root/drivers/clk/clk-stm32h7.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ready_gate_clk_enable
  2. ready_gate_clk_disable
  3. clk_register_ready_gate
  4. _get_cmux
  5. _get_cdiv
  6. _get_cgate
  7. get_cfg_composite_div
  8. timer_ker_recalc_rate
  9. clk_register_stm32_timer_ker
  10. register_core_and_bus_clocks
  11. pll_is_enabled
  12. pll_enable
  13. pll_disable
  14. pll_frac_is_enabled
  15. pll_read_frac
  16. pll_fd_recalc_rate
  17. clk_register_stm32_pll
  18. odf_divider_recalc_rate
  19. odf_divider_round_rate
  20. odf_divider_set_rate
  21. odf_gate_enable
  22. odf_gate_disable
  23. stm32h7_rcc_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Copyright (C) STMicroelectronics 2017
   4  * Author: Gabriel Fernandez <gabriel.fernandez@st.com> for STMicroelectronics.
   5  */
   6 
   7 #include <linux/clk.h>
   8 #include <linux/clk-provider.h>
   9 #include <linux/err.h>
  10 #include <linux/io.h>
  11 #include <linux/mfd/syscon.h>
  12 #include <linux/of.h>
  13 #include <linux/of_address.h>
  14 #include <linux/slab.h>
  15 #include <linux/spinlock.h>
  16 #include <linux/regmap.h>
  17 
  18 #include <dt-bindings/clock/stm32h7-clks.h>
  19 
  20 /* Reset Clock Control Registers */
  21 #define RCC_CR          0x00
  22 #define RCC_CFGR        0x10
  23 #define RCC_D1CFGR      0x18
  24 #define RCC_D2CFGR      0x1C
  25 #define RCC_D3CFGR      0x20
  26 #define RCC_PLLCKSELR   0x28
  27 #define RCC_PLLCFGR     0x2C
  28 #define RCC_PLL1DIVR    0x30
  29 #define RCC_PLL1FRACR   0x34
  30 #define RCC_PLL2DIVR    0x38
  31 #define RCC_PLL2FRACR   0x3C
  32 #define RCC_PLL3DIVR    0x40
  33 #define RCC_PLL3FRACR   0x44
  34 #define RCC_D1CCIPR     0x4C
  35 #define RCC_D2CCIP1R    0x50
  36 #define RCC_D2CCIP2R    0x54
  37 #define RCC_D3CCIPR     0x58
  38 #define RCC_BDCR        0x70
  39 #define RCC_CSR         0x74
  40 #define RCC_AHB3ENR     0xD4
  41 #define RCC_AHB1ENR     0xD8
  42 #define RCC_AHB2ENR     0xDC
  43 #define RCC_AHB4ENR     0xE0
  44 #define RCC_APB3ENR     0xE4
  45 #define RCC_APB1LENR    0xE8
  46 #define RCC_APB1HENR    0xEC
  47 #define RCC_APB2ENR     0xF0
  48 #define RCC_APB4ENR     0xF4
  49 
  50 static DEFINE_SPINLOCK(stm32rcc_lock);
  51 
  52 static void __iomem *base;
  53 static struct clk_hw **hws;
  54 
  55 /* System clock parent */
  56 static const char * const sys_src[] = {
  57         "hsi_ck", "csi_ck", "hse_ck", "pll1_p" };
  58 
  59 static const char * const tracein_src[] = {
  60         "hsi_ck", "csi_ck", "hse_ck", "pll1_r" };
  61 
  62 static const char * const per_src[] = {
  63         "hsi_ker", "csi_ker", "hse_ck", "disabled" };
  64 
  65 static const char * const pll_src[] = {
  66         "hsi_ck", "csi_ck", "hse_ck", "no clock" };
  67 
  68 static const char * const sdmmc_src[] = { "pll1_q", "pll2_r" };
  69 
  70 static const char * const dsi_src[] = { "ck_dsi_phy", "pll2_q" };
  71 
  72 static const char * const qspi_src[] = {
  73         "hclk", "pll1_q", "pll2_r", "per_ck" };
  74 
  75 static const char * const fmc_src[] = {
  76         "hclk", "pll1_q", "pll2_r", "per_ck" };
  77 
  78 /* Kernel clock parent */
  79 static const char * const swp_src[] = { "pclk1", "hsi_ker" };
  80 
  81 static const char * const fdcan_src[] = { "hse_ck", "pll1_q", "pll2_q" };
  82 
  83 static const char * const dfsdm1_src[] = { "pclk2", "sys_ck" };
  84 
  85 static const char * const spdifrx_src[] = {
  86         "pll1_q", "pll2_r", "pll3_r", "hsi_ker" };
  87 
  88 static const char *spi_src1[5] = {
  89         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
  90 
  91 static const char * const spi_src2[] = {
  92         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
  93 
  94 static const char * const spi_src3[] = {
  95         "pclk4", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "hse_ck" };
  96 
  97 static const char * const lptim_src1[] = {
  98         "pclk1", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
  99 
 100 static const char * const lptim_src2[] = {
 101         "pclk4", "pll2_p", "pll3_r", "lse_ck", "lsi_ck", "per_ck" };
 102 
 103 static const char * const cec_src[] = {"lse_ck", "lsi_ck", "csi_ker_div122" };
 104 
 105 static const char * const usbotg_src[] = {"pll1_q", "pll3_q", "rc48_ck" };
 106 
 107 /* i2c 1,2,3 src */
 108 static const char * const i2c_src1[] = {
 109         "pclk1", "pll3_r", "hsi_ker", "csi_ker" };
 110 
 111 static const char * const i2c_src2[] = {
 112         "pclk4", "pll3_r", "hsi_ker", "csi_ker" };
 113 
 114 static const char * const rng_src[] = {
 115         "rc48_ck", "pll1_q", "lse_ck", "lsi_ck" };
 116 
 117 /* usart 1,6 src */
 118 static const char * const usart_src1[] = {
 119         "pclk2", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
 120 
 121 /* usart 2,3,4,5,7,8 src */
 122 static const char * const usart_src2[] = {
 123         "pclk1", "pll2_q", "pll3_q", "hsi_ker", "csi_ker", "lse_ck" };
 124 
 125 static const char *sai_src[5] = {
 126         "pll1_q", "pll2_p", "pll3_p", NULL, "per_ck" };
 127 
 128 static const char * const adc_src[] = { "pll2_p", "pll3_r", "per_ck" };
 129 
 130 /* lptim 2,3,4,5 src */
 131 static const char * const lpuart1_src[] = {
 132         "pclk3", "pll2_q", "pll3_q", "csi_ker", "lse_ck" };
 133 
 134 static const char * const hrtim_src[] = { "tim2_ker", "d1cpre" };
 135 
 136 /* RTC clock parent */
 137 static const char * const rtc_src[] = { "off", "lse_ck", "lsi_ck", "hse_1M" };
 138 
 139 /* Micro-controller output clock parent */
 140 static const char * const mco_src1[] = {
 141         "hsi_ck", "lse_ck", "hse_ck", "pll1_q", "rc48_ck" };
 142 
 143 static const char * const mco_src2[] = {
 144         "sys_ck", "pll2_p", "hse_ck", "pll1_p", "csi_ck", "lsi_ck" };
 145 
 146 /* LCD clock */
 147 static const char * const ltdc_src[] = {"pll3_r"};
 148 
 149 /* Gate clock with ready bit and backup domain management */
 150 struct stm32_ready_gate {
 151         struct  clk_gate gate;
 152         u8      bit_rdy;
 153 };
 154 
 155 #define to_ready_gate_clk(_rgate) container_of(_rgate, struct stm32_ready_gate,\
 156                 gate)
 157 
 158 #define RGATE_TIMEOUT 10000
 159 
 160 static int ready_gate_clk_enable(struct clk_hw *hw)
 161 {
 162         struct clk_gate *gate = to_clk_gate(hw);
 163         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
 164         int bit_status;
 165         unsigned int timeout = RGATE_TIMEOUT;
 166 
 167         if (clk_gate_ops.is_enabled(hw))
 168                 return 0;
 169 
 170         clk_gate_ops.enable(hw);
 171 
 172         /* We can't use readl_poll_timeout() because we can blocked if
 173          * someone enables this clock before clocksource changes.
 174          * Only jiffies counter is available. Jiffies are incremented by
 175          * interruptions and enable op does not allow to be interrupted.
 176          */
 177         do {
 178                 bit_status = !(readl(gate->reg) & BIT(rgate->bit_rdy));
 179 
 180                 if (bit_status)
 181                         udelay(100);
 182 
 183         } while (bit_status && --timeout);
 184 
 185         return bit_status;
 186 }
 187 
 188 static void ready_gate_clk_disable(struct clk_hw *hw)
 189 {
 190         struct clk_gate *gate = to_clk_gate(hw);
 191         struct stm32_ready_gate *rgate = to_ready_gate_clk(gate);
 192         int bit_status;
 193         unsigned int timeout = RGATE_TIMEOUT;
 194 
 195         if (!clk_gate_ops.is_enabled(hw))
 196                 return;
 197 
 198         clk_gate_ops.disable(hw);
 199 
 200         do {
 201                 bit_status = !!(readl(gate->reg) & BIT(rgate->bit_rdy));
 202 
 203                 if (bit_status)
 204                         udelay(100);
 205 
 206         } while (bit_status && --timeout);
 207 }
 208 
 209 static const struct clk_ops ready_gate_clk_ops = {
 210         .enable         = ready_gate_clk_enable,
 211         .disable        = ready_gate_clk_disable,
 212         .is_enabled     = clk_gate_is_enabled,
 213 };
 214 
 215 static struct clk_hw *clk_register_ready_gate(struct device *dev,
 216                 const char *name, const char *parent_name,
 217                 void __iomem *reg, u8 bit_idx, u8 bit_rdy,
 218                 unsigned long flags, spinlock_t *lock)
 219 {
 220         struct stm32_ready_gate *rgate;
 221         struct clk_init_data init = { NULL };
 222         struct clk_hw *hw;
 223         int ret;
 224 
 225         rgate = kzalloc(sizeof(*rgate), GFP_KERNEL);
 226         if (!rgate)
 227                 return ERR_PTR(-ENOMEM);
 228 
 229         init.name = name;
 230         init.ops = &ready_gate_clk_ops;
 231         init.flags = flags;
 232         init.parent_names = &parent_name;
 233         init.num_parents = 1;
 234 
 235         rgate->bit_rdy = bit_rdy;
 236         rgate->gate.lock = lock;
 237         rgate->gate.reg = reg;
 238         rgate->gate.bit_idx = bit_idx;
 239         rgate->gate.hw.init = &init;
 240 
 241         hw = &rgate->gate.hw;
 242         ret = clk_hw_register(dev, hw);
 243         if (ret) {
 244                 kfree(rgate);
 245                 hw = ERR_PTR(ret);
 246         }
 247 
 248         return hw;
 249 }
 250 
 251 struct gate_cfg {
 252         u32 offset;
 253         u8  bit_idx;
 254 };
 255 
 256 struct muxdiv_cfg {
 257         u32 offset;
 258         u8 shift;
 259         u8 width;
 260 };
 261 
 262 struct composite_clk_cfg {
 263         struct gate_cfg *gate;
 264         struct muxdiv_cfg *mux;
 265         struct muxdiv_cfg *div;
 266         const char *name;
 267         const char * const *parent_name;
 268         int num_parents;
 269         u32 flags;
 270 };
 271 
 272 struct composite_clk_gcfg_t {
 273         u8 flags;
 274         const struct clk_ops *ops;
 275 };
 276 
 277 /*
 278  * General config definition of a composite clock (only clock diviser for rate)
 279  */
 280 struct composite_clk_gcfg {
 281         struct composite_clk_gcfg_t *mux;
 282         struct composite_clk_gcfg_t *div;
 283         struct composite_clk_gcfg_t *gate;
 284 };
 285 
 286 #define M_CFG_MUX(_mux_ops, _mux_flags)\
 287         .mux = &(struct composite_clk_gcfg_t) { _mux_flags, _mux_ops}
 288 
 289 #define M_CFG_DIV(_rate_ops, _rate_flags)\
 290         .div = &(struct composite_clk_gcfg_t) {_rate_flags, _rate_ops}
 291 
 292 #define M_CFG_GATE(_gate_ops, _gate_flags)\
 293         .gate = &(struct composite_clk_gcfg_t) { _gate_flags, _gate_ops}
 294 
 295 static struct clk_mux *_get_cmux(void __iomem *reg, u8 shift, u8 width,
 296                 u32 flags, spinlock_t *lock)
 297 {
 298         struct clk_mux *mux;
 299 
 300         mux = kzalloc(sizeof(*mux), GFP_KERNEL);
 301         if (!mux)
 302                 return ERR_PTR(-ENOMEM);
 303 
 304         mux->reg        = reg;
 305         mux->shift      = shift;
 306         mux->mask       = (1 << width) - 1;
 307         mux->flags      = flags;
 308         mux->lock       = lock;
 309 
 310         return mux;
 311 }
 312 
 313 static struct clk_divider *_get_cdiv(void __iomem *reg, u8 shift, u8 width,
 314                 u32 flags, spinlock_t *lock)
 315 {
 316         struct clk_divider *div;
 317 
 318         div = kzalloc(sizeof(*div), GFP_KERNEL);
 319 
 320         if (!div)
 321                 return ERR_PTR(-ENOMEM);
 322 
 323         div->reg   = reg;
 324         div->shift = shift;
 325         div->width = width;
 326         div->flags = flags;
 327         div->lock  = lock;
 328 
 329         return div;
 330 }
 331 
 332 static struct clk_gate *_get_cgate(void __iomem *reg, u8 bit_idx, u32 flags,
 333                 spinlock_t *lock)
 334 {
 335         struct clk_gate *gate;
 336 
 337         gate = kzalloc(sizeof(*gate), GFP_KERNEL);
 338         if (!gate)
 339                 return ERR_PTR(-ENOMEM);
 340 
 341         gate->reg       = reg;
 342         gate->bit_idx   = bit_idx;
 343         gate->flags     = flags;
 344         gate->lock      = lock;
 345 
 346         return gate;
 347 }
 348 
 349 struct composite_cfg {
 350         struct clk_hw *mux_hw;
 351         struct clk_hw *div_hw;
 352         struct clk_hw *gate_hw;
 353 
 354         const struct clk_ops *mux_ops;
 355         const struct clk_ops *div_ops;
 356         const struct clk_ops *gate_ops;
 357 };
 358 
 359 static void get_cfg_composite_div(const struct composite_clk_gcfg *gcfg,
 360                 const struct composite_clk_cfg *cfg,
 361                 struct composite_cfg *composite, spinlock_t *lock)
 362 {
 363         struct clk_mux     *mux = NULL;
 364         struct clk_divider *div = NULL;
 365         struct clk_gate    *gate = NULL;
 366         const struct clk_ops *mux_ops, *div_ops, *gate_ops;
 367         struct clk_hw *mux_hw;
 368         struct clk_hw *div_hw;
 369         struct clk_hw *gate_hw;
 370 
 371         mux_ops = div_ops = gate_ops = NULL;
 372         mux_hw = div_hw = gate_hw = NULL;
 373 
 374         if (gcfg->mux && cfg->mux) {
 375                 mux = _get_cmux(base + cfg->mux->offset,
 376                                 cfg->mux->shift,
 377                                 cfg->mux->width,
 378                                 gcfg->mux->flags, lock);
 379 
 380                 if (!IS_ERR(mux)) {
 381                         mux_hw = &mux->hw;
 382                         mux_ops = gcfg->mux->ops ?
 383                                   gcfg->mux->ops : &clk_mux_ops;
 384                 }
 385         }
 386 
 387         if (gcfg->div && cfg->div) {
 388                 div = _get_cdiv(base + cfg->div->offset,
 389                                 cfg->div->shift,
 390                                 cfg->div->width,
 391                                 gcfg->div->flags, lock);
 392 
 393                 if (!IS_ERR(div)) {
 394                         div_hw = &div->hw;
 395                         div_ops = gcfg->div->ops ?
 396                                   gcfg->div->ops : &clk_divider_ops;
 397                 }
 398         }
 399 
 400         if (gcfg->gate && cfg->gate) {
 401                 gate = _get_cgate(base + cfg->gate->offset,
 402                                 cfg->gate->bit_idx,
 403                                 gcfg->gate->flags, lock);
 404 
 405                 if (!IS_ERR(gate)) {
 406                         gate_hw = &gate->hw;
 407                         gate_ops = gcfg->gate->ops ?
 408                                    gcfg->gate->ops : &clk_gate_ops;
 409                 }
 410         }
 411 
 412         composite->mux_hw = mux_hw;
 413         composite->mux_ops = mux_ops;
 414 
 415         composite->div_hw = div_hw;
 416         composite->div_ops = div_ops;
 417 
 418         composite->gate_hw = gate_hw;
 419         composite->gate_ops = gate_ops;
 420 }
 421 
 422 /* Kernel Timer */
 423 struct timer_ker {
 424         u8 dppre_shift;
 425         struct clk_hw hw;
 426         spinlock_t *lock;
 427 };
 428 
 429 #define to_timer_ker(_hw) container_of(_hw, struct timer_ker, hw)
 430 
 431 static unsigned long timer_ker_recalc_rate(struct clk_hw *hw,
 432                 unsigned long parent_rate)
 433 {
 434         struct timer_ker *clk_elem = to_timer_ker(hw);
 435         u32 timpre;
 436         u32 dppre_shift = clk_elem->dppre_shift;
 437         u32 prescaler;
 438         u32 mul;
 439 
 440         timpre = (readl(base + RCC_CFGR) >> 15) & 0x01;
 441 
 442         prescaler = (readl(base + RCC_D2CFGR) >> dppre_shift) & 0x03;
 443 
 444         mul = 2;
 445 
 446         if (prescaler < 4)
 447                 mul = 1;
 448 
 449         else if (timpre && prescaler > 4)
 450                 mul = 4;
 451 
 452         return parent_rate * mul;
 453 }
 454 
 455 static const struct clk_ops timer_ker_ops = {
 456         .recalc_rate = timer_ker_recalc_rate,
 457 };
 458 
 459 static struct clk_hw *clk_register_stm32_timer_ker(struct device *dev,
 460                 const char *name, const char *parent_name,
 461                 unsigned long flags,
 462                 u8 dppre_shift,
 463                 spinlock_t *lock)
 464 {
 465         struct timer_ker *element;
 466         struct clk_init_data init;
 467         struct clk_hw *hw;
 468         int err;
 469 
 470         element = kzalloc(sizeof(*element), GFP_KERNEL);
 471         if (!element)
 472                 return ERR_PTR(-ENOMEM);
 473 
 474         init.name = name;
 475         init.ops = &timer_ker_ops;
 476         init.flags = flags;
 477         init.parent_names = &parent_name;
 478         init.num_parents = 1;
 479 
 480         element->hw.init = &init;
 481         element->lock = lock;
 482         element->dppre_shift = dppre_shift;
 483 
 484         hw = &element->hw;
 485         err = clk_hw_register(dev, hw);
 486 
 487         if (err) {
 488                 kfree(element);
 489                 return ERR_PTR(err);
 490         }
 491 
 492         return hw;
 493 }
 494 
 495 static const struct clk_div_table d1cpre_div_table[] = {
 496         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
 497         { 4, 1 }, { 5, 1 }, { 6, 1 }, { 7, 1},
 498         { 8, 2 }, { 9, 4 }, { 10, 8 }, { 11, 16 },
 499         { 12, 64 }, { 13, 128 }, { 14, 256 },
 500         { 15, 512 },
 501         { 0 },
 502 };
 503 
 504 static const struct clk_div_table ppre_div_table[] = {
 505         { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1},
 506         { 4, 2 }, { 5, 4 }, { 6, 8 }, { 7, 16 },
 507         { 0 },
 508 };
 509 
 510 static void register_core_and_bus_clocks(void)
 511 {
 512         /* CORE AND BUS */
 513         hws[SYS_D1CPRE] = clk_hw_register_divider_table(NULL, "d1cpre",
 514                         "sys_ck", CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 8, 4, 0,
 515                         d1cpre_div_table, &stm32rcc_lock);
 516 
 517         hws[HCLK] = clk_hw_register_divider_table(NULL, "hclk", "d1cpre",
 518                         CLK_IGNORE_UNUSED, base + RCC_D1CFGR, 0, 4, 0,
 519                         d1cpre_div_table, &stm32rcc_lock);
 520 
 521         /* D1 DOMAIN */
 522         /* * CPU Systick */
 523         hws[CPU_SYSTICK] = clk_hw_register_fixed_factor(NULL, "systick",
 524                         "d1cpre", 0, 1, 8);
 525 
 526         /* * APB3 peripheral */
 527         hws[PCLK3] = clk_hw_register_divider_table(NULL, "pclk3", "hclk", 0,
 528                         base + RCC_D1CFGR, 4, 3, 0,
 529                         ppre_div_table, &stm32rcc_lock);
 530 
 531         /* D2 DOMAIN */
 532         /* * APB1 peripheral */
 533         hws[PCLK1] = clk_hw_register_divider_table(NULL, "pclk1", "hclk", 0,
 534                         base + RCC_D2CFGR, 4, 3, 0,
 535                         ppre_div_table, &stm32rcc_lock);
 536 
 537         /* Timers prescaler clocks */
 538         clk_register_stm32_timer_ker(NULL, "tim1_ker", "pclk1", 0,
 539                         4, &stm32rcc_lock);
 540 
 541         /* * APB2 peripheral */
 542         hws[PCLK2] = clk_hw_register_divider_table(NULL, "pclk2", "hclk", 0,
 543                         base + RCC_D2CFGR, 8, 3, 0, ppre_div_table,
 544                         &stm32rcc_lock);
 545 
 546         clk_register_stm32_timer_ker(NULL, "tim2_ker", "pclk2", 0, 8,
 547                         &stm32rcc_lock);
 548 
 549         /* D3 DOMAIN */
 550         /* * APB4 peripheral */
 551         hws[PCLK4] = clk_hw_register_divider_table(NULL, "pclk4", "hclk", 0,
 552                         base + RCC_D3CFGR, 4, 3, 0,
 553                         ppre_div_table, &stm32rcc_lock);
 554 }
 555 
 556 /* MUX clock configuration */
 557 struct stm32_mux_clk {
 558         const char *name;
 559         const char * const *parents;
 560         u8 num_parents;
 561         u32 offset;
 562         u8 shift;
 563         u8 width;
 564         u32 flags;
 565 };
 566 
 567 #define M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, _flags)\
 568 {\
 569         .name           = _name,\
 570         .parents        = _parents,\
 571         .num_parents    = ARRAY_SIZE(_parents),\
 572         .offset         = _mux_offset,\
 573         .shift          = _mux_shift,\
 574         .width          = _mux_width,\
 575         .flags          = _flags,\
 576 }
 577 
 578 #define M_MCLOC(_name, _parents, _mux_offset, _mux_shift, _mux_width)\
 579         M_MCLOCF(_name, _parents, _mux_offset, _mux_shift, _mux_width, 0)\
 580 
 581 static const struct stm32_mux_clk stm32_mclk[] __initconst = {
 582         M_MCLOC("per_ck",       per_src,        RCC_D1CCIPR,    28, 3),
 583         M_MCLOC("pllsrc",       pll_src,        RCC_PLLCKSELR,   0, 3),
 584         M_MCLOC("sys_ck",       sys_src,        RCC_CFGR,        0, 3),
 585         M_MCLOC("tracein_ck",   tracein_src,    RCC_CFGR,        0, 3),
 586 };
 587 
 588 /* Oscillary clock configuration */
 589 struct stm32_osc_clk {
 590         const char *name;
 591         const char *parent;
 592         u32 gate_offset;
 593         u8 bit_idx;
 594         u8 bit_rdy;
 595         u32 flags;
 596 };
 597 
 598 #define OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, _flags)\
 599 {\
 600         .name           = _name,\
 601         .parent         = _parent,\
 602         .gate_offset    = _gate_offset,\
 603         .bit_idx        = _bit_idx,\
 604         .bit_rdy        = _bit_rdy,\
 605         .flags          = _flags,\
 606 }
 607 
 608 #define OSC_CLK(_name, _parent, _gate_offset, _bit_idx, _bit_rdy)\
 609         OSC_CLKF(_name, _parent, _gate_offset, _bit_idx, _bit_rdy, 0)
 610 
 611 static const struct stm32_osc_clk stm32_oclk[] __initconst = {
 612         OSC_CLKF("hsi_ck",  "hsidiv",   RCC_CR,   0,  2, CLK_IGNORE_UNUSED),
 613         OSC_CLKF("hsi_ker", "hsidiv",   RCC_CR,   1,  2, CLK_IGNORE_UNUSED),
 614         OSC_CLKF("csi_ck",  "clk-csi",  RCC_CR,   7,  8, CLK_IGNORE_UNUSED),
 615         OSC_CLKF("csi_ker", "clk-csi",  RCC_CR,   9,  8, CLK_IGNORE_UNUSED),
 616         OSC_CLKF("rc48_ck", "clk-rc48", RCC_CR,  12, 13, CLK_IGNORE_UNUSED),
 617         OSC_CLKF("lsi_ck",  "clk-lsi",  RCC_CSR,  0,  1, CLK_IGNORE_UNUSED),
 618 };
 619 
 620 /* PLL configuration */
 621 struct st32h7_pll_cfg {
 622         u8 bit_idx;
 623         u32 offset_divr;
 624         u8 bit_frac_en;
 625         u32 offset_frac;
 626         u8 divm;
 627 };
 628 
 629 struct stm32_pll_data {
 630         const char *name;
 631         const char *parent_name;
 632         unsigned long flags;
 633         const struct st32h7_pll_cfg *cfg;
 634 };
 635 
 636 static const struct st32h7_pll_cfg stm32h7_pll1 = {
 637         .bit_idx = 24,
 638         .offset_divr = RCC_PLL1DIVR,
 639         .bit_frac_en = 0,
 640         .offset_frac = RCC_PLL1FRACR,
 641         .divm = 4,
 642 };
 643 
 644 static const struct st32h7_pll_cfg stm32h7_pll2 = {
 645         .bit_idx = 26,
 646         .offset_divr = RCC_PLL2DIVR,
 647         .bit_frac_en = 4,
 648         .offset_frac = RCC_PLL2FRACR,
 649         .divm = 12,
 650 };
 651 
 652 static const struct st32h7_pll_cfg stm32h7_pll3 = {
 653         .bit_idx = 28,
 654         .offset_divr = RCC_PLL3DIVR,
 655         .bit_frac_en = 8,
 656         .offset_frac = RCC_PLL3FRACR,
 657         .divm = 20,
 658 };
 659 
 660 static const struct stm32_pll_data stm32_pll[] = {
 661         { "vco1", "pllsrc", CLK_IGNORE_UNUSED, &stm32h7_pll1 },
 662         { "vco2", "pllsrc", 0, &stm32h7_pll2 },
 663         { "vco3", "pllsrc", 0, &stm32h7_pll3 },
 664 };
 665 
 666 struct stm32_fractional_divider {
 667         void __iomem    *mreg;
 668         u8              mshift;
 669         u8              mwidth;
 670         u32             mmask;
 671 
 672         void __iomem    *nreg;
 673         u8              nshift;
 674         u8              nwidth;
 675 
 676         void __iomem    *freg_status;
 677         u8              freg_bit;
 678         void __iomem    *freg_value;
 679         u8              fshift;
 680         u8              fwidth;
 681 
 682         u8              flags;
 683         struct clk_hw   hw;
 684         spinlock_t      *lock;
 685 };
 686 
 687 struct stm32_pll_obj {
 688         spinlock_t *lock;
 689         struct stm32_fractional_divider div;
 690         struct stm32_ready_gate rgate;
 691         struct clk_hw hw;
 692 };
 693 
 694 #define to_pll(_hw) container_of(_hw, struct stm32_pll_obj, hw)
 695 
 696 static int pll_is_enabled(struct clk_hw *hw)
 697 {
 698         struct stm32_pll_obj *clk_elem = to_pll(hw);
 699         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 700 
 701         __clk_hw_set_clk(_hw, hw);
 702 
 703         return ready_gate_clk_ops.is_enabled(_hw);
 704 }
 705 
 706 static int pll_enable(struct clk_hw *hw)
 707 {
 708         struct stm32_pll_obj *clk_elem = to_pll(hw);
 709         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 710 
 711         __clk_hw_set_clk(_hw, hw);
 712 
 713         return ready_gate_clk_ops.enable(_hw);
 714 }
 715 
 716 static void pll_disable(struct clk_hw *hw)
 717 {
 718         struct stm32_pll_obj *clk_elem = to_pll(hw);
 719         struct clk_hw *_hw = &clk_elem->rgate.gate.hw;
 720 
 721         __clk_hw_set_clk(_hw, hw);
 722 
 723         ready_gate_clk_ops.disable(_hw);
 724 }
 725 
 726 static int pll_frac_is_enabled(struct clk_hw *hw)
 727 {
 728         struct stm32_pll_obj *clk_elem = to_pll(hw);
 729         struct stm32_fractional_divider *fd = &clk_elem->div;
 730 
 731         return (readl(fd->freg_status) >> fd->freg_bit) & 0x01;
 732 }
 733 
 734 static unsigned long pll_read_frac(struct clk_hw *hw)
 735 {
 736         struct stm32_pll_obj *clk_elem = to_pll(hw);
 737         struct stm32_fractional_divider *fd = &clk_elem->div;
 738 
 739         return (readl(fd->freg_value) >> fd->fshift) &
 740                 GENMASK(fd->fwidth - 1, 0);
 741 }
 742 
 743 static unsigned long pll_fd_recalc_rate(struct clk_hw *hw,
 744                 unsigned long parent_rate)
 745 {
 746         struct stm32_pll_obj *clk_elem = to_pll(hw);
 747         struct stm32_fractional_divider *fd = &clk_elem->div;
 748         unsigned long m, n;
 749         u32 val, mask;
 750         u64 rate, rate1 = 0;
 751 
 752         val = readl(fd->mreg);
 753         mask = GENMASK(fd->mwidth - 1, 0) << fd->mshift;
 754         m = (val & mask) >> fd->mshift;
 755 
 756         val = readl(fd->nreg);
 757         mask = GENMASK(fd->nwidth - 1, 0) << fd->nshift;
 758         n = ((val & mask) >> fd->nshift) + 1;
 759 
 760         if (!n || !m)
 761                 return parent_rate;
 762 
 763         rate = (u64)parent_rate * n;
 764         do_div(rate, m);
 765 
 766         if (pll_frac_is_enabled(hw)) {
 767                 val = pll_read_frac(hw);
 768                 rate1 = (u64)parent_rate * (u64)val;
 769                 do_div(rate1, (m * 8191));
 770         }
 771 
 772         return rate + rate1;
 773 }
 774 
 775 static const struct clk_ops pll_ops = {
 776         .enable         = pll_enable,
 777         .disable        = pll_disable,
 778         .is_enabled     = pll_is_enabled,
 779         .recalc_rate    = pll_fd_recalc_rate,
 780 };
 781 
 782 static struct clk_hw *clk_register_stm32_pll(struct device *dev,
 783                 const char *name,
 784                 const char *parent,
 785                 unsigned long flags,
 786                 const struct st32h7_pll_cfg *cfg,
 787                 spinlock_t *lock)
 788 {
 789         struct stm32_pll_obj *pll;
 790         struct clk_init_data init = { NULL };
 791         struct clk_hw *hw;
 792         int ret;
 793         struct stm32_fractional_divider *div = NULL;
 794         struct stm32_ready_gate *rgate;
 795 
 796         pll = kzalloc(sizeof(*pll), GFP_KERNEL);
 797         if (!pll)
 798                 return ERR_PTR(-ENOMEM);
 799 
 800         init.name = name;
 801         init.ops = &pll_ops;
 802         init.flags = flags;
 803         init.parent_names = &parent;
 804         init.num_parents = 1;
 805         pll->hw.init = &init;
 806 
 807         hw = &pll->hw;
 808         rgate = &pll->rgate;
 809 
 810         rgate->bit_rdy = cfg->bit_idx + 1;
 811         rgate->gate.lock = lock;
 812         rgate->gate.reg = base + RCC_CR;
 813         rgate->gate.bit_idx = cfg->bit_idx;
 814 
 815         div = &pll->div;
 816         div->flags = 0;
 817         div->mreg = base + RCC_PLLCKSELR;
 818         div->mshift = cfg->divm;
 819         div->mwidth = 6;
 820         div->nreg = base +  cfg->offset_divr;
 821         div->nshift = 0;
 822         div->nwidth = 9;
 823 
 824         div->freg_status = base + RCC_PLLCFGR;
 825         div->freg_bit = cfg->bit_frac_en;
 826         div->freg_value = base +  cfg->offset_frac;
 827         div->fshift = 3;
 828         div->fwidth = 13;
 829 
 830         div->lock = lock;
 831 
 832         ret = clk_hw_register(dev, hw);
 833         if (ret) {
 834                 kfree(pll);
 835                 hw = ERR_PTR(ret);
 836         }
 837 
 838         return hw;
 839 }
 840 
 841 /* ODF CLOCKS */
 842 static unsigned long odf_divider_recalc_rate(struct clk_hw *hw,
 843                 unsigned long parent_rate)
 844 {
 845         return clk_divider_ops.recalc_rate(hw, parent_rate);
 846 }
 847 
 848 static long odf_divider_round_rate(struct clk_hw *hw, unsigned long rate,
 849                 unsigned long *prate)
 850 {
 851         return clk_divider_ops.round_rate(hw, rate, prate);
 852 }
 853 
 854 static int odf_divider_set_rate(struct clk_hw *hw, unsigned long rate,
 855                 unsigned long parent_rate)
 856 {
 857         struct clk_hw *hwp;
 858         int pll_status;
 859         int ret;
 860 
 861         hwp = clk_hw_get_parent(hw);
 862 
 863         pll_status = pll_is_enabled(hwp);
 864 
 865         if (pll_status)
 866                 pll_disable(hwp);
 867 
 868         ret = clk_divider_ops.set_rate(hw, rate, parent_rate);
 869 
 870         if (pll_status)
 871                 pll_enable(hwp);
 872 
 873         return ret;
 874 }
 875 
 876 static const struct clk_ops odf_divider_ops = {
 877         .recalc_rate    = odf_divider_recalc_rate,
 878         .round_rate     = odf_divider_round_rate,
 879         .set_rate       = odf_divider_set_rate,
 880 };
 881 
 882 static int odf_gate_enable(struct clk_hw *hw)
 883 {
 884         struct clk_hw *hwp;
 885         int pll_status;
 886         int ret;
 887 
 888         if (clk_gate_ops.is_enabled(hw))
 889                 return 0;
 890 
 891         hwp = clk_hw_get_parent(hw);
 892 
 893         pll_status = pll_is_enabled(hwp);
 894 
 895         if (pll_status)
 896                 pll_disable(hwp);
 897 
 898         ret = clk_gate_ops.enable(hw);
 899 
 900         if (pll_status)
 901                 pll_enable(hwp);
 902 
 903         return ret;
 904 }
 905 
 906 static void odf_gate_disable(struct clk_hw *hw)
 907 {
 908         struct clk_hw *hwp;
 909         int pll_status;
 910 
 911         if (!clk_gate_ops.is_enabled(hw))
 912                 return;
 913 
 914         hwp = clk_hw_get_parent(hw);
 915 
 916         pll_status = pll_is_enabled(hwp);
 917 
 918         if (pll_status)
 919                 pll_disable(hwp);
 920 
 921         clk_gate_ops.disable(hw);
 922 
 923         if (pll_status)
 924                 pll_enable(hwp);
 925 }
 926 
 927 static const struct clk_ops odf_gate_ops = {
 928         .enable         = odf_gate_enable,
 929         .disable        = odf_gate_disable,
 930         .is_enabled     = clk_gate_is_enabled,
 931 };
 932 
 933 static struct composite_clk_gcfg odf_clk_gcfg = {
 934         M_CFG_DIV(&odf_divider_ops, 0),
 935         M_CFG_GATE(&odf_gate_ops, 0),
 936 };
 937 
 938 #define M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 939                 _rate_shift, _rate_width, _flags)\
 940 {\
 941         .mux = NULL,\
 942         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
 943         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx },\
 944         .name = _name,\
 945         .parent_name = &(const char *) {_parent},\
 946         .num_parents = 1,\
 947         .flags = _flags,\
 948 }
 949 
 950 #define M_ODF(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 951                 _rate_shift, _rate_width)\
 952 M_ODF_F(_name, _parent, _gate_offset,  _bit_idx, _rate_offset,\
 953                 _rate_shift, _rate_width, 0)\
 954 
 955 static const struct composite_clk_cfg stm32_odf[3][3] = {
 956         {
 957                 M_ODF_F("pll1_p", "vco1", RCC_PLLCFGR, 16, RCC_PLL1DIVR,  9, 7,
 958                                 CLK_IGNORE_UNUSED),
 959                 M_ODF_F("pll1_q", "vco1", RCC_PLLCFGR, 17, RCC_PLL1DIVR, 16, 7,
 960                                 CLK_IGNORE_UNUSED),
 961                 M_ODF_F("pll1_r", "vco1", RCC_PLLCFGR, 18, RCC_PLL1DIVR, 24, 7,
 962                                 CLK_IGNORE_UNUSED),
 963         },
 964 
 965         {
 966                 M_ODF("pll2_p", "vco2", RCC_PLLCFGR, 19, RCC_PLL2DIVR,  9, 7),
 967                 M_ODF("pll2_q", "vco2", RCC_PLLCFGR, 20, RCC_PLL2DIVR, 16, 7),
 968                 M_ODF("pll2_r", "vco2", RCC_PLLCFGR, 21, RCC_PLL2DIVR, 24, 7),
 969         },
 970         {
 971                 M_ODF("pll3_p", "vco3", RCC_PLLCFGR, 22, RCC_PLL3DIVR,  9, 7),
 972                 M_ODF("pll3_q", "vco3", RCC_PLLCFGR, 23, RCC_PLL3DIVR, 16, 7),
 973                 M_ODF("pll3_r", "vco3", RCC_PLLCFGR, 24, RCC_PLL3DIVR, 24, 7),
 974         }
 975 };
 976 
 977 /* PERIF CLOCKS */
 978 struct pclk_t {
 979         u32 gate_offset;
 980         u8 bit_idx;
 981         const char *name;
 982         const char *parent;
 983         u32 flags;
 984 };
 985 
 986 #define PER_CLKF(_gate_offset, _bit_idx, _name, _parent, _flags)\
 987 {\
 988         .gate_offset    = _gate_offset,\
 989         .bit_idx        = _bit_idx,\
 990         .name           = _name,\
 991         .parent         = _parent,\
 992         .flags          = _flags,\
 993 }
 994 
 995 #define PER_CLK(_gate_offset, _bit_idx, _name, _parent)\
 996         PER_CLKF(_gate_offset, _bit_idx, _name, _parent, 0)
 997 
 998 static const struct pclk_t pclk[] = {
 999         PER_CLK(RCC_AHB3ENR, 31, "d1sram1", "hclk"),
1000         PER_CLK(RCC_AHB3ENR, 30, "itcm", "hclk"),
1001         PER_CLK(RCC_AHB3ENR, 29, "dtcm2", "hclk"),
1002         PER_CLK(RCC_AHB3ENR, 28, "dtcm1", "hclk"),
1003         PER_CLK(RCC_AHB3ENR, 8, "flitf", "hclk"),
1004         PER_CLK(RCC_AHB3ENR, 5, "jpgdec", "hclk"),
1005         PER_CLK(RCC_AHB3ENR, 4, "dma2d", "hclk"),
1006         PER_CLK(RCC_AHB3ENR, 0, "mdma", "hclk"),
1007         PER_CLK(RCC_AHB1ENR, 28, "usb2ulpi", "hclk"),
1008         PER_CLK(RCC_AHB1ENR, 26, "usb1ulpi", "hclk"),
1009         PER_CLK(RCC_AHB1ENR, 17, "eth1rx", "hclk"),
1010         PER_CLK(RCC_AHB1ENR, 16, "eth1tx", "hclk"),
1011         PER_CLK(RCC_AHB1ENR, 15, "eth1mac", "hclk"),
1012         PER_CLK(RCC_AHB1ENR, 14, "art", "hclk"),
1013         PER_CLK(RCC_AHB1ENR, 1, "dma2", "hclk"),
1014         PER_CLK(RCC_AHB1ENR, 0, "dma1", "hclk"),
1015         PER_CLK(RCC_AHB2ENR, 31, "d2sram3", "hclk"),
1016         PER_CLK(RCC_AHB2ENR, 30, "d2sram2", "hclk"),
1017         PER_CLK(RCC_AHB2ENR, 29, "d2sram1", "hclk"),
1018         PER_CLK(RCC_AHB2ENR, 5, "hash", "hclk"),
1019         PER_CLK(RCC_AHB2ENR, 4, "crypt", "hclk"),
1020         PER_CLK(RCC_AHB2ENR, 0, "camitf", "hclk"),
1021         PER_CLK(RCC_AHB4ENR, 28, "bkpram", "hclk"),
1022         PER_CLK(RCC_AHB4ENR, 25, "hsem", "hclk"),
1023         PER_CLK(RCC_AHB4ENR, 21, "bdma", "hclk"),
1024         PER_CLK(RCC_AHB4ENR, 19, "crc", "hclk"),
1025         PER_CLK(RCC_AHB4ENR, 10, "gpiok", "hclk"),
1026         PER_CLK(RCC_AHB4ENR, 9, "gpioj", "hclk"),
1027         PER_CLK(RCC_AHB4ENR, 8, "gpioi", "hclk"),
1028         PER_CLK(RCC_AHB4ENR, 7, "gpioh", "hclk"),
1029         PER_CLK(RCC_AHB4ENR, 6, "gpiog", "hclk"),
1030         PER_CLK(RCC_AHB4ENR, 5, "gpiof", "hclk"),
1031         PER_CLK(RCC_AHB4ENR, 4, "gpioe", "hclk"),
1032         PER_CLK(RCC_AHB4ENR, 3, "gpiod", "hclk"),
1033         PER_CLK(RCC_AHB4ENR, 2, "gpioc", "hclk"),
1034         PER_CLK(RCC_AHB4ENR, 1, "gpiob", "hclk"),
1035         PER_CLK(RCC_AHB4ENR, 0, "gpioa", "hclk"),
1036         PER_CLK(RCC_APB3ENR, 6, "wwdg1", "pclk3"),
1037         PER_CLK(RCC_APB1LENR, 29, "dac12", "pclk1"),
1038         PER_CLK(RCC_APB1LENR, 11, "wwdg2", "pclk1"),
1039         PER_CLK(RCC_APB1LENR, 8, "tim14", "tim1_ker"),
1040         PER_CLK(RCC_APB1LENR, 7, "tim13", "tim1_ker"),
1041         PER_CLK(RCC_APB1LENR, 6, "tim12", "tim1_ker"),
1042         PER_CLK(RCC_APB1LENR, 5, "tim7", "tim1_ker"),
1043         PER_CLK(RCC_APB1LENR, 4, "tim6", "tim1_ker"),
1044         PER_CLK(RCC_APB1LENR, 3, "tim5", "tim1_ker"),
1045         PER_CLK(RCC_APB1LENR, 2, "tim4", "tim1_ker"),
1046         PER_CLK(RCC_APB1LENR, 1, "tim3", "tim1_ker"),
1047         PER_CLK(RCC_APB1LENR, 0, "tim2", "tim1_ker"),
1048         PER_CLK(RCC_APB1HENR, 5, "mdios", "pclk1"),
1049         PER_CLK(RCC_APB1HENR, 4, "opamp", "pclk1"),
1050         PER_CLK(RCC_APB1HENR, 1, "crs", "pclk1"),
1051         PER_CLK(RCC_APB2ENR, 18, "tim17", "tim2_ker"),
1052         PER_CLK(RCC_APB2ENR, 17, "tim16", "tim2_ker"),
1053         PER_CLK(RCC_APB2ENR, 16, "tim15", "tim2_ker"),
1054         PER_CLK(RCC_APB2ENR, 1, "tim8", "tim2_ker"),
1055         PER_CLK(RCC_APB2ENR, 0, "tim1", "tim2_ker"),
1056         PER_CLK(RCC_APB4ENR, 26, "tmpsens", "pclk4"),
1057         PER_CLK(RCC_APB4ENR, 16, "rtcapb", "pclk4"),
1058         PER_CLK(RCC_APB4ENR, 15, "vref", "pclk4"),
1059         PER_CLK(RCC_APB4ENR, 14, "comp12", "pclk4"),
1060         PER_CLK(RCC_APB4ENR, 1, "syscfg", "pclk4"),
1061 };
1062 
1063 /* KERNEL CLOCKS */
1064 #define KER_CLKF(_gate_offset, _bit_idx,\
1065                 _mux_offset, _mux_shift, _mux_width,\
1066                 _name, _parent_name,\
1067                 _flags) \
1068 { \
1069         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1070         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1071         .name = _name, \
1072         .parent_name = _parent_name, \
1073         .num_parents = ARRAY_SIZE(_parent_name),\
1074         .flags = _flags,\
1075 }
1076 
1077 #define KER_CLK(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1078                 _name, _parent_name) \
1079 KER_CLKF(_gate_offset, _bit_idx, _mux_offset, _mux_shift, _mux_width,\
1080                 _name, _parent_name, 0)\
1081 
1082 #define KER_CLKF_NOMUX(_gate_offset, _bit_idx,\
1083                 _name, _parent_name,\
1084                 _flags) \
1085 { \
1086         .gate = &(struct gate_cfg) {_gate_offset, _bit_idx},\
1087         .mux = NULL,\
1088         .name = _name, \
1089         .parent_name = _parent_name, \
1090         .num_parents = 1,\
1091         .flags = _flags,\
1092 }
1093 
1094 static const struct composite_clk_cfg kclk[] = {
1095         KER_CLK(RCC_AHB3ENR,  16, RCC_D1CCIPR,  16, 1, "sdmmc1", sdmmc_src),
1096         KER_CLKF(RCC_AHB3ENR, 14, RCC_D1CCIPR,   4, 2, "quadspi", qspi_src,
1097                         CLK_IGNORE_UNUSED),
1098         KER_CLKF(RCC_AHB3ENR, 12, RCC_D1CCIPR,   0, 2, "fmc", fmc_src,
1099                         CLK_IGNORE_UNUSED),
1100         KER_CLK(RCC_AHB1ENR,  27, RCC_D2CCIP2R, 20, 2, "usb2otg", usbotg_src),
1101         KER_CLK(RCC_AHB1ENR,  25, RCC_D2CCIP2R, 20, 2, "usb1otg", usbotg_src),
1102         KER_CLK(RCC_AHB1ENR,   5, RCC_D3CCIPR,  16, 2, "adc12", adc_src),
1103         KER_CLK(RCC_AHB2ENR,   9, RCC_D1CCIPR,  16, 1, "sdmmc2", sdmmc_src),
1104         KER_CLK(RCC_AHB2ENR,   6, RCC_D2CCIP2R,  8, 2, "rng", rng_src),
1105         KER_CLK(RCC_AHB4ENR,  24, RCC_D3CCIPR,  16, 2, "adc3", adc_src),
1106         KER_CLKF(RCC_APB3ENR,   4, RCC_D1CCIPR,  8, 1, "dsi", dsi_src,
1107                         CLK_SET_RATE_PARENT),
1108         KER_CLKF_NOMUX(RCC_APB3ENR, 3, "ltdc", ltdc_src, CLK_SET_RATE_PARENT),
1109         KER_CLK(RCC_APB1LENR, 31, RCC_D2CCIP2R,  0, 3, "usart8", usart_src2),
1110         KER_CLK(RCC_APB1LENR, 30, RCC_D2CCIP2R,  0, 3, "usart7", usart_src2),
1111         KER_CLK(RCC_APB1LENR, 27, RCC_D2CCIP2R, 22, 2, "hdmicec", cec_src),
1112         KER_CLK(RCC_APB1LENR, 23, RCC_D2CCIP2R, 12, 2, "i2c3", i2c_src1),
1113         KER_CLK(RCC_APB1LENR, 22, RCC_D2CCIP2R, 12, 2, "i2c2", i2c_src1),
1114         KER_CLK(RCC_APB1LENR, 21, RCC_D2CCIP2R, 12, 2, "i2c1", i2c_src1),
1115         KER_CLK(RCC_APB1LENR, 20, RCC_D2CCIP2R,  0, 3, "uart5", usart_src2),
1116         KER_CLK(RCC_APB1LENR, 19, RCC_D2CCIP2R,  0, 3, "uart4", usart_src2),
1117         KER_CLK(RCC_APB1LENR, 18, RCC_D2CCIP2R,  0, 3, "usart3", usart_src2),
1118         KER_CLK(RCC_APB1LENR, 17, RCC_D2CCIP2R,  0, 3, "usart2", usart_src2),
1119         KER_CLK(RCC_APB1LENR, 16, RCC_D2CCIP1R, 20, 2, "spdifrx", spdifrx_src),
1120         KER_CLK(RCC_APB1LENR, 15, RCC_D2CCIP1R, 16, 3, "spi3", spi_src1),
1121         KER_CLK(RCC_APB1LENR, 14, RCC_D2CCIP1R, 16, 3, "spi2", spi_src1),
1122         KER_CLK(RCC_APB1LENR,  9, RCC_D2CCIP2R, 28, 3, "lptim1", lptim_src1),
1123         KER_CLK(RCC_APB1HENR,  8, RCC_D2CCIP1R, 28, 2, "fdcan", fdcan_src),
1124         KER_CLK(RCC_APB1HENR,  2, RCC_D2CCIP1R, 31, 1, "swp", swp_src),
1125         KER_CLK(RCC_APB2ENR,  29, RCC_CFGR,     14, 1, "hrtim", hrtim_src),
1126         KER_CLK(RCC_APB2ENR,  28, RCC_D2CCIP1R, 24, 1, "dfsdm1", dfsdm1_src),
1127         KER_CLKF(RCC_APB2ENR,  24, RCC_D2CCIP1R,  6, 3, "sai3", sai_src,
1128                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1129         KER_CLKF(RCC_APB2ENR,  23, RCC_D2CCIP1R,  6, 3, "sai2", sai_src,
1130                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1131         KER_CLKF(RCC_APB2ENR,  22, RCC_D2CCIP1R,  0, 3, "sai1", sai_src,
1132                  CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT),
1133         KER_CLK(RCC_APB2ENR,  20, RCC_D2CCIP1R, 16, 3, "spi5", spi_src2),
1134         KER_CLK(RCC_APB2ENR,  13, RCC_D2CCIP1R, 16, 3, "spi4", spi_src2),
1135         KER_CLK(RCC_APB2ENR,  12, RCC_D2CCIP1R, 16, 3, "spi1", spi_src1),
1136         KER_CLK(RCC_APB2ENR,   5, RCC_D2CCIP2R,  3, 3, "usart6", usart_src1),
1137         KER_CLK(RCC_APB2ENR,   4, RCC_D2CCIP2R,  3, 3, "usart1", usart_src1),
1138         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  24, 3, "sai4b", sai_src),
1139         KER_CLK(RCC_APB4ENR,  21, RCC_D3CCIPR,  21, 3, "sai4a", sai_src),
1140         KER_CLK(RCC_APB4ENR,  12, RCC_D3CCIPR,  13, 3, "lptim5", lptim_src2),
1141         KER_CLK(RCC_APB4ENR,  11, RCC_D3CCIPR,  13, 3, "lptim4", lptim_src2),
1142         KER_CLK(RCC_APB4ENR,  10, RCC_D3CCIPR,  13, 3, "lptim3", lptim_src2),
1143         KER_CLK(RCC_APB4ENR,   9, RCC_D3CCIPR,  10, 3, "lptim2", lptim_src2),
1144         KER_CLK(RCC_APB4ENR,   7, RCC_D3CCIPR,   8, 2, "i2c4", i2c_src2),
1145         KER_CLK(RCC_APB4ENR,   5, RCC_D3CCIPR,  28, 3, "spi6", spi_src3),
1146         KER_CLK(RCC_APB4ENR,   3, RCC_D3CCIPR,   0, 3, "lpuart1", lpuart1_src),
1147 };
1148 
1149 static struct composite_clk_gcfg kernel_clk_cfg = {
1150         M_CFG_MUX(NULL, 0),
1151         M_CFG_GATE(NULL, 0),
1152 };
1153 
1154 /* RTC clock */
1155 /*
1156  * RTC & LSE registers are protected against parasitic write access.
1157  * PWR_CR_DBP bit must be set to enable write access to RTC registers.
1158  */
1159 /* STM32_PWR_CR */
1160 #define PWR_CR                          0x00
1161 /* STM32_PWR_CR bit field */
1162 #define PWR_CR_DBP                      BIT(8)
1163 
1164 static struct composite_clk_gcfg rtc_clk_cfg = {
1165         M_CFG_MUX(NULL, 0),
1166         M_CFG_GATE(NULL, 0),
1167 };
1168 
1169 static const struct composite_clk_cfg rtc_clk =
1170         KER_CLK(RCC_BDCR, 15, RCC_BDCR, 8, 2, "rtc_ck", rtc_src);
1171 
1172 /* Micro-controller output clock */
1173 static struct composite_clk_gcfg mco_clk_cfg = {
1174         M_CFG_MUX(NULL, 0),
1175         M_CFG_DIV(NULL, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO),
1176 };
1177 
1178 #define M_MCO_F(_name, _parents, _mux_offset,  _mux_shift, _mux_width,\
1179                 _rate_offset, _rate_shift, _rate_width,\
1180                 _flags)\
1181 {\
1182         .mux = &(struct muxdiv_cfg) {_mux_offset, _mux_shift, _mux_width },\
1183         .div = &(struct muxdiv_cfg) {_rate_offset, _rate_shift, _rate_width},\
1184         .gate = NULL,\
1185         .name = _name,\
1186         .parent_name = _parents,\
1187         .num_parents = ARRAY_SIZE(_parents),\
1188         .flags = _flags,\
1189 }
1190 
1191 static const struct composite_clk_cfg mco_clk[] = {
1192         M_MCO_F("mco1", mco_src1, RCC_CFGR, 22, 4, RCC_CFGR, 18, 4, 0),
1193         M_MCO_F("mco2", mco_src2, RCC_CFGR, 29, 3, RCC_CFGR, 25, 4, 0),
1194 };
1195 
1196 static void __init stm32h7_rcc_init(struct device_node *np)
1197 {
1198         struct clk_hw_onecell_data *clk_data;
1199         struct composite_cfg c_cfg;
1200         int n;
1201         const char *hse_clk, *lse_clk, *i2s_clk;
1202         struct regmap *pdrm;
1203 
1204         clk_data = kzalloc(struct_size(clk_data, hws, STM32H7_MAX_CLKS),
1205                            GFP_KERNEL);
1206         if (!clk_data)
1207                 return;
1208 
1209         clk_data->num = STM32H7_MAX_CLKS;
1210 
1211         hws = clk_data->hws;
1212 
1213         for (n = 0; n < STM32H7_MAX_CLKS; n++)
1214                 hws[n] = ERR_PTR(-ENOENT);
1215 
1216         /* get RCC base @ from DT */
1217         base = of_iomap(np, 0);
1218         if (!base) {
1219                 pr_err("%pOFn: unable to map resource", np);
1220                 goto err_free_clks;
1221         }
1222 
1223         pdrm = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
1224         if (IS_ERR(pdrm))
1225                 pr_warn("%s: Unable to get syscfg\n", __func__);
1226         else
1227                 /* In any case disable backup domain write protection
1228                  * and will never be enabled.
1229                  * Needed by LSE & RTC clocks.
1230                  */
1231                 regmap_update_bits(pdrm, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
1232 
1233         /* Put parent names from DT */
1234         hse_clk = of_clk_get_parent_name(np, 0);
1235         lse_clk = of_clk_get_parent_name(np, 1);
1236         i2s_clk = of_clk_get_parent_name(np, 2);
1237 
1238         sai_src[3] = i2s_clk;
1239         spi_src1[3] = i2s_clk;
1240 
1241         /* Register Internal oscillators */
1242         clk_hw_register_fixed_rate(NULL, "clk-hsi", NULL, 0, 64000000);
1243         clk_hw_register_fixed_rate(NULL, "clk-csi", NULL, 0, 4000000);
1244         clk_hw_register_fixed_rate(NULL, "clk-lsi", NULL, 0, 32000);
1245         clk_hw_register_fixed_rate(NULL, "clk-rc48", NULL, 0, 48000);
1246 
1247         /* This clock is coming from outside. Frequencies unknown */
1248         hws[CK_DSI_PHY] = clk_hw_register_fixed_rate(NULL, "ck_dsi_phy", NULL,
1249                         0, 0);
1250 
1251         hws[HSI_DIV] = clk_hw_register_divider(NULL, "hsidiv", "clk-hsi", 0,
1252                         base + RCC_CR, 3, 2, CLK_DIVIDER_POWER_OF_TWO,
1253                         &stm32rcc_lock);
1254 
1255         hws[HSE_1M] = clk_hw_register_divider(NULL, "hse_1M", "hse_ck", 0,
1256                         base + RCC_CFGR, 8, 6, CLK_DIVIDER_ONE_BASED |
1257                         CLK_DIVIDER_ALLOW_ZERO,
1258                         &stm32rcc_lock);
1259 
1260         /* Mux system clocks */
1261         for (n = 0; n < ARRAY_SIZE(stm32_mclk); n++)
1262                 hws[MCLK_BANK + n] = clk_hw_register_mux(NULL,
1263                                 stm32_mclk[n].name,
1264                                 stm32_mclk[n].parents,
1265                                 stm32_mclk[n].num_parents,
1266                                 stm32_mclk[n].flags,
1267                                 stm32_mclk[n].offset + base,
1268                                 stm32_mclk[n].shift,
1269                                 stm32_mclk[n].width,
1270                                 0,
1271                                 &stm32rcc_lock);
1272 
1273         register_core_and_bus_clocks();
1274 
1275         /* Oscillary clocks */
1276         for (n = 0; n < ARRAY_SIZE(stm32_oclk); n++)
1277                 hws[OSC_BANK + n] = clk_register_ready_gate(NULL,
1278                                 stm32_oclk[n].name,
1279                                 stm32_oclk[n].parent,
1280                                 stm32_oclk[n].gate_offset + base,
1281                                 stm32_oclk[n].bit_idx,
1282                                 stm32_oclk[n].bit_rdy,
1283                                 stm32_oclk[n].flags,
1284                                 &stm32rcc_lock);
1285 
1286         hws[HSE_CK] = clk_register_ready_gate(NULL,
1287                                 "hse_ck",
1288                                 hse_clk,
1289                                 RCC_CR + base,
1290                                 16, 17,
1291                                 0,
1292                                 &stm32rcc_lock);
1293 
1294         hws[LSE_CK] = clk_register_ready_gate(NULL,
1295                                 "lse_ck",
1296                                 lse_clk,
1297                                 RCC_BDCR + base,
1298                                 0, 1,
1299                                 0,
1300                                 &stm32rcc_lock);
1301 
1302         hws[CSI_KER_DIV122 + n] = clk_hw_register_fixed_factor(NULL,
1303                         "csi_ker_div122", "csi_ker", 0, 1, 122);
1304 
1305         /* PLLs */
1306         for (n = 0; n < ARRAY_SIZE(stm32_pll); n++) {
1307                 int odf;
1308 
1309                 /* Register the VCO */
1310                 clk_register_stm32_pll(NULL, stm32_pll[n].name,
1311                                 stm32_pll[n].parent_name, stm32_pll[n].flags,
1312                                 stm32_pll[n].cfg,
1313                                 &stm32rcc_lock);
1314 
1315                 /* Register the 3 output dividers */
1316                 for (odf = 0; odf < 3; odf++) {
1317                         int idx = n * 3 + odf;
1318 
1319                         get_cfg_composite_div(&odf_clk_gcfg, &stm32_odf[n][odf],
1320                                         &c_cfg, &stm32rcc_lock);
1321 
1322                         hws[ODF_BANK + idx] = clk_hw_register_composite(NULL,
1323                                         stm32_odf[n][odf].name,
1324                                         stm32_odf[n][odf].parent_name,
1325                                         stm32_odf[n][odf].num_parents,
1326                                         c_cfg.mux_hw, c_cfg.mux_ops,
1327                                         c_cfg.div_hw, c_cfg.div_ops,
1328                                         c_cfg.gate_hw, c_cfg.gate_ops,
1329                                         stm32_odf[n][odf].flags);
1330                 }
1331         }
1332 
1333         /* Peripheral clocks */
1334         for (n = 0; n < ARRAY_SIZE(pclk); n++)
1335                 hws[PERIF_BANK + n] = clk_hw_register_gate(NULL, pclk[n].name,
1336                                 pclk[n].parent,
1337                                 pclk[n].flags, base + pclk[n].gate_offset,
1338                                 pclk[n].bit_idx, pclk[n].flags, &stm32rcc_lock);
1339 
1340         /* Kernel clocks */
1341         for (n = 0; n < ARRAY_SIZE(kclk); n++) {
1342                 get_cfg_composite_div(&kernel_clk_cfg, &kclk[n], &c_cfg,
1343                                 &stm32rcc_lock);
1344 
1345                 hws[KERN_BANK + n] = clk_hw_register_composite(NULL,
1346                                 kclk[n].name,
1347                                 kclk[n].parent_name,
1348                                 kclk[n].num_parents,
1349                                 c_cfg.mux_hw, c_cfg.mux_ops,
1350                                 c_cfg.div_hw, c_cfg.div_ops,
1351                                 c_cfg.gate_hw, c_cfg.gate_ops,
1352                                 kclk[n].flags);
1353         }
1354 
1355         /* RTC clock (default state is off) */
1356         clk_hw_register_fixed_rate(NULL, "off", NULL, 0, 0);
1357 
1358         get_cfg_composite_div(&rtc_clk_cfg, &rtc_clk, &c_cfg, &stm32rcc_lock);
1359 
1360         hws[RTC_CK] = clk_hw_register_composite(NULL,
1361                         rtc_clk.name,
1362                         rtc_clk.parent_name,
1363                         rtc_clk.num_parents,
1364                         c_cfg.mux_hw, c_cfg.mux_ops,
1365                         c_cfg.div_hw, c_cfg.div_ops,
1366                         c_cfg.gate_hw, c_cfg.gate_ops,
1367                         rtc_clk.flags);
1368 
1369         /* Micro-controller clocks */
1370         for (n = 0; n < ARRAY_SIZE(mco_clk); n++) {
1371                 get_cfg_composite_div(&mco_clk_cfg, &mco_clk[n], &c_cfg,
1372                                 &stm32rcc_lock);
1373 
1374                 hws[MCO_BANK + n] = clk_hw_register_composite(NULL,
1375                                 mco_clk[n].name,
1376                                 mco_clk[n].parent_name,
1377                                 mco_clk[n].num_parents,
1378                                 c_cfg.mux_hw, c_cfg.mux_ops,
1379                                 c_cfg.div_hw, c_cfg.div_ops,
1380                                 c_cfg.gate_hw, c_cfg.gate_ops,
1381                                 mco_clk[n].flags);
1382         }
1383 
1384         of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
1385 
1386         return;
1387 
1388 err_free_clks:
1389         kfree(clk_data);
1390 }
1391 
1392 /* The RCC node is a clock and reset controller, and these
1393  * functionalities are supported by different drivers that
1394  * matches the same compatible strings.
1395  */
1396 CLK_OF_DECLARE_DRIVER(stm32h7_rcc, "st,stm32h743-rcc", stm32h7_rcc_init);

/* [<][>][^][v][top][bottom][index][help] */