root/drivers/iio/adc/nau7802.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. nau7802_show_scales
  2. nau7802_set_gain
  3. nau7802_read_conversion
  4. nau7802_sync
  5. nau7802_eoc_trigger
  6. nau7802_read_irq
  7. nau7802_read_poll
  8. nau7802_read_raw
  9. nau7802_write_raw
  10. nau7802_write_raw_get_fmt
  11. nau7802_probe
  12. nau7802_remove

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Driver for the Nuvoton NAU7802 ADC
   4  *
   5  * Copyright 2013 Free Electrons
   6  */
   7 
   8 #include <linux/delay.h>
   9 #include <linux/i2c.h>
  10 #include <linux/interrupt.h>
  11 #include <linux/module.h>
  12 #include <linux/wait.h>
  13 #include <linux/log2.h>
  14 #include <linux/of.h>
  15 
  16 #include <linux/iio/iio.h>
  17 #include <linux/iio/sysfs.h>
  18 
  19 #define NAU7802_REG_PUCTRL      0x00
  20 #define NAU7802_PUCTRL_RR(x)            (x << 0)
  21 #define NAU7802_PUCTRL_RR_BIT           NAU7802_PUCTRL_RR(1)
  22 #define NAU7802_PUCTRL_PUD(x)           (x << 1)
  23 #define NAU7802_PUCTRL_PUD_BIT          NAU7802_PUCTRL_PUD(1)
  24 #define NAU7802_PUCTRL_PUA(x)           (x << 2)
  25 #define NAU7802_PUCTRL_PUA_BIT          NAU7802_PUCTRL_PUA(1)
  26 #define NAU7802_PUCTRL_PUR(x)           (x << 3)
  27 #define NAU7802_PUCTRL_PUR_BIT          NAU7802_PUCTRL_PUR(1)
  28 #define NAU7802_PUCTRL_CS(x)            (x << 4)
  29 #define NAU7802_PUCTRL_CS_BIT           NAU7802_PUCTRL_CS(1)
  30 #define NAU7802_PUCTRL_CR(x)            (x << 5)
  31 #define NAU7802_PUCTRL_CR_BIT           NAU7802_PUCTRL_CR(1)
  32 #define NAU7802_PUCTRL_AVDDS(x)         (x << 7)
  33 #define NAU7802_PUCTRL_AVDDS_BIT        NAU7802_PUCTRL_AVDDS(1)
  34 #define NAU7802_REG_CTRL1       0x01
  35 #define NAU7802_CTRL1_VLDO(x)           (x << 3)
  36 #define NAU7802_CTRL1_GAINS(x)          (x)
  37 #define NAU7802_CTRL1_GAINS_BITS        0x07
  38 #define NAU7802_REG_CTRL2       0x02
  39 #define NAU7802_CTRL2_CHS(x)            (x << 7)
  40 #define NAU7802_CTRL2_CRS(x)            (x << 4)
  41 #define NAU7802_SAMP_FREQ_320   0x07
  42 #define NAU7802_CTRL2_CHS_BIT           NAU7802_CTRL2_CHS(1)
  43 #define NAU7802_REG_ADC_B2      0x12
  44 #define NAU7802_REG_ADC_B1      0x13
  45 #define NAU7802_REG_ADC_B0      0x14
  46 #define NAU7802_REG_ADC_CTRL    0x15
  47 
  48 #define NAU7802_MIN_CONVERSIONS 6
  49 
  50 struct nau7802_state {
  51         struct i2c_client       *client;
  52         s32                     last_value;
  53         struct mutex            lock;
  54         struct mutex            data_lock;
  55         u32                     vref_mv;
  56         u32                     conversion_count;
  57         u32                     min_conversions;
  58         u8                      sample_rate;
  59         u32                     scale_avail[8];
  60         struct completion       value_ok;
  61 };
  62 
  63 #define NAU7802_CHANNEL(chan) {                                 \
  64         .type = IIO_VOLTAGE,                                    \
  65         .indexed = 1,                                           \
  66         .channel = (chan),                                      \
  67         .scan_index = (chan),                                   \
  68         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),           \
  69         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
  70                                 BIT(IIO_CHAN_INFO_SAMP_FREQ)    \
  71 }
  72 
  73 static const struct iio_chan_spec nau7802_chan_array[] = {
  74         NAU7802_CHANNEL(0),
  75         NAU7802_CHANNEL(1),
  76 };
  77 
  78 static const u16 nau7802_sample_freq_avail[] = {10, 20, 40, 80,
  79                                                 10, 10, 10, 320};
  80 
  81 static ssize_t nau7802_show_scales(struct device *dev,
  82                                    struct device_attribute *attr, char *buf)
  83 {
  84         struct nau7802_state *st = iio_priv(dev_to_iio_dev(dev));
  85         int i, len = 0;
  86 
  87         for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
  88                 len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09d ",
  89                                  st->scale_avail[i]);
  90 
  91         buf[len-1] = '\n';
  92 
  93         return len;
  94 }
  95 
  96 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 40 80 320");
  97 
  98 static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO, nau7802_show_scales,
  99                        NULL, 0);
 100 
 101 static struct attribute *nau7802_attributes[] = {
 102         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
 103         &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
 104         NULL
 105 };
 106 
 107 static const struct attribute_group nau7802_attribute_group = {
 108         .attrs = nau7802_attributes,
 109 };
 110 
 111 static int nau7802_set_gain(struct nau7802_state *st, int gain)
 112 {
 113         int ret;
 114 
 115         mutex_lock(&st->lock);
 116         st->conversion_count = 0;
 117 
 118         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
 119         if (ret < 0)
 120                 goto nau7802_sysfs_set_gain_out;
 121         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
 122                                         (ret & (~NAU7802_CTRL1_GAINS_BITS)) |
 123                                         gain);
 124 
 125 nau7802_sysfs_set_gain_out:
 126         mutex_unlock(&st->lock);
 127 
 128         return ret;
 129 }
 130 
 131 static int nau7802_read_conversion(struct nau7802_state *st)
 132 {
 133         int data;
 134 
 135         mutex_lock(&st->data_lock);
 136         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B2);
 137         if (data < 0)
 138                 goto nau7802_read_conversion_out;
 139         st->last_value = data << 16;
 140 
 141         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B1);
 142         if (data < 0)
 143                 goto nau7802_read_conversion_out;
 144         st->last_value |= data << 8;
 145 
 146         data = i2c_smbus_read_byte_data(st->client, NAU7802_REG_ADC_B0);
 147         if (data < 0)
 148                 goto nau7802_read_conversion_out;
 149         st->last_value |= data;
 150 
 151         st->last_value = sign_extend32(st->last_value, 23);
 152 
 153 nau7802_read_conversion_out:
 154         mutex_unlock(&st->data_lock);
 155 
 156         return data;
 157 }
 158 
 159 /*
 160  * Conversions are synchronised on the rising edge of NAU7802_PUCTRL_CS_BIT
 161  */
 162 static int nau7802_sync(struct nau7802_state *st)
 163 {
 164         int ret;
 165 
 166         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
 167         if (ret < 0)
 168                 return ret;
 169         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
 170                                 ret | NAU7802_PUCTRL_CS_BIT);
 171 
 172         return ret;
 173 }
 174 
 175 static irqreturn_t nau7802_eoc_trigger(int irq, void *private)
 176 {
 177         struct iio_dev *indio_dev = private;
 178         struct nau7802_state *st = iio_priv(indio_dev);
 179         int status;
 180 
 181         status = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
 182         if (status < 0)
 183                 return IRQ_HANDLED;
 184 
 185         if (!(status & NAU7802_PUCTRL_CR_BIT))
 186                 return IRQ_NONE;
 187 
 188         if (nau7802_read_conversion(st) < 0)
 189                 return IRQ_HANDLED;
 190 
 191         /*
 192          * Because there is actually only one ADC for both channels, we have to
 193          * wait for enough conversions to happen before getting a significant
 194          * value when changing channels and the values are far apart.
 195          */
 196         if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
 197                 st->conversion_count++;
 198         if (st->conversion_count >= NAU7802_MIN_CONVERSIONS)
 199                 complete(&st->value_ok);
 200 
 201         return IRQ_HANDLED;
 202 }
 203 
 204 static int nau7802_read_irq(struct iio_dev *indio_dev,
 205                         struct iio_chan_spec const *chan,
 206                         int *val)
 207 {
 208         struct nau7802_state *st = iio_priv(indio_dev);
 209         int ret;
 210 
 211         reinit_completion(&st->value_ok);
 212         enable_irq(st->client->irq);
 213 
 214         nau7802_sync(st);
 215 
 216         /* read registers to ensure we flush everything */
 217         ret = nau7802_read_conversion(st);
 218         if (ret < 0)
 219                 goto read_chan_info_failure;
 220 
 221         /* Wait for a conversion to finish */
 222         ret = wait_for_completion_interruptible_timeout(&st->value_ok,
 223                         msecs_to_jiffies(1000));
 224         if (ret == 0)
 225                 ret = -ETIMEDOUT;
 226 
 227         if (ret < 0)
 228                 goto read_chan_info_failure;
 229 
 230         disable_irq(st->client->irq);
 231 
 232         *val = st->last_value;
 233 
 234         return IIO_VAL_INT;
 235 
 236 read_chan_info_failure:
 237         disable_irq(st->client->irq);
 238 
 239         return ret;
 240 }
 241 
 242 static int nau7802_read_poll(struct iio_dev *indio_dev,
 243                         struct iio_chan_spec const *chan,
 244                         int *val)
 245 {
 246         struct nau7802_state *st = iio_priv(indio_dev);
 247         int ret;
 248 
 249         nau7802_sync(st);
 250 
 251         /* read registers to ensure we flush everything */
 252         ret = nau7802_read_conversion(st);
 253         if (ret < 0)
 254                 return ret;
 255 
 256         /*
 257          * Because there is actually only one ADC for both channels, we have to
 258          * wait for enough conversions to happen before getting a significant
 259          * value when changing channels and the values are far appart.
 260          */
 261         do {
 262                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
 263                 if (ret < 0)
 264                         return ret;
 265 
 266                 while (!(ret & NAU7802_PUCTRL_CR_BIT)) {
 267                         if (st->sample_rate != NAU7802_SAMP_FREQ_320)
 268                                 msleep(20);
 269                         else
 270                                 mdelay(4);
 271                         ret = i2c_smbus_read_byte_data(st->client,
 272                                                         NAU7802_REG_PUCTRL);
 273                         if (ret < 0)
 274                                 return ret;
 275                 }
 276 
 277                 ret = nau7802_read_conversion(st);
 278                 if (ret < 0)
 279                         return ret;
 280                 if (st->conversion_count < NAU7802_MIN_CONVERSIONS)
 281                         st->conversion_count++;
 282         } while (st->conversion_count < NAU7802_MIN_CONVERSIONS);
 283 
 284         *val = st->last_value;
 285 
 286         return IIO_VAL_INT;
 287 }
 288 
 289 static int nau7802_read_raw(struct iio_dev *indio_dev,
 290                             struct iio_chan_spec const *chan,
 291                             int *val, int *val2, long mask)
 292 {
 293         struct nau7802_state *st = iio_priv(indio_dev);
 294         int ret;
 295 
 296         switch (mask) {
 297         case IIO_CHAN_INFO_RAW:
 298                 mutex_lock(&st->lock);
 299                 /*
 300                  * Select the channel to use
 301                  *   - Channel 1 is value 0 in the CHS register
 302                  *   - Channel 2 is value 1 in the CHS register
 303                  */
 304                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL2);
 305                 if (ret < 0) {
 306                         mutex_unlock(&st->lock);
 307                         return ret;
 308                 }
 309 
 310                 if (((ret & NAU7802_CTRL2_CHS_BIT) && !chan->channel) ||
 311                                 (!(ret & NAU7802_CTRL2_CHS_BIT) &&
 312                                  chan->channel)) {
 313                         st->conversion_count = 0;
 314                         ret = i2c_smbus_write_byte_data(st->client,
 315                                         NAU7802_REG_CTRL2,
 316                                         NAU7802_CTRL2_CHS(chan->channel) |
 317                                         NAU7802_CTRL2_CRS(st->sample_rate));
 318 
 319                         if (ret < 0) {
 320                                 mutex_unlock(&st->lock);
 321                                 return ret;
 322                         }
 323                 }
 324 
 325                 if (st->client->irq)
 326                         ret = nau7802_read_irq(indio_dev, chan, val);
 327                 else
 328                         ret = nau7802_read_poll(indio_dev, chan, val);
 329 
 330                 mutex_unlock(&st->lock);
 331                 return ret;
 332 
 333         case IIO_CHAN_INFO_SCALE:
 334                 ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_CTRL1);
 335                 if (ret < 0)
 336                         return ret;
 337 
 338                 /*
 339                  * We have 24 bits of signed data, that means 23 bits of data
 340                  * plus the sign bit
 341                  */
 342                 *val = st->vref_mv;
 343                 *val2 = 23 + (ret & NAU7802_CTRL1_GAINS_BITS);
 344 
 345                 return IIO_VAL_FRACTIONAL_LOG2;
 346 
 347         case IIO_CHAN_INFO_SAMP_FREQ:
 348                 *val =  nau7802_sample_freq_avail[st->sample_rate];
 349                 *val2 = 0;
 350                 return IIO_VAL_INT;
 351 
 352         default:
 353                 break;
 354         }
 355 
 356         return -EINVAL;
 357 }
 358 
 359 static int nau7802_write_raw(struct iio_dev *indio_dev,
 360                              struct iio_chan_spec const *chan,
 361                              int val, int val2, long mask)
 362 {
 363         struct nau7802_state *st = iio_priv(indio_dev);
 364         int i, ret;
 365 
 366         switch (mask) {
 367         case IIO_CHAN_INFO_SCALE:
 368                 for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
 369                         if (val2 == st->scale_avail[i])
 370                                 return nau7802_set_gain(st, i);
 371 
 372                 break;
 373 
 374         case IIO_CHAN_INFO_SAMP_FREQ:
 375                 for (i = 0; i < ARRAY_SIZE(nau7802_sample_freq_avail); i++)
 376                         if (val == nau7802_sample_freq_avail[i]) {
 377                                 mutex_lock(&st->lock);
 378                                 st->sample_rate = i;
 379                                 st->conversion_count = 0;
 380                                 ret = i2c_smbus_write_byte_data(st->client,
 381                                         NAU7802_REG_CTRL2,
 382                                         NAU7802_CTRL2_CRS(st->sample_rate));
 383                                 mutex_unlock(&st->lock);
 384                                 return ret;
 385                         }
 386 
 387                 break;
 388 
 389         default:
 390                 break;
 391         }
 392 
 393         return -EINVAL;
 394 }
 395 
 396 static int nau7802_write_raw_get_fmt(struct iio_dev *indio_dev,
 397                                      struct iio_chan_spec const *chan,
 398                                      long mask)
 399 {
 400         return IIO_VAL_INT_PLUS_NANO;
 401 }
 402 
 403 static const struct iio_info nau7802_info = {
 404         .read_raw = &nau7802_read_raw,
 405         .write_raw = &nau7802_write_raw,
 406         .write_raw_get_fmt = nau7802_write_raw_get_fmt,
 407         .attrs = &nau7802_attribute_group,
 408 };
 409 
 410 static int nau7802_probe(struct i2c_client *client,
 411                         const struct i2c_device_id *id)
 412 {
 413         struct iio_dev *indio_dev;
 414         struct nau7802_state *st;
 415         struct device_node *np = client->dev.of_node;
 416         int i, ret;
 417         u8 data;
 418         u32 tmp = 0;
 419 
 420         if (!client->dev.of_node) {
 421                 dev_err(&client->dev, "No device tree node available.\n");
 422                 return -EINVAL;
 423         }
 424 
 425         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st));
 426         if (indio_dev == NULL)
 427                 return -ENOMEM;
 428 
 429         st = iio_priv(indio_dev);
 430 
 431         i2c_set_clientdata(client, indio_dev);
 432 
 433         indio_dev->dev.parent = &client->dev;
 434         indio_dev->dev.of_node = client->dev.of_node;
 435         indio_dev->name = dev_name(&client->dev);
 436         indio_dev->modes = INDIO_DIRECT_MODE;
 437         indio_dev->info = &nau7802_info;
 438 
 439         st->client = client;
 440 
 441         /* Reset the device */
 442         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
 443                                   NAU7802_PUCTRL_RR_BIT);
 444         if (ret < 0)
 445                 return ret;
 446 
 447         /* Enter normal operation mode */
 448         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL,
 449                                   NAU7802_PUCTRL_PUD_BIT);
 450         if (ret < 0)
 451                 return ret;
 452 
 453         /*
 454          * After about 200 usecs, the device should be ready and then
 455          * the Power Up bit will be set to 1. If not, wait for it.
 456          */
 457         udelay(210);
 458         ret = i2c_smbus_read_byte_data(st->client, NAU7802_REG_PUCTRL);
 459         if (ret < 0)
 460                 return ret;
 461         if (!(ret & NAU7802_PUCTRL_PUR_BIT))
 462                 return ret;
 463 
 464         of_property_read_u32(np, "nuvoton,vldo", &tmp);
 465         st->vref_mv = tmp;
 466 
 467         data = NAU7802_PUCTRL_PUD_BIT | NAU7802_PUCTRL_PUA_BIT |
 468                 NAU7802_PUCTRL_CS_BIT;
 469         if (tmp >= 2400)
 470                 data |= NAU7802_PUCTRL_AVDDS_BIT;
 471 
 472         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_PUCTRL, data);
 473         if (ret < 0)
 474                 return ret;
 475         ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_ADC_CTRL, 0x30);
 476         if (ret < 0)
 477                 return ret;
 478 
 479         if (tmp >= 2400) {
 480                 data = NAU7802_CTRL1_VLDO((4500 - tmp) / 300);
 481                 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL1,
 482                                                 data);
 483                 if (ret < 0)
 484                         return ret;
 485         }
 486 
 487         /* Populate available ADC input ranges */
 488         for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
 489                 st->scale_avail[i] = (((u64)st->vref_mv) * 1000000000ULL)
 490                                            >> (23 + i);
 491 
 492         init_completion(&st->value_ok);
 493 
 494         /*
 495          * The ADC fires continuously and we can't do anything about
 496          * it. So we need to have the IRQ disabled by default, and we
 497          * will enable them back when we will need them..
 498          */
 499         if (client->irq) {
 500                 ret = request_threaded_irq(client->irq,
 501                                 NULL,
 502                                 nau7802_eoc_trigger,
 503                                 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
 504                                 client->dev.driver->name,
 505                                 indio_dev);
 506                 if (ret) {
 507                         /*
 508                          * What may happen here is that our IRQ controller is
 509                          * not able to get level interrupt but this is required
 510                          * by this ADC as when going over 40 sample per second,
 511                          * the interrupt line may stay high between conversions.
 512                          * So, we continue no matter what but we switch to
 513                          * polling mode.
 514                          */
 515                         dev_info(&client->dev,
 516                                 "Failed to allocate IRQ, using polling mode\n");
 517                         client->irq = 0;
 518                 } else
 519                         disable_irq(client->irq);
 520         }
 521 
 522         if (!client->irq) {
 523                 /*
 524                  * We are polling, use the fastest sample rate by
 525                  * default
 526                  */
 527                 st->sample_rate = NAU7802_SAMP_FREQ_320;
 528                 ret = i2c_smbus_write_byte_data(st->client, NAU7802_REG_CTRL2,
 529                                           NAU7802_CTRL2_CRS(st->sample_rate));
 530                 if (ret)
 531                         goto error_free_irq;
 532         }
 533 
 534         /* Setup the ADC channels available on the board */
 535         indio_dev->num_channels = ARRAY_SIZE(nau7802_chan_array);
 536         indio_dev->channels = nau7802_chan_array;
 537 
 538         mutex_init(&st->lock);
 539         mutex_init(&st->data_lock);
 540 
 541         ret = iio_device_register(indio_dev);
 542         if (ret < 0) {
 543                 dev_err(&client->dev, "Couldn't register the device.\n");
 544                 goto error_device_register;
 545         }
 546 
 547         return 0;
 548 
 549 error_device_register:
 550         mutex_destroy(&st->lock);
 551         mutex_destroy(&st->data_lock);
 552 error_free_irq:
 553         if (client->irq)
 554                 free_irq(client->irq, indio_dev);
 555 
 556         return ret;
 557 }
 558 
 559 static int nau7802_remove(struct i2c_client *client)
 560 {
 561         struct iio_dev *indio_dev = i2c_get_clientdata(client);
 562         struct nau7802_state *st = iio_priv(indio_dev);
 563 
 564         iio_device_unregister(indio_dev);
 565         mutex_destroy(&st->lock);
 566         mutex_destroy(&st->data_lock);
 567         if (client->irq)
 568                 free_irq(client->irq, indio_dev);
 569 
 570         return 0;
 571 }
 572 
 573 static const struct i2c_device_id nau7802_i2c_id[] = {
 574         { "nau7802", 0 },
 575         { }
 576 };
 577 MODULE_DEVICE_TABLE(i2c, nau7802_i2c_id);
 578 
 579 static const struct of_device_id nau7802_dt_ids[] = {
 580         { .compatible = "nuvoton,nau7802" },
 581         {},
 582 };
 583 MODULE_DEVICE_TABLE(of, nau7802_dt_ids);
 584 
 585 static struct i2c_driver nau7802_driver = {
 586         .probe = nau7802_probe,
 587         .remove = nau7802_remove,
 588         .id_table = nau7802_i2c_id,
 589         .driver = {
 590                    .name = "nau7802",
 591                    .of_match_table = nau7802_dt_ids,
 592         },
 593 };
 594 
 595 module_i2c_driver(nau7802_driver);
 596 
 597 MODULE_LICENSE("GPL");
 598 MODULE_DESCRIPTION("Nuvoton NAU7802 ADC Driver");
 599 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
 600 MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>");

/* [<][>][^][v][top][bottom][index][help] */