class->get_ownership(dev, uid, gid);
1125 }
1126 
1127 static struct kobj_type device_ktype = {
1128         .release        = device_release,
1129         .sysfs_ops      = &dev_sysfs_ops,
1130         .namespace      = device_namespace,
1131         .get_ownership  = device_get_ownership,
1132 };
1133 
1134 
1135 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136 {
1137         struct kobj_type *ktype = get_ktype(kobj);
1138 
1139         if (ktype == &device_ktype) {
1140                 struct device *dev = kobj_to_dev(kobj);
1141                 if (dev->bus)
1142                         return 1;
1143                 if (dev->class)
1144                         return 1;
1145         }
1146         return 0;
1147 }
1148 
1149 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150 {
1151         struct device *dev = kobj_to_dev(kobj);
1152 
1153         if (dev->bus)
1154                 return dev->bus->name;
1155         if (dev->class)
1156                 return dev->class->name;
1157         return NULL;
1158 }
1159 
1160 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161                       struct kobj_uevent_env *env)
1162 {
1163         struct device *dev = kobj_to_dev(kobj);
1164         int retval = 0;
1165 
1166         /* add device node properties if present */
1167         if (MAJOR(dev->devt)) {
1168                 const char *tmp;
1169                 const char *name;
1170                 umode_t mode = 0;
1171                 kuid_t uid = GLOBAL_ROOT_UID;
1172                 kgid_t gid = GLOBAL_ROOT_GID;
1173 
1174                 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175                 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176                 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177                 if (name) {
1178                         add_uevent_var(env, "DEVNAME=%s", name);
1179                         if (mode)
1180                                 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181                         if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182                                 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183                         if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184                                 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185                         kfree(tmp);
1186                 }
1187         }
1188 
1189         if (dev->type && dev->type->name)
1190                 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191 
1192         if (dev->driver)
1193                 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194 
1195         /* Add common DT information about the device */
1196         of_device_uevent(dev, env);
1197 
1198         /* have the bus specific function add its stuff */
1199         if (dev->bus && dev->bus->uevent) {
1200                 retval = dev->bus->uevent(dev, env);
1201                 if (retval)
1202                         pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203                                  dev_name(dev), __func__, retval);
1204         }
1205 
1206         /* have the class specific function add its stuff */
1207         if (dev->class && dev->class->dev_uevent) {
1208                 retval = dev->class->dev_uevent(dev, env);
1209                 if (retval)
1210                         pr_debug("device: '%s': %s: class uevent() "
1211                                  "returned %d\n", dev_name(dev),
1212                                  __func__, retval);
1213         }
1214 
1215         /* have the device type specific function add its stuff */
1216         if (dev->type && dev->type->uevent) {
1217                 retval = dev->type->uevent(dev, env);
1218                 if (retval)
1219                         pr_debug("device: '%s': %s: dev_type uevent() "
1220                                  "returned %d\n", dev_name(dev),
1221                                  __func__, retval);
1222         }
1223 
1224         return retval;
1225 }
1226 
1227 static const struct kset_uevent_ops device_uevent_ops = {
1228         .filter =       dev_uevent_filter,
1229         .name =         dev_uevent_name,
1230         .uevent =       dev_uevent,
1231 };
1232 
1233 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234                            char *buf)
1235 {
1236         struct kobject *top_kobj;
1237         struct kset *kset;
1238         struct kobj_uevent_env *env = NULL;
1239         int i;
1240         size_t count = 0;
1241         int retval;
1242 
1243         /* search the kset, the device belongs to */
1244         top_kobj = &dev->kobj;
1245         while (!top_kobj->kset && top_kobj->parent)
1246                 top_kobj = top_kobj->parent;
1247         if (!top_kobj->kset)
1248                 goto out;
1249 
1250         kset = top_kobj->kset;
1251         if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252                 goto out;
1253 
1254         /* respect filter */
1255         if (kset->uevent_ops && kset->uevent_ops->filter)
1256                 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257                         goto out;
1258 
1259         env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260         if (!env)
1261                 return -ENOMEM;
1262 
1263         /* let the kset specific function add its keys */
1264         retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265         if (retval)
1266                 goto out;
1267 
1268         /* copy keys to file */
1269         for (i = 0; i < env->envp_idx; i++)
1270                 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271 out:
1272         kfree(env);
1273         return count;
1274 }
1275 
1276 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277                             const char *buf, size_t count)
1278 {
1279         int rc;
1280 
1281         rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282 
1283         if (rc) {
1284                 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285                 return rc;
1286         }
1287 
1288         return count;
1289 }
1290 static DEVICE_ATTR_RW(uevent);
1291 
1292 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293                            char *buf)
1294 {
1295         bool val;
1296 
1297         device_lock(dev);
1298         val = !dev->offline;
1299         device_unlock(dev);
1300         return sprintf(buf, "%u\n", val);
1301 }
1302 
1303 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304                             const char *buf, size_t count)
1305 {
1306         bool val;
1307         int ret;
1308 
1309         ret = strtobool(buf, &val);
1310         if (ret < 0)
1311                 return ret;
1312 
1313         ret = lock_device_hotplug_sysfs();
1314         if (ret)
1315                 return ret;
1316 
1317         ret = val ? device_online(dev) : device_offline(dev);
1318         unlock_device_hotplug();
1319         return ret < 0 ? ret : count;
1320 }
1321 static DEVICE_ATTR_RW(online);
1322 
1323 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324 {
1325         return sysfs_create_groups(&dev->kobj, groups);
1326 }
1327 EXPORT_SYMBOL_GPL(device_add_groups);
1328 
1329 void device_remove_groups(struct device *dev,
1330                           const struct attribute_group **groups)
1331 {
1332         sysfs_remove_groups(&dev->kobj, groups);
1333 }
1334 EXPORT_SYMBOL_GPL(device_remove_groups);
1335 
1336 union device_attr_group_devres {
1337         const struct attribute_group *group;
1338         const struct attribute_group **groups;
1339 };
1340 
1341 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342 {
1343         return ((union device_attr_group_devres *)res)->group == data;
1344 }
1345 
1346 static void devm_attr_group_remove(struct device *dev, void *res)
1347 {
1348         union device_attr_group_devres *devres = res;
1349         const struct attribute_group *group = devres->group;
1350 
1351         dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352         sysfs_remove_group(&dev->kobj, group);
1353 }
1354 
1355 static void devm_attr_groups_remove(struct device *dev, void *res)
1356 {
1357         union device_attr_group_devres *devres = res;
1358         const struct attribute_group **groups = devres->groups;
1359 
1360         dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361         sysfs_remove_groups(&dev->kobj, groups);
1362 }
1363 
1364 /**
1365  * devm_device_add_group - given a device, create a managed attribute group
1366  * @dev:        The device to create the group for
1367  * @grp:        The attribute group to create
1368  *
1369  * This function creates a group for the first time.  It will explicitly
1370  * warn and error if any of the attribute files being created already exist.
1371  *
1372  * Returns 0 on success or error code on failure.
1373  */
1374 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375 {
1376         union device_attr_group_devres *devres;
1377         int error;
1378 
1379         devres = devres_alloc(devm_attr_group_remove,
1380                               sizeof(*devres), GFP_KERNEL);
1381         if (!devres)
1382                 return -ENOMEM;
1383 
1384         error = sysfs_create_group(&dev->kobj, grp);
1385         if (error) {
1386                 devres_free(devres);
1387                 return error;
1388         }
1389 
1390         devres->group = grp;
1391         devres_add(dev, devres);
1392         return 0;
1393 }
1394 EXPORT_SYMBOL_GPL(devm_device_add_group);
1395 
1396 /**
1397  * devm_device_remove_group: remove a managed group from a device
1398  * @dev:        device to remove the group from
1399  * @grp:        group to remove
1400  *
1401  * This function removes a group of attributes from a device. The attributes
1402  * previously have to have been created for this group, otherwise it will fail.
1403  */
1404 void devm_device_remove_group(struct device *dev,
1405                               const struct attribute_group *grp)
1406 {
1407         WARN_ON(devres_release(dev, devm_attr_group_remove,
1408                                devm_attr_group_match,
1409                                /* cast away const */ (void *)grp));
1410 }
1411 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412 
1413 /**
1414  * devm_device_add_groups - create a bunch of managed attribute groups
1415  * @dev:        The device to create the group for
1416  * @groups:     The attribute groups to create, NULL terminated
1417  *
1418  * This function creates a bunch of managed attribute groups.  If an error
1419  * occurs when creating a group, all previously created groups will be
1420  * removed, unwinding everything back to the original state when this
1421  * function was called.  It will explicitly warn and error if any of the
1422  * attribute files being created already exist.
1423  *
1424  * Returns 0 on success or error code from sysfs_create_group on failure.
1425  */
1426 int devm_device_add_groups(struct device *dev,
1427                            const struct attribute_group **groups)
1428 {
1429         union device_attr_group_devres *devres;
1430         int error;
1431 
1432         devres = devres_alloc(devm_attr_groups_remove,
1433                               sizeof(*devres), GFP_KERNEL);
1434         if (!devres)
1435                 return -ENOMEM;
1436 
1437         error = sysfs_create_groups(&dev->kobj, groups);
1438         if (error) {
1439                 devres_free(devres);
1440                 return error;
1441         }
1442 
1443         devres->groups = groups;
1444         devres_add(dev, devres);
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448 
1449 /**
1450  * devm_device_remove_groups - remove a list of managed groups
1451  *
1452  * @dev:        The device for the groups to be removed from
1453  * @groups:     NULL terminated list of groups to be removed
1454  *
1455  * If groups is not NULL, remove the specified groups from the device.
1456  */
1457 void devm_device_remove_groups(struct device *dev,
1458                                const struct attribute_group **groups)
1459 {
1460         WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461                                devm_attr_group_match,
1462                                /* cast away const */ (void *)groups));
1463 }
1464 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465 
1466 static int device_add_attrs(struct device *dev)
1467 {
1468         struct class *class = dev->class;
1469         const struct device_type *type = dev->type;
1470         int error;
1471 
1472         if (class) {
1473                 error = device_add_groups(dev, class->dev_groups);
1474                 if (error)
1475                         return error;
1476         }
1477 
1478         if (type) {
1479                 error = device_add_groups(dev, type->groups);
1480                 if (error)
1481                         goto err_remove_class_groups;
1482         }
1483 
1484         error = device_add_groups(dev, dev->groups);
1485         if (error)
1486                 goto err_remove_type_groups;
1487 
1488         if (device_supports_offline(dev) && !dev->offline_disabled) {
1489                 error = device_create_file(dev, &dev_attr_online);
1490                 if (error)
1491                         goto err_remove_dev_groups;
1492         }
1493 
1494         return 0;
1495 
1496  err_remove_dev_groups:
1497         device_remove_groups(dev, dev->groups);
1498  err_remove_type_groups:
1499         if (type)
1500                 device_remove_groups(dev, type->groups);
1501  err_remove_class_groups:
1502         if (class)
1503                 device_remove_groups(dev, class->dev_groups);
1504 
1505         return error;
1506 }
1507 
1508 static void device_remove_attrs(struct device *dev)
1509 {
1510         struct class *class = dev->class;
1511         const struct device_type *type = dev->type;
1512 
1513         device_remove_file(dev, &dev_attr_online);
1514         device_remove_groups(dev, dev->groups);
1515 
1516         if (type)
1517                 device_remove_groups(dev, type->groups);
1518 
1519         if (class)
1520                 device_remove_groups(dev, class->dev_groups);
1521 }
1522 
1523 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524                         char *buf)
1525 {
1526         return print_dev_t(buf, dev->devt);
1527 }
1528 static DEVICE_ATTR_RO(dev);
1529 
1530 /* /sys/devices/ */
1531 struct kset *devices_kset;
1532 
1533 /**
1534  * devices_kset_move_before - Move device in the devices_kset's list.
1535  * @deva: Device to move.
1536  * @devb: Device @deva should come before.
1537  */
1538 static void devices_kset_move_before(struct device *deva, struct device *devb)
1539 {
1540         if (!devices_kset)
1541                 return;
1542         pr_debug("devices_kset: Moving %s before %s\n",
1543                  dev_name(deva), dev_name(devb));
1544         spin_lock(&devices_kset->list_lock);
1545         list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546         spin_unlock(&devices_kset->list_lock);
1547 }
1548 
1549 /**
1550  * devices_kset_move_after - Move device in the devices_kset's list.
1551  * @deva: Device to move
1552  * @devb: Device @deva should come after.
1553  */
1554 static void devices_kset_move_after(struct device *deva, struct device *devb)
1555 {
1556         if (!devices_kset)
1557                 return;
1558         pr_debug("devices_kset: Moving %s after %s\n",
1559                  dev_name(deva), dev_name(devb));
1560         spin_lock(&devices_kset->list_lock);
1561         list_move(&deva->kobj.entry, &devb->kobj.entry);
1562         spin_unlock(&devices_kset->list_lock);
1563 }
1564 
1565 /**
1566  * devices_kset_move_last - move the device to the end of devices_kset's list.
1567  * @dev: device to move
1568  */
1569 void devices_kset_move_last(struct device *dev)
1570 {
1571         if (!devices_kset)
1572                 return;
1573         pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574         spin_lock(&devices_kset->list_lock);
1575         list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576         spin_unlock(&devices_kset->list_lock);
1577 }
1578 
1579 /**
1580  * device_create_file - create sysfs attribute file for device.
1581  * @dev: device.
1582  * @attr: device attribute descriptor.
1583  */
1584 int device_create_file(struct device *dev,
1585                        const struct device_attribute *attr)
1586 {
1587         int error = 0;
1588 
1589         if (dev) {
1590                 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591                         "Attribute %s: write permission without 'store'\n",
1592                         attr->attr.name);
1593                 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594                         "Attribute %s: read permission without 'show'\n",
1595                         attr->attr.name);
1596                 error = sysfs_create_file(&dev->kobj, &attr->attr);
1597         }
1598 
1599         return error;
1600 }
1601 EXPORT_SYMBOL_GPL(device_create_file);
1602 
1603 /**
1604  * device_remove_file - remove sysfs attribute file.
1605  * @dev: device.
1606  * @attr: device attribute descriptor.
1607  */
1608 void device_remove_file(struct device *dev,
1609                         const struct device_attribute *attr)
1610 {
1611         if (dev)
1612                 sysfs_remove_file(&dev->kobj, &attr->attr);
1613 }
1614 EXPORT_SYMBOL_GPL(device_remove_file);
1615 
1616 /**
1617  * device_remove_file_self - remove sysfs attribute file from its own method.
1618  * @dev: device.
1619  * @attr: device attribute descriptor.
1620  *
1621  * See kernfs_remove_self() for details.
1622  */
1623 bool device_remove_file_self(struct device *dev,
1624                              const struct device_attribute *attr)
1625 {
1626         if (dev)
1627                 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628         else
1629                 return false;
1630 }
1631 EXPORT_SYMBOL_GPL(device_remove_file_self);
1632 
1633 /**
1634  * device_create_bin_file - create sysfs binary attribute file for device.
1635  * @dev: device.
1636  * @attr: device binary attribute descriptor.
1637  */
1638 int device_create_bin_file(struct device *dev,
1639                            const struct bin_attribute *attr)
1640 {
1641         int error = -EINVAL;
1642         if (dev)
1643                 error = sysfs_create_bin_file(&dev->kobj, attr);
1644         return error;
1645 }
1646 EXPORT_SYMBOL_GPL(device_create_bin_file);
1647 
1648 /**
1649  * device_remove_bin_file - remove sysfs binary attribute file
1650  * @dev: device.
1651  * @attr: device binary attribute descriptor.
1652  */
1653 void device_remove_bin_file(struct device *dev,
1654                             const struct bin_attribute *attr)
1655 {
1656         if (dev)
1657                 sysfs_remove_bin_file(&dev->kobj, attr);
1658 }
1659 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660 
1661 static void klist_children_get(struct klist_node *n)
1662 {
1663         struct device_private *p = to_device_private_parent(n);
1664         struct device *dev = p->device;
1665 
1666         get_device(dev);
1667 }
1668 
1669 static void klist_children_put(struct klist_node *n)
1670 {
1671         struct device_private *p = to_device_private_parent(n);
1672         struct device *dev = p->device;
1673 
1674         put_device(dev);
1675 }
1676 
1677 /**
1678  * device_initialize - init device structure.
1679  * @dev: device.
1680  *
1681  * This prepares the device for use by other layers by initializing
1682  * its fields.
1683  * It is the first half of device_register(), if called by
1684  * that function, though it can also be called separately, so one
1685  * may use @dev's fields. In particular, get_device()/put_device()
1686  * may be used for reference counting of @dev after calling this
1687  * function.
1688  *
1689  * All fields in @dev must be initialized by the caller to 0, except
1690  * for those explicitly set to some other value.  The simplest
1691  * approach is to use kzalloc() to allocate the structure containing
1692  * @dev.
1693  *
1694  * NOTE: Use put_device() to give up your reference instead of freeing
1695  * @dev directly once you have called this function.
1696  */
1697 void device_initialize(struct device *dev)
1698 {
1699         dev->kobj.kset = devices_kset;
1700         kobject_init(&dev->kobj, &device_ktype);
1701         INIT_LIST_HEAD(&dev->dma_pools);
1702         mutex_init(&dev->mutex);
1703 #ifdef CONFIG_PROVE_LOCKING
1704         mutex_init(&dev->lockdep_mutex);
1705 #endif
1706         lockdep_set_novalidate_class(&dev->mutex);
1707         spin_lock_init(&dev->devres_lock);
1708         INIT_LIST_HEAD(&dev->devres_head);
1709         device_pm_init(dev);
1710         set_dev_node(dev, -1);
1711 #ifdef CONFIG_GENERIC_MSI_IRQ
1712         INIT_LIST_HEAD(&dev->msi_list);
1713 #endif
1714         INIT_LIST_HEAD(&dev->links.consumers);
1715         INIT_LIST_HEAD(&dev->links.suppliers);
1716         dev->links.status = DL_DEV_NO_DRIVER;
1717 }
1718 EXPORT_SYMBOL_GPL(device_initialize);
1719 
1720 struct kobject *virtual_device_parent(struct device *dev)
1721 {
1722         static struct kobject *virtual_dir = NULL;
1723 
1724         if (!virtual_dir)
1725                 virtual_dir = kobject_create_and_add("virtual",
1726                                                      &devices_kset->kobj);
1727 
1728         return virtual_dir;
1729 }
1730 
1731 struct class_dir {
1732         struct kobject kobj;
1733         struct class *class;
1734 };
1735 
1736 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737 
1738 static void class_dir_release(struct kobject *kobj)
1739 {
1740         struct class_dir *dir = to_class_dir(kobj);
1741         kfree(dir);
1742 }
1743 
1744 static const
1745 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746 {
1747         struct class_dir *dir = to_class_dir(kobj);
1748         return dir->class->ns_type;
1749 }
1750 
1751 static struct kobj_type class_dir_ktype = {
1752         .release        = class_dir_release,
1753         .sysfs_ops      = &kobj_sysfs_ops,
1754         .child_ns_type  = class_dir_child_ns_type
1755 };
1756 
1757 static struct kobject *
1758 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759 {
1760         struct class_dir *dir;
1761         int retval;
1762 
1763         dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764         if (!dir)
1765                 return ERR_PTR(-ENOMEM);
1766 
1767         dir->class = class;
1768         kobject_init(&dir->kobj, &class_dir_ktype);
1769 
1770         dir->kobj.kset = &class->p->glue_dirs;
1771 
1772         retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773         if (retval < 0) {
1774                 kobject_put(&dir->kobj);
1775                 return ERR_PTR(retval);
1776         }
1777         return &dir->kobj;
1778 }
1779 
1780 static DEFINE_MUTEX(gdp_mutex);
1781 
1782 static struct kobject *get_device_parent(struct device *dev,
1783                                          struct device *parent)
1784 {
1785         if (dev->class) {
1786                 struct kobject *kobj = NULL;
1787                 struct kobject *parent_kobj;
1788                 struct kobject *k;
1789 
1790 #ifdef CONFIG_BLOCK
1791                 /* block disks show up in /sys/block */
1792                 if (sysfs_deprecated && dev->class == &block_class) {
1793                         if (parent && parent->class == &block_class)
1794                                 return &parent->kobj;
1795                         return &block_class.p->subsys.kobj;
1796                 }
1797 #endif
1798 
1799                 /*
1800                  * If we have no parent, we live in "virtual".
1801                  * Class-devices with a non class-device as parent, live
1802                  * in a "glue" directory to prevent namespace collisions.
1803                  */
1804                 if (parent == NULL)
1805                         parent_kobj = virtual_device_parent(dev);
1806                 else if (parent->class && !dev->class->ns_type)
1807                         return &parent->kobj;
1808                 else
1809                         parent_kobj = &parent->kobj;
1810 
1811                 mutex_lock(&gdp_mutex);
1812 
1813                 /* find our class-directory at the parent and reference it */
1814                 spin_lock(&dev->class->p->glue_dirs.list_lock);
1815                 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816                         if (k->parent == parent_kobj) {
1817                                 kobj = kobject_get(k);
1818                                 break;
1819                         }
1820                 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821                 if (kobj) {
1822                         mutex_unlock(&gdp_mutex);
1823                         return kobj;
1824                 }
1825 
1826                 /* or create a new class-directory at the parent device */
1827                 k = class_dir_create_and_add(dev->class, parent_kobj);
1828                 /* do not emit an uevent for this simple "glue" directory */
1829                 mutex_unlock(&gdp_mutex);
1830                 return k;
1831         }
1832 
1833         /* subsystems can specify a default root directory for their devices */
1834         if (!parent && dev->bus && dev->bus->dev_root)
1835                 return &dev->bus->dev_root->kobj;
1836 
1837         if (parent)
1838                 return &parent->kobj;
1839         return NULL;
1840 }
1841 
1842 static inline bool live_in_glue_dir(struct kobject *kobj,
1843                                     struct device *dev)
1844 {
1845         if (!kobj || !dev->class ||
1846             kobj->kset != &dev->class->p->glue_dirs)
1847                 return false;
1848         return true;
1849 }
1850 
1851 static inline struct kobject *get_glue_dir(struct device *dev)
1852 {
1853         return dev->kobj.parent;
1854 }
1855 
1856 /*
1857  * make sure cleaning up dir as the last step, we need to make
1858  * sure .release handler of kobject is run with holding the
1859  * global lock
1860  */
1861 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862 {
1863         unsigned int ref;
1864 
1865         /* see if we live in a "glue" directory */
1866         if (!live_in_glue_dir(glue_dir, dev))
1867                 return;
1868 
1869         mutex_lock(&gdp_mutex);
1870         /**
1871          * There is a race condition between removing glue directory
1872          * and adding a new device under the glue directory.
1873          *
1874          * CPU1:                                         CPU2:
1875          *
1876          * device_add()
1877          *   get_device_parent()
1878          *     class_dir_create_and_add()
1879          *       kobject_add_internal()
1880          *         create_dir()    // create glue_dir
1881          *
1882          *                                               device_add()
1883          *                                                 get_device_parent()
1884          *                                                   kobject_get() // get glue_dir
1885          *
1886          * device_del()
1887          *   cleanup_glue_dir()
1888          *     kobject_del(glue_dir)
1889          *
1890          *                                               kobject_add()
1891          *                                                 kobject_add_internal()
1892          *                                                   create_dir() // in glue_dir
1893          *                                                     sysfs_create_dir_ns()
1894          *                                                       kernfs_create_dir_ns(sd)
1895          *
1896          *       sysfs_remove_dir() // glue_dir->sd=NULL
1897          *       sysfs_put()        // free glue_dir->sd
1898          *
1899          *                                                         // sd is freed
1900          *                                                         kernfs_new_node(sd)
1901          *                                                           kernfs_get(glue_dir)
1902          *                                                           kernfs_add_one()
1903          *                                                           kernfs_put()
1904          *
1905          * Before CPU1 remove last child device under glue dir, if CPU2 add
1906          * a new device under glue dir, the glue_dir kobject reference count
1907          * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908          * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909          * and sysfs_put(). This result in glue_dir->sd is freed.
1910          *
1911          * Then the CPU2 will see a stale "empty" but still potentially used
1912          * glue dir around in kernfs_new_node().
1913          *
1914          * In order to avoid this happening, we also should make sure that
1915          * kernfs_node for glue_dir is released in CPU1 only when refcount
1916          * for glue_dir kobj is 1.
1917          */
1918         ref = kref_read(&glue_dir->kref);
1919         if (!kobject_has_children(glue_dir) && !--ref)
1920                 kobject_del(glue_dir);
1921         kobject_put(glue_dir);
1922         mutex_unlock(&gdp_mutex);
1923 }
1924 
1925 static int device_add_class_symlinks(struct device *dev)
1926 {
1927         struct device_node *of_node = dev_of_node(dev);
1928         int error;
1929 
1930         if (of_node) {
1931                 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932                 if (error)
1933                         dev_warn(dev, "Error %d creating of_node link\n",error);
1934                 /* An error here doesn't warrant bringing down the device */
1935         }
1936 
1937         if (!dev->class)
1938                 return 0;
1939 
1940         error = sysfs_create_link(&dev->kobj,
1941                                   &dev->class->p->subsys.kobj,
1942                                   "subsystem");
1943         if (error)
1944                 goto out_devnode;
1945 
1946         if (dev->parent && device_is_not_partition(dev)) {
1947                 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948                                           "device");
1949                 if (error)
1950                         goto out_subsys;
1951         }
1952 
1953 #ifdef CONFIG_BLOCK
1954         /* /sys/block has directories and does not need symlinks */
1955         if (sysfs_deprecated && dev->class == &block_class)
1956                 return 0;
1957 #endif
1958 
1959         /* link in the class directory pointing to the device */
1960         error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961                                   &dev->kobj, dev_name(dev));
1962         if (error)
1963                 goto out_device;
1964 
1965         return 0;
1966 
1967 out_device:
1968         sysfs_remove_link(&dev->kobj, "device");
1969 
1970 out_subsys:
1971         sysfs_remove_link(&dev->kobj, "subsystem");
1972 out_devnode:
1973         sysfs_remove_link(&dev->kobj, "of_node");
1974         return error;
1975 }
1976 
1977 static void device_remove_class_symlinks(struct device *dev)
1978 {
1979         if (dev_of_node(dev))
1980                 sysfs_remove_link(&dev->kobj, "of_node");
1981 
1982         if (!dev->class)
1983                 return;
1984 
1985         if (dev->parent && device_is_not_partition(dev))
1986                 sysfs_remove_link(&dev->kobj, "device");
1987         sysfs_remove_link(&dev->kobj, "subsystem");
1988 #ifdef CONFIG_BLOCK
1989         if (sysfs_deprecated && dev->class == &block_class)
1990                 return;
1991 #endif
1992         sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993 }
1994 
1995 /**
1996  * dev_set_name - set a device name
1997  * @dev: device
1998  * @fmt: format string for the device's name
1999  */
2000 int dev_set_name(struct device *dev, const char *fmt, ...)
2001 {
2002         va_list vargs;
2003         int err;
2004 
2005         va_start(vargs, fmt);
2006         err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007         va_end(vargs);
2008         return err;
2009 }
2010 EXPORT_SYMBOL_GPL(dev_set_name);
2011 
2012 /**
2013  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014  * @dev: device
2015  *
2016  * By default we select char/ for new entries.  Setting class->dev_obj
2017  * to NULL prevents an entry from being created.  class->dev_kobj must
2018  * be set (or cleared) before any devices are registered to the class
2019  * otherwise device_create_sys_dev_entry() and
2020  * device_remove_sys_dev_entry() will disagree about the presence of
2021  * the link.
2022  */
2023 static struct kobject *device_to_dev_kobj(struct device *dev)
2024 {
2025         struct kobject *kobj;
2026 
2027         if (dev->class)
2028                 kobj = dev->class->dev_kobj;
2029         else
2030                 kobj = sysfs_dev_char_kobj;
2031 
2032         return kobj;
2033 }
2034 
2035 static int device_create_sys_dev_entry(struct device *dev)
2036 {
2037         struct kobject *kobj = device_to_dev_kobj(dev);
2038         int error = 0;
2039         char devt_str[15];
2040 
2041         if (kobj) {
2042                 format_dev_t(devt_str, dev->devt);
2043                 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044         }
2045 
2046         return error;
2047 }
2048 
2049 static void device_remove_sys_dev_entry(struct device *dev)
2050 {
2051         struct kobject *kobj = device_to_dev_kobj(dev);
2052         char devt_str[15];
2053 
2054         if (kobj) {
2055                 format_dev_t(devt_str, dev->devt);
2056                 sysfs_remove_link(kobj, devt_str);
2057         }
2058 }
2059 
2060 static int device_private_init(struct device *dev)
2061 {
2062         dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063         if (!dev->p)
2064                 return -ENOMEM;
2065         dev->p->device = dev;
2066         klist_init(&dev->p->klist_children, klist_children_get,
2067                    klist_children_put);
2068         INIT_LIST_HEAD(&dev->p->deferred_probe);
2069         return 0;
2070 }
2071 
2072 /**
2073  * device_add - add device to device hierarchy.
2074  * @dev: device.
2075  *
2076  * This is part 2 of device_register(), though may be called
2077  * separately _iff_ device_initialize() has been called separately.
2078  *
2079  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080  * to the global and sibling lists for the device, then
2081  * adds it to the other relevant subsystems of the driver model.
2082  *
2083  * Do not call this routine or device_register() more than once for
2084  * any device structure.  The driver model core is not designed to work
2085  * with devices that get unregistered and then spring back to life.
2086  * (Among other things, it's very hard to guarantee that all references
2087  * to the previous incarnation of @dev have been dropped.)  Allocate
2088  * and register a fresh new struct device instead.
2089  *
2090  * NOTE: _Never_ directly free @dev after calling this function, even
2091  * if it returned an error! Always use put_device() to give up your
2092  * reference instead.
2093  *
2094  * Rule of thumb is: if device_add() succeeds, you should call
2095  * device_del() when you want to get rid of it. If device_add() has
2096  * *not* succeeded, use *only* put_device() to drop the reference
2097  * count.
2098  */
2099 int device_add(struct device *dev)
2100 {
2101         struct device *parent;
2102         struct kobject *kobj;
2103         struct class_interface *class_intf;
2104         int error = -EINVAL;
2105         struct kobject *glue_dir = NULL;
2106 
2107         dev = get_device(dev);
2108         if (!dev)
2109                 goto done;
2110 
2111         if (!dev->p) {
2112                 error = device_private_init(dev);
2113                 if (error)
2114                         goto done;
2115         }
2116 
2117         /*
2118          * for statically allocated devices, which should all be converted
2119          * some day, we need to initialize the name. We prevent reading back
2120          * the name, and force the use of dev_name()
2121          */
2122         if (dev->init_name) {
2123                 dev_set_name(dev, "%s", dev->init_name);
2124                 dev->init_name = NULL;
2125         }
2126 
2127         /* subsystems can specify simple device enumeration */
2128         if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129                 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130 
2131         if (!dev_name(dev)) {
2132                 error = -EINVAL;
2133                 goto name_error;
2134         }
2135 
2136         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137 
2138         parent = get_device(dev->parent);
2139         kobj = get_device_parent(dev, parent);
2140         if (IS_ERR(kobj)) {
2141                 error = PTR_ERR(kobj);
2142                 goto parent_error;
2143         }
2144         if (kobj)
2145                 dev->kobj.parent = kobj;
2146 
2147         /* use parent numa_node */
2148         if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149                 set_dev_node(dev, dev_to_node(parent));
2150 
2151         /* first, register with generic layer. */
2152         /* we require the name to be set before, and pass NULL */
2153         error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154         if (error) {
2155                 glue_dir = get_glue_dir(dev);
2156                 goto Error;
2157         }
2158 
2159         /* notify platform of device entry */
2160         error = device_platform_notify(dev, KOBJ_ADD);
2161         if (error)
2162                 goto platform_error;
2163 
2164         error = device_create_file(dev, &dev_attr_uevent);
2165         if (error)
2166                 goto attrError;
2167 
2168         error = device_add_class_symlinks(dev);
2169         if (error)
2170                 goto SymlinkError;
2171         error = device_add_attrs(dev);
2172         if (error)
2173                 goto AttrsError;
2174         error = bus_add_device(dev);
2175         if (error)
2176                 goto BusError;
2177         error = dpm_sysfs_add(dev);
2178         if (error)
2179                 goto DPMError;
2180         device_pm_add(dev);
2181 
2182         if (MAJOR(dev->devt)) {
2183                 error = device_create_file(dev, &dev_attr_dev);
2184                 if (error)
2185                         goto DevAttrError;
2186 
2187                 error = device_create_sys_dev_entry(dev);
2188                 if (error)
2189                         goto SysEntryError;
2190 
2191                 devtmpfs_create_node(dev);
2192         }
2193 
2194         /* Notify clients of device addition.  This call must come
2195          * after dpm_sysfs_add() and before kobject_uevent().
2196          */
2197         if (dev->bus)
2198                 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199                                              BUS_NOTIFY_ADD_DEVICE, dev);
2200 
2201         kobject_uevent(&dev->kobj, KOBJ_ADD);
2202         bus_probe_device(dev);
2203         if (parent)
2204                 klist_add_tail(&dev->p->knode_parent,
2205                                &parent->p->klist_children);
2206 
2207         if (dev->class) {
2208                 mutex_lock(&dev->class->p->mutex);
2209                 /* tie the class to the device */
2210                 klist_add_tail(&dev->p->knode_class,
2211                                &dev->class->p->klist_devices);
2212 
2213                 /* notify any interfaces that the device is here */
2214                 list_for_each_entry(class_intf,
2215                                     &dev->class->p->interfaces, node)
2216                         if (class_intf->add_dev)
2217                                 class_intf->add_dev(dev, class_intf);
2218                 mutex_unlock(&dev->class->p->mutex);
2219         }
2220 done:
2221         put_device(dev);
2222         return error;
2223  SysEntryError:
2224         if (MAJOR(dev->devt))
2225                 device_remove_file(dev, &dev_attr_dev);
2226  DevAttrError:
2227         device_pm_remove(dev);
2228         dpm_sysfs_remove(dev);
2229  DPMError:
2230         bus_remove_device(dev);
2231  BusError:
2232         device_remove_attrs(dev);
2233  AttrsError:
2234         device_remove_class_symlinks(dev);
2235  SymlinkError:
2236         device_remove_file(dev, &dev_attr_uevent);
2237  attrError:
2238         device_platform_notify(dev, KOBJ_REMOVE);
2239 platform_error:
2240         kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241         glue_dir = get_glue_dir(dev);
2242         kobject_del(&dev->kobj);
2243  Error:
2244         cleanup_glue_dir(dev, glue_dir);
2245 parent_error:
2246         put_device(parent);
2247 name_error:
2248         kfree(dev->p);
2249         dev->p = NULL;
2250         goto done;
2251 }
2252 EXPORT_SYMBOL_GPL(device_add);
2253 
2254 /**
2255  * device_register - register a device with the system.
2256  * @dev: pointer to the device structure
2257  *
2258  * This happens in two clean steps - initialize the device
2259  * and add it to the system. The two steps can be called
2260  * separately, but this is the easiest and most common.
2261  * I.e. you should only call the two helpers separately if
2262  * have a clearly defined need to use and refcount the device
2263  * before it is added to the hierarchy.
2264  *
2265  * For more information, see the kerneldoc for device_initialize()
2266  * and device_add().
2267  *
2268  * NOTE: _Never_ directly free @dev after calling this function, even
2269  * if it returned an error! Always use put_device() to give up the
2270  * reference initialized in this function instead.
2271  */
2272 int device_register(struct device *dev)
2273 {
2274         device_initialize(dev);
2275         return device_add(dev);
2276 }
2277 EXPORT_SYMBOL_GPL(device_register);
2278 
2279 /**
2280  * get_device - increment reference count for device.
2281  * @dev: device.
2282  *
2283  * This simply forwards the call to kobject_get(), though
2284  * we do take care to provide for the case that we get a NULL
2285  * pointer passed in.
2286  */
2287 struct device *get_device(struct device *dev)
2288 {
2289         return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290 }
2291 EXPORT_SYMBOL_GPL(get_device);
2292 
2293 /**
2294  * put_device - decrement reference count.
2295  * @dev: device in question.
2296  */
2297 void put_device(struct device *dev)
2298 {
2299         /* might_sleep(); */
2300         if (dev)
2301                 kobject_put(&dev->kobj);
2302 }
2303 EXPORT_SYMBOL_GPL(put_device);
2304 
2305 bool kill_device(struct device *dev)
2306 {
2307         /*
2308          * Require the device lock and set the "dead" flag to guarantee that
2309          * the update behavior is consistent with the other bitfields near
2310          * it and that we cannot have an asynchronous probe routine trying
2311          * to run while we are tearing out the bus/class/sysfs from
2312          * underneath the device.
2313          */
2314         lockdep_assert_held(&dev->mutex);
2315 
2316         if (dev->p->dead)
2317                 return false;
2318         dev->p->dead = true;
2319         return true;
2320 }
2321 EXPORT_SYMBOL_GPL(kill_device);
2322 
2323 /**
2324  * device_del - delete device from system.
2325  * @dev: device.
2326  *
2327  * This is the first part of the device unregistration
2328  * sequence. This removes the device from the lists we control
2329  * from here, has it removed from the other driver model
2330  * subsystems it was added to in device_add(), and removes it
2331  * from the kobject hierarchy.
2332  *
2333  * NOTE: this should be called manually _iff_ device_add() was
2334  * also called manually.
2335  */
2336 void device_del(struct device *dev)
2337 {
2338         struct device *parent = dev->parent;
2339         struct kobject *glue_dir = NULL;
2340         struct class_interface *class_intf;
2341 
2342         device_lock(dev);
2343         kill_device(dev);
2344         device_unlock(dev);
2345 
2346         /* Notify clients of device removal.  This call must come
2347          * before dpm_sysfs_remove().
2348          */
2349         if (dev->bus)
2350                 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351                                              BUS_NOTIFY_DEL_DEVICE, dev);
2352 
2353         dpm_sysfs_remove(dev);
2354         if (parent)
2355                 klist_del(&dev->p->knode_parent);
2356         if (MAJOR(dev->devt)) {
2357                 devtmpfs_delete_node(dev);
2358                 device_remove_sys_dev_entry(dev);
2359                 device_remove_file(dev, &dev_attr_dev);
2360         }
2361         if (dev->class) {
2362                 device_remove_class_symlinks(dev);
2363 
2364                 mutex_lock(&dev->class->p->mutex);
2365                 /* notify any interfaces that the device is now gone */
2366                 list_for_each_entry(class_intf,
2367                                     &dev->class->p->interfaces, node)
2368                         if (class_intf->remove_dev)
2369                                 class_intf->remove_dev(dev, class_intf);
2370                 /* remove the device from the class list */
2371                 klist_del(&dev->p->knode_class);
2372                 mutex_unlock(&dev->class->p->mutex);
2373         }
2374         device_remove_file(dev, &dev_attr_uevent);
2375         device_remove_attrs(dev);
2376         bus_remove_device(dev);
2377         device_pm_remove(dev);
2378         driver_deferred_probe_del(dev);
2379         device_platform_notify(dev, KOBJ_REMOVE);
2380         device_remove_properties(dev);
2381         device_links_purge(dev);
2382 
2383         if (dev->bus)
2384                 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385                                              BUS_NOTIFY_REMOVED_DEVICE, dev);
2386         kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387         glue_dir = get_glue_dir(dev);
2388         kobject_del(&dev->kobj);
2389         cleanup_glue_dir(dev, glue_dir);
2390         put_device(parent);
2391 }
2392 EXPORT_SYMBOL_GPL(device_del);
2393 
2394 /**
2395  * device_unregister - unregister device from system.
2396  * @dev: device going away.
2397  *
2398  * We do this in two parts, like we do device_register(). First,
2399  * we remove it from all the subsystems with device_del(), then
2400  * we decrement the reference count via put_device(). If that
2401  * is the final reference count, the device will be cleaned up
2402  * via device_release() above. Otherwise, the structure will
2403  * stick around until the final reference to the device is dropped.
2404  */
2405 void device_unregister(struct device *dev)
2406 {
2407         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408         device_del(dev);
2409         put_device(dev);
2410 }
2411 EXPORT_SYMBOL_GPL(device_unregister);
2412 
2413 static struct device *prev_device(struct klist_iter *i)
2414 {
2415         struct klist_node *n = klist_prev(i);
2416         struct device *dev = NULL;
2417         struct device_private *p;
2418 
2419         if (n) {
2420                 p = to_device_private_parent(n);
2421                 dev = p->device;
2422         }
2423         return dev;
2424 }
2425 
2426 static struct device *next_device(struct klist_iter *i)
2427 {
2428         struct klist_node *n = klist_next(i);
2429         struct device *dev = NULL;
2430         struct device_private *p;
2431 
2432         if (n) {
2433                 p = to_device_private_parent(n);
2434                 dev = p->device;
2435         }
2436         return dev;
2437 }
2438 
2439 /**
2440  * device_get_devnode - path of device node file
2441  * @dev: device
2442  * @mode: returned file access mode
2443  * @uid: returned file owner
2444  * @gid: returned file group
2445  * @tmp: possibly allocated string
2446  *
2447  * Return the relative path of a possible device node.
2448  * Non-default names may need to allocate a memory to compose
2449  * a name. This memory is returned in tmp and needs to be
2450  * freed by the caller.
2451  */
2452 const char *device_get_devnode(struct device *dev,
2453                                umode_t *mode, kuid_t *uid, kgid_t *gid,
2454                                const char **tmp)
2455 {
2456         char *s;
2457 
2458         *tmp = NULL;
2459 
2460         /* the device type may provide a specific name */
2461         if (dev->type && dev->type->devnode)
2462                 *tmp = dev->type->devnode(dev, mode, uid, gid);
2463         if (*tmp)
2464                 return *tmp;
2465 
2466         /* the class may provide a specific name */
2467         if (dev->class && dev->class->devnode)
2468                 *tmp = dev->class->devnode(dev, mode);
2469         if (*tmp)
2470                 return *tmp;
2471 
2472         /* return name without allocation, tmp == NULL */
2473         if (strchr(dev_name(dev), '!') == NULL)
2474                 return dev_name(dev);
2475 
2476         /* replace '!' in the name with '/' */
2477         s = kstrdup(dev_name(dev), GFP_KERNEL);
2478         if (!s)
2479                 return NULL;
2480         strreplace(s, '!', '/');
2481         return *tmp = s;
2482 }
2483 
2484 /**
2485  * device_for_each_child - device child iterator.
2486  * @parent: parent struct device.
2487  * @fn: function to be called for each device.
2488  * @data: data for the callback.
2489  *
2490  * Iterate over @parent's child devices, and call @fn for each,
2491  * passing it @data.
2492  *
2493  * We check the return of @fn each time. If it returns anything
2494  * other than 0, we break out and return that value.
2495  */
2496 int device_for_each_child(struct device *parent, void *data,
2497                           int (*fn)(struct device *dev, void *data))
2498 {
2499         struct klist_iter i;
2500         struct device *child;
2501         int error = 0;
2502 
2503         if (!parent->p)
2504                 return 0;
2505 
2506         klist_iter_init(&parent->p->klist_children, &i);
2507         while (!error && (child = next_device(&i)))
2508                 error = fn(child, data);
2509         klist_iter_exit(&i);
2510         return error;
2511 }
2512 EXPORT_SYMBOL_GPL(device_for_each_child);
2513 
2514 /**
2515  * device_for_each_child_reverse - device child iterator in reversed order.
2516  * @parent: parent struct device.
2517  * @fn: function to be called for each device.
2518  * @data: data for the callback.
2519  *
2520  * Iterate over @parent's child devices, and call @fn for each,
2521  * passing it @data.
2522  *
2523  * We check the return of @fn each time. If it returns anything
2524  * other than 0, we break out and return that value.
2525  */
2526 int device_for_each_child_reverse(struct device *parent, void *data,
2527                                   int (*fn)(struct device *dev, void *data))
2528 {
2529         struct klist_iter i;
2530         struct device *child;
2531         int error = 0;
2532 
2533         if (!parent->p)
2534                 return 0;
2535 
2536         klist_iter_init(&parent->p->klist_children, &i);
2537         while ((child = prev_device(&i)) && !error)
2538                 error = fn(child, data);
2539         klist_iter_exit(&i);
2540         return error;
2541 }
2542 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543 
2544 /**
2545  * device_find_child - device iterator for locating a particular device.
2546  * @parent: parent struct device
2547  * @match: Callback function to check device
2548  * @data: Data to pass to match function
2549  *
2550  * This is similar to the device_for_each_child() function above, but it
2551  * returns a reference to a device that is 'found' for later use, as
2552  * determined by the @match callback.
2553  *
2554  * The callback should return 0 if the device doesn't match and non-zero
2555  * if it does.  If the callback returns non-zero and a reference to the
2556  * current device can be obtained, this function will return to the caller
2557  * and not iterate over any more devices.
2558  *
2559  * NOTE: you will need to drop the reference with put_device() after use.
2560  */
2561 struct device *device_find_child(struct device *parent, void *data,
2562                                  int (*match)(struct device *dev, void *data))
2563 {
2564         struct klist_iter i;
2565         struct device *child;
2566 
2567         if (!parent)
2568                 return NULL;
2569 
2570         klist_iter_init(&parent->p->klist_children, &i);
2571         while ((child = next_device(&i)))
2572                 if (match(child, data) && get_device(child))
2573                         break;
2574         klist_iter_exit(&i);
2575         return child;
2576 }
2577 EXPORT_SYMBOL_GPL(device_find_child);
2578 
2579 /**
2580  * device_find_child_by_name - device iterator for locating a child device.
2581  * @parent: parent struct device
2582  * @name: name of the child device
2583  *
2584  * This is similar to the device_find_child() function above, but it
2585  * returns a reference to a device that has the name @name.
2586  *
2587  * NOTE: you will need to drop the reference with put_device() after use.
2588  */
2589 struct device *device_find_child_by_name(struct device *parent,
2590                                          const char *name)
2591 {
2592         struct klist_iter i;
2593         struct device *child;
2594 
2595         if (!parent)
2596                 return NULL;
2597 
2598         klist_iter_init(&parent->p->klist_children, &i);
2599         while ((child = next_device(&i)))
2600                 if (!strcmp(dev_name(child), name) && get_device(child))
2601                         break;
2602         klist_iter_exit(&i);
2603         return child;
2604 }
2605 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606 
2607 int __init devices_init(void)
2608 {
2609         devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610         if (!devices_kset)
2611                 return -ENOMEM;
2612         dev_kobj = kobject_create_and_add("dev", NULL);
2613         if (!dev_kobj)
2614                 goto dev_kobj_err;
2615         sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616         if (!sysfs_dev_block_kobj)
2617                 goto block_kobj_err;
2618         sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619         if (!sysfs_dev_char_kobj)
2620                 goto char_kobj_err;
2621 
2622         return 0;
2623 
2624  char_kobj_err:
2625         kobject_put(sysfs_dev_block_kobj);
2626  block_kobj_err:
2627         kobject_put(dev_kobj);
2628  dev_kobj_err:
2629         kset_unregister(devices_kset);
2630         return -ENOMEM;
2631 }
2632 
2633 static int device_check_offline(struct device *dev, void *not_used)
2634 {
2635         int ret;
2636 
2637         ret = device_for_each_child(dev, NULL, device_check_offline);
2638         if (ret)
2639                 return ret;
2640 
2641         return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642 }
2643 
2644 /**
2645  * device_offline - Prepare the device for hot-removal.
2646  * @dev: Device to be put offline.
2647  *
2648  * Execute the device bus type's .offline() callback, if present, to prepare
2649  * the device for a subsequent hot-removal.  If that succeeds, the device must
2650  * not be used until either it is removed or its bus type's .online() callback
2651  * is executed.
2652  *
2653  * Call under device_hotplug_lock.
2654  */
2655 int device_offline(struct device *dev)
2656 {
2657         int ret;
2658 
2659         if (dev->offline_disabled)
2660                 return -EPERM;
2661 
2662         ret = device_for_each_child(dev, NULL, device_check_offline);
2663         if (ret)
2664                 return ret;
2665 
2666         device_lock(dev);
2667         if (device_supports_offline(dev)) {
2668                 if (dev->offline) {
2669                         ret = 1;
2670                 } else {
2671                         ret = dev->bus->offline(dev);
2672                         if (!ret) {
2673                                 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674                                 dev->offline = true;
2675                         }
2676                 }
2677         }
2678         device_unlock(dev);
2679 
2680         return ret;
2681 }
2682 
2683 /**
2684  * device_online - Put the device back online after successful device_offline().
2685  * @dev: Device to be put back online.
2686  *
2687  * If device_offline() has been successfully executed for @dev, but the device
2688  * has not been removed subsequently, execute its bus type's .online() callback
2689  * to indicate that the device can be used again.
2690  *
2691  * Call under device_hotplug_lock.
2692  */
2693 int device_online(struct device *dev)
2694 {
2695         int ret = 0;
2696 
2697         device_lock(dev);
2698         if (device_supports_offline(dev)) {
2699                 if (dev->offline) {
2700                         ret = dev->bus->online(dev);
2701                         if (!ret) {
2702                                 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703                                 dev->offline = false;
2704                         }
2705                 } else {
2706                         ret = 1;
2707                 }
2708         }
2709         device_unlock(dev);
2710 
2711         return ret;
2712 }
2713 
2714 struct root_device {
2715         struct device dev;
2716         struct module *owner;
2717 };
2718 
2719 static inline struct root_device *to_root_device(struct device *d)
2720 {
2721         return container_of(d, struct root_device, dev);
2722 }
2723 
2724 static void root_device_release(struct device *dev)
2725 {
2726         kfree(to_root_device(dev));
2727 }
2728 
2729 /**
2730  * __root_device_register - allocate and register a root device
2731  * @name: root device name
2732  * @owner: owner module of the root device, usually THIS_MODULE
2733  *
2734  * This function allocates a root device and registers it
2735  * using device_register(). In order to free the returned
2736  * device, use root_device_unregister().
2737  *
2738  * Root devices are dummy devices which allow other devices
2739  * to be grouped under /sys/devices. Use this function to
2740  * allocate a root device and then use it as the parent of
2741  * any device which should appear under /sys/devices/{name}
2742  *
2743  * The /sys/devices/{name} directory will also contain a
2744  * 'module' symlink which points to the @owner directory
2745  * in sysfs.
2746  *
2747  * Returns &struct device pointer on success, or ERR_PTR() on error.
2748  *
2749  * Note: You probably want to use root_device_register().
2750  */
2751 struct device *__root_device_register(const char *name, struct module *owner)
2752 {
2753         struct root_device *root;
2754         int err = -ENOMEM;
2755 
2756         root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757         if (!root)
2758                 return ERR_PTR(err);
2759 
2760         err = dev_set_name(&root->dev, "%s", name);
2761         if (err) {
2762                 kfree(root);
2763                 return ERR_PTR(err);
2764         }
2765 
2766         root->dev.release = root_device_release;
2767 
2768         err = device_register(&root->dev);
2769         if (err) {
2770                 put_device(&root->dev);
2771                 return ERR_PTR(err);
2772         }
2773 
2774 #ifdef CONFIG_MODULES   /* gotta find a "cleaner" way to do this */
2775         if (owner) {
2776                 struct module_kobject *mk = &owner->mkobj;
2777 
2778                 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779                 if (err) {
2780                         device_unregister(&root->dev);
2781                         return ERR_PTR(err);
2782                 }
2783                 root->owner = owner;
2784         }
2785 #endif
2786 
2787         return &root->dev;
2788 }
2789 EXPORT_SYMBOL_GPL(__root_device_register);
2790 
2791 /**
2792  * root_device_unregister - unregister and free a root device
2793  * @dev: device going away
2794  *
2795  * This function unregisters and cleans up a device that was created by
2796  * root_device_register().
2797  */
2798 void root_device_unregister(struct device *dev)
2799 {
2800         struct root_device *root = to_root_device(dev);
2801 
2802         if (root->owner)
2803                 sysfs_remove_link(&root->dev.kobj, "module");
2804 
2805         device_unregister(dev);
2806 }
2807 EXPORT_SYMBOL_GPL(root_device_unregister);
2808 
2809 
2810 static void device_create_release(struct device *dev)
2811 {
2812         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813         kfree(dev);
2814 }
2815 
2816 static __printf(6, 0) struct device *
2817 device_create_groups_vargs(struct class *class, struct device *parent,
2818                            dev_t devt, void *drvdata,
2819                            const struct attribute_group **groups,
2820                            const char *fmt, va_list args)
2821 {
2822         struct device *dev = NULL;
2823         int retval = -ENODEV;
2824 
2825         if (class == NULL || IS_ERR(class))
2826                 goto error;
2827 
2828         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829         if (!dev) {
2830                 retval = -ENOMEM;
2831                 goto error;
2832         }
2833 
2834         device_initialize(dev);
2835         dev->devt = devt;
2836         dev->class = class;
2837         dev->parent = parent;
2838         dev->groups = groups;
2839         dev->release = device_create_release;
2840         dev_set_drvdata(dev, drvdata);
2841 
2842         retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843         if (retval)
2844                 goto error;
2845 
2846         retval = device_add(dev);
2847         if (retval)
2848                 goto error;
2849 
2850         return dev;
2851 
2852 error:
2853         put_device(dev);
2854         return ERR_PTR(retval);
2855 }
2856 
2857 /**
2858  * device_create_vargs - creates a device and registers it with sysfs
2859  * @class: pointer to the struct class that this device should be registered to
2860  * @parent: pointer to the parent struct device of this new device, if any
2861  * @devt: the dev_t for the char device to be added
2862  * @drvdata: the data to be added to the device for callbacks
2863  * @fmt: string for the device's name
2864  * @args: va_list for the device's name
2865  *
2866  * This function can be used by char device classes.  A struct device
2867  * will be created in sysfs, registered to the specified class.
2868  *
2869  * A "dev" file will be created, showing the dev_t for the device, if
2870  * the dev_t is not 0,0.
2871  * If a pointer to a parent struct device is passed in, the newly created
2872  * struct device will be a child of that device in sysfs.
2873  * The pointer to the struct device will be returned from the call.
2874  * Any further sysfs files that might be required can be created using this
2875  * pointer.
2876  *
2877  * Returns &struct device pointer on success, or ERR_PTR() on error.
2878  *
2879  * Note: the struct class passed to this function must have previously
2880  * been created with a call to class_create().
2881  */
2882 struct device *device_create_vargs(struct class *class, struct device *parent,
2883                                    dev_t devt, void *drvdata, const char *fmt,
2884                                    va_list args)
2885 {
2886         return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887                                           fmt, args);
2888 }
2889 EXPORT_SYMBOL_GPL(device_create_vargs);
2890 
2891 /**
2892  * device_create - creates a device and registers it with sysfs
2893  * @class: pointer to the struct class that this device should be registered to
2894  * @parent: pointer to the parent struct device of this new device, if any
2895  * @devt: the dev_t for the char device to be added
2896  * @drvdata: the data to be added to the device for callbacks
2897  * @fmt: string for the device's name
2898  *
2899  * This function can be used by char device classes.  A struct device
2900  * will be created in sysfs, registered to the specified class.
2901  *
2902  * A "dev" file will be created, showing the dev_t for the device, if
2903  * the dev_t is not 0,0.
2904  * If a pointer to a parent struct device is passed in, the newly created
2905  * struct device will be a child of that device in sysfs.
2906  * The pointer to the struct device will be returned from the call.
2907  * Any further sysfs files that might be required can be created using this
2908  * pointer.
2909  *
2910  * Returns &struct device pointer on success, or ERR_PTR() on error.
2911  *
2912  * Note: the struct class passed to this function must have previously
2913  * been created with a call to class_create().
2914  */
2915 struct device *device_create(struct class *class, struct device *parent,
2916                              dev_t devt, void *drvdata, const char *fmt, ...)
2917 {
2918         va_list vargs;
2919         struct device *dev;
2920 
2921         va_start(vargs, fmt);
2922         dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923         va_end(vargs);
2924         return dev;
2925 }
2926 EXPORT_SYMBOL_GPL(device_create);
2927 
2928 /**
2929  * device_create_with_groups - creates a device and registers it with sysfs
2930  * @class: pointer to the struct class that this device should be registered to
2931  * @parent: pointer to the parent struct device of this new device, if any
2932  * @devt: the dev_t for the char device to be added
2933  * @drvdata: the data to be added to the device for callbacks
2934  * @groups: NULL-terminated list of attribute groups to be created
2935  * @fmt: string for the device's name
2936  *
2937  * This function can be used by char device classes.  A struct device
2938  * will be created in sysfs, registered to the specified class.
2939  * Additional attributes specified in the groups parameter will also
2940  * be created automatically.
2941  *
2942  * A "dev" file will be created, showing the dev_t for the device, if
2943  * the dev_t is not 0,0.
2944  * If a pointer to a parent struct device is passed in, the newly created
2945  * struct device will be a child of that device in sysfs.
2946  * The pointer to the struct device will be returned from the call.
2947  * Any further sysfs files that might be required can be created using this
2948  * pointer.
2949  *
2950  * Returns &struct device pointer on success, or ERR_PTR() on error.
2951  *
2952  * Note: the struct class passed to this function must have previously
2953  * been created with a call to class_create().
2954  */
2955 struct device *device_create_with_groups(struct class *class,
2956                                          struct device *parent, dev_t devt,
2957                                          void *drvdata,
2958                                          const struct attribute_group **groups,
2959                                          const char *fmt, ...)
2960 {
2961         va_list vargs;
2962         struct device *dev;
2963 
2964         va_start(vargs, fmt);
2965         dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966                                          fmt, vargs);
2967         va_end(vargs);
2968         return dev;
2969 }
2970 EXPORT_SYMBOL_GPL(device_create_with_groups);
2971 
2972 /**
2973  * device_destroy - removes a device that was created with device_create()
2974  * @class: pointer to the struct class that this device was registered with
2975  * @devt: the dev_t of the device that was previously registered
2976  *
2977  * This call unregisters and cleans up a device that was created with a
2978  * call to device_create().
2979  */
2980 void device_destroy(struct class *class, dev_t devt)
2981 {
2982         struct device *dev;
2983 
2984         dev = class_find_device_by_devt(class, devt);
2985         if (dev) {
2986                 put_device(dev);
2987                 device_unregister(dev);
2988         }
2989 }
2990 EXPORT_SYMBOL_GPL(device_destroy);
2991 
2992 /**
2993  * device_rename - renames a device
2994  * @dev: the pointer to the struct device to be renamed
2995  * @new_name: the new name of the device
2996  *
2997  * It is the responsibility of the caller to provide mutual
2998  * exclusion between two different calls of device_rename
2999  * on the same device to ensure that new_name is valid and
3000  * won't conflict with other devices.
3001  *
3002  * Note: Don't call this function.  Currently, the networking layer calls this
3003  * function, but that will change.  The following text from Kay Sievers offers
3004  * some insight:
3005  *
3006  * Renaming devices is racy at many levels, symlinks and other stuff are not
3007  * replaced atomically, and you get a "move" uevent, but it's not easy to
3008  * connect the event to the old and new device. Device nodes are not renamed at
3009  * all, there isn't even support for that in the kernel now.
3010  *
3011  * In the meantime, during renaming, your target name might be taken by another
3012  * driver, creating conflicts. Or the old name is taken directly after you
3013  * renamed it -- then you get events for the same DEVPATH, before you even see
3014  * the "move" event. It's just a mess, and nothing new should ever rely on
3015  * kernel device renaming. Besides that, it's not even implemented now for
3016  * other things than (driver-core wise very simple) network devices.
3017  *
3018  * We are currently about to change network renaming in udev to completely
3019  * disallow renaming of devices in the same namespace as the kernel uses,
3020  * because we can't solve the problems properly, that arise with swapping names
3021  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022  * be allowed to some other name than eth[0-9]*, for the aforementioned
3023  * reasons.
3024  *
3025  * Make up a "real" name in the driver before you register anything, or add
3026  * some other attributes for userspace to find the device, or use udev to add
3027  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028  * don't even want to get into that and try to implement the missing pieces in
3029  * the core. We really have other pieces to fix in the driver core mess. :)
3030  */
3031 int device_rename(struct device *dev, const char *new_name)
3032 {
3033         struct kobject *kobj = &dev->kobj;
3034         char *old_device_name = NULL;
3035         int error;
3036 
3037         dev = get_device(dev);
3038         if (!dev)
3039                 return -EINVAL;
3040 
3041         dev_dbg(dev, "renaming to %s\n", new_name);
3042 
3043         old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044         if (!old_device_name) {
3045                 error = -ENOMEM;
3046                 goto out;
3047         }
3048 
3049         if (dev->class) {
3050                 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051                                              kobj, old_device_name,
3052                                              new_name, kobject_namespace(kobj));
3053                 if (error)
3054                         goto out;
3055         }
3056 
3057         error = kobject_rename(kobj, new_name);
3058         if (error)
3059                 goto out;
3060 
3061 out:
3062         put_device(dev);
3063 
3064         kfree(old_device_name);
3065 
3066         return error;
3067 }
3068 EXPORT_SYMBOL_GPL(device_rename);
3069 
3070 static int device_move_class_links(struct device *dev,
3071                                    struct device *old_parent,
3072                                    struct device *new_parent)
3073 {
3074         int error = 0;
3075 
3076         if (old_parent)
3077                 sysfs_remove_link(&dev->kobj, "device");
3078         if (new_parent)
3079                 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080                                           "device");
3081         return error;
3082 }
3083 
3084 /**
3085  * device_move - moves a device to a new parent
3086  * @dev: the pointer to the struct device to be moved
3087  * @new_parent: the new parent of the device (can be NULL)
3088  * @dpm_order: how to reorder the dpm_list
3089  */
3090 int device_move(struct device *dev, struct device *new_parent,
3091                 enum dpm_order dpm_order)
3092 {
3093         int error;
3094         struct device *old_parent;
3095         struct kobject *new_parent_kobj;
3096 
3097         dev = get_device(dev);
3098         if (!dev)
3099                 return -EINVAL;
3100 
3101         device_pm_lock();
3102         new_parent = get_device(new_parent);
3103         new_parent_kobj = get_device_parent(dev, new_parent);
3104         if (IS_ERR(new_parent_kobj)) {
3105                 error = PTR_ERR(new_parent_kobj);
3106                 put_device(new_parent);
3107                 goto out;
3108         }
3109 
3110         pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111                  __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112         error = kobject_move(&dev->kobj, new_parent_kobj);
3113         if (error) {
3114                 cleanup_glue_dir(dev, new_parent_kobj);
3115                 put_device(new_parent);
3116                 goto out;
3117         }
3118         old_parent = dev->parent;
3119         dev->parent = new_parent;
3120         if (old_parent)
3121                 klist_remove(&dev->p->knode_parent);
3122         if (new_parent) {
3123                 klist_add_tail(&dev->p->knode_parent,
3124                                &new_parent->p->klist_children);
3125                 set_dev_node(dev, dev_to_node(new_parent));
3126         }
3127 
3128         if (dev->class) {
3129                 error = device_move_class_links(dev, old_parent, new_parent);
3130                 if (error) {
3131                         /* We ignore errors on cleanup since we're hosed anyway... */
3132                         device_move_class_links(dev, new_parent, old_parent);
3133                         if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134                                 if (new_parent)
3135                                         klist_remove(&dev->p->knode_parent);
3136                                 dev->parent = old_parent;
3137                                 if (old_parent) {
3138                                         klist_add_tail(&dev->p->knode_parent,
3139                                                        &old_parent->p->klist_children);
3140                                         set_dev_node(dev, dev_to_node(old_parent));
3141                                 }
3142                         }
3143                         cleanup_glue_dir(dev, new_parent_kobj);
3144                         put_device(new_parent);
3145                         goto out;
3146                 }
3147         }
3148         switch (dpm_order) {
3149         case DPM_ORDER_NONE:
3150                 break;
3151         case DPM_ORDER_DEV_AFTER_PARENT:
3152                 device_pm_move_after(dev, new_parent);
3153                 devices_kset_move_after(dev, new_parent);
3154                 break;
3155         case DPM_ORDER_PARENT_BEFORE_DEV:
3156                 device_pm_move_before(new_parent, dev);
3157                 devices_kset_move_before(new_parent, dev);
3158                 break;
3159         case DPM_ORDER_DEV_LAST:
3160                 device_pm_move_last(dev);
3161                 devices_kset_move_last(dev);
3162                 break;
3163         }
3164 
3165         put_device(old_parent);
3166 out:
3167         device_pm_unlock();
3168         put_device(dev);
3169         return error;
3170 }
3171 EXPORT_SYMBOL_GPL(device_move);
3172 
3173 /**
3174  * device_shutdown - call ->shutdown() on each device to shutdown.
3175  */
3176 void device_shutdown(void)
3177 {
3178         struct device *dev, *parent;
3179 
3180         wait_for_device_probe();
3181         device_block_probing();
3182 
3183         cpufreq_suspend();
3184 
3185         spin_lock(&devices_kset->list_lock);
3186         /*
3187          * Walk the devices list backward, shutting down each in turn.
3188          * Beware that device unplug events may also start pulling
3189          * devices offline, even as the system is shutting down.
3190          */
3191         while (!list_empty(&devices_kset->list)) {
3192                 dev = list_entry(devices_kset->list.prev, struct device,
3193                                 kobj.entry);
3194 
3195                 /*
3196                  * hold reference count of device's parent to
3197                  * prevent it from being freed because parent's
3198                  * lock is to be held
3199                  */
3200                 parent = get_device(dev->parent);
3201                 get_device(dev);
3202                 /*
3203                  * Make sure the device is off the kset list, in the
3204                  * event that dev->*->shutdown() doesn't remove it.
3205                  */
3206                 list_del_init(&dev->kobj.entry);
3207                 spin_unlock(&devices_kset->list_lock);
3208 
3209                 /* hold lock to avoid race with probe/release */
3210                 if (parent)
3211                         device_lock(parent);
3212                 device_lock(dev);
3213 
3214                 /* Don't allow any more runtime suspends */
3215                 pm_runtime_get_noresume(dev);
3216                 pm_runtime_barrier(dev);
3217 
3218                 if (dev->class && dev->class->shutdown_pre) {
3219                         if (initcall_debug)
3220                                 dev_info(dev, "shutdown_pre\n");
3221                         dev->class->shutdown_pre(dev);
3222                 }
3223                 if (dev->bus && dev->bus->shutdown) {
3224                         if (initcall_debug)
3225                                 dev_info(dev, "shutdown\n");
3226                         dev->bus->shutdown(dev);
3227                 } else if (dev->driver && dev->driver->shutdown) {
3228                         if (initcall_debug)
3229                                 dev_info(dev, "shutdown\n");
3230                         dev->driver->shutdown(dev);
3231                 }
3232 
3233                 device_unlock(dev);
3234                 if (parent)
3235                         device_unlock(parent);
3236 
3237                 put_device(dev);
3238                 put_device(parent);
3239 
3240                 spin_lock(&devices_kset->list_lock);
3241         }
3242         spin_unlock(&devices_kset->list_lock);
3243 }
3244 
3245 /*
3246  * Device logging functions
3247  */
3248 
3249 #ifdef CONFIG_PRINTK
3250 static int
3251 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252 {
3253         const char *subsys;
3254         size_t pos = 0;
3255 
3256         if (dev->class)
3257                 subsys = dev->class->name;
3258         else if (dev->bus)
3259                 subsys = dev->bus->name;
3260         else
3261                 return 0;
3262 
3263         pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264         if (pos >= hdrlen)
3265                 goto overflow;
3266 
3267         /*
3268          * Add device identifier DEVICE=:
3269          *   b12:8         block dev_t
3270          *   c127:3        char dev_t
3271          *   n8            netdev ifindex
3272          *   +sound:card0  subsystem:devname
3273          */
3274         if (MAJOR(dev->devt)) {
3275                 char c;
3276 
3277                 if (strcmp(subsys, "block") == 0)
3278                         c = 'b';
3279                 else
3280                         c = 'c';
3281                 pos++;
3282                 pos += snprintf(hdr + pos, hdrlen - pos,
3283                                 "DEVICE=%c%u:%u",
3284                                 c, MAJOR(dev->devt), MINOR(dev->devt));
3285         } else if (strcmp(subsys, "net") == 0) {
3286                 struct net_device *net = to_net_dev(dev);
3287 
3288                 pos++;
3289                 pos += snprintf(hdr + pos, hdrlen - pos,
3290                                 "DEVICE=n%u", net->ifindex);
3291         } else {
3292                 pos++;
3293                 pos += snprintf(hdr + pos, hdrlen - pos,
3294                                 "DEVICE=+%s:%s", subsys, dev_name(dev));
3295         }
3296 
3297         if (pos >= hdrlen)
3298                 goto overflow;
3299 
3300         return pos;
3301 
3302 overflow:
3303         dev_WARN(dev, "device/subsystem name too long");
3304         return 0;
3305 }
3306 
3307 int dev_vprintk_emit(int level, const struct device *dev,
3308                      const char *fmt, va_list args)
3309 {
3310         char hdr[128];
3311         size_t hdrlen;
3312 
3313         hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314 
3315         return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316 }
3317 EXPORT_SYMBOL(dev_vprintk_emit);
3318 
3319 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320 {
3321         va_list args;
3322         int r;
3323 
3324         va_start(args, fmt);
3325 
3326         r = dev_vprintk_emit(level, dev, fmt, args);
3327 
3328         va_end(args);
3329 
3330         return r;
3331 }
3332 EXPORT_SYMBOL(dev_printk_emit);
3333 
3334 static void __dev_printk(const char *level, const struct device *dev,
3335                         struct va_format *vaf)
3336 {
3337         if (dev)
3338                 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339                                 dev_driver_string(dev), dev_name(dev), vaf);
3340         else
3341                 printk("%s(NULL device *): %pV", level, vaf);
3342 }
3343 
3344 void dev_printk(const char *level, const struct device *dev,
3345                 const char *fmt, ...)
3346 {
3347         struct va_format vaf;
3348         va_list args;
3349 
3350         va_start(args, fmt);
3351 
3352         vaf.fmt = fmt;
3353         vaf.va = &args;
3354 
3355         __dev_printk(level, dev, &vaf);
3356 
3357         va_end(args);
3358 }
3359 EXPORT_SYMBOL(dev_printk);
3360 
3361 #define define_dev_printk_level(func, kern_level)               \
3362 void func(const struct device *dev, const char *fmt, ...)       \
3363 {                                                               \
3364         struct va_format vaf;                                   \
3365         va_list args;                                           \
3366                                                                 \
3367         va_start(args, fmt);                                    \
3368                                                                 \
3369         vaf.fmt = fmt;                                          \
3370         vaf.va = &args;                                         \
3371                                                                 \
3372         __dev_printk(kern_level, dev, &vaf);                    \
3373                                                                 \
3374         va_end(args);                                           \
3375 }                                                               \
3376 EXPORT_SYMBOL(func);
3377 
3378 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379 define_dev_printk_level(_dev_alert, KERN_ALERT);
3380 define_dev_printk_level(_dev_crit, KERN_CRIT);
3381 define_dev_printk_level(_dev_err, KERN_ERR);
3382 define_dev_printk_level(_dev_warn, KERN_WARNING);
3383 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384 define_dev_printk_level(_dev_info, KERN_INFO);
3385 
3386 #endif
3387 
3388 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389 {
3390         return fwnode && !IS_ERR(fwnode->secondary);
3391 }
3392 
3393 /**
3394  * set_primary_fwnode - Change the primary firmware node of a given device.
3395  * @dev: Device to handle.
3396  * @fwnode: New primary firmware node of the device.
3397  *
3398  * Set the device's firmware node pointer to @fwnode, but if a secondary
3399  * firmware node of the device is present, preserve it.
3400  */
3401 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402 {
3403         if (fwnode) {
3404                 struct fwnode_handle *fn = dev->fwnode;
3405 
3406                 if (fwnode_is_primary(fn))
3407                         fn = fn->secondary;
3408 
3409                 if (fn) {
3410                         WARN_ON(fwnode->secondary);
3411                         fwnode->secondary = fn;
3412                 }
3413                 dev->fwnode = fwnode;
3414         } else {
3415                 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416                         dev->fwnode->secondary : NULL;
3417         }
3418 }
3419 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420 
3421 /**
3422  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423  * @dev: Device to handle.
3424  * @fwnode: New secondary firmware node of the device.
3425  *
3426  * If a primary firmware node of the device is present, set its secondary
3427  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428  * @fwnode.
3429  */
3430 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431 {
3432         if (fwnode)
3433                 fwnode->secondary = ERR_PTR(-ENODEV);
3434 
3435         if (fwnode_is_primary(dev->fwnode))
3436                 dev->fwnode->secondary = fwnode;
3437         else
3438                 dev->fwnode = fwnode;
3439 }
3440 
3441 /**
3442  * device_set_of_node_from_dev - reuse device-tree node of another device
3443  * @dev: device whose device-tree node is being set
3444  * @dev2: device whose device-tree node is being reused
3445  *
3446  * Takes another reference to the new device-tree node after first dropping
3447  * any reference held to the old node.
3448  */
3449 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450 {
3451         of_node_put(dev->of_node);
3452         dev->of_node = of_node_get(dev2->of_node);
3453         dev->of_node_reused = true;
3454 }
3455 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456 
3457 int device_match_name(struct device *dev, const void *name)
3458 {
3459         return sysfs_streq(dev_name(dev), name);
3460 }
3461 EXPORT_SYMBOL_GPL(device_match_name);
3462 
3463 int device_match_of_node(struct device *dev, const void *np)
3464 {
3465         return dev->of_node == np;
3466 }
3467 EXPORT_SYMBOL_GPL(device_match_of_node);
3468 
3469 int device_match_fwnode(struct device *dev, const void *fwnode)
3470 {
3471         return dev_fwnode(dev) == fwnode;
3472 }
3473 EXPORT_SYMBOL_GPL(device_match_fwnode);
3474 
3475 int device_match_devt(struct device *dev, const void *pdevt)
3476 {
3477         return dev->devt == *(dev_t *)pdevt;
3478 }
3479 EXPORT_SYMBOL_GPL(device_match_devt);
3480 
3481 int device_match_acpi_dev(struct device *dev, const void *adev)
3482 {
3483         return ACPI_COMPANION(dev) == adev;
3484 }
3485 EXPORT_SYMBOL(device_match_acpi_dev);
3486 
3487 int device_match_any(struct device *dev, const void *unused)
3488 {
3489         return 1;
3490 }
3491 EXPORT_SYMBOL_GPL(device_match_any);

/* [<][>][^][v][top][bottom][index][help] */