This source file includes following definitions.
- early_init_dt_alloc_reserved_memory_arch
- fdt_reserved_mem_save_node
- __reserved_mem_alloc_size
- __reserved_mem_init_node
- __rmem_cmp
- __rmem_check_for_overlap
- fdt_init_reserved_mem
- __find_rmem
- of_reserved_mem_device_init_by_idx
- of_reserved_mem_device_release
- of_reserved_mem_lookup
1
2
3
4
5
6
7
8
9
10
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24
25 #define MAX_RESERVED_REGIONS 32
26 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
27 static int reserved_mem_count;
28
29 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
30 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
31 phys_addr_t *res_base)
32 {
33 phys_addr_t base;
34
35 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
36 align = !align ? SMP_CACHE_BYTES : align;
37 base = memblock_find_in_range(start, end, size, align);
38 if (!base)
39 return -ENOMEM;
40
41 *res_base = base;
42 if (nomap)
43 return memblock_remove(base, size);
44
45 return memblock_reserve(base, size);
46 }
47
48
49
50
51 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
52 phys_addr_t base, phys_addr_t size)
53 {
54 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
55
56 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
57 pr_err("not enough space all defined regions.\n");
58 return;
59 }
60
61 rmem->fdt_node = node;
62 rmem->name = uname;
63 rmem->base = base;
64 rmem->size = size;
65
66 reserved_mem_count++;
67 return;
68 }
69
70
71
72
73
74 static int __init __reserved_mem_alloc_size(unsigned long node,
75 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
76 {
77 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
78 phys_addr_t start = 0, end = 0;
79 phys_addr_t base = 0, align = 0, size;
80 int len;
81 const __be32 *prop;
82 int nomap;
83 int ret;
84
85 prop = of_get_flat_dt_prop(node, "size", &len);
86 if (!prop)
87 return -EINVAL;
88
89 if (len != dt_root_size_cells * sizeof(__be32)) {
90 pr_err("invalid size property in '%s' node.\n", uname);
91 return -EINVAL;
92 }
93 size = dt_mem_next_cell(dt_root_size_cells, &prop);
94
95 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
96
97 prop = of_get_flat_dt_prop(node, "alignment", &len);
98 if (prop) {
99 if (len != dt_root_addr_cells * sizeof(__be32)) {
100 pr_err("invalid alignment property in '%s' node.\n",
101 uname);
102 return -EINVAL;
103 }
104 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
105 }
106
107
108 if (IS_ENABLED(CONFIG_CMA)
109 && of_flat_dt_is_compatible(node, "shared-dma-pool")
110 && of_get_flat_dt_prop(node, "reusable", NULL)
111 && !of_get_flat_dt_prop(node, "no-map", NULL)) {
112 unsigned long order =
113 max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
114
115 align = max(align, (phys_addr_t)PAGE_SIZE << order);
116 }
117
118 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
119 if (prop) {
120
121 if (len % t_len != 0) {
122 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
123 uname);
124 return -EINVAL;
125 }
126
127 base = 0;
128
129 while (len > 0) {
130 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
131 end = start + dt_mem_next_cell(dt_root_size_cells,
132 &prop);
133
134 ret = early_init_dt_alloc_reserved_memory_arch(size,
135 align, start, end, nomap, &base);
136 if (ret == 0) {
137 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
138 uname, &base,
139 (unsigned long)size / SZ_1M);
140 break;
141 }
142 len -= t_len;
143 }
144
145 } else {
146 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
147 0, 0, nomap, &base);
148 if (ret == 0)
149 pr_debug("allocated memory for '%s' node: base %pa, size %ld MiB\n",
150 uname, &base, (unsigned long)size / SZ_1M);
151 }
152
153 if (base == 0) {
154 pr_info("failed to allocate memory for node '%s'\n", uname);
155 return -ENOMEM;
156 }
157
158 *res_base = base;
159 *res_size = size;
160
161 return 0;
162 }
163
164 static const struct of_device_id __rmem_of_table_sentinel
165 __used __section(__reservedmem_of_table_end);
166
167
168
169
170 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
171 {
172 extern const struct of_device_id __reservedmem_of_table[];
173 const struct of_device_id *i;
174 int ret = -ENOENT;
175
176 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
177 reservedmem_of_init_fn initfn = i->data;
178 const char *compat = i->compatible;
179
180 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
181 continue;
182
183 ret = initfn(rmem);
184 if (ret == 0) {
185 pr_info("initialized node %s, compatible id %s\n",
186 rmem->name, compat);
187 break;
188 }
189 }
190 return ret;
191 }
192
193 static int __init __rmem_cmp(const void *a, const void *b)
194 {
195 const struct reserved_mem *ra = a, *rb = b;
196
197 if (ra->base < rb->base)
198 return -1;
199
200 if (ra->base > rb->base)
201 return 1;
202
203 return 0;
204 }
205
206 static void __init __rmem_check_for_overlap(void)
207 {
208 int i;
209
210 if (reserved_mem_count < 2)
211 return;
212
213 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
214 __rmem_cmp, NULL);
215 for (i = 0; i < reserved_mem_count - 1; i++) {
216 struct reserved_mem *this, *next;
217
218 this = &reserved_mem[i];
219 next = &reserved_mem[i + 1];
220 if (!(this->base && next->base))
221 continue;
222 if (this->base + this->size > next->base) {
223 phys_addr_t this_end, next_end;
224
225 this_end = this->base + this->size;
226 next_end = next->base + next->size;
227 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
228 this->name, &this->base, &this_end,
229 next->name, &next->base, &next_end);
230 }
231 }
232 }
233
234
235
236
237 void __init fdt_init_reserved_mem(void)
238 {
239 int i;
240
241
242 __rmem_check_for_overlap();
243
244 for (i = 0; i < reserved_mem_count; i++) {
245 struct reserved_mem *rmem = &reserved_mem[i];
246 unsigned long node = rmem->fdt_node;
247 int len;
248 const __be32 *prop;
249 int err = 0;
250 int nomap;
251
252 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
253 prop = of_get_flat_dt_prop(node, "phandle", &len);
254 if (!prop)
255 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
256 if (prop)
257 rmem->phandle = of_read_number(prop, len/4);
258
259 if (rmem->size == 0)
260 err = __reserved_mem_alloc_size(node, rmem->name,
261 &rmem->base, &rmem->size);
262 if (err == 0) {
263 err = __reserved_mem_init_node(rmem);
264 if (err != 0 && err != -ENOENT) {
265 pr_info("node %s compatible matching fail\n",
266 rmem->name);
267 memblock_free(rmem->base, rmem->size);
268 if (nomap)
269 memblock_add(rmem->base, rmem->size);
270 }
271 }
272 }
273 }
274
275 static inline struct reserved_mem *__find_rmem(struct device_node *node)
276 {
277 unsigned int i;
278
279 if (!node->phandle)
280 return NULL;
281
282 for (i = 0; i < reserved_mem_count; i++)
283 if (reserved_mem[i].phandle == node->phandle)
284 return &reserved_mem[i];
285 return NULL;
286 }
287
288 struct rmem_assigned_device {
289 struct device *dev;
290 struct reserved_mem *rmem;
291 struct list_head list;
292 };
293
294 static LIST_HEAD(of_rmem_assigned_device_list);
295 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312 int of_reserved_mem_device_init_by_idx(struct device *dev,
313 struct device_node *np, int idx)
314 {
315 struct rmem_assigned_device *rd;
316 struct device_node *target;
317 struct reserved_mem *rmem;
318 int ret;
319
320 if (!np || !dev)
321 return -EINVAL;
322
323 target = of_parse_phandle(np, "memory-region", idx);
324 if (!target)
325 return -ENODEV;
326
327 if (!of_device_is_available(target)) {
328 of_node_put(target);
329 return 0;
330 }
331
332 rmem = __find_rmem(target);
333 of_node_put(target);
334
335 if (!rmem || !rmem->ops || !rmem->ops->device_init)
336 return -EINVAL;
337
338 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
339 if (!rd)
340 return -ENOMEM;
341
342 ret = rmem->ops->device_init(rmem, dev);
343 if (ret == 0) {
344 rd->dev = dev;
345 rd->rmem = rmem;
346
347 mutex_lock(&of_rmem_assigned_device_mutex);
348 list_add(&rd->list, &of_rmem_assigned_device_list);
349 mutex_unlock(&of_rmem_assigned_device_mutex);
350
351 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
352 } else {
353 kfree(rd);
354 }
355
356 return ret;
357 }
358 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
359
360
361
362
363
364
365
366
367 void of_reserved_mem_device_release(struct device *dev)
368 {
369 struct rmem_assigned_device *rd;
370 struct reserved_mem *rmem = NULL;
371
372 mutex_lock(&of_rmem_assigned_device_mutex);
373 list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
374 if (rd->dev == dev) {
375 rmem = rd->rmem;
376 list_del(&rd->list);
377 kfree(rd);
378 break;
379 }
380 }
381 mutex_unlock(&of_rmem_assigned_device_mutex);
382
383 if (!rmem || !rmem->ops || !rmem->ops->device_release)
384 return;
385
386 rmem->ops->device_release(rmem, dev);
387 }
388 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
389
390
391
392
393
394
395
396
397
398
399 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
400 {
401 const char *name;
402 int i;
403
404 if (!np->full_name)
405 return NULL;
406
407 name = kbasename(np->full_name);
408 for (i = 0; i < reserved_mem_count; i++)
409 if (!strcmp(reserved_mem[i].name, name))
410 return &reserved_mem[i];
411
412 return NULL;
413 }
414 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);