This source file includes following definitions.
- node_prepare_for_write
- node_check
- bn_read_lock
- bn_shadow
- new_block
- unlock_block
- init_ro_spine
- exit_ro_spine
- ro_step
- ro_pop
- ro_node
- init_shadow_spine
- exit_shadow_spine
- shadow_step
- shadow_current
- shadow_parent
- shadow_has_parent
- shadow_root
- le64_inc
- le64_dec
- le64_equal
- init_le64_type
1
2
3
4
5
6
7 #include "dm-btree-internal.h"
8 #include "dm-transaction-manager.h"
9
10 #include <linux/device-mapper.h>
11
12 #define DM_MSG_PREFIX "btree spine"
13
14
15
16 #define BTREE_CSUM_XOR 121107
17
18 static int node_check(struct dm_block_validator *v,
19 struct dm_block *b,
20 size_t block_size);
21
22 static void node_prepare_for_write(struct dm_block_validator *v,
23 struct dm_block *b,
24 size_t block_size)
25 {
26 struct btree_node *n = dm_block_data(b);
27 struct node_header *h = &n->header;
28
29 h->blocknr = cpu_to_le64(dm_block_location(b));
30 h->csum = cpu_to_le32(dm_bm_checksum(&h->flags,
31 block_size - sizeof(__le32),
32 BTREE_CSUM_XOR));
33
34 BUG_ON(node_check(v, b, 4096));
35 }
36
37 static int node_check(struct dm_block_validator *v,
38 struct dm_block *b,
39 size_t block_size)
40 {
41 struct btree_node *n = dm_block_data(b);
42 struct node_header *h = &n->header;
43 size_t value_size;
44 __le32 csum_disk;
45 uint32_t flags;
46
47 if (dm_block_location(b) != le64_to_cpu(h->blocknr)) {
48 DMERR_LIMIT("node_check failed: blocknr %llu != wanted %llu",
49 le64_to_cpu(h->blocknr), dm_block_location(b));
50 return -ENOTBLK;
51 }
52
53 csum_disk = cpu_to_le32(dm_bm_checksum(&h->flags,
54 block_size - sizeof(__le32),
55 BTREE_CSUM_XOR));
56 if (csum_disk != h->csum) {
57 DMERR_LIMIT("node_check failed: csum %u != wanted %u",
58 le32_to_cpu(csum_disk), le32_to_cpu(h->csum));
59 return -EILSEQ;
60 }
61
62 value_size = le32_to_cpu(h->value_size);
63
64 if (sizeof(struct node_header) +
65 (sizeof(__le64) + value_size) * le32_to_cpu(h->max_entries) > block_size) {
66 DMERR_LIMIT("node_check failed: max_entries too large");
67 return -EILSEQ;
68 }
69
70 if (le32_to_cpu(h->nr_entries) > le32_to_cpu(h->max_entries)) {
71 DMERR_LIMIT("node_check failed: too many entries");
72 return -EILSEQ;
73 }
74
75
76
77
78 flags = le32_to_cpu(h->flags);
79 if (!(flags & INTERNAL_NODE) && !(flags & LEAF_NODE)) {
80 DMERR_LIMIT("node_check failed: node is neither INTERNAL or LEAF");
81 return -EILSEQ;
82 }
83
84 return 0;
85 }
86
87 struct dm_block_validator btree_node_validator = {
88 .name = "btree_node",
89 .prepare_for_write = node_prepare_for_write,
90 .check = node_check
91 };
92
93
94
95 int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
96 struct dm_block **result)
97 {
98 return dm_tm_read_lock(info->tm, b, &btree_node_validator, result);
99 }
100
101 static int bn_shadow(struct dm_btree_info *info, dm_block_t orig,
102 struct dm_btree_value_type *vt,
103 struct dm_block **result)
104 {
105 int r, inc;
106
107 r = dm_tm_shadow_block(info->tm, orig, &btree_node_validator,
108 result, &inc);
109 if (!r && inc)
110 inc_children(info->tm, dm_block_data(*result), vt);
111
112 return r;
113 }
114
115 int new_block(struct dm_btree_info *info, struct dm_block **result)
116 {
117 return dm_tm_new_block(info->tm, &btree_node_validator, result);
118 }
119
120 void unlock_block(struct dm_btree_info *info, struct dm_block *b)
121 {
122 dm_tm_unlock(info->tm, b);
123 }
124
125
126
127 void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info)
128 {
129 s->info = info;
130 s->count = 0;
131 s->nodes[0] = NULL;
132 s->nodes[1] = NULL;
133 }
134
135 int exit_ro_spine(struct ro_spine *s)
136 {
137 int r = 0, i;
138
139 for (i = 0; i < s->count; i++) {
140 unlock_block(s->info, s->nodes[i]);
141 }
142
143 return r;
144 }
145
146 int ro_step(struct ro_spine *s, dm_block_t new_child)
147 {
148 int r;
149
150 if (s->count == 2) {
151 unlock_block(s->info, s->nodes[0]);
152 s->nodes[0] = s->nodes[1];
153 s->count--;
154 }
155
156 r = bn_read_lock(s->info, new_child, s->nodes + s->count);
157 if (!r)
158 s->count++;
159
160 return r;
161 }
162
163 void ro_pop(struct ro_spine *s)
164 {
165 BUG_ON(!s->count);
166 --s->count;
167 unlock_block(s->info, s->nodes[s->count]);
168 }
169
170 struct btree_node *ro_node(struct ro_spine *s)
171 {
172 struct dm_block *block;
173
174 BUG_ON(!s->count);
175 block = s->nodes[s->count - 1];
176
177 return dm_block_data(block);
178 }
179
180
181
182 void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info)
183 {
184 s->info = info;
185 s->count = 0;
186 }
187
188 int exit_shadow_spine(struct shadow_spine *s)
189 {
190 int r = 0, i;
191
192 for (i = 0; i < s->count; i++) {
193 unlock_block(s->info, s->nodes[i]);
194 }
195
196 return r;
197 }
198
199 int shadow_step(struct shadow_spine *s, dm_block_t b,
200 struct dm_btree_value_type *vt)
201 {
202 int r;
203
204 if (s->count == 2) {
205 unlock_block(s->info, s->nodes[0]);
206 s->nodes[0] = s->nodes[1];
207 s->count--;
208 }
209
210 r = bn_shadow(s->info, b, vt, s->nodes + s->count);
211 if (!r) {
212 if (!s->count)
213 s->root = dm_block_location(s->nodes[0]);
214
215 s->count++;
216 }
217
218 return r;
219 }
220
221 struct dm_block *shadow_current(struct shadow_spine *s)
222 {
223 BUG_ON(!s->count);
224
225 return s->nodes[s->count - 1];
226 }
227
228 struct dm_block *shadow_parent(struct shadow_spine *s)
229 {
230 BUG_ON(s->count != 2);
231
232 return s->count == 2 ? s->nodes[0] : NULL;
233 }
234
235 int shadow_has_parent(struct shadow_spine *s)
236 {
237 return s->count >= 2;
238 }
239
240 int shadow_root(struct shadow_spine *s)
241 {
242 return s->root;
243 }
244
245 static void le64_inc(void *context, const void *value_le)
246 {
247 struct dm_transaction_manager *tm = context;
248 __le64 v_le;
249
250 memcpy(&v_le, value_le, sizeof(v_le));
251 dm_tm_inc(tm, le64_to_cpu(v_le));
252 }
253
254 static void le64_dec(void *context, const void *value_le)
255 {
256 struct dm_transaction_manager *tm = context;
257 __le64 v_le;
258
259 memcpy(&v_le, value_le, sizeof(v_le));
260 dm_tm_dec(tm, le64_to_cpu(v_le));
261 }
262
263 static int le64_equal(void *context, const void *value1_le, const void *value2_le)
264 {
265 __le64 v1_le, v2_le;
266
267 memcpy(&v1_le, value1_le, sizeof(v1_le));
268 memcpy(&v2_le, value2_le, sizeof(v2_le));
269 return v1_le == v2_le;
270 }
271
272 void init_le64_type(struct dm_transaction_manager *tm,
273 struct dm_btree_value_type *vt)
274 {
275 vt->context = tm;
276 vt->size = sizeof(__le64);
277 vt->inc = le64_inc;
278 vt->dec = le64_dec;
279 vt->equal = le64_equal;
280 }