root/drivers/clk/renesas/r9a06g032-clocks.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. clk_rdesc_set
  2. clk_rdesc_get
  3. create_add_module_clock
  4. r9a06g032_attach_dev
  5. r9a06g032_detach_dev
  6. r9a06g032_add_clk_domain
  7. r9a06g032_clk_gate_set
  8. r9a06g032_clk_gate_enable
  9. r9a06g032_clk_gate_disable
  10. r9a06g032_clk_gate_is_enabled
  11. r9a06g032_register_gate
  12. r9a06g032_div_recalc_rate
  13. r9a06g032_div_clamp_div
  14. r9a06g032_div_round_rate
  15. r9a06g032_div_set_rate
  16. r9a06g032_register_div
  17. r9a06g032_clk_mux_get_parent
  18. r9a06g032_clk_mux_set_parent
  19. r9a06g032_register_bitsel
  20. r9a06g032_clk_dualgate_setenable
  21. r9a06g032_clk_dualgate_enable
  22. r9a06g032_clk_dualgate_disable
  23. r9a06g032_clk_dualgate_is_enabled
  24. r9a06g032_register_dualgate
  25. r9a06g032_clocks_del_clk_provider
  26. r9a06g032_clocks_probe
  27. r9a06g032_clocks_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * R9A09G032 clock driver
   4  *
   5  * Copyright (C) 2018 Renesas Electronics Europe Limited
   6  *
   7  * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
   8  */
   9 
  10 #include <linux/clk.h>
  11 #include <linux/clk-provider.h>
  12 #include <linux/delay.h>
  13 #include <linux/init.h>
  14 #include <linux/io.h>
  15 #include <linux/kernel.h>
  16 #include <linux/math64.h>
  17 #include <linux/of.h>
  18 #include <linux/of_address.h>
  19 #include <linux/platform_device.h>
  20 #include <linux/pm_clock.h>
  21 #include <linux/pm_domain.h>
  22 #include <linux/slab.h>
  23 #include <linux/spinlock.h>
  24 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
  25 
  26 struct r9a06g032_gate {
  27         u16 gate, reset, ready, midle,
  28                 scon, mirack, mistat;
  29 };
  30 
  31 /* This is used to describe a clock for instantiation */
  32 struct r9a06g032_clkdesc {
  33         const char *name;
  34         uint32_t managed: 1;
  35         uint32_t type: 3;
  36         uint32_t index: 8;
  37         uint32_t source : 8; /* source index + 1 (0 == none) */
  38         /* these are used to populate the bitsel struct */
  39         union {
  40                 struct r9a06g032_gate gate;
  41                 /* for dividers */
  42                 struct {
  43                         unsigned int div_min : 10, div_max : 10, reg: 10;
  44                         u16 div_table[4];
  45                 };
  46                 /* For fixed-factor ones */
  47                 struct {
  48                         u16 div, mul;
  49                 };
  50                 unsigned int factor;
  51                 unsigned int frequency;
  52                 /* for dual gate */
  53                 struct {
  54                         uint16_t group : 1, index: 3;
  55                         u16 sel, g1, r1, g2, r2;
  56                 } dual;
  57         };
  58 } __packed;
  59 
  60 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
  61         { .gate = _clk, .reset = _rst, \
  62                 .ready = _rdy, .midle = _midle, \
  63                 .scon = _scon, .mirack = _mirack, .mistat = _mistat }
  64 #define D_GATE(_idx, _n, _src, ...) \
  65         { .type = K_GATE, .index = R9A06G032_##_idx, \
  66                 .source = 1 + R9A06G032_##_src, .name = _n, \
  67                 .gate = I_GATE(__VA_ARGS__) }
  68 #define D_MODULE(_idx, _n, _src, ...) \
  69         { .type = K_GATE, .index = R9A06G032_##_idx, \
  70                 .source = 1 + R9A06G032_##_src, .name = _n, \
  71                 .managed = 1, .gate = I_GATE(__VA_ARGS__) }
  72 #define D_ROOT(_idx, _n, _mul, _div) \
  73         { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
  74                 .div = _div, .mul = _mul }
  75 #define D_FFC(_idx, _n, _src, _div) \
  76         { .type = K_FFC, .index = R9A06G032_##_idx, \
  77                 .source = 1 + R9A06G032_##_src, .name = _n, \
  78                 .div = _div, .mul = 1}
  79 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
  80         { .type = K_DIV, .index = R9A06G032_##_idx, \
  81                 .source = 1 + R9A06G032_##_src, .name = _n, \
  82                 .reg = _reg, .div_min = _min, .div_max = _max, \
  83                 .div_table = { __VA_ARGS__ } }
  84 #define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
  85         { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
  86                 .source = 1 + R9A06G032_##_src, .name = _n, \
  87                 .dual = { .group = _g, .index = _gi, \
  88                         .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
  89 
  90 enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
  91 
  92 /* Internal clock IDs */
  93 #define R9A06G032_CLKOUT                0
  94 #define R9A06G032_CLKOUT_D10            2
  95 #define R9A06G032_CLKOUT_D16            3
  96 #define R9A06G032_CLKOUT_D160           4
  97 #define R9A06G032_CLKOUT_D1OR2          5
  98 #define R9A06G032_CLKOUT_D20            6
  99 #define R9A06G032_CLKOUT_D40            7
 100 #define R9A06G032_CLKOUT_D5             8
 101 #define R9A06G032_CLKOUT_D8             9
 102 #define R9A06G032_DIV_ADC               10
 103 #define R9A06G032_DIV_I2C               11
 104 #define R9A06G032_DIV_NAND              12
 105 #define R9A06G032_DIV_P1_PG             13
 106 #define R9A06G032_DIV_P2_PG             14
 107 #define R9A06G032_DIV_P3_PG             15
 108 #define R9A06G032_DIV_P4_PG             16
 109 #define R9A06G032_DIV_P5_PG             17
 110 #define R9A06G032_DIV_P6_PG             18
 111 #define R9A06G032_DIV_QSPI0             19
 112 #define R9A06G032_DIV_QSPI1             20
 113 #define R9A06G032_DIV_REF_SYNC          21
 114 #define R9A06G032_DIV_SDIO0             22
 115 #define R9A06G032_DIV_SDIO1             23
 116 #define R9A06G032_DIV_SWITCH            24
 117 #define R9A06G032_DIV_UART              25
 118 #define R9A06G032_DIV_MOTOR             64
 119 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4  78
 120 #define R9A06G032_CLK_ECAT100_D4        79
 121 #define R9A06G032_CLK_HSR100_D2         80
 122 #define R9A06G032_CLK_REF_SYNC_D4       81
 123 #define R9A06G032_CLK_REF_SYNC_D8       82
 124 #define R9A06G032_CLK_SERCOS100_D2      83
 125 #define R9A06G032_DIV_CA7               84
 126 
 127 #define R9A06G032_UART_GROUP_012        154
 128 #define R9A06G032_UART_GROUP_34567      155
 129 
 130 #define R9A06G032_CLOCK_COUNT           (R9A06G032_UART_GROUP_34567 + 1)
 131 
 132 static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
 133         D_ROOT(CLKOUT, "clkout", 25, 1),
 134         D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
 135         D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
 136         D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
 137         D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
 138         D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
 139         D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
 140         D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
 141         D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
 142         D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
 143         D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
 144         D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
 145         D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
 146         D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
 147         D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
 148         D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
 149         D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
 150         D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
 151         D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
 152         D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
 153         D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
 154         D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
 155         D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
 156         D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
 157         D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
 158         D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
 159         D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
 160         D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
 161         D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
 162         D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
 163         D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
 164         D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
 165         D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
 166         D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
 167         D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
 168         D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
 169         D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
 170         D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
 171         D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
 172         D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
 173         D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
 174         D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
 175         D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
 176         D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
 177         D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
 178         D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
 179         D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
 180         D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
 181         D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
 182         D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
 183         D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
 184         D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
 185         D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
 186         D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
 187         D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
 188         D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
 189         D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
 190         D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
 191         D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
 192         D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
 193         D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
 194         D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
 195         D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
 196         D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
 197         D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
 198         D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
 199         D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
 200         D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
 201         D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
 202         D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
 203         D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
 204         D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
 205         D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
 206         D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
 207         D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
 208         D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
 209         D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
 210         D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
 211         D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
 212         D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
 213         D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
 214         D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
 215         D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
 216         D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
 217         D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
 218         D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
 219         D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
 220         D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
 221         D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
 222         D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
 223         D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
 224         D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
 225         D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
 226         D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
 227         D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
 228         D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
 229         D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
 230         D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
 231         D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
 232         D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
 233         D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
 234         D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
 235         D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
 236         D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
 237         D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
 238         D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
 239         D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
 240         D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
 241         D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
 242         D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
 243         D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
 244         D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
 245         D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
 246         D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
 247         D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
 248         D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
 249         D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
 250         D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
 251         D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
 252         D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
 253         D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
 254         D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
 255         D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
 256         D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
 257         D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
 258         D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
 259         D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
 260         D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
 261         D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
 262         D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
 263         D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
 264         D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
 265         D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
 266         D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
 267         D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
 268         D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
 269         D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
 270         D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
 271         D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
 272         D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
 273         D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
 274         D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
 275         D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
 276         D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
 277         D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
 278         D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
 279         /*
 280          * These are not hardware clocks, but are needed to handle the special
 281          * case where we have a 'selector bit' that doesn't just change the
 282          * parent for a clock, but also the gate it's suposed to use.
 283          */
 284         {
 285                 .index = R9A06G032_UART_GROUP_012,
 286                 .name = "uart_group_012",
 287                 .type = K_BITSEL,
 288                 .source = 1 + R9A06G032_DIV_UART,
 289                 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
 290                 .dual.sel = ((0xec / 4) << 5) | 24,
 291                 .dual.group = 0,
 292         },
 293         {
 294                 .index = R9A06G032_UART_GROUP_34567,
 295                 .name = "uart_group_34567",
 296                 .type = K_BITSEL,
 297                 .source = 1 + R9A06G032_DIV_P2_PG,
 298                 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
 299                 .dual.sel = ((0x34 / 4) << 5) | 30,
 300                 .dual.group = 1,
 301         },
 302         D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
 303         D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
 304         D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
 305         D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
 306         D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
 307         D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
 308         D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
 309         D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
 310 };
 311 
 312 struct r9a06g032_priv {
 313         struct clk_onecell_data data;
 314         spinlock_t lock; /* protects concurent access to gates */
 315         void __iomem *reg;
 316 };
 317 
 318 /* register/bit pairs are encoded as an uint16_t */
 319 static void
 320 clk_rdesc_set(struct r9a06g032_priv *clocks,
 321               u16 one, unsigned int on)
 322 {
 323         u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
 324         u32 val = readl(reg);
 325 
 326         val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
 327         writel(val, reg);
 328 }
 329 
 330 static int
 331 clk_rdesc_get(struct r9a06g032_priv *clocks,
 332               uint16_t one)
 333 {
 334         u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
 335         u32 val = readl(reg);
 336 
 337         return !!(val & (1U << (one & 0x1f)));
 338 }
 339 
 340 /*
 341  * This implements the R9A09G032 clock gate 'driver'. We cannot use the system's
 342  * clock gate framework as the gates on the R9A09G032 have a special enabling
 343  * sequence, therefore we use this little proxy.
 344  */
 345 struct r9a06g032_clk_gate {
 346         struct clk_hw hw;
 347         struct r9a06g032_priv *clocks;
 348         u16 index;
 349 
 350         struct r9a06g032_gate gate;
 351 };
 352 
 353 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
 354 
 355 static int create_add_module_clock(struct of_phandle_args *clkspec,
 356                                    struct device *dev)
 357 {
 358         struct clk *clk;
 359         int error;
 360 
 361         clk = of_clk_get_from_provider(clkspec);
 362         if (IS_ERR(clk))
 363                 return PTR_ERR(clk);
 364 
 365         error = pm_clk_create(dev);
 366         if (error) {
 367                 clk_put(clk);
 368                 return error;
 369         }
 370 
 371         error = pm_clk_add_clk(dev, clk);
 372         if (error) {
 373                 pm_clk_destroy(dev);
 374                 clk_put(clk);
 375         }
 376 
 377         return error;
 378 }
 379 
 380 static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
 381                                 struct device *dev)
 382 {
 383         struct device_node *np = dev->of_node;
 384         struct of_phandle_args clkspec;
 385         int i = 0;
 386         int error;
 387         int index;
 388 
 389         while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
 390                                            &clkspec)) {
 391                 if (clkspec.np != pd->dev.of_node)
 392                         continue;
 393 
 394                 index = clkspec.args[0];
 395                 if (index < R9A06G032_CLOCK_COUNT &&
 396                     r9a06g032_clocks[index].managed) {
 397                         error = create_add_module_clock(&clkspec, dev);
 398                         of_node_put(clkspec.np);
 399                         if (error)
 400                                 return error;
 401                 }
 402                 i++;
 403         }
 404 
 405         return 0;
 406 }
 407 
 408 static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
 409 {
 410         if (!pm_clk_no_clocks(dev))
 411                 pm_clk_destroy(dev);
 412 }
 413 
 414 static int r9a06g032_add_clk_domain(struct device *dev)
 415 {
 416         struct device_node *np = dev->of_node;
 417         struct generic_pm_domain *pd;
 418 
 419         pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 420         if (!pd)
 421                 return -ENOMEM;
 422 
 423         pd->name = np->name;
 424         pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
 425                     GENPD_FLAG_ACTIVE_WAKEUP;
 426         pd->attach_dev = r9a06g032_attach_dev;
 427         pd->detach_dev = r9a06g032_detach_dev;
 428         pm_genpd_init(pd, &pm_domain_always_on_gov, false);
 429 
 430         of_genpd_add_provider_simple(np, pd);
 431         return 0;
 432 }
 433 
 434 static void
 435 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
 436                        struct r9a06g032_gate *g, int on)
 437 {
 438         unsigned long flags;
 439 
 440         WARN_ON(!g->gate);
 441 
 442         spin_lock_irqsave(&clocks->lock, flags);
 443         clk_rdesc_set(clocks, g->gate, on);
 444         /* De-assert reset */
 445         if (g->reset)
 446                 clk_rdesc_set(clocks, g->reset, 1);
 447         spin_unlock_irqrestore(&clocks->lock, flags);
 448 
 449         /* Hardware manual recommends 5us delay after enabling clock & reset */
 450         udelay(5);
 451 
 452         /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
 453          * associated SLVRDY bit in the System Controller that needs to be set
 454          * so that the FlexWAY bus fabric passes on the read/write requests.
 455          */
 456         if (g->ready || g->midle) {
 457                 spin_lock_irqsave(&clocks->lock, flags);
 458                 if (g->ready)
 459                         clk_rdesc_set(clocks, g->ready, on);
 460                 /* Clear 'Master Idle Request' bit */
 461                 if (g->midle)
 462                         clk_rdesc_set(clocks, g->midle, !on);
 463                 spin_unlock_irqrestore(&clocks->lock, flags);
 464         }
 465         /* Note: We don't wait for FlexWAY Socket Connection signal */
 466 }
 467 
 468 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
 469 {
 470         struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 471 
 472         r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
 473         return 0;
 474 }
 475 
 476 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
 477 {
 478         struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 479 
 480         r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
 481 }
 482 
 483 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
 484 {
 485         struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 486 
 487         /* if clock is in reset, the gate might be on, and still not 'be' on */
 488         if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
 489                 return 0;
 490 
 491         return clk_rdesc_get(g->clocks, g->gate.gate);
 492 }
 493 
 494 static const struct clk_ops r9a06g032_clk_gate_ops = {
 495         .enable = r9a06g032_clk_gate_enable,
 496         .disable = r9a06g032_clk_gate_disable,
 497         .is_enabled = r9a06g032_clk_gate_is_enabled,
 498 };
 499 
 500 static struct clk *
 501 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
 502                         const char *parent_name,
 503                         const struct r9a06g032_clkdesc *desc)
 504 {
 505         struct clk *clk;
 506         struct r9a06g032_clk_gate *g;
 507         struct clk_init_data init;
 508 
 509         g = kzalloc(sizeof(*g), GFP_KERNEL);
 510         if (!g)
 511                 return NULL;
 512 
 513         init.name = desc->name;
 514         init.ops = &r9a06g032_clk_gate_ops;
 515         init.flags = CLK_SET_RATE_PARENT;
 516         init.parent_names = parent_name ? &parent_name : NULL;
 517         init.num_parents = parent_name ? 1 : 0;
 518 
 519         g->clocks = clocks;
 520         g->index = desc->index;
 521         g->gate = desc->gate;
 522         g->hw.init = &init;
 523 
 524         /*
 525          * important here, some clocks are already in use by the CM3, we
 526          * have to assume they are not Linux's to play with and try to disable
 527          * at the end of the boot!
 528          */
 529         if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
 530                 init.flags |= CLK_IS_CRITICAL;
 531                 pr_debug("%s was enabled, making read-only\n", desc->name);
 532         }
 533 
 534         clk = clk_register(NULL, &g->hw);
 535         if (IS_ERR(clk)) {
 536                 kfree(g);
 537                 return NULL;
 538         }
 539         return clk;
 540 }
 541 
 542 struct r9a06g032_clk_div {
 543         struct clk_hw hw;
 544         struct r9a06g032_priv *clocks;
 545         u16 index;
 546         u16 reg;
 547         u16 min, max;
 548         u8 table_size;
 549         u16 table[8];   /* we know there are no more than 8 */
 550 };
 551 
 552 #define to_r9a06g032_div(_hw) \
 553                 container_of(_hw, struct r9a06g032_clk_div, hw)
 554 
 555 static unsigned long
 556 r9a06g032_div_recalc_rate(struct clk_hw *hw,
 557                           unsigned long parent_rate)
 558 {
 559         struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 560         u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
 561         u32 div = readl(reg);
 562 
 563         if (div < clk->min)
 564                 div = clk->min;
 565         else if (div > clk->max)
 566                 div = clk->max;
 567         return DIV_ROUND_UP(parent_rate, div);
 568 }
 569 
 570 /*
 571  * Attempts to find a value that is in range of min,max,
 572  * and if a table of set dividers was specified for this
 573  * register, try to find the fixed divider that is the closest
 574  * to the target frequency
 575  */
 576 static long
 577 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
 578                         unsigned long rate, unsigned long prate)
 579 {
 580         /* + 1 to cope with rates that have the remainder dropped */
 581         u32 div = DIV_ROUND_UP(prate, rate + 1);
 582         int i;
 583 
 584         if (div <= clk->min)
 585                 return clk->min;
 586         if (div >= clk->max)
 587                 return clk->max;
 588 
 589         for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
 590                 if (div >= clk->table[i] && div <= clk->table[i + 1]) {
 591                         unsigned long m = rate -
 592                                 DIV_ROUND_UP(prate, clk->table[i]);
 593                         unsigned long p =
 594                                 DIV_ROUND_UP(prate, clk->table[i + 1]) -
 595                                 rate;
 596                         /*
 597                          * select the divider that generates
 598                          * the value closest to the ideal frequency
 599                          */
 600                         div = p >= m ? clk->table[i] : clk->table[i + 1];
 601                         return div;
 602                 }
 603         }
 604         return div;
 605 }
 606 
 607 static long
 608 r9a06g032_div_round_rate(struct clk_hw *hw,
 609                          unsigned long rate, unsigned long *prate)
 610 {
 611         struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 612         u32 div = DIV_ROUND_UP(*prate, rate);
 613 
 614         pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
 615                  hw->clk, rate, *prate, div);
 616         pr_devel("   min %d (%ld) max %d (%ld)\n",
 617                  clk->min, DIV_ROUND_UP(*prate, clk->min),
 618                 clk->max, DIV_ROUND_UP(*prate, clk->max));
 619 
 620         div = r9a06g032_div_clamp_div(clk, rate, *prate);
 621         /*
 622          * this is a hack. Currently the serial driver asks for a clock rate
 623          * that is 16 times the baud rate -- and that is wildly outside the
 624          * range of the UART divider, somehow there is no provision for that
 625          * case of 'let the divider as is if outside range'.
 626          * The serial driver *shouldn't* play with these clocks anyway, there's
 627          * several uarts attached to this divider, and changing this impacts
 628          * everyone.
 629          */
 630         if (clk->index == R9A06G032_DIV_UART ||
 631             clk->index == R9A06G032_DIV_P2_PG) {
 632                 pr_devel("%s div uart hack!\n", __func__);
 633                 return clk_get_rate(hw->clk);
 634         }
 635         pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
 636                  *prate, div, DIV_ROUND_UP(*prate, div));
 637         return DIV_ROUND_UP(*prate, div);
 638 }
 639 
 640 static int
 641 r9a06g032_div_set_rate(struct clk_hw *hw,
 642                        unsigned long rate, unsigned long parent_rate)
 643 {
 644         struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 645         /* + 1 to cope with rates that have the remainder dropped */
 646         u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
 647         u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
 648 
 649         pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
 650                  rate, parent_rate, div);
 651 
 652         /*
 653          * Need to write the bit 31 with the divider value to
 654          * latch it. Technically we should wait until it has been
 655          * cleared too.
 656          * TODO: Find whether this callback is sleepable, in case
 657          * the hardware /does/ require some sort of spinloop here.
 658          */
 659         writel(div | BIT(31), reg);
 660 
 661         return 0;
 662 }
 663 
 664 static const struct clk_ops r9a06g032_clk_div_ops = {
 665         .recalc_rate = r9a06g032_div_recalc_rate,
 666         .round_rate = r9a06g032_div_round_rate,
 667         .set_rate = r9a06g032_div_set_rate,
 668 };
 669 
 670 static struct clk *
 671 r9a06g032_register_div(struct r9a06g032_priv *clocks,
 672                        const char *parent_name,
 673                        const struct r9a06g032_clkdesc *desc)
 674 {
 675         struct r9a06g032_clk_div *div;
 676         struct clk *clk;
 677         struct clk_init_data init;
 678         unsigned int i;
 679 
 680         div = kzalloc(sizeof(*div), GFP_KERNEL);
 681         if (!div)
 682                 return NULL;
 683 
 684         init.name = desc->name;
 685         init.ops = &r9a06g032_clk_div_ops;
 686         init.flags = CLK_SET_RATE_PARENT;
 687         init.parent_names = parent_name ? &parent_name : NULL;
 688         init.num_parents = parent_name ? 1 : 0;
 689 
 690         div->clocks = clocks;
 691         div->index = desc->index;
 692         div->reg = desc->reg;
 693         div->hw.init = &init;
 694         div->min = desc->div_min;
 695         div->max = desc->div_max;
 696         /* populate (optional) divider table fixed values */
 697         for (i = 0; i < ARRAY_SIZE(div->table) &&
 698              i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
 699                 div->table[div->table_size++] = desc->div_table[i];
 700         }
 701 
 702         clk = clk_register(NULL, &div->hw);
 703         if (IS_ERR(clk)) {
 704                 kfree(div);
 705                 return NULL;
 706         }
 707         return clk;
 708 }
 709 
 710 /*
 711  * This clock provider handles the case of the R9A06G032 where you have
 712  * peripherals that have two potential clock source and two gates, one for
 713  * each of the clock source - the used clock source (for all sub clocks)
 714  * is selected by a single bit.
 715  * That single bit affects all sub-clocks, and therefore needs to change the
 716  * active gate (and turn the others off) and force a recalculation of the rates.
 717  *
 718  * This implements two clock providers, one 'bitselect' that
 719  * handles the switch between both parents, and another 'dualgate'
 720  * that knows which gate to poke at, depending on the parent's bit position.
 721  */
 722 struct r9a06g032_clk_bitsel {
 723         struct clk_hw   hw;
 724         struct r9a06g032_priv *clocks;
 725         u16 index;
 726         u16 selector;           /* selector register + bit */
 727 };
 728 
 729 #define to_clk_bitselect(_hw) \
 730                 container_of(_hw, struct r9a06g032_clk_bitsel, hw)
 731 
 732 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
 733 {
 734         struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
 735 
 736         return clk_rdesc_get(set->clocks, set->selector);
 737 }
 738 
 739 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
 740 {
 741         struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
 742 
 743         /* a single bit in the register selects one of two parent clocks */
 744         clk_rdesc_set(set->clocks, set->selector, !!index);
 745 
 746         return 0;
 747 }
 748 
 749 static const struct clk_ops clk_bitselect_ops = {
 750         .get_parent = r9a06g032_clk_mux_get_parent,
 751         .set_parent = r9a06g032_clk_mux_set_parent,
 752 };
 753 
 754 static struct clk *
 755 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
 756                           const char *parent_name,
 757                           const struct r9a06g032_clkdesc *desc)
 758 {
 759         struct clk *clk;
 760         struct r9a06g032_clk_bitsel *g;
 761         struct clk_init_data init;
 762         const char *names[2];
 763 
 764         /* allocate the gate */
 765         g = kzalloc(sizeof(*g), GFP_KERNEL);
 766         if (!g)
 767                 return NULL;
 768 
 769         names[0] = parent_name;
 770         names[1] = "clk_pll_usb";
 771 
 772         init.name = desc->name;
 773         init.ops = &clk_bitselect_ops;
 774         init.flags = CLK_SET_RATE_PARENT;
 775         init.parent_names = names;
 776         init.num_parents = 2;
 777 
 778         g->clocks = clocks;
 779         g->index = desc->index;
 780         g->selector = desc->dual.sel;
 781         g->hw.init = &init;
 782 
 783         clk = clk_register(NULL, &g->hw);
 784         if (IS_ERR(clk)) {
 785                 kfree(g);
 786                 return NULL;
 787         }
 788         return clk;
 789 }
 790 
 791 struct r9a06g032_clk_dualgate {
 792         struct clk_hw   hw;
 793         struct r9a06g032_priv *clocks;
 794         u16 index;
 795         u16 selector;           /* selector register + bit */
 796         struct r9a06g032_gate gate[2];
 797 };
 798 
 799 #define to_clk_dualgate(_hw) \
 800                 container_of(_hw, struct r9a06g032_clk_dualgate, hw)
 801 
 802 static int
 803 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
 804 {
 805         u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
 806 
 807         /* we always turn off the 'other' gate, regardless */
 808         r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
 809         r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
 810 
 811         return 0;
 812 }
 813 
 814 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
 815 {
 816         struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
 817 
 818         r9a06g032_clk_dualgate_setenable(gate, 1);
 819 
 820         return 0;
 821 }
 822 
 823 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
 824 {
 825         struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
 826 
 827         r9a06g032_clk_dualgate_setenable(gate, 0);
 828 }
 829 
 830 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
 831 {
 832         struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
 833         u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
 834 
 835         return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
 836 }
 837 
 838 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
 839         .enable = r9a06g032_clk_dualgate_enable,
 840         .disable = r9a06g032_clk_dualgate_disable,
 841         .is_enabled = r9a06g032_clk_dualgate_is_enabled,
 842 };
 843 
 844 static struct clk *
 845 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
 846                             const char *parent_name,
 847                             const struct r9a06g032_clkdesc *desc,
 848                             uint16_t sel)
 849 {
 850         struct r9a06g032_clk_dualgate *g;
 851         struct clk *clk;
 852         struct clk_init_data init;
 853 
 854         /* allocate the gate */
 855         g = kzalloc(sizeof(*g), GFP_KERNEL);
 856         if (!g)
 857                 return NULL;
 858         g->clocks = clocks;
 859         g->index = desc->index;
 860         g->selector = sel;
 861         g->gate[0].gate = desc->dual.g1;
 862         g->gate[0].reset = desc->dual.r1;
 863         g->gate[1].gate = desc->dual.g2;
 864         g->gate[1].reset = desc->dual.r2;
 865 
 866         init.name = desc->name;
 867         init.ops = &r9a06g032_clk_dualgate_ops;
 868         init.flags = CLK_SET_RATE_PARENT;
 869         init.parent_names = &parent_name;
 870         init.num_parents = 1;
 871         g->hw.init = &init;
 872         /*
 873          * important here, some clocks are already in use by the CM3, we
 874          * have to assume they are not Linux's to play with and try to disable
 875          * at the end of the boot!
 876          */
 877         if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
 878                 init.flags |= CLK_IS_CRITICAL;
 879                 pr_debug("%s was enabled, making read-only\n", desc->name);
 880         }
 881 
 882         clk = clk_register(NULL, &g->hw);
 883         if (IS_ERR(clk)) {
 884                 kfree(g);
 885                 return NULL;
 886         }
 887         return clk;
 888 }
 889 
 890 static void r9a06g032_clocks_del_clk_provider(void *data)
 891 {
 892         of_clk_del_provider(data);
 893 }
 894 
 895 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
 896 {
 897         struct device *dev = &pdev->dev;
 898         struct device_node *np = dev->of_node;
 899         struct r9a06g032_priv *clocks;
 900         struct clk **clks;
 901         struct clk *mclk;
 902         unsigned int i;
 903         u16 uart_group_sel[2];
 904         int error;
 905 
 906         clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
 907         clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
 908                             GFP_KERNEL);
 909         if (!clocks || !clks)
 910                 return -ENOMEM;
 911 
 912         spin_lock_init(&clocks->lock);
 913 
 914         clocks->data.clks = clks;
 915         clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
 916 
 917         mclk = devm_clk_get(dev, "mclk");
 918         if (IS_ERR(mclk))
 919                 return PTR_ERR(mclk);
 920 
 921         clocks->reg = of_iomap(np, 0);
 922         if (WARN_ON(!clocks->reg))
 923                 return -ENOMEM;
 924         for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
 925                 const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
 926                 const char *parent_name = d->source ?
 927                         __clk_get_name(clocks->data.clks[d->source - 1]) :
 928                         __clk_get_name(mclk);
 929                 struct clk *clk = NULL;
 930 
 931                 switch (d->type) {
 932                 case K_FFC:
 933                         clk = clk_register_fixed_factor(NULL, d->name,
 934                                                         parent_name, 0,
 935                                                         d->mul, d->div);
 936                         break;
 937                 case K_GATE:
 938                         clk = r9a06g032_register_gate(clocks, parent_name, d);
 939                         break;
 940                 case K_DIV:
 941                         clk = r9a06g032_register_div(clocks, parent_name, d);
 942                         break;
 943                 case K_BITSEL:
 944                         /* keep that selector register around */
 945                         uart_group_sel[d->dual.group] = d->dual.sel;
 946                         clk = r9a06g032_register_bitsel(clocks, parent_name, d);
 947                         break;
 948                 case K_DUALGATE:
 949                         clk = r9a06g032_register_dualgate(clocks, parent_name,
 950                                                           d,
 951                                                           uart_group_sel[d->dual.group]);
 952                         break;
 953                 }
 954                 clocks->data.clks[d->index] = clk;
 955         }
 956         error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
 957         if (error)
 958                 return error;
 959 
 960         error = devm_add_action_or_reset(dev,
 961                                         r9a06g032_clocks_del_clk_provider, np);
 962         if (error)
 963                 return error;
 964 
 965         return r9a06g032_add_clk_domain(dev);
 966 }
 967 
 968 static const struct of_device_id r9a06g032_match[] = {
 969         { .compatible = "renesas,r9a06g032-sysctrl" },
 970         { }
 971 };
 972 
 973 static struct platform_driver r9a06g032_clock_driver = {
 974         .driver         = {
 975                 .name   = "renesas,r9a06g032-sysctrl",
 976                 .of_match_table = r9a06g032_match,
 977         },
 978 };
 979 
 980 static int __init r9a06g032_clocks_init(void)
 981 {
 982         return platform_driver_probe(&r9a06g032_clock_driver,
 983                         r9a06g032_clocks_probe);
 984 }
 985 
 986 subsys_initcall(r9a06g032_clocks_init);

/* [<][>][^][v][top][bottom][index][help] */