root/drivers/iio/adc/stm32-adc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. stm32_adc_readl
  2. stm32_adc_readw
  3. stm32_adc_writel
  4. stm32_adc_set_bits
  5. stm32_adc_clr_bits
  6. stm32_adc_conv_irq_enable
  7. stm32_adc_conv_irq_disable
  8. stm32_adc_set_res
  9. stm32_adc_hw_stop
  10. stm32_adc_hw_start
  11. stm32f4_adc_start_conv
  12. stm32f4_adc_stop_conv
  13. stm32h7_adc_start_conv
  14. stm32h7_adc_stop_conv
  15. stm32h7_adc_exit_pwr_down
  16. stm32h7_adc_enter_pwr_down
  17. stm32h7_adc_enable
  18. stm32h7_adc_disable
  19. stm32h7_adc_read_selfcalib
  20. stm32h7_adc_restore_selfcalib
  21. stm32h7_adc_selfcalib
  22. stm32h7_adc_prepare
  23. stm32h7_adc_unprepare
  24. stm32_adc_conf_scan_seq
  25. stm32_adc_get_trig_extsel
  26. stm32_adc_set_trig
  27. stm32_adc_set_trig_pol
  28. stm32_adc_get_trig_pol
  29. stm32_adc_single_conv
  30. stm32_adc_read_raw
  31. stm32_adc_isr
  32. stm32_adc_validate_trigger
  33. stm32_adc_set_watermark
  34. stm32_adc_update_scan_mode
  35. stm32_adc_of_xlate
  36. stm32_adc_debugfs_reg_access
  37. stm32_adc_dma_residue
  38. stm32_adc_dma_buffer_done
  39. stm32_adc_dma_start
  40. __stm32_adc_buffer_postenable
  41. stm32_adc_buffer_postenable
  42. __stm32_adc_buffer_predisable
  43. stm32_adc_buffer_predisable
  44. stm32_adc_trigger_handler
  45. stm32_adc_of_get_resolution
  46. stm32_adc_smpr_init
  47. stm32_adc_chan_init_one
  48. stm32_adc_chan_of_init
  49. stm32_adc_dma_request
  50. stm32_adc_probe
  51. stm32_adc_remove
  52. stm32_adc_suspend
  53. stm32_adc_resume
  54. stm32_adc_runtime_suspend
  55. stm32_adc_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * This file is part of STM32 ADC driver
   4  *
   5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
   7  */
   8 
   9 #include <linux/clk.h>
  10 #include <linux/delay.h>
  11 #include <linux/dma-mapping.h>
  12 #include <linux/dmaengine.h>
  13 #include <linux/iio/iio.h>
  14 #include <linux/iio/buffer.h>
  15 #include <linux/iio/timer/stm32-lptim-trigger.h>
  16 #include <linux/iio/timer/stm32-timer-trigger.h>
  17 #include <linux/iio/trigger.h>
  18 #include <linux/iio/trigger_consumer.h>
  19 #include <linux/iio/triggered_buffer.h>
  20 #include <linux/interrupt.h>
  21 #include <linux/io.h>
  22 #include <linux/iopoll.h>
  23 #include <linux/module.h>
  24 #include <linux/platform_device.h>
  25 #include <linux/pm_runtime.h>
  26 #include <linux/of.h>
  27 #include <linux/of_device.h>
  28 
  29 #include "stm32-adc-core.h"
  30 
  31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
  32 #define STM32H7_LINCALFACT_NUM          6
  33 
  34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
  35 #define STM32H7_BOOST_CLKRATE           20000000UL
  36 
  37 #define STM32_ADC_CH_MAX                20      /* max number of channels */
  38 #define STM32_ADC_CH_SZ                 10      /* max channel name size */
  39 #define STM32_ADC_MAX_SQ                16      /* SQ1..SQ16 */
  40 #define STM32_ADC_MAX_SMP               7       /* SMPx range is [0..7] */
  41 #define STM32_ADC_TIMEOUT_US            100000
  42 #define STM32_ADC_TIMEOUT       (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
  43 #define STM32_ADC_HW_STOP_DELAY_MS      100
  44 
  45 #define STM32_DMA_BUFFER_SIZE           PAGE_SIZE
  46 
  47 /* External trigger enable */
  48 enum stm32_adc_exten {
  49         STM32_EXTEN_SWTRIG,
  50         STM32_EXTEN_HWTRIG_RISING_EDGE,
  51         STM32_EXTEN_HWTRIG_FALLING_EDGE,
  52         STM32_EXTEN_HWTRIG_BOTH_EDGES,
  53 };
  54 
  55 /* extsel - trigger mux selection value */
  56 enum stm32_adc_extsel {
  57         STM32_EXT0,
  58         STM32_EXT1,
  59         STM32_EXT2,
  60         STM32_EXT3,
  61         STM32_EXT4,
  62         STM32_EXT5,
  63         STM32_EXT6,
  64         STM32_EXT7,
  65         STM32_EXT8,
  66         STM32_EXT9,
  67         STM32_EXT10,
  68         STM32_EXT11,
  69         STM32_EXT12,
  70         STM32_EXT13,
  71         STM32_EXT14,
  72         STM32_EXT15,
  73         STM32_EXT16,
  74         STM32_EXT17,
  75         STM32_EXT18,
  76         STM32_EXT19,
  77         STM32_EXT20,
  78 };
  79 
  80 /**
  81  * struct stm32_adc_trig_info - ADC trigger info
  82  * @name:               name of the trigger, corresponding to its source
  83  * @extsel:             trigger selection
  84  */
  85 struct stm32_adc_trig_info {
  86         const char *name;
  87         enum stm32_adc_extsel extsel;
  88 };
  89 
  90 /**
  91  * struct stm32_adc_calib - optional adc calibration data
  92  * @calfact_s: Calibration offset for single ended channels
  93  * @calfact_d: Calibration offset in differential
  94  * @lincalfact: Linearity calibration factor
  95  * @calibrated: Indicates calibration status
  96  */
  97 struct stm32_adc_calib {
  98         u32                     calfact_s;
  99         u32                     calfact_d;
 100         u32                     lincalfact[STM32H7_LINCALFACT_NUM];
 101         bool                    calibrated;
 102 };
 103 
 104 /**
 105  * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
 106  * @reg:                register offset
 107  * @mask:               bitfield mask
 108  * @shift:              left shift
 109  */
 110 struct stm32_adc_regs {
 111         int reg;
 112         int mask;
 113         int shift;
 114 };
 115 
 116 /**
 117  * stm32_adc_regspec - stm32 registers definition, compatible dependent data
 118  * @dr:                 data register offset
 119  * @ier_eoc:            interrupt enable register & eocie bitfield
 120  * @isr_eoc:            interrupt status register & eoc bitfield
 121  * @sqr:                reference to sequence registers array
 122  * @exten:              trigger control register & bitfield
 123  * @extsel:             trigger selection register & bitfield
 124  * @res:                resolution selection register & bitfield
 125  * @smpr:               smpr1 & smpr2 registers offset array
 126  * @smp_bits:           smpr1 & smpr2 index and bitfields
 127  */
 128 struct stm32_adc_regspec {
 129         const u32 dr;
 130         const struct stm32_adc_regs ier_eoc;
 131         const struct stm32_adc_regs isr_eoc;
 132         const struct stm32_adc_regs *sqr;
 133         const struct stm32_adc_regs exten;
 134         const struct stm32_adc_regs extsel;
 135         const struct stm32_adc_regs res;
 136         const u32 smpr[2];
 137         const struct stm32_adc_regs *smp_bits;
 138 };
 139 
 140 struct stm32_adc;
 141 
 142 /**
 143  * stm32_adc_cfg - stm32 compatible configuration data
 144  * @regs:               registers descriptions
 145  * @adc_info:           per instance input channels definitions
 146  * @trigs:              external trigger sources
 147  * @clk_required:       clock is required
 148  * @has_vregready:      vregready status flag presence
 149  * @prepare:            optional prepare routine (power-up, enable)
 150  * @start_conv:         routine to start conversions
 151  * @stop_conv:          routine to stop conversions
 152  * @unprepare:          optional unprepare routine (disable, power-down)
 153  * @smp_cycles:         programmable sampling time (ADC clock cycles)
 154  */
 155 struct stm32_adc_cfg {
 156         const struct stm32_adc_regspec  *regs;
 157         const struct stm32_adc_info     *adc_info;
 158         struct stm32_adc_trig_info      *trigs;
 159         bool clk_required;
 160         bool has_vregready;
 161         int (*prepare)(struct stm32_adc *);
 162         void (*start_conv)(struct stm32_adc *, bool dma);
 163         void (*stop_conv)(struct stm32_adc *);
 164         void (*unprepare)(struct stm32_adc *);
 165         const unsigned int *smp_cycles;
 166 };
 167 
 168 /**
 169  * struct stm32_adc - private data of each ADC IIO instance
 170  * @common:             reference to ADC block common data
 171  * @offset:             ADC instance register offset in ADC block
 172  * @cfg:                compatible configuration data
 173  * @completion:         end of single conversion completion
 174  * @buffer:             data buffer
 175  * @clk:                clock for this adc instance
 176  * @irq:                interrupt for this adc instance
 177  * @lock:               spinlock
 178  * @bufi:               data buffer index
 179  * @num_conv:           expected number of scan conversions
 180  * @res:                data resolution (e.g. RES bitfield value)
 181  * @trigger_polarity:   external trigger polarity (e.g. exten)
 182  * @dma_chan:           dma channel
 183  * @rx_buf:             dma rx buffer cpu address
 184  * @rx_dma_buf:         dma rx buffer bus address
 185  * @rx_buf_sz:          dma rx buffer size
 186  * @difsel              bitmask to set single-ended/differential channel
 187  * @pcsel               bitmask to preselect channels on some devices
 188  * @smpr_val:           sampling time settings (e.g. smpr1 / smpr2)
 189  * @cal:                optional calibration data on some devices
 190  * @chan_name:          channel name array
 191  */
 192 struct stm32_adc {
 193         struct stm32_adc_common *common;
 194         u32                     offset;
 195         const struct stm32_adc_cfg      *cfg;
 196         struct completion       completion;
 197         u16                     buffer[STM32_ADC_MAX_SQ];
 198         struct clk              *clk;
 199         int                     irq;
 200         spinlock_t              lock;           /* interrupt lock */
 201         unsigned int            bufi;
 202         unsigned int            num_conv;
 203         u32                     res;
 204         u32                     trigger_polarity;
 205         struct dma_chan         *dma_chan;
 206         u8                      *rx_buf;
 207         dma_addr_t              rx_dma_buf;
 208         unsigned int            rx_buf_sz;
 209         u32                     difsel;
 210         u32                     pcsel;
 211         u32                     smpr_val[2];
 212         struct stm32_adc_calib  cal;
 213         char                    chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
 214 };
 215 
 216 struct stm32_adc_diff_channel {
 217         u32 vinp;
 218         u32 vinn;
 219 };
 220 
 221 /**
 222  * struct stm32_adc_info - stm32 ADC, per instance config data
 223  * @max_channels:       Number of channels
 224  * @resolutions:        available resolutions
 225  * @num_res:            number of available resolutions
 226  */
 227 struct stm32_adc_info {
 228         int max_channels;
 229         const unsigned int *resolutions;
 230         const unsigned int num_res;
 231 };
 232 
 233 static const unsigned int stm32f4_adc_resolutions[] = {
 234         /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
 235         12, 10, 8, 6,
 236 };
 237 
 238 /* stm32f4 can have up to 16 channels */
 239 static const struct stm32_adc_info stm32f4_adc_info = {
 240         .max_channels = 16,
 241         .resolutions = stm32f4_adc_resolutions,
 242         .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
 243 };
 244 
 245 static const unsigned int stm32h7_adc_resolutions[] = {
 246         /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
 247         16, 14, 12, 10, 8,
 248 };
 249 
 250 /* stm32h7 can have up to 20 channels */
 251 static const struct stm32_adc_info stm32h7_adc_info = {
 252         .max_channels = STM32_ADC_CH_MAX,
 253         .resolutions = stm32h7_adc_resolutions,
 254         .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
 255 };
 256 
 257 /**
 258  * stm32f4_sq - describe regular sequence registers
 259  * - L: sequence len (register & bit field)
 260  * - SQ1..SQ16: sequence entries (register & bit field)
 261  */
 262 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
 263         /* L: len bit field description to be kept as first element */
 264         { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
 265         /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 266         { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
 267         { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
 268         { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
 269         { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
 270         { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
 271         { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
 272         { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
 273         { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
 274         { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
 275         { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
 276         { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
 277         { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
 278         { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
 279         { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
 280         { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
 281         { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
 282 };
 283 
 284 /* STM32F4 external trigger sources for all instances */
 285 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
 286         { TIM1_CH1, STM32_EXT0 },
 287         { TIM1_CH2, STM32_EXT1 },
 288         { TIM1_CH3, STM32_EXT2 },
 289         { TIM2_CH2, STM32_EXT3 },
 290         { TIM2_CH3, STM32_EXT4 },
 291         { TIM2_CH4, STM32_EXT5 },
 292         { TIM2_TRGO, STM32_EXT6 },
 293         { TIM3_CH1, STM32_EXT7 },
 294         { TIM3_TRGO, STM32_EXT8 },
 295         { TIM4_CH4, STM32_EXT9 },
 296         { TIM5_CH1, STM32_EXT10 },
 297         { TIM5_CH2, STM32_EXT11 },
 298         { TIM5_CH3, STM32_EXT12 },
 299         { TIM8_CH1, STM32_EXT13 },
 300         { TIM8_TRGO, STM32_EXT14 },
 301         {}, /* sentinel */
 302 };
 303 
 304 /**
 305  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
 306  * Sorted so it can be indexed by channel number.
 307  */
 308 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
 309         /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
 310         { 1, GENMASK(2, 0), 0 },
 311         { 1, GENMASK(5, 3), 3 },
 312         { 1, GENMASK(8, 6), 6 },
 313         { 1, GENMASK(11, 9), 9 },
 314         { 1, GENMASK(14, 12), 12 },
 315         { 1, GENMASK(17, 15), 15 },
 316         { 1, GENMASK(20, 18), 18 },
 317         { 1, GENMASK(23, 21), 21 },
 318         { 1, GENMASK(26, 24), 24 },
 319         { 1, GENMASK(29, 27), 27 },
 320         /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
 321         { 0, GENMASK(2, 0), 0 },
 322         { 0, GENMASK(5, 3), 3 },
 323         { 0, GENMASK(8, 6), 6 },
 324         { 0, GENMASK(11, 9), 9 },
 325         { 0, GENMASK(14, 12), 12 },
 326         { 0, GENMASK(17, 15), 15 },
 327         { 0, GENMASK(20, 18), 18 },
 328         { 0, GENMASK(23, 21), 21 },
 329         { 0, GENMASK(26, 24), 24 },
 330 };
 331 
 332 /* STM32F4 programmable sampling time (ADC clock cycles) */
 333 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 334         3, 15, 28, 56, 84, 112, 144, 480,
 335 };
 336 
 337 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
 338         .dr = STM32F4_ADC_DR,
 339         .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
 340         .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
 341         .sqr = stm32f4_sq,
 342         .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
 343         .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
 344                     STM32F4_EXTSEL_SHIFT },
 345         .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
 346         .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
 347         .smp_bits = stm32f4_smp_bits,
 348 };
 349 
 350 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
 351         /* L: len bit field description to be kept as first element */
 352         { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
 353         /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
 354         { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
 355         { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
 356         { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
 357         { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
 358         { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
 359         { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
 360         { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
 361         { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
 362         { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
 363         { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
 364         { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
 365         { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
 366         { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
 367         { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
 368         { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
 369         { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
 370 };
 371 
 372 /* STM32H7 external trigger sources for all instances */
 373 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
 374         { TIM1_CH1, STM32_EXT0 },
 375         { TIM1_CH2, STM32_EXT1 },
 376         { TIM1_CH3, STM32_EXT2 },
 377         { TIM2_CH2, STM32_EXT3 },
 378         { TIM3_TRGO, STM32_EXT4 },
 379         { TIM4_CH4, STM32_EXT5 },
 380         { TIM8_TRGO, STM32_EXT7 },
 381         { TIM8_TRGO2, STM32_EXT8 },
 382         { TIM1_TRGO, STM32_EXT9 },
 383         { TIM1_TRGO2, STM32_EXT10 },
 384         { TIM2_TRGO, STM32_EXT11 },
 385         { TIM4_TRGO, STM32_EXT12 },
 386         { TIM6_TRGO, STM32_EXT13 },
 387         { TIM15_TRGO, STM32_EXT14 },
 388         { TIM3_CH4, STM32_EXT15 },
 389         { LPTIM1_OUT, STM32_EXT18 },
 390         { LPTIM2_OUT, STM32_EXT19 },
 391         { LPTIM3_OUT, STM32_EXT20 },
 392         {},
 393 };
 394 
 395 /**
 396  * stm32h7_smp_bits - describe sampling time register index & bit fields
 397  * Sorted so it can be indexed by channel number.
 398  */
 399 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
 400         /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
 401         { 0, GENMASK(2, 0), 0 },
 402         { 0, GENMASK(5, 3), 3 },
 403         { 0, GENMASK(8, 6), 6 },
 404         { 0, GENMASK(11, 9), 9 },
 405         { 0, GENMASK(14, 12), 12 },
 406         { 0, GENMASK(17, 15), 15 },
 407         { 0, GENMASK(20, 18), 18 },
 408         { 0, GENMASK(23, 21), 21 },
 409         { 0, GENMASK(26, 24), 24 },
 410         { 0, GENMASK(29, 27), 27 },
 411         /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
 412         { 1, GENMASK(2, 0), 0 },
 413         { 1, GENMASK(5, 3), 3 },
 414         { 1, GENMASK(8, 6), 6 },
 415         { 1, GENMASK(11, 9), 9 },
 416         { 1, GENMASK(14, 12), 12 },
 417         { 1, GENMASK(17, 15), 15 },
 418         { 1, GENMASK(20, 18), 18 },
 419         { 1, GENMASK(23, 21), 21 },
 420         { 1, GENMASK(26, 24), 24 },
 421         { 1, GENMASK(29, 27), 27 },
 422 };
 423 
 424 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
 425 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
 426         1, 2, 8, 16, 32, 64, 387, 810,
 427 };
 428 
 429 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
 430         .dr = STM32H7_ADC_DR,
 431         .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
 432         .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
 433         .sqr = stm32h7_sq,
 434         .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
 435         .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
 436                     STM32H7_EXTSEL_SHIFT },
 437         .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
 438         .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
 439         .smp_bits = stm32h7_smp_bits,
 440 };
 441 
 442 /**
 443  * STM32 ADC registers access routines
 444  * @adc: stm32 adc instance
 445  * @reg: reg offset in adc instance
 446  *
 447  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
 448  * for adc1, adc2 and adc3.
 449  */
 450 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
 451 {
 452         return readl_relaxed(adc->common->base + adc->offset + reg);
 453 }
 454 
 455 #define stm32_adc_readl_addr(addr)      stm32_adc_readl(adc, addr)
 456 
 457 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
 458         readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
 459                            cond, sleep_us, timeout_us)
 460 
 461 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
 462 {
 463         return readw_relaxed(adc->common->base + adc->offset + reg);
 464 }
 465 
 466 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
 467 {
 468         writel_relaxed(val, adc->common->base + adc->offset + reg);
 469 }
 470 
 471 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 472 {
 473         unsigned long flags;
 474 
 475         spin_lock_irqsave(&adc->lock, flags);
 476         stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
 477         spin_unlock_irqrestore(&adc->lock, flags);
 478 }
 479 
 480 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
 481 {
 482         unsigned long flags;
 483 
 484         spin_lock_irqsave(&adc->lock, flags);
 485         stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
 486         spin_unlock_irqrestore(&adc->lock, flags);
 487 }
 488 
 489 /**
 490  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
 491  * @adc: stm32 adc instance
 492  */
 493 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
 494 {
 495         stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
 496                            adc->cfg->regs->ier_eoc.mask);
 497 };
 498 
 499 /**
 500  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
 501  * @adc: stm32 adc instance
 502  */
 503 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
 504 {
 505         stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
 506                            adc->cfg->regs->ier_eoc.mask);
 507 }
 508 
 509 static void stm32_adc_set_res(struct stm32_adc *adc)
 510 {
 511         const struct stm32_adc_regs *res = &adc->cfg->regs->res;
 512         u32 val;
 513 
 514         val = stm32_adc_readl(adc, res->reg);
 515         val = (val & ~res->mask) | (adc->res << res->shift);
 516         stm32_adc_writel(adc, res->reg, val);
 517 }
 518 
 519 static int stm32_adc_hw_stop(struct device *dev)
 520 {
 521         struct stm32_adc *adc = dev_get_drvdata(dev);
 522 
 523         if (adc->cfg->unprepare)
 524                 adc->cfg->unprepare(adc);
 525 
 526         if (adc->clk)
 527                 clk_disable_unprepare(adc->clk);
 528 
 529         return 0;
 530 }
 531 
 532 static int stm32_adc_hw_start(struct device *dev)
 533 {
 534         struct stm32_adc *adc = dev_get_drvdata(dev);
 535         int ret;
 536 
 537         if (adc->clk) {
 538                 ret = clk_prepare_enable(adc->clk);
 539                 if (ret)
 540                         return ret;
 541         }
 542 
 543         stm32_adc_set_res(adc);
 544 
 545         if (adc->cfg->prepare) {
 546                 ret = adc->cfg->prepare(adc);
 547                 if (ret)
 548                         goto err_clk_dis;
 549         }
 550 
 551         return 0;
 552 
 553 err_clk_dis:
 554         if (adc->clk)
 555                 clk_disable_unprepare(adc->clk);
 556 
 557         return ret;
 558 }
 559 
 560 /**
 561  * stm32f4_adc_start_conv() - Start conversions for regular channels.
 562  * @adc: stm32 adc instance
 563  * @dma: use dma to transfer conversion result
 564  *
 565  * Start conversions for regular channels.
 566  * Also take care of normal or DMA mode. Circular DMA may be used for regular
 567  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
 568  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
 569  */
 570 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
 571 {
 572         stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 573 
 574         if (dma)
 575                 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
 576                                    STM32F4_DMA | STM32F4_DDS);
 577 
 578         stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
 579 
 580         /* Wait for Power-up time (tSTAB from datasheet) */
 581         usleep_range(2, 3);
 582 
 583         /* Software start ? (e.g. trigger detection disabled ?) */
 584         if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
 585                 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
 586 }
 587 
 588 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
 589 {
 590         stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
 591         stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
 592 
 593         stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
 594         stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
 595                            STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
 596 }
 597 
 598 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
 599 {
 600         enum stm32h7_adc_dmngt dmngt;
 601         unsigned long flags;
 602         u32 val;
 603 
 604         if (dma)
 605                 dmngt = STM32H7_DMNGT_DMA_CIRC;
 606         else
 607                 dmngt = STM32H7_DMNGT_DR_ONLY;
 608 
 609         spin_lock_irqsave(&adc->lock, flags);
 610         val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
 611         val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
 612         stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
 613         spin_unlock_irqrestore(&adc->lock, flags);
 614 
 615         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
 616 }
 617 
 618 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
 619 {
 620         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 621         int ret;
 622         u32 val;
 623 
 624         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
 625 
 626         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 627                                            !(val & (STM32H7_ADSTART)),
 628                                            100, STM32_ADC_TIMEOUT_US);
 629         if (ret)
 630                 dev_warn(&indio_dev->dev, "stop failed\n");
 631 
 632         stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
 633 }
 634 
 635 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
 636 {
 637         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 638         int ret;
 639         u32 val;
 640 
 641         /* Exit deep power down, then enable ADC voltage regulator */
 642         stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 643         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
 644 
 645         if (adc->common->rate > STM32H7_BOOST_CLKRATE)
 646                 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 647 
 648         /* Wait for startup time */
 649         if (!adc->cfg->has_vregready) {
 650                 usleep_range(10, 20);
 651                 return 0;
 652         }
 653 
 654         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 655                                            val & STM32MP1_VREGREADY, 100,
 656                                            STM32_ADC_TIMEOUT_US);
 657         if (ret) {
 658                 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 659                 dev_err(&indio_dev->dev, "Failed to exit power down\n");
 660         }
 661 
 662         return ret;
 663 }
 664 
 665 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
 666 {
 667         stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
 668 
 669         /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
 670         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
 671 }
 672 
 673 static int stm32h7_adc_enable(struct stm32_adc *adc)
 674 {
 675         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 676         int ret;
 677         u32 val;
 678 
 679         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
 680 
 681         /* Poll for ADRDY to be set (after adc startup time) */
 682         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
 683                                            val & STM32H7_ADRDY,
 684                                            100, STM32_ADC_TIMEOUT_US);
 685         if (ret) {
 686                 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 687                 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
 688         } else {
 689                 /* Clear ADRDY by writing one */
 690                 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
 691         }
 692 
 693         return ret;
 694 }
 695 
 696 static void stm32h7_adc_disable(struct stm32_adc *adc)
 697 {
 698         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 699         int ret;
 700         u32 val;
 701 
 702         /* Disable ADC and wait until it's effectively disabled */
 703         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
 704         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 705                                            !(val & STM32H7_ADEN), 100,
 706                                            STM32_ADC_TIMEOUT_US);
 707         if (ret)
 708                 dev_warn(&indio_dev->dev, "Failed to disable\n");
 709 }
 710 
 711 /**
 712  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
 713  * @adc: stm32 adc instance
 714  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
 715  */
 716 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
 717 {
 718         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 719         int i, ret;
 720         u32 lincalrdyw_mask, val;
 721 
 722         /* Read linearity calibration */
 723         lincalrdyw_mask = STM32H7_LINCALRDYW6;
 724         for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 725                 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
 726                 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 727 
 728                 /* Poll: wait calib data to be ready in CALFACT2 register */
 729                 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 730                                                    !(val & lincalrdyw_mask),
 731                                                    100, STM32_ADC_TIMEOUT_US);
 732                 if (ret) {
 733                         dev_err(&indio_dev->dev, "Failed to read calfact\n");
 734                         return ret;
 735                 }
 736 
 737                 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 738                 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
 739                 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
 740 
 741                 lincalrdyw_mask >>= 1;
 742         }
 743 
 744         /* Read offset calibration */
 745         val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
 746         adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
 747         adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
 748         adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
 749         adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
 750         adc->cal.calibrated = true;
 751 
 752         return 0;
 753 }
 754 
 755 /**
 756  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
 757  * @adc: stm32 adc instance
 758  * Note: ADC must be enabled, with no on-going conversions.
 759  */
 760 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
 761 {
 762         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 763         int i, ret;
 764         u32 lincalrdyw_mask, val;
 765 
 766         val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
 767                 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
 768         stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
 769 
 770         lincalrdyw_mask = STM32H7_LINCALRDYW6;
 771         for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
 772                 /*
 773                  * Write saved calibration data to shadow registers:
 774                  * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
 775                  * data write. Then poll to wait for complete transfer.
 776                  */
 777                 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
 778                 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
 779                 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 780                 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 781                                                    val & lincalrdyw_mask,
 782                                                    100, STM32_ADC_TIMEOUT_US);
 783                 if (ret) {
 784                         dev_err(&indio_dev->dev, "Failed to write calfact\n");
 785                         return ret;
 786                 }
 787 
 788                 /*
 789                  * Read back calibration data, has two effects:
 790                  * - It ensures bits LINCALRDYW[6..1] are kept cleared
 791                  *   for next time calibration needs to be restored.
 792                  * - BTW, bit clear triggers a read, then check data has been
 793                  *   correctly written.
 794                  */
 795                 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
 796                 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 797                                                    !(val & lincalrdyw_mask),
 798                                                    100, STM32_ADC_TIMEOUT_US);
 799                 if (ret) {
 800                         dev_err(&indio_dev->dev, "Failed to read calfact\n");
 801                         return ret;
 802                 }
 803                 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
 804                 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
 805                         dev_err(&indio_dev->dev, "calfact not consistent\n");
 806                         return -EIO;
 807                 }
 808 
 809                 lincalrdyw_mask >>= 1;
 810         }
 811 
 812         return 0;
 813 }
 814 
 815 /**
 816  * Fixed timeout value for ADC calibration.
 817  * worst cases:
 818  * - low clock frequency
 819  * - maximum prescalers
 820  * Calibration requires:
 821  * - 131,072 ADC clock cycle for the linear calibration
 822  * - 20 ADC clock cycle for the offset calibration
 823  *
 824  * Set to 100ms for now
 825  */
 826 #define STM32H7_ADC_CALIB_TIMEOUT_US            100000
 827 
 828 /**
 829  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
 830  * @adc: stm32 adc instance
 831  * Note: Must be called once ADC is out of power down.
 832  */
 833 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
 834 {
 835         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
 836         int ret;
 837         u32 val;
 838 
 839         if (adc->cal.calibrated)
 840                 return true;
 841 
 842         /*
 843          * Select calibration mode:
 844          * - Offset calibration for single ended inputs
 845          * - No linearity calibration (do it later, before reading it)
 846          */
 847         stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
 848         stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
 849 
 850         /* Start calibration, then wait for completion */
 851         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 852         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 853                                            !(val & STM32H7_ADCAL), 100,
 854                                            STM32H7_ADC_CALIB_TIMEOUT_US);
 855         if (ret) {
 856                 dev_err(&indio_dev->dev, "calibration failed\n");
 857                 goto out;
 858         }
 859 
 860         /*
 861          * Select calibration mode, then start calibration:
 862          * - Offset calibration for differential input
 863          * - Linearity calibration (needs to be done only once for single/diff)
 864          *   will run simultaneously with offset calibration.
 865          */
 866         stm32_adc_set_bits(adc, STM32H7_ADC_CR,
 867                            STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 868         stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
 869         ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
 870                                            !(val & STM32H7_ADCAL), 100,
 871                                            STM32H7_ADC_CALIB_TIMEOUT_US);
 872         if (ret) {
 873                 dev_err(&indio_dev->dev, "calibration failed\n");
 874                 goto out;
 875         }
 876 
 877 out:
 878         stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
 879                            STM32H7_ADCALDIF | STM32H7_ADCALLIN);
 880 
 881         return ret;
 882 }
 883 
 884 /**
 885  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
 886  * @adc: stm32 adc instance
 887  * Leave power down mode.
 888  * Configure channels as single ended or differential before enabling ADC.
 889  * Enable ADC.
 890  * Restore calibration data.
 891  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
 892  * - Only one input is selected for single ended (e.g. 'vinp')
 893  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
 894  */
 895 static int stm32h7_adc_prepare(struct stm32_adc *adc)
 896 {
 897         int calib, ret;
 898 
 899         ret = stm32h7_adc_exit_pwr_down(adc);
 900         if (ret)
 901                 return ret;
 902 
 903         ret = stm32h7_adc_selfcalib(adc);
 904         if (ret < 0)
 905                 goto pwr_dwn;
 906         calib = ret;
 907 
 908         stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
 909 
 910         ret = stm32h7_adc_enable(adc);
 911         if (ret)
 912                 goto pwr_dwn;
 913 
 914         /* Either restore or read calibration result for future reference */
 915         if (calib)
 916                 ret = stm32h7_adc_restore_selfcalib(adc);
 917         else
 918                 ret = stm32h7_adc_read_selfcalib(adc);
 919         if (ret)
 920                 goto disable;
 921 
 922         stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
 923 
 924         return 0;
 925 
 926 disable:
 927         stm32h7_adc_disable(adc);
 928 pwr_dwn:
 929         stm32h7_adc_enter_pwr_down(adc);
 930 
 931         return ret;
 932 }
 933 
 934 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
 935 {
 936         stm32h7_adc_disable(adc);
 937         stm32h7_adc_enter_pwr_down(adc);
 938 }
 939 
 940 /**
 941  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
 942  * @indio_dev: IIO device
 943  * @scan_mask: channels to be converted
 944  *
 945  * Conversion sequence :
 946  * Apply sampling time settings for all channels.
 947  * Configure ADC scan sequence based on selected channels in scan_mask.
 948  * Add channels to SQR registers, from scan_mask LSB to MSB, then
 949  * program sequence len.
 950  */
 951 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
 952                                    const unsigned long *scan_mask)
 953 {
 954         struct stm32_adc *adc = iio_priv(indio_dev);
 955         const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
 956         const struct iio_chan_spec *chan;
 957         u32 val, bit;
 958         int i = 0;
 959 
 960         /* Apply sampling time settings */
 961         stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
 962         stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
 963 
 964         for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
 965                 chan = indio_dev->channels + bit;
 966                 /*
 967                  * Assign one channel per SQ entry in regular
 968                  * sequence, starting with SQ1.
 969                  */
 970                 i++;
 971                 if (i > STM32_ADC_MAX_SQ)
 972                         return -EINVAL;
 973 
 974                 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
 975                         __func__, chan->channel, i);
 976 
 977                 val = stm32_adc_readl(adc, sqr[i].reg);
 978                 val &= ~sqr[i].mask;
 979                 val |= chan->channel << sqr[i].shift;
 980                 stm32_adc_writel(adc, sqr[i].reg, val);
 981         }
 982 
 983         if (!i)
 984                 return -EINVAL;
 985 
 986         /* Sequence len */
 987         val = stm32_adc_readl(adc, sqr[0].reg);
 988         val &= ~sqr[0].mask;
 989         val |= ((i - 1) << sqr[0].shift);
 990         stm32_adc_writel(adc, sqr[0].reg, val);
 991 
 992         return 0;
 993 }
 994 
 995 /**
 996  * stm32_adc_get_trig_extsel() - Get external trigger selection
 997  * @trig: trigger
 998  *
 999  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1000  */
1001 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1002                                      struct iio_trigger *trig)
1003 {
1004         struct stm32_adc *adc = iio_priv(indio_dev);
1005         int i;
1006 
1007         /* lookup triggers registered by stm32 timer trigger driver */
1008         for (i = 0; adc->cfg->trigs[i].name; i++) {
1009                 /**
1010                  * Checking both stm32 timer trigger type and trig name
1011                  * should be safe against arbitrary trigger names.
1012                  */
1013                 if ((is_stm32_timer_trigger(trig) ||
1014                      is_stm32_lptim_trigger(trig)) &&
1015                     !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1016                         return adc->cfg->trigs[i].extsel;
1017                 }
1018         }
1019 
1020         return -EINVAL;
1021 }
1022 
1023 /**
1024  * stm32_adc_set_trig() - Set a regular trigger
1025  * @indio_dev: IIO device
1026  * @trig: IIO trigger
1027  *
1028  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1029  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1030  * - if HW trigger enabled, set source & polarity
1031  */
1032 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1033                               struct iio_trigger *trig)
1034 {
1035         struct stm32_adc *adc = iio_priv(indio_dev);
1036         u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1037         unsigned long flags;
1038         int ret;
1039 
1040         if (trig) {
1041                 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1042                 if (ret < 0)
1043                         return ret;
1044 
1045                 /* set trigger source and polarity (default to rising edge) */
1046                 extsel = ret;
1047                 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1048         }
1049 
1050         spin_lock_irqsave(&adc->lock, flags);
1051         val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1052         val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1053         val |= exten << adc->cfg->regs->exten.shift;
1054         val |= extsel << adc->cfg->regs->extsel.shift;
1055         stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
1056         spin_unlock_irqrestore(&adc->lock, flags);
1057 
1058         return 0;
1059 }
1060 
1061 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1062                                   const struct iio_chan_spec *chan,
1063                                   unsigned int type)
1064 {
1065         struct stm32_adc *adc = iio_priv(indio_dev);
1066 
1067         adc->trigger_polarity = type;
1068 
1069         return 0;
1070 }
1071 
1072 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1073                                   const struct iio_chan_spec *chan)
1074 {
1075         struct stm32_adc *adc = iio_priv(indio_dev);
1076 
1077         return adc->trigger_polarity;
1078 }
1079 
1080 static const char * const stm32_trig_pol_items[] = {
1081         "rising-edge", "falling-edge", "both-edges",
1082 };
1083 
1084 static const struct iio_enum stm32_adc_trig_pol = {
1085         .items = stm32_trig_pol_items,
1086         .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1087         .get = stm32_adc_get_trig_pol,
1088         .set = stm32_adc_set_trig_pol,
1089 };
1090 
1091 /**
1092  * stm32_adc_single_conv() - Performs a single conversion
1093  * @indio_dev: IIO device
1094  * @chan: IIO channel
1095  * @res: conversion result
1096  *
1097  * The function performs a single conversion on a given channel:
1098  * - Apply sampling time settings
1099  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1100  * - Use SW trigger
1101  * - Start conversion, then wait for interrupt completion.
1102  */
1103 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1104                                  const struct iio_chan_spec *chan,
1105                                  int *res)
1106 {
1107         struct stm32_adc *adc = iio_priv(indio_dev);
1108         struct device *dev = indio_dev->dev.parent;
1109         const struct stm32_adc_regspec *regs = adc->cfg->regs;
1110         long timeout;
1111         u32 val;
1112         int ret;
1113 
1114         reinit_completion(&adc->completion);
1115 
1116         adc->bufi = 0;
1117 
1118         ret = pm_runtime_get_sync(dev);
1119         if (ret < 0) {
1120                 pm_runtime_put_noidle(dev);
1121                 return ret;
1122         }
1123 
1124         /* Apply sampling time settings */
1125         stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1126         stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1127 
1128         /* Program chan number in regular sequence (SQ1) */
1129         val = stm32_adc_readl(adc, regs->sqr[1].reg);
1130         val &= ~regs->sqr[1].mask;
1131         val |= chan->channel << regs->sqr[1].shift;
1132         stm32_adc_writel(adc, regs->sqr[1].reg, val);
1133 
1134         /* Set regular sequence len (0 for 1 conversion) */
1135         stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1136 
1137         /* Trigger detection disabled (conversion can be launched in SW) */
1138         stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1139 
1140         stm32_adc_conv_irq_enable(adc);
1141 
1142         adc->cfg->start_conv(adc, false);
1143 
1144         timeout = wait_for_completion_interruptible_timeout(
1145                                         &adc->completion, STM32_ADC_TIMEOUT);
1146         if (timeout == 0) {
1147                 ret = -ETIMEDOUT;
1148         } else if (timeout < 0) {
1149                 ret = timeout;
1150         } else {
1151                 *res = adc->buffer[0];
1152                 ret = IIO_VAL_INT;
1153         }
1154 
1155         adc->cfg->stop_conv(adc);
1156 
1157         stm32_adc_conv_irq_disable(adc);
1158 
1159         pm_runtime_mark_last_busy(dev);
1160         pm_runtime_put_autosuspend(dev);
1161 
1162         return ret;
1163 }
1164 
1165 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1166                               struct iio_chan_spec const *chan,
1167                               int *val, int *val2, long mask)
1168 {
1169         struct stm32_adc *adc = iio_priv(indio_dev);
1170         int ret;
1171 
1172         switch (mask) {
1173         case IIO_CHAN_INFO_RAW:
1174                 ret = iio_device_claim_direct_mode(indio_dev);
1175                 if (ret)
1176                         return ret;
1177                 if (chan->type == IIO_VOLTAGE)
1178                         ret = stm32_adc_single_conv(indio_dev, chan, val);
1179                 else
1180                         ret = -EINVAL;
1181                 iio_device_release_direct_mode(indio_dev);
1182                 return ret;
1183 
1184         case IIO_CHAN_INFO_SCALE:
1185                 if (chan->differential) {
1186                         *val = adc->common->vref_mv * 2;
1187                         *val2 = chan->scan_type.realbits;
1188                 } else {
1189                         *val = adc->common->vref_mv;
1190                         *val2 = chan->scan_type.realbits;
1191                 }
1192                 return IIO_VAL_FRACTIONAL_LOG2;
1193 
1194         case IIO_CHAN_INFO_OFFSET:
1195                 if (chan->differential)
1196                         /* ADC_full_scale / 2 */
1197                         *val = -((1 << chan->scan_type.realbits) / 2);
1198                 else
1199                         *val = 0;
1200                 return IIO_VAL_INT;
1201 
1202         default:
1203                 return -EINVAL;
1204         }
1205 }
1206 
1207 static irqreturn_t stm32_adc_isr(int irq, void *data)
1208 {
1209         struct stm32_adc *adc = data;
1210         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1211         const struct stm32_adc_regspec *regs = adc->cfg->regs;
1212         u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1213 
1214         if (status & regs->isr_eoc.mask) {
1215                 /* Reading DR also clears EOC status flag */
1216                 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1217                 if (iio_buffer_enabled(indio_dev)) {
1218                         adc->bufi++;
1219                         if (adc->bufi >= adc->num_conv) {
1220                                 stm32_adc_conv_irq_disable(adc);
1221                                 iio_trigger_poll(indio_dev->trig);
1222                         }
1223                 } else {
1224                         complete(&adc->completion);
1225                 }
1226                 return IRQ_HANDLED;
1227         }
1228 
1229         return IRQ_NONE;
1230 }
1231 
1232 /**
1233  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1234  * @indio_dev: IIO device
1235  * @trig: new trigger
1236  *
1237  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1238  * driver, -EINVAL otherwise.
1239  */
1240 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1241                                       struct iio_trigger *trig)
1242 {
1243         return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1244 }
1245 
1246 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1247 {
1248         struct stm32_adc *adc = iio_priv(indio_dev);
1249         unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1250         unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1251 
1252         /*
1253          * dma cyclic transfers are used, buffer is split into two periods.
1254          * There should be :
1255          * - always one buffer (period) dma is working on
1256          * - one buffer (period) driver can push with iio_trigger_poll().
1257          */
1258         watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1259         adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1260 
1261         return 0;
1262 }
1263 
1264 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1265                                       const unsigned long *scan_mask)
1266 {
1267         struct stm32_adc *adc = iio_priv(indio_dev);
1268         struct device *dev = indio_dev->dev.parent;
1269         int ret;
1270 
1271         ret = pm_runtime_get_sync(dev);
1272         if (ret < 0) {
1273                 pm_runtime_put_noidle(dev);
1274                 return ret;
1275         }
1276 
1277         adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1278 
1279         ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1280         pm_runtime_mark_last_busy(dev);
1281         pm_runtime_put_autosuspend(dev);
1282 
1283         return ret;
1284 }
1285 
1286 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1287                               const struct of_phandle_args *iiospec)
1288 {
1289         int i;
1290 
1291         for (i = 0; i < indio_dev->num_channels; i++)
1292                 if (indio_dev->channels[i].channel == iiospec->args[0])
1293                         return i;
1294 
1295         return -EINVAL;
1296 }
1297 
1298 /**
1299  * stm32_adc_debugfs_reg_access - read or write register value
1300  *
1301  * To read a value from an ADC register:
1302  *   echo [ADC reg offset] > direct_reg_access
1303  *   cat direct_reg_access
1304  *
1305  * To write a value in a ADC register:
1306  *   echo [ADC_reg_offset] [value] > direct_reg_access
1307  */
1308 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1309                                         unsigned reg, unsigned writeval,
1310                                         unsigned *readval)
1311 {
1312         struct stm32_adc *adc = iio_priv(indio_dev);
1313         struct device *dev = indio_dev->dev.parent;
1314         int ret;
1315 
1316         ret = pm_runtime_get_sync(dev);
1317         if (ret < 0) {
1318                 pm_runtime_put_noidle(dev);
1319                 return ret;
1320         }
1321 
1322         if (!readval)
1323                 stm32_adc_writel(adc, reg, writeval);
1324         else
1325                 *readval = stm32_adc_readl(adc, reg);
1326 
1327         pm_runtime_mark_last_busy(dev);
1328         pm_runtime_put_autosuspend(dev);
1329 
1330         return 0;
1331 }
1332 
1333 static const struct iio_info stm32_adc_iio_info = {
1334         .read_raw = stm32_adc_read_raw,
1335         .validate_trigger = stm32_adc_validate_trigger,
1336         .hwfifo_set_watermark = stm32_adc_set_watermark,
1337         .update_scan_mode = stm32_adc_update_scan_mode,
1338         .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1339         .of_xlate = stm32_adc_of_xlate,
1340 };
1341 
1342 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1343 {
1344         struct dma_tx_state state;
1345         enum dma_status status;
1346 
1347         status = dmaengine_tx_status(adc->dma_chan,
1348                                      adc->dma_chan->cookie,
1349                                      &state);
1350         if (status == DMA_IN_PROGRESS) {
1351                 /* Residue is size in bytes from end of buffer */
1352                 unsigned int i = adc->rx_buf_sz - state.residue;
1353                 unsigned int size;
1354 
1355                 /* Return available bytes */
1356                 if (i >= adc->bufi)
1357                         size = i - adc->bufi;
1358                 else
1359                         size = adc->rx_buf_sz + i - adc->bufi;
1360 
1361                 return size;
1362         }
1363 
1364         return 0;
1365 }
1366 
1367 static void stm32_adc_dma_buffer_done(void *data)
1368 {
1369         struct iio_dev *indio_dev = data;
1370         struct stm32_adc *adc = iio_priv(indio_dev);
1371         int residue = stm32_adc_dma_residue(adc);
1372 
1373         /*
1374          * In DMA mode the trigger services of IIO are not used
1375          * (e.g. no call to iio_trigger_poll).
1376          * Calling irq handler associated to the hardware trigger is not
1377          * relevant as the conversions have already been done. Data
1378          * transfers are performed directly in DMA callback instead.
1379          * This implementation avoids to call trigger irq handler that
1380          * may sleep, in an atomic context (DMA irq handler context).
1381          */
1382         dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1383 
1384         while (residue >= indio_dev->scan_bytes) {
1385                 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1386 
1387                 iio_push_to_buffers(indio_dev, buffer);
1388 
1389                 residue -= indio_dev->scan_bytes;
1390                 adc->bufi += indio_dev->scan_bytes;
1391                 if (adc->bufi >= adc->rx_buf_sz)
1392                         adc->bufi = 0;
1393         }
1394 }
1395 
1396 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1397 {
1398         struct stm32_adc *adc = iio_priv(indio_dev);
1399         struct dma_async_tx_descriptor *desc;
1400         dma_cookie_t cookie;
1401         int ret;
1402 
1403         if (!adc->dma_chan)
1404                 return 0;
1405 
1406         dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1407                 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1408 
1409         /* Prepare a DMA cyclic transaction */
1410         desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1411                                          adc->rx_dma_buf,
1412                                          adc->rx_buf_sz, adc->rx_buf_sz / 2,
1413                                          DMA_DEV_TO_MEM,
1414                                          DMA_PREP_INTERRUPT);
1415         if (!desc)
1416                 return -EBUSY;
1417 
1418         desc->callback = stm32_adc_dma_buffer_done;
1419         desc->callback_param = indio_dev;
1420 
1421         cookie = dmaengine_submit(desc);
1422         ret = dma_submit_error(cookie);
1423         if (ret) {
1424                 dmaengine_terminate_sync(adc->dma_chan);
1425                 return ret;
1426         }
1427 
1428         /* Issue pending DMA requests */
1429         dma_async_issue_pending(adc->dma_chan);
1430 
1431         return 0;
1432 }
1433 
1434 static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1435 {
1436         struct stm32_adc *adc = iio_priv(indio_dev);
1437         struct device *dev = indio_dev->dev.parent;
1438         int ret;
1439 
1440         ret = pm_runtime_get_sync(dev);
1441         if (ret < 0) {
1442                 pm_runtime_put_noidle(dev);
1443                 return ret;
1444         }
1445 
1446         ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1447         if (ret) {
1448                 dev_err(&indio_dev->dev, "Can't set trigger\n");
1449                 goto err_pm_put;
1450         }
1451 
1452         ret = stm32_adc_dma_start(indio_dev);
1453         if (ret) {
1454                 dev_err(&indio_dev->dev, "Can't start dma\n");
1455                 goto err_clr_trig;
1456         }
1457 
1458         /* Reset adc buffer index */
1459         adc->bufi = 0;
1460 
1461         if (!adc->dma_chan)
1462                 stm32_adc_conv_irq_enable(adc);
1463 
1464         adc->cfg->start_conv(adc, !!adc->dma_chan);
1465 
1466         return 0;
1467 
1468 err_clr_trig:
1469         stm32_adc_set_trig(indio_dev, NULL);
1470 err_pm_put:
1471         pm_runtime_mark_last_busy(dev);
1472         pm_runtime_put_autosuspend(dev);
1473 
1474         return ret;
1475 }
1476 
1477 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1478 {
1479         int ret;
1480 
1481         ret = iio_triggered_buffer_postenable(indio_dev);
1482         if (ret < 0)
1483                 return ret;
1484 
1485         ret = __stm32_adc_buffer_postenable(indio_dev);
1486         if (ret < 0)
1487                 iio_triggered_buffer_predisable(indio_dev);
1488 
1489         return ret;
1490 }
1491 
1492 static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1493 {
1494         struct stm32_adc *adc = iio_priv(indio_dev);
1495         struct device *dev = indio_dev->dev.parent;
1496 
1497         adc->cfg->stop_conv(adc);
1498         if (!adc->dma_chan)
1499                 stm32_adc_conv_irq_disable(adc);
1500 
1501         if (adc->dma_chan)
1502                 dmaengine_terminate_sync(adc->dma_chan);
1503 
1504         if (stm32_adc_set_trig(indio_dev, NULL))
1505                 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1506 
1507         pm_runtime_mark_last_busy(dev);
1508         pm_runtime_put_autosuspend(dev);
1509 }
1510 
1511 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1512 {
1513         int ret;
1514 
1515         __stm32_adc_buffer_predisable(indio_dev);
1516 
1517         ret = iio_triggered_buffer_predisable(indio_dev);
1518         if (ret < 0)
1519                 dev_err(&indio_dev->dev, "predisable failed\n");
1520 
1521         return ret;
1522 }
1523 
1524 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1525         .postenable = &stm32_adc_buffer_postenable,
1526         .predisable = &stm32_adc_buffer_predisable,
1527 };
1528 
1529 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1530 {
1531         struct iio_poll_func *pf = p;
1532         struct iio_dev *indio_dev = pf->indio_dev;
1533         struct stm32_adc *adc = iio_priv(indio_dev);
1534 
1535         dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1536 
1537         if (!adc->dma_chan) {
1538                 /* reset buffer index */
1539                 adc->bufi = 0;
1540                 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1541                                                    pf->timestamp);
1542         } else {
1543                 int residue = stm32_adc_dma_residue(adc);
1544 
1545                 while (residue >= indio_dev->scan_bytes) {
1546                         u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1547 
1548                         iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1549                                                            pf->timestamp);
1550                         residue -= indio_dev->scan_bytes;
1551                         adc->bufi += indio_dev->scan_bytes;
1552                         if (adc->bufi >= adc->rx_buf_sz)
1553                                 adc->bufi = 0;
1554                 }
1555         }
1556 
1557         iio_trigger_notify_done(indio_dev->trig);
1558 
1559         /* re-enable eoc irq */
1560         if (!adc->dma_chan)
1561                 stm32_adc_conv_irq_enable(adc);
1562 
1563         return IRQ_HANDLED;
1564 }
1565 
1566 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1567         IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1568         {
1569                 .name = "trigger_polarity_available",
1570                 .shared = IIO_SHARED_BY_ALL,
1571                 .read = iio_enum_available_read,
1572                 .private = (uintptr_t)&stm32_adc_trig_pol,
1573         },
1574         {},
1575 };
1576 
1577 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1578 {
1579         struct device_node *node = indio_dev->dev.of_node;
1580         struct stm32_adc *adc = iio_priv(indio_dev);
1581         unsigned int i;
1582         u32 res;
1583 
1584         if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1585                 res = adc->cfg->adc_info->resolutions[0];
1586 
1587         for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1588                 if (res == adc->cfg->adc_info->resolutions[i])
1589                         break;
1590         if (i >= adc->cfg->adc_info->num_res) {
1591                 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1592                 return -EINVAL;
1593         }
1594 
1595         dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1596         adc->res = i;
1597 
1598         return 0;
1599 }
1600 
1601 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1602 {
1603         const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1604         u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1605         unsigned int smp, r = smpr->reg;
1606 
1607         /* Determine sampling time (ADC clock cycles) */
1608         period_ns = NSEC_PER_SEC / adc->common->rate;
1609         for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1610                 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1611                         break;
1612         if (smp > STM32_ADC_MAX_SMP)
1613                 smp = STM32_ADC_MAX_SMP;
1614 
1615         /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1616         adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1617 }
1618 
1619 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1620                                     struct iio_chan_spec *chan, u32 vinp,
1621                                     u32 vinn, int scan_index, bool differential)
1622 {
1623         struct stm32_adc *adc = iio_priv(indio_dev);
1624         char *name = adc->chan_name[vinp];
1625 
1626         chan->type = IIO_VOLTAGE;
1627         chan->channel = vinp;
1628         if (differential) {
1629                 chan->differential = 1;
1630                 chan->channel2 = vinn;
1631                 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1632         } else {
1633                 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1634         }
1635         chan->datasheet_name = name;
1636         chan->scan_index = scan_index;
1637         chan->indexed = 1;
1638         chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1639         chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1640                                          BIT(IIO_CHAN_INFO_OFFSET);
1641         chan->scan_type.sign = 'u';
1642         chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1643         chan->scan_type.storagebits = 16;
1644         chan->ext_info = stm32_adc_ext_info;
1645 
1646         /* pre-build selected channels mask */
1647         adc->pcsel |= BIT(chan->channel);
1648         if (differential) {
1649                 /* pre-build diff channels mask */
1650                 adc->difsel |= BIT(chan->channel);
1651                 /* Also add negative input to pre-selected channels */
1652                 adc->pcsel |= BIT(chan->channel2);
1653         }
1654 }
1655 
1656 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1657 {
1658         struct device_node *node = indio_dev->dev.of_node;
1659         struct stm32_adc *adc = iio_priv(indio_dev);
1660         const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1661         struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1662         struct property *prop;
1663         const __be32 *cur;
1664         struct iio_chan_spec *channels;
1665         int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1666         u32 val, smp = 0;
1667 
1668         ret = of_property_count_u32_elems(node, "st,adc-channels");
1669         if (ret > adc_info->max_channels) {
1670                 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1671                 return -EINVAL;
1672         } else if (ret > 0) {
1673                 num_channels += ret;
1674         }
1675 
1676         ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1677                                               sizeof(*diff));
1678         if (ret > adc_info->max_channels) {
1679                 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1680                 return -EINVAL;
1681         } else if (ret > 0) {
1682                 int size = ret * sizeof(*diff) / sizeof(u32);
1683 
1684                 num_diff = ret;
1685                 num_channels += ret;
1686                 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1687                                                  (u32 *)diff, size);
1688                 if (ret)
1689                         return ret;
1690         }
1691 
1692         if (!num_channels) {
1693                 dev_err(&indio_dev->dev, "No channels configured\n");
1694                 return -ENODATA;
1695         }
1696 
1697         /* Optional sample time is provided either for each, or all channels */
1698         ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1699         if (ret > 1 && ret != num_channels) {
1700                 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1701                 return -EINVAL;
1702         }
1703 
1704         channels = devm_kcalloc(&indio_dev->dev, num_channels,
1705                                 sizeof(struct iio_chan_spec), GFP_KERNEL);
1706         if (!channels)
1707                 return -ENOMEM;
1708 
1709         of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1710                 if (val >= adc_info->max_channels) {
1711                         dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1712                         return -EINVAL;
1713                 }
1714 
1715                 /* Channel can't be configured both as single-ended & diff */
1716                 for (i = 0; i < num_diff; i++) {
1717                         if (val == diff[i].vinp) {
1718                                 dev_err(&indio_dev->dev,
1719                                         "channel %d miss-configured\n", val);
1720                                 return -EINVAL;
1721                         }
1722                 }
1723                 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1724                                         0, scan_index, false);
1725                 scan_index++;
1726         }
1727 
1728         for (i = 0; i < num_diff; i++) {
1729                 if (diff[i].vinp >= adc_info->max_channels ||
1730                     diff[i].vinn >= adc_info->max_channels) {
1731                         dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1732                                 diff[i].vinp, diff[i].vinn);
1733                         return -EINVAL;
1734                 }
1735                 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1736                                         diff[i].vinp, diff[i].vinn, scan_index,
1737                                         true);
1738                 scan_index++;
1739         }
1740 
1741         for (i = 0; i < scan_index; i++) {
1742                 /*
1743                  * Using of_property_read_u32_index(), smp value will only be
1744                  * modified if valid u32 value can be decoded. This allows to
1745                  * get either no value, 1 shared value for all indexes, or one
1746                  * value per channel.
1747                  */
1748                 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1749                                            i, &smp);
1750                 /* Prepare sampling time settings */
1751                 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1752         }
1753 
1754         indio_dev->num_channels = scan_index;
1755         indio_dev->channels = channels;
1756 
1757         return 0;
1758 }
1759 
1760 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1761 {
1762         struct stm32_adc *adc = iio_priv(indio_dev);
1763         struct dma_slave_config config;
1764         int ret;
1765 
1766         adc->dma_chan = dma_request_chan(dev, "rx");
1767         if (IS_ERR(adc->dma_chan)) {
1768                 ret = PTR_ERR(adc->dma_chan);
1769                 if (ret != -ENODEV) {
1770                         if (ret != -EPROBE_DEFER)
1771                                 dev_err(dev,
1772                                         "DMA channel request failed with %d\n",
1773                                         ret);
1774                         return ret;
1775                 }
1776 
1777                 /* DMA is optional: fall back to IRQ mode */
1778                 adc->dma_chan = NULL;
1779                 return 0;
1780         }
1781 
1782         adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1783                                          STM32_DMA_BUFFER_SIZE,
1784                                          &adc->rx_dma_buf, GFP_KERNEL);
1785         if (!adc->rx_buf) {
1786                 ret = -ENOMEM;
1787                 goto err_release;
1788         }
1789 
1790         /* Configure DMA channel to read data register */
1791         memset(&config, 0, sizeof(config));
1792         config.src_addr = (dma_addr_t)adc->common->phys_base;
1793         config.src_addr += adc->offset + adc->cfg->regs->dr;
1794         config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1795 
1796         ret = dmaengine_slave_config(adc->dma_chan, &config);
1797         if (ret)
1798                 goto err_free;
1799 
1800         return 0;
1801 
1802 err_free:
1803         dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1804                           adc->rx_buf, adc->rx_dma_buf);
1805 err_release:
1806         dma_release_channel(adc->dma_chan);
1807 
1808         return ret;
1809 }
1810 
1811 static int stm32_adc_probe(struct platform_device *pdev)
1812 {
1813         struct iio_dev *indio_dev;
1814         struct device *dev = &pdev->dev;
1815         irqreturn_t (*handler)(int irq, void *p) = NULL;
1816         struct stm32_adc *adc;
1817         int ret;
1818 
1819         if (!pdev->dev.of_node)
1820                 return -ENODEV;
1821 
1822         indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1823         if (!indio_dev)
1824                 return -ENOMEM;
1825 
1826         adc = iio_priv(indio_dev);
1827         adc->common = dev_get_drvdata(pdev->dev.parent);
1828         spin_lock_init(&adc->lock);
1829         init_completion(&adc->completion);
1830         adc->cfg = (const struct stm32_adc_cfg *)
1831                 of_match_device(dev->driver->of_match_table, dev)->data;
1832 
1833         indio_dev->name = dev_name(&pdev->dev);
1834         indio_dev->dev.parent = &pdev->dev;
1835         indio_dev->dev.of_node = pdev->dev.of_node;
1836         indio_dev->info = &stm32_adc_iio_info;
1837         indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1838 
1839         platform_set_drvdata(pdev, adc);
1840 
1841         ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1842         if (ret != 0) {
1843                 dev_err(&pdev->dev, "missing reg property\n");
1844                 return -EINVAL;
1845         }
1846 
1847         adc->irq = platform_get_irq(pdev, 0);
1848         if (adc->irq < 0)
1849                 return adc->irq;
1850 
1851         ret = devm_request_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1852                                0, pdev->name, adc);
1853         if (ret) {
1854                 dev_err(&pdev->dev, "failed to request IRQ\n");
1855                 return ret;
1856         }
1857 
1858         adc->clk = devm_clk_get(&pdev->dev, NULL);
1859         if (IS_ERR(adc->clk)) {
1860                 ret = PTR_ERR(adc->clk);
1861                 if (ret == -ENOENT && !adc->cfg->clk_required) {
1862                         adc->clk = NULL;
1863                 } else {
1864                         dev_err(&pdev->dev, "Can't get clock\n");
1865                         return ret;
1866                 }
1867         }
1868 
1869         ret = stm32_adc_of_get_resolution(indio_dev);
1870         if (ret < 0)
1871                 return ret;
1872 
1873         ret = stm32_adc_chan_of_init(indio_dev);
1874         if (ret < 0)
1875                 return ret;
1876 
1877         ret = stm32_adc_dma_request(dev, indio_dev);
1878         if (ret < 0)
1879                 return ret;
1880 
1881         if (!adc->dma_chan)
1882                 handler = &stm32_adc_trigger_handler;
1883 
1884         ret = iio_triggered_buffer_setup(indio_dev,
1885                                          &iio_pollfunc_store_time, handler,
1886                                          &stm32_adc_buffer_setup_ops);
1887         if (ret) {
1888                 dev_err(&pdev->dev, "buffer setup failed\n");
1889                 goto err_dma_disable;
1890         }
1891 
1892         /* Get stm32-adc-core PM online */
1893         pm_runtime_get_noresume(dev);
1894         pm_runtime_set_active(dev);
1895         pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1896         pm_runtime_use_autosuspend(dev);
1897         pm_runtime_enable(dev);
1898 
1899         ret = stm32_adc_hw_start(dev);
1900         if (ret)
1901                 goto err_buffer_cleanup;
1902 
1903         ret = iio_device_register(indio_dev);
1904         if (ret) {
1905                 dev_err(&pdev->dev, "iio dev register failed\n");
1906                 goto err_hw_stop;
1907         }
1908 
1909         pm_runtime_mark_last_busy(dev);
1910         pm_runtime_put_autosuspend(dev);
1911 
1912         return 0;
1913 
1914 err_hw_stop:
1915         stm32_adc_hw_stop(dev);
1916 
1917 err_buffer_cleanup:
1918         pm_runtime_disable(dev);
1919         pm_runtime_set_suspended(dev);
1920         pm_runtime_put_noidle(dev);
1921         iio_triggered_buffer_cleanup(indio_dev);
1922 
1923 err_dma_disable:
1924         if (adc->dma_chan) {
1925                 dma_free_coherent(adc->dma_chan->device->dev,
1926                                   STM32_DMA_BUFFER_SIZE,
1927                                   adc->rx_buf, adc->rx_dma_buf);
1928                 dma_release_channel(adc->dma_chan);
1929         }
1930 
1931         return ret;
1932 }
1933 
1934 static int stm32_adc_remove(struct platform_device *pdev)
1935 {
1936         struct stm32_adc *adc = platform_get_drvdata(pdev);
1937         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1938 
1939         pm_runtime_get_sync(&pdev->dev);
1940         iio_device_unregister(indio_dev);
1941         stm32_adc_hw_stop(&pdev->dev);
1942         pm_runtime_disable(&pdev->dev);
1943         pm_runtime_set_suspended(&pdev->dev);
1944         pm_runtime_put_noidle(&pdev->dev);
1945         iio_triggered_buffer_cleanup(indio_dev);
1946         if (adc->dma_chan) {
1947                 dma_free_coherent(adc->dma_chan->device->dev,
1948                                   STM32_DMA_BUFFER_SIZE,
1949                                   adc->rx_buf, adc->rx_dma_buf);
1950                 dma_release_channel(adc->dma_chan);
1951         }
1952 
1953         return 0;
1954 }
1955 
1956 #if defined(CONFIG_PM_SLEEP)
1957 static int stm32_adc_suspend(struct device *dev)
1958 {
1959         struct stm32_adc *adc = dev_get_drvdata(dev);
1960         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1961 
1962         if (iio_buffer_enabled(indio_dev))
1963                 __stm32_adc_buffer_predisable(indio_dev);
1964 
1965         return pm_runtime_force_suspend(dev);
1966 }
1967 
1968 static int stm32_adc_resume(struct device *dev)
1969 {
1970         struct stm32_adc *adc = dev_get_drvdata(dev);
1971         struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1972         int ret;
1973 
1974         ret = pm_runtime_force_resume(dev);
1975         if (ret < 0)
1976                 return ret;
1977 
1978         if (!iio_buffer_enabled(indio_dev))
1979                 return 0;
1980 
1981         ret = stm32_adc_update_scan_mode(indio_dev,
1982                                          indio_dev->active_scan_mask);
1983         if (ret < 0)
1984                 return ret;
1985 
1986         return __stm32_adc_buffer_postenable(indio_dev);
1987 }
1988 #endif
1989 
1990 #if defined(CONFIG_PM)
1991 static int stm32_adc_runtime_suspend(struct device *dev)
1992 {
1993         return stm32_adc_hw_stop(dev);
1994 }
1995 
1996 static int stm32_adc_runtime_resume(struct device *dev)
1997 {
1998         return stm32_adc_hw_start(dev);
1999 }
2000 #endif
2001 
2002 static const struct dev_pm_ops stm32_adc_pm_ops = {
2003         SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2004         SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2005                            NULL)
2006 };
2007 
2008 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2009         .regs = &stm32f4_adc_regspec,
2010         .adc_info = &stm32f4_adc_info,
2011         .trigs = stm32f4_adc_trigs,
2012         .clk_required = true,
2013         .start_conv = stm32f4_adc_start_conv,
2014         .stop_conv = stm32f4_adc_stop_conv,
2015         .smp_cycles = stm32f4_adc_smp_cycles,
2016 };
2017 
2018 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2019         .regs = &stm32h7_adc_regspec,
2020         .adc_info = &stm32h7_adc_info,
2021         .trigs = stm32h7_adc_trigs,
2022         .start_conv = stm32h7_adc_start_conv,
2023         .stop_conv = stm32h7_adc_stop_conv,
2024         .prepare = stm32h7_adc_prepare,
2025         .unprepare = stm32h7_adc_unprepare,
2026         .smp_cycles = stm32h7_adc_smp_cycles,
2027 };
2028 
2029 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2030         .regs = &stm32h7_adc_regspec,
2031         .adc_info = &stm32h7_adc_info,
2032         .trigs = stm32h7_adc_trigs,
2033         .has_vregready = true,
2034         .start_conv = stm32h7_adc_start_conv,
2035         .stop_conv = stm32h7_adc_stop_conv,
2036         .prepare = stm32h7_adc_prepare,
2037         .unprepare = stm32h7_adc_unprepare,
2038         .smp_cycles = stm32h7_adc_smp_cycles,
2039 };
2040 
2041 static const struct of_device_id stm32_adc_of_match[] = {
2042         { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2043         { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2044         { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2045         {},
2046 };
2047 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2048 
2049 static struct platform_driver stm32_adc_driver = {
2050         .probe = stm32_adc_probe,
2051         .remove = stm32_adc_remove,
2052         .driver = {
2053                 .name = "stm32-adc",
2054                 .of_match_table = stm32_adc_of_match,
2055                 .pm = &stm32_adc_pm_ops,
2056         },
2057 };
2058 module_platform_driver(stm32_adc_driver);
2059 
2060 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2061 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2062 MODULE_LICENSE("GPL v2");
2063 MODULE_ALIAS("platform:stm32-adc");

/* [<][>][^][v][top][bottom][index][help] */