This source file includes following definitions.
- update_gc_after_writeback
- __calc_target_rate
- __update_writeback_rate
- set_at_max_writeback_rate
- update_writeback_rate
- writeback_delay
- dirty_init
- dirty_io_destructor
- write_dirty_finish
- dirty_endio
- write_dirty
- read_dirty_endio
- read_dirty_submit
- read_dirty
- bcache_dev_sectors_dirty_add
- dirty_pred
- refill_full_stripes
- refill_dirty
- bch_writeback_thread
- sectors_dirty_init_fn
- bch_sectors_dirty_init
- bch_cached_dev_writeback_init
- bch_cached_dev_writeback_start
1
2
3
4
5
6
7
8
9
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 return;
25
26 c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28
29
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 struct cache_set *c = dc->disk.c;
33
34
35
36
37
38 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39 atomic_long_read(&c->flash_dev_dirty_sectors);
40
41
42
43
44
45
46
47 uint32_t bdev_share =
48 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 c->cached_dev_sectors);
50
51 uint64_t cache_dirty_target =
52 div_u64(cache_sectors * dc->writeback_percent, 100);
53
54
55 if (bdev_share < 1)
56 bdev_share = 1;
57
58 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83 int64_t target = __calc_target_rate(dc);
84 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 int64_t error = dirty - target;
86 int64_t proportional_scaled =
87 div_s64(error, dc->writeback_rate_p_term_inverse);
88 int64_t integral_scaled;
89 uint32_t new_rate;
90
91 if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 (error > 0 && time_before64(local_clock(),
93 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94
95
96
97
98
99
100
101
102
103
104 dc->writeback_rate_integral += error *
105 dc->writeback_rate_update_seconds;
106 }
107
108 integral_scaled = div_s64(dc->writeback_rate_integral,
109 dc->writeback_rate_i_term_inverse);
110
111 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 dc->writeback_rate_minimum, NSEC_PER_SEC);
113
114 dc->writeback_rate_proportional = proportional_scaled;
115 dc->writeback_rate_integral_scaled = integral_scaled;
116 dc->writeback_rate_change = new_rate -
117 atomic_long_read(&dc->writeback_rate.rate);
118 atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 dc->writeback_rate_target = target;
120 }
121
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123 struct cached_dev *dc)
124 {
125
126 if (!c->gc_mark_valid)
127 return false;
128
129
130
131
132
133
134
135
136
137
138
139
140
141 if (atomic_inc_return(&c->idle_counter) <
142 atomic_read(&c->attached_dev_nr) * 6)
143 return false;
144
145 if (atomic_read(&c->at_max_writeback_rate) != 1)
146 atomic_set(&c->at_max_writeback_rate, 1);
147
148 atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
149
150
151 dc->writeback_rate_proportional = 0;
152 dc->writeback_rate_integral_scaled = 0;
153 dc->writeback_rate_change = 0;
154
155
156
157
158
159
160
161 if ((atomic_read(&c->idle_counter) <
162 atomic_read(&c->attached_dev_nr) * 6) ||
163 !atomic_read(&c->at_max_writeback_rate))
164 return false;
165
166 return true;
167 }
168
169 static void update_writeback_rate(struct work_struct *work)
170 {
171 struct cached_dev *dc = container_of(to_delayed_work(work),
172 struct cached_dev,
173 writeback_rate_update);
174 struct cache_set *c = dc->disk.c;
175
176
177
178
179
180 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
181
182 smp_mb();
183
184
185
186
187
188 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
189 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
190 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
191
192 smp_mb();
193 return;
194 }
195
196 if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
197
198
199
200
201
202
203 if (!set_at_max_writeback_rate(c, dc)) {
204 down_read(&dc->writeback_lock);
205 __update_writeback_rate(dc);
206 update_gc_after_writeback(c);
207 up_read(&dc->writeback_lock);
208 }
209 }
210
211
212
213
214
215
216 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
217 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
218 schedule_delayed_work(&dc->writeback_rate_update,
219 dc->writeback_rate_update_seconds * HZ);
220 }
221
222
223
224
225
226 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
227
228 smp_mb();
229 }
230
231 static unsigned int writeback_delay(struct cached_dev *dc,
232 unsigned int sectors)
233 {
234 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
235 !dc->writeback_percent)
236 return 0;
237
238 return bch_next_delay(&dc->writeback_rate, sectors);
239 }
240
241 struct dirty_io {
242 struct closure cl;
243 struct cached_dev *dc;
244 uint16_t sequence;
245 struct bio bio;
246 };
247
248 static void dirty_init(struct keybuf_key *w)
249 {
250 struct dirty_io *io = w->private;
251 struct bio *bio = &io->bio;
252
253 bio_init(bio, bio->bi_inline_vecs,
254 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
255 if (!io->dc->writeback_percent)
256 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
257
258 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9;
259 bio->bi_private = w;
260 bch_bio_map(bio, NULL);
261 }
262
263 static void dirty_io_destructor(struct closure *cl)
264 {
265 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
266
267 kfree(io);
268 }
269
270 static void write_dirty_finish(struct closure *cl)
271 {
272 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
273 struct keybuf_key *w = io->bio.bi_private;
274 struct cached_dev *dc = io->dc;
275
276 bio_free_pages(&io->bio);
277
278
279 if (KEY_DIRTY(&w->key)) {
280 int ret;
281 unsigned int i;
282 struct keylist keys;
283
284 bch_keylist_init(&keys);
285
286 bkey_copy(keys.top, &w->key);
287 SET_KEY_DIRTY(keys.top, false);
288 bch_keylist_push(&keys);
289
290 for (i = 0; i < KEY_PTRS(&w->key); i++)
291 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
292
293 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
294
295 if (ret)
296 trace_bcache_writeback_collision(&w->key);
297
298 atomic_long_inc(ret
299 ? &dc->disk.c->writeback_keys_failed
300 : &dc->disk.c->writeback_keys_done);
301 }
302
303 bch_keybuf_del(&dc->writeback_keys, w);
304 up(&dc->in_flight);
305
306 closure_return_with_destructor(cl, dirty_io_destructor);
307 }
308
309 static void dirty_endio(struct bio *bio)
310 {
311 struct keybuf_key *w = bio->bi_private;
312 struct dirty_io *io = w->private;
313
314 if (bio->bi_status) {
315 SET_KEY_DIRTY(&w->key, false);
316 bch_count_backing_io_errors(io->dc, bio);
317 }
318
319 closure_put(&io->cl);
320 }
321
322 static void write_dirty(struct closure *cl)
323 {
324 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
325 struct keybuf_key *w = io->bio.bi_private;
326 struct cached_dev *dc = io->dc;
327
328 uint16_t next_sequence;
329
330 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
331
332 closure_wait(&dc->writeback_ordering_wait, cl);
333
334 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
335
336
337
338
339 closure_wake_up(&dc->writeback_ordering_wait);
340 }
341
342 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
343 return;
344 }
345
346 next_sequence = io->sequence + 1;
347
348
349
350
351
352
353
354 if (KEY_DIRTY(&w->key)) {
355 dirty_init(w);
356 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
357 io->bio.bi_iter.bi_sector = KEY_START(&w->key);
358 bio_set_dev(&io->bio, io->dc->bdev);
359 io->bio.bi_end_io = dirty_endio;
360
361
362 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
363 }
364
365 atomic_set(&dc->writeback_sequence_next, next_sequence);
366 closure_wake_up(&dc->writeback_ordering_wait);
367
368 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
369 }
370
371 static void read_dirty_endio(struct bio *bio)
372 {
373 struct keybuf_key *w = bio->bi_private;
374 struct dirty_io *io = w->private;
375
376
377 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
378 bio->bi_status, 1,
379 "reading dirty data from cache");
380
381 dirty_endio(bio);
382 }
383
384 static void read_dirty_submit(struct closure *cl)
385 {
386 struct dirty_io *io = container_of(cl, struct dirty_io, cl);
387
388 closure_bio_submit(io->dc->disk.c, &io->bio, cl);
389
390 continue_at(cl, write_dirty, io->dc->writeback_write_wq);
391 }
392
393 static void read_dirty(struct cached_dev *dc)
394 {
395 unsigned int delay = 0;
396 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
397 size_t size;
398 int nk, i;
399 struct dirty_io *io;
400 struct closure cl;
401 uint16_t sequence = 0;
402
403 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
404 atomic_set(&dc->writeback_sequence_next, sequence);
405 closure_init_stack(&cl);
406
407
408
409
410
411
412 next = bch_keybuf_next(&dc->writeback_keys);
413
414 while (!kthread_should_stop() &&
415 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
416 next) {
417 size = 0;
418 nk = 0;
419
420 do {
421 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
422
423
424
425
426
427 if (nk >= MAX_WRITEBACKS_IN_PASS)
428 break;
429
430
431
432
433
434 if (size >= MAX_WRITESIZE_IN_PASS)
435 break;
436
437
438
439
440
441
442
443
444
445
446 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
447 &START_KEY(&next->key)))
448 break;
449
450 size += KEY_SIZE(&next->key);
451 keys[nk++] = next;
452 } while ((next = bch_keybuf_next(&dc->writeback_keys)));
453
454
455 for (i = 0; i < nk; i++) {
456 w = keys[i];
457
458 io = kzalloc(sizeof(struct dirty_io) +
459 sizeof(struct bio_vec) *
460 DIV_ROUND_UP(KEY_SIZE(&w->key),
461 PAGE_SECTORS),
462 GFP_KERNEL);
463 if (!io)
464 goto err;
465
466 w->private = io;
467 io->dc = dc;
468 io->sequence = sequence++;
469
470 dirty_init(w);
471 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
472 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
473 bio_set_dev(&io->bio,
474 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
475 io->bio.bi_end_io = read_dirty_endio;
476
477 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
478 goto err_free;
479
480 trace_bcache_writeback(&w->key);
481
482 down(&dc->in_flight);
483
484
485
486
487
488
489 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
490 }
491
492 delay = writeback_delay(dc, size);
493
494 while (!kthread_should_stop() &&
495 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
496 delay) {
497 schedule_timeout_interruptible(delay);
498 delay = writeback_delay(dc, 0);
499 }
500 }
501
502 if (0) {
503 err_free:
504 kfree(w->private);
505 err:
506 bch_keybuf_del(&dc->writeback_keys, w);
507 }
508
509
510
511
512
513 closure_sync(&cl);
514 }
515
516
517
518 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
519 uint64_t offset, int nr_sectors)
520 {
521 struct bcache_device *d = c->devices[inode];
522 unsigned int stripe_offset, stripe, sectors_dirty;
523
524 if (!d)
525 return;
526
527 if (UUID_FLASH_ONLY(&c->uuids[inode]))
528 atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
529
530 stripe = offset_to_stripe(d, offset);
531 stripe_offset = offset & (d->stripe_size - 1);
532
533 while (nr_sectors) {
534 int s = min_t(unsigned int, abs(nr_sectors),
535 d->stripe_size - stripe_offset);
536
537 if (nr_sectors < 0)
538 s = -s;
539
540 if (stripe >= d->nr_stripes)
541 return;
542
543 sectors_dirty = atomic_add_return(s,
544 d->stripe_sectors_dirty + stripe);
545 if (sectors_dirty == d->stripe_size)
546 set_bit(stripe, d->full_dirty_stripes);
547 else
548 clear_bit(stripe, d->full_dirty_stripes);
549
550 nr_sectors -= s;
551 stripe_offset = 0;
552 stripe++;
553 }
554 }
555
556 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
557 {
558 struct cached_dev *dc = container_of(buf,
559 struct cached_dev,
560 writeback_keys);
561
562 BUG_ON(KEY_INODE(k) != dc->disk.id);
563
564 return KEY_DIRTY(k);
565 }
566
567 static void refill_full_stripes(struct cached_dev *dc)
568 {
569 struct keybuf *buf = &dc->writeback_keys;
570 unsigned int start_stripe, stripe, next_stripe;
571 bool wrapped = false;
572
573 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
574
575 if (stripe >= dc->disk.nr_stripes)
576 stripe = 0;
577
578 start_stripe = stripe;
579
580 while (1) {
581 stripe = find_next_bit(dc->disk.full_dirty_stripes,
582 dc->disk.nr_stripes, stripe);
583
584 if (stripe == dc->disk.nr_stripes)
585 goto next;
586
587 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
588 dc->disk.nr_stripes, stripe);
589
590 buf->last_scanned = KEY(dc->disk.id,
591 stripe * dc->disk.stripe_size, 0);
592
593 bch_refill_keybuf(dc->disk.c, buf,
594 &KEY(dc->disk.id,
595 next_stripe * dc->disk.stripe_size, 0),
596 dirty_pred);
597
598 if (array_freelist_empty(&buf->freelist))
599 return;
600
601 stripe = next_stripe;
602 next:
603 if (wrapped && stripe > start_stripe)
604 return;
605
606 if (stripe == dc->disk.nr_stripes) {
607 stripe = 0;
608 wrapped = true;
609 }
610 }
611 }
612
613
614
615
616 static bool refill_dirty(struct cached_dev *dc)
617 {
618 struct keybuf *buf = &dc->writeback_keys;
619 struct bkey start = KEY(dc->disk.id, 0, 0);
620 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
621 struct bkey start_pos;
622
623
624
625
626
627
628 if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
629 bkey_cmp(&buf->last_scanned, &end) > 0)
630 buf->last_scanned = start;
631
632 if (dc->partial_stripes_expensive) {
633 refill_full_stripes(dc);
634 if (array_freelist_empty(&buf->freelist))
635 return false;
636 }
637
638 start_pos = buf->last_scanned;
639 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
640
641 if (bkey_cmp(&buf->last_scanned, &end) < 0)
642 return false;
643
644
645
646
647
648 buf->last_scanned = start;
649 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
650
651 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
652 }
653
654 static int bch_writeback_thread(void *arg)
655 {
656 struct cached_dev *dc = arg;
657 struct cache_set *c = dc->disk.c;
658 bool searched_full_index;
659
660 bch_ratelimit_reset(&dc->writeback_rate);
661
662 while (!kthread_should_stop() &&
663 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
664 down_write(&dc->writeback_lock);
665 set_current_state(TASK_INTERRUPTIBLE);
666
667
668
669
670
671
672
673 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
674 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
675 up_write(&dc->writeback_lock);
676
677 if (kthread_should_stop() ||
678 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
679 set_current_state(TASK_RUNNING);
680 break;
681 }
682
683 schedule();
684 continue;
685 }
686 set_current_state(TASK_RUNNING);
687
688 searched_full_index = refill_dirty(dc);
689
690 if (searched_full_index &&
691 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
692 atomic_set(&dc->has_dirty, 0);
693 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
694 bch_write_bdev_super(dc, NULL);
695
696
697
698
699
700
701 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
702 up_write(&dc->writeback_lock);
703 break;
704 }
705
706
707
708
709
710
711
712
713
714
715
716
717 if (c->gc_after_writeback ==
718 (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
719 c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
720 force_wake_up_gc(c);
721 }
722 }
723
724 up_write(&dc->writeback_lock);
725
726 read_dirty(dc);
727
728 if (searched_full_index) {
729 unsigned int delay = dc->writeback_delay * HZ;
730
731 while (delay &&
732 !kthread_should_stop() &&
733 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
734 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
735 delay = schedule_timeout_interruptible(delay);
736
737 bch_ratelimit_reset(&dc->writeback_rate);
738 }
739 }
740
741 if (dc->writeback_write_wq) {
742 flush_workqueue(dc->writeback_write_wq);
743 destroy_workqueue(dc->writeback_write_wq);
744 }
745 cached_dev_put(dc);
746 wait_for_kthread_stop();
747
748 return 0;
749 }
750
751
752 #define INIT_KEYS_EACH_TIME 500000
753 #define INIT_KEYS_SLEEP_MS 100
754
755 struct sectors_dirty_init {
756 struct btree_op op;
757 unsigned int inode;
758 size_t count;
759 struct bkey start;
760 };
761
762 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
763 struct bkey *k)
764 {
765 struct sectors_dirty_init *op = container_of(_op,
766 struct sectors_dirty_init, op);
767 if (KEY_INODE(k) > op->inode)
768 return MAP_DONE;
769
770 if (KEY_DIRTY(k))
771 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
772 KEY_START(k), KEY_SIZE(k));
773
774 op->count++;
775 if (atomic_read(&b->c->search_inflight) &&
776 !(op->count % INIT_KEYS_EACH_TIME)) {
777 bkey_copy_key(&op->start, k);
778 return -EAGAIN;
779 }
780
781 return MAP_CONTINUE;
782 }
783
784 void bch_sectors_dirty_init(struct bcache_device *d)
785 {
786 struct sectors_dirty_init op;
787 int ret;
788
789 bch_btree_op_init(&op.op, -1);
790 op.inode = d->id;
791 op.count = 0;
792 op.start = KEY(op.inode, 0, 0);
793
794 do {
795 ret = bch_btree_map_keys(&op.op, d->c, &op.start,
796 sectors_dirty_init_fn, 0);
797 if (ret == -EAGAIN)
798 schedule_timeout_interruptible(
799 msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
800 else if (ret < 0) {
801 pr_warn("sectors dirty init failed, ret=%d!", ret);
802 break;
803 }
804 } while (ret == -EAGAIN);
805 }
806
807 void bch_cached_dev_writeback_init(struct cached_dev *dc)
808 {
809 sema_init(&dc->in_flight, 64);
810 init_rwsem(&dc->writeback_lock);
811 bch_keybuf_init(&dc->writeback_keys);
812
813 dc->writeback_metadata = true;
814 dc->writeback_running = false;
815 dc->writeback_percent = 10;
816 dc->writeback_delay = 30;
817 atomic_long_set(&dc->writeback_rate.rate, 1024);
818 dc->writeback_rate_minimum = 8;
819
820 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
821 dc->writeback_rate_p_term_inverse = 40;
822 dc->writeback_rate_i_term_inverse = 10000;
823
824 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
825 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
826 }
827
828 int bch_cached_dev_writeback_start(struct cached_dev *dc)
829 {
830 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
831 WQ_MEM_RECLAIM, 0);
832 if (!dc->writeback_write_wq)
833 return -ENOMEM;
834
835 cached_dev_get(dc);
836 dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
837 "bcache_writeback");
838 if (IS_ERR(dc->writeback_thread)) {
839 cached_dev_put(dc);
840 destroy_workqueue(dc->writeback_write_wq);
841 return PTR_ERR(dc->writeback_thread);
842 }
843 dc->writeback_running = true;
844
845 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
846 schedule_delayed_work(&dc->writeback_rate_update,
847 dc->writeback_rate_update_seconds * HZ);
848
849 bch_writeback_queue(dc);
850
851 return 0;
852 }