This source file includes following definitions.
- inv_mpu6050_update_period
- inv_mpu6050_get_timestamp
- inv_reset_fifo
- inv_mpu6050_read_fifo
1
2
3
4
5
6 #include <linux/module.h>
7 #include <linux/slab.h>
8 #include <linux/err.h>
9 #include <linux/delay.h>
10 #include <linux/sysfs.h>
11 #include <linux/jiffies.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/poll.h>
15 #include <linux/math64.h>
16 #include <asm/unaligned.h>
17 #include "inv_mpu_iio.h"
18
19
20
21
22
23
24
25
26
27
28
29 static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
30 s64 timestamp, size_t nb)
31 {
32
33 const s64 period_min =
34 (NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
35 const s64 period_max =
36 (NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
37 const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
38 s64 delta, interval;
39 bool use_it_timestamp = false;
40
41 if (st->it_timestamp == 0) {
42
43 use_it_timestamp = true;
44 } else if (nb == 1) {
45
46
47
48
49
50
51
52 delta = div_s64(timestamp - st->it_timestamp, divider);
53 if (delta > period_min && delta < period_max) {
54
55 st->chip_period = (st->chip_period + delta) / 2;
56 use_it_timestamp = true;
57 }
58 }
59
60 if (use_it_timestamp) {
61
62
63
64
65
66 interval = (nb - 1) * st->chip_period * divider;
67 st->data_timestamp = timestamp - interval;
68 }
69
70
71 st->it_timestamp = timestamp;
72 }
73
74
75
76
77
78
79
80
81
82 static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
83 {
84 s64 ts;
85
86
87 ts = st->data_timestamp;
88 st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
89
90 return ts;
91 }
92
93 int inv_reset_fifo(struct iio_dev *indio_dev)
94 {
95 int result;
96 u8 d;
97 struct inv_mpu6050_state *st = iio_priv(indio_dev);
98
99
100 st->it_timestamp = 0;
101
102
103 result = regmap_write(st->map, st->reg->int_enable, 0);
104 if (result) {
105 dev_err(regmap_get_device(st->map), "int_enable failed %d\n",
106 result);
107 return result;
108 }
109
110 result = regmap_write(st->map, st->reg->fifo_en, 0);
111 if (result)
112 goto reset_fifo_fail;
113
114 result = regmap_write(st->map, st->reg->user_ctrl,
115 st->chip_config.user_ctrl);
116 if (result)
117 goto reset_fifo_fail;
118
119
120 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST;
121 result = regmap_write(st->map, st->reg->user_ctrl, d);
122 if (result)
123 goto reset_fifo_fail;
124
125
126 if (st->chip_config.accl_fifo_enable ||
127 st->chip_config.gyro_fifo_enable) {
128 result = regmap_write(st->map, st->reg->int_enable,
129 INV_MPU6050_BIT_DATA_RDY_EN);
130 if (result)
131 return result;
132 }
133
134 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN;
135 result = regmap_write(st->map, st->reg->user_ctrl, d);
136 if (result)
137 goto reset_fifo_fail;
138
139 d = 0;
140 if (st->chip_config.gyro_fifo_enable)
141 d |= INV_MPU6050_BITS_GYRO_OUT;
142 if (st->chip_config.accl_fifo_enable)
143 d |= INV_MPU6050_BIT_ACCEL_OUT;
144 result = regmap_write(st->map, st->reg->fifo_en, d);
145 if (result)
146 goto reset_fifo_fail;
147
148 return 0;
149
150 reset_fifo_fail:
151 dev_err(regmap_get_device(st->map), "reset fifo failed %d\n", result);
152 result = regmap_write(st->map, st->reg->int_enable,
153 INV_MPU6050_BIT_DATA_RDY_EN);
154
155 return result;
156 }
157
158
159
160
161 irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
162 {
163 struct iio_poll_func *pf = p;
164 struct iio_dev *indio_dev = pf->indio_dev;
165 struct inv_mpu6050_state *st = iio_priv(indio_dev);
166 size_t bytes_per_datum;
167 int result;
168 u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
169 u16 fifo_count;
170 s64 timestamp;
171 int int_status;
172 size_t i, nb;
173
174 mutex_lock(&st->lock);
175
176
177 result = regmap_read(st->map, st->reg->int_status, &int_status);
178 if (result) {
179 dev_err(regmap_get_device(st->map),
180 "failed to ack interrupt\n");
181 goto flush_fifo;
182 }
183 if (!(int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT)) {
184 dev_warn(regmap_get_device(st->map),
185 "spurious interrupt with status 0x%x\n", int_status);
186 goto end_session;
187 }
188
189 if (!(st->chip_config.accl_fifo_enable |
190 st->chip_config.gyro_fifo_enable))
191 goto end_session;
192 bytes_per_datum = 0;
193 if (st->chip_config.accl_fifo_enable)
194 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
195
196 if (st->chip_config.gyro_fifo_enable)
197 bytes_per_datum += INV_MPU6050_BYTES_PER_3AXIS_SENSOR;
198
199 if (st->chip_type == INV_ICM20602)
200 bytes_per_datum += INV_ICM20602_BYTES_PER_TEMP_SENSOR;
201
202
203
204
205
206 result = regmap_bulk_read(st->map, st->reg->fifo_count_h, data,
207 INV_MPU6050_FIFO_COUNT_BYTE);
208 if (result)
209 goto end_session;
210 fifo_count = get_unaligned_be16(&data[0]);
211
212
213
214
215
216
217 nb = 3 * bytes_per_datum;
218 if (fifo_count >= st->hw->fifo_size - nb) {
219 dev_warn(regmap_get_device(st->map), "fifo overflow reset\n");
220 goto flush_fifo;
221 }
222
223
224 nb = fifo_count / bytes_per_datum;
225 inv_mpu6050_update_period(st, pf->timestamp, nb);
226 for (i = 0; i < nb; ++i) {
227 result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
228 data, bytes_per_datum);
229 if (result)
230 goto flush_fifo;
231
232 if (st->skip_samples) {
233 st->skip_samples--;
234 continue;
235 }
236 timestamp = inv_mpu6050_get_timestamp(st);
237 iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
238 }
239
240 end_session:
241 mutex_unlock(&st->lock);
242 iio_trigger_notify_done(indio_dev->trig);
243
244 return IRQ_HANDLED;
245
246 flush_fifo:
247
248 inv_reset_fifo(indio_dev);
249 mutex_unlock(&st->lock);
250 iio_trigger_notify_done(indio_dev->trig);
251
252 return IRQ_HANDLED;
253 }