root/drivers/iio/gyro/mpu3050-core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mpu3050_get_freq
  2. mpu3050_start_sampling
  3. mpu3050_set_8khz_samplerate
  4. mpu3050_read_raw
  5. mpu3050_write_raw
  6. mpu3050_trigger_handler
  7. mpu3050_buffer_preenable
  8. mpu3050_buffer_postdisable
  9. mpu3050_get_mount_matrix
  10. mpu3050_read_mem
  11. mpu3050_hw_init
  12. mpu3050_power_up
  13. mpu3050_power_down
  14. mpu3050_irq_handler
  15. mpu3050_irq_thread
  16. mpu3050_drdy_trigger_set_state
  17. mpu3050_trigger_probe
  18. mpu3050_common_probe
  19. mpu3050_common_remove
  20. mpu3050_runtime_suspend
  21. mpu3050_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * MPU3050 gyroscope driver
   4  *
   5  * Copyright (C) 2016 Linaro Ltd.
   6  * Author: Linus Walleij <linus.walleij@linaro.org>
   7  *
   8  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
   9  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
  10  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
  11  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
  12  *
  13  * TODO: add support for setting up the low pass 3dB frequency.
  14  */
  15 
  16 #include <linux/bitops.h>
  17 #include <linux/delay.h>
  18 #include <linux/err.h>
  19 #include <linux/iio/buffer.h>
  20 #include <linux/iio/iio.h>
  21 #include <linux/iio/sysfs.h>
  22 #include <linux/iio/trigger.h>
  23 #include <linux/iio/trigger_consumer.h>
  24 #include <linux/iio/triggered_buffer.h>
  25 #include <linux/interrupt.h>
  26 #include <linux/module.h>
  27 #include <linux/pm_runtime.h>
  28 #include <linux/random.h>
  29 #include <linux/slab.h>
  30 
  31 #include "mpu3050.h"
  32 
  33 #define MPU3050_CHIP_ID         0x68
  34 #define MPU3050_CHIP_ID_MASK    0x7E
  35 
  36 /*
  37  * Register map: anything suffixed *_H is a big-endian high byte and always
  38  * followed by the corresponding low byte (*_L) even though these are not
  39  * explicitly included in the register definitions.
  40  */
  41 #define MPU3050_CHIP_ID_REG     0x00
  42 #define MPU3050_PRODUCT_ID_REG  0x01
  43 #define MPU3050_XG_OFFS_TC      0x05
  44 #define MPU3050_YG_OFFS_TC      0x08
  45 #define MPU3050_ZG_OFFS_TC      0x0B
  46 #define MPU3050_X_OFFS_USR_H    0x0C
  47 #define MPU3050_Y_OFFS_USR_H    0x0E
  48 #define MPU3050_Z_OFFS_USR_H    0x10
  49 #define MPU3050_FIFO_EN         0x12
  50 #define MPU3050_AUX_VDDIO       0x13
  51 #define MPU3050_SLV_ADDR        0x14
  52 #define MPU3050_SMPLRT_DIV      0x15
  53 #define MPU3050_DLPF_FS_SYNC    0x16
  54 #define MPU3050_INT_CFG         0x17
  55 #define MPU3050_AUX_ADDR        0x18
  56 #define MPU3050_INT_STATUS      0x1A
  57 #define MPU3050_TEMP_H          0x1B
  58 #define MPU3050_XOUT_H          0x1D
  59 #define MPU3050_YOUT_H          0x1F
  60 #define MPU3050_ZOUT_H          0x21
  61 #define MPU3050_DMP_CFG1        0x35
  62 #define MPU3050_DMP_CFG2        0x36
  63 #define MPU3050_BANK_SEL        0x37
  64 #define MPU3050_MEM_START_ADDR  0x38
  65 #define MPU3050_MEM_R_W         0x39
  66 #define MPU3050_FIFO_COUNT_H    0x3A
  67 #define MPU3050_FIFO_R          0x3C
  68 #define MPU3050_USR_CTRL        0x3D
  69 #define MPU3050_PWR_MGM         0x3E
  70 
  71 /* MPU memory bank read options */
  72 #define MPU3050_MEM_PRFTCH      BIT(5)
  73 #define MPU3050_MEM_USER_BANK   BIT(4)
  74 /* Bits 8-11 select memory bank */
  75 #define MPU3050_MEM_RAM_BANK_0  0
  76 #define MPU3050_MEM_RAM_BANK_1  1
  77 #define MPU3050_MEM_RAM_BANK_2  2
  78 #define MPU3050_MEM_RAM_BANK_3  3
  79 #define MPU3050_MEM_OTP_BANK_0  4
  80 
  81 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
  82 
  83 /* Register bits */
  84 
  85 /* FIFO Enable */
  86 #define MPU3050_FIFO_EN_FOOTER          BIT(0)
  87 #define MPU3050_FIFO_EN_AUX_ZOUT        BIT(1)
  88 #define MPU3050_FIFO_EN_AUX_YOUT        BIT(2)
  89 #define MPU3050_FIFO_EN_AUX_XOUT        BIT(3)
  90 #define MPU3050_FIFO_EN_GYRO_ZOUT       BIT(4)
  91 #define MPU3050_FIFO_EN_GYRO_YOUT       BIT(5)
  92 #define MPU3050_FIFO_EN_GYRO_XOUT       BIT(6)
  93 #define MPU3050_FIFO_EN_TEMP_OUT        BIT(7)
  94 
  95 /*
  96  * Digital Low Pass filter (DLPF)
  97  * Full Scale (FS)
  98  * and Synchronization
  99  */
 100 #define MPU3050_EXT_SYNC_NONE           0x00
 101 #define MPU3050_EXT_SYNC_TEMP           0x20
 102 #define MPU3050_EXT_SYNC_GYROX          0x40
 103 #define MPU3050_EXT_SYNC_GYROY          0x60
 104 #define MPU3050_EXT_SYNC_GYROZ          0x80
 105 #define MPU3050_EXT_SYNC_ACCELX 0xA0
 106 #define MPU3050_EXT_SYNC_ACCELY 0xC0
 107 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
 108 #define MPU3050_EXT_SYNC_MASK           0xE0
 109 #define MPU3050_EXT_SYNC_SHIFT          5
 110 
 111 #define MPU3050_FS_250DPS               0x00
 112 #define MPU3050_FS_500DPS               0x08
 113 #define MPU3050_FS_1000DPS              0x10
 114 #define MPU3050_FS_2000DPS              0x18
 115 #define MPU3050_FS_MASK                 0x18
 116 #define MPU3050_FS_SHIFT                3
 117 
 118 #define MPU3050_DLPF_CFG_256HZ_NOLPF2   0x00
 119 #define MPU3050_DLPF_CFG_188HZ          0x01
 120 #define MPU3050_DLPF_CFG_98HZ           0x02
 121 #define MPU3050_DLPF_CFG_42HZ           0x03
 122 #define MPU3050_DLPF_CFG_20HZ           0x04
 123 #define MPU3050_DLPF_CFG_10HZ           0x05
 124 #define MPU3050_DLPF_CFG_5HZ            0x06
 125 #define MPU3050_DLPF_CFG_2100HZ_NOLPF   0x07
 126 #define MPU3050_DLPF_CFG_MASK           0x07
 127 #define MPU3050_DLPF_CFG_SHIFT          0
 128 
 129 /* Interrupt config */
 130 #define MPU3050_INT_RAW_RDY_EN          BIT(0)
 131 #define MPU3050_INT_DMP_DONE_EN         BIT(1)
 132 #define MPU3050_INT_MPU_RDY_EN          BIT(2)
 133 #define MPU3050_INT_ANYRD_2CLEAR        BIT(4)
 134 #define MPU3050_INT_LATCH_EN            BIT(5)
 135 #define MPU3050_INT_OPEN                BIT(6)
 136 #define MPU3050_INT_ACTL                BIT(7)
 137 /* Interrupt status */
 138 #define MPU3050_INT_STATUS_RAW_RDY      BIT(0)
 139 #define MPU3050_INT_STATUS_DMP_DONE     BIT(1)
 140 #define MPU3050_INT_STATUS_MPU_RDY      BIT(2)
 141 #define MPU3050_INT_STATUS_FIFO_OVFLW   BIT(7)
 142 /* USR_CTRL */
 143 #define MPU3050_USR_CTRL_FIFO_EN        BIT(6)
 144 #define MPU3050_USR_CTRL_AUX_IF_EN      BIT(5)
 145 #define MPU3050_USR_CTRL_AUX_IF_RST     BIT(3)
 146 #define MPU3050_USR_CTRL_FIFO_RST       BIT(1)
 147 #define MPU3050_USR_CTRL_GYRO_RST       BIT(0)
 148 /* PWR_MGM */
 149 #define MPU3050_PWR_MGM_PLL_X           0x01
 150 #define MPU3050_PWR_MGM_PLL_Y           0x02
 151 #define MPU3050_PWR_MGM_PLL_Z           0x03
 152 #define MPU3050_PWR_MGM_CLKSEL_MASK     0x07
 153 #define MPU3050_PWR_MGM_STBY_ZG         BIT(3)
 154 #define MPU3050_PWR_MGM_STBY_YG         BIT(4)
 155 #define MPU3050_PWR_MGM_STBY_XG         BIT(5)
 156 #define MPU3050_PWR_MGM_SLEEP           BIT(6)
 157 #define MPU3050_PWR_MGM_RESET           BIT(7)
 158 #define MPU3050_PWR_MGM_MASK            0xff
 159 
 160 /*
 161  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
 162  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
 163  * in two's complement.
 164  */
 165 static unsigned int mpu3050_fs_precision[] = {
 166         IIO_DEGREE_TO_RAD(250),
 167         IIO_DEGREE_TO_RAD(500),
 168         IIO_DEGREE_TO_RAD(1000),
 169         IIO_DEGREE_TO_RAD(2000)
 170 };
 171 
 172 /*
 173  * Regulator names
 174  */
 175 static const char mpu3050_reg_vdd[] = "vdd";
 176 static const char mpu3050_reg_vlogic[] = "vlogic";
 177 
 178 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
 179 {
 180         unsigned int freq;
 181 
 182         if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
 183                 freq = 8000;
 184         else
 185                 freq = 1000;
 186         freq /= (mpu3050->divisor + 1);
 187 
 188         return freq;
 189 }
 190 
 191 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
 192 {
 193         __be16 raw_val[3];
 194         int ret;
 195         int i;
 196 
 197         /* Reset */
 198         ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 199                                  MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
 200         if (ret)
 201                 return ret;
 202 
 203         /* Turn on the Z-axis PLL */
 204         ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 205                                  MPU3050_PWR_MGM_CLKSEL_MASK,
 206                                  MPU3050_PWR_MGM_PLL_Z);
 207         if (ret)
 208                 return ret;
 209 
 210         /* Write calibration offset registers */
 211         for (i = 0; i < 3; i++)
 212                 raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
 213 
 214         ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
 215                                 sizeof(raw_val));
 216         if (ret)
 217                 return ret;
 218 
 219         /* Set low pass filter (sample rate), sync and full scale */
 220         ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
 221                            MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
 222                            mpu3050->fullscale << MPU3050_FS_SHIFT |
 223                            mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
 224         if (ret)
 225                 return ret;
 226 
 227         /* Set up sampling frequency */
 228         ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
 229         if (ret)
 230                 return ret;
 231 
 232         /*
 233          * Max 50 ms start-up time after setting DLPF_FS_SYNC
 234          * according to the data sheet, then wait for the next sample
 235          * at this frequency T = 1000/f ms.
 236          */
 237         msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
 238 
 239         return 0;
 240 }
 241 
 242 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
 243 {
 244         int ret;
 245         u8 divisor;
 246         enum mpu3050_lpf lpf;
 247 
 248         lpf = mpu3050->lpf;
 249         divisor = mpu3050->divisor;
 250 
 251         mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
 252         mpu3050->divisor = 0; /* Divide by 1 */
 253         ret = mpu3050_start_sampling(mpu3050);
 254 
 255         mpu3050->lpf = lpf;
 256         mpu3050->divisor = divisor;
 257 
 258         return ret;
 259 }
 260 
 261 static int mpu3050_read_raw(struct iio_dev *indio_dev,
 262                             struct iio_chan_spec const *chan,
 263                             int *val, int *val2,
 264                             long mask)
 265 {
 266         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 267         int ret;
 268         __be16 raw_val;
 269 
 270         switch (mask) {
 271         case IIO_CHAN_INFO_OFFSET:
 272                 switch (chan->type) {
 273                 case IIO_TEMP:
 274                         /* The temperature scaling is (x+23000)/280 Celsius */
 275                         *val = 23000;
 276                         return IIO_VAL_INT;
 277                 default:
 278                         return -EINVAL;
 279                 }
 280         case IIO_CHAN_INFO_CALIBBIAS:
 281                 switch (chan->type) {
 282                 case IIO_ANGL_VEL:
 283                         *val = mpu3050->calibration[chan->scan_index-1];
 284                         return IIO_VAL_INT;
 285                 default:
 286                         return -EINVAL;
 287                 }
 288         case IIO_CHAN_INFO_SAMP_FREQ:
 289                 *val = mpu3050_get_freq(mpu3050);
 290                 return IIO_VAL_INT;
 291         case IIO_CHAN_INFO_SCALE:
 292                 switch (chan->type) {
 293                 case IIO_TEMP:
 294                         /* Millidegrees, see about temperature scaling above */
 295                         *val = 1000;
 296                         *val2 = 280;
 297                         return IIO_VAL_FRACTIONAL;
 298                 case IIO_ANGL_VEL:
 299                         /*
 300                          * Convert to the corresponding full scale in
 301                          * radians. All 16 bits are used with sign to
 302                          * span the available scale: to account for the one
 303                          * missing value if we multiply by 1/S16_MAX, instead
 304                          * multiply with 2/U16_MAX.
 305                          */
 306                         *val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
 307                         *val2 = U16_MAX;
 308                         return IIO_VAL_FRACTIONAL;
 309                 default:
 310                         return -EINVAL;
 311                 }
 312         case IIO_CHAN_INFO_RAW:
 313                 /* Resume device */
 314                 pm_runtime_get_sync(mpu3050->dev);
 315                 mutex_lock(&mpu3050->lock);
 316 
 317                 ret = mpu3050_set_8khz_samplerate(mpu3050);
 318                 if (ret)
 319                         goto out_read_raw_unlock;
 320 
 321                 switch (chan->type) {
 322                 case IIO_TEMP:
 323                         ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
 324                                                &raw_val, sizeof(raw_val));
 325                         if (ret) {
 326                                 dev_err(mpu3050->dev,
 327                                         "error reading temperature\n");
 328                                 goto out_read_raw_unlock;
 329                         }
 330 
 331                         *val = be16_to_cpu(raw_val);
 332                         ret = IIO_VAL_INT;
 333 
 334                         goto out_read_raw_unlock;
 335                 case IIO_ANGL_VEL:
 336                         ret = regmap_bulk_read(mpu3050->map,
 337                                        MPU3050_AXIS_REGS(chan->scan_index-1),
 338                                        &raw_val,
 339                                        sizeof(raw_val));
 340                         if (ret) {
 341                                 dev_err(mpu3050->dev,
 342                                         "error reading axis data\n");
 343                                 goto out_read_raw_unlock;
 344                         }
 345 
 346                         *val = be16_to_cpu(raw_val);
 347                         ret = IIO_VAL_INT;
 348 
 349                         goto out_read_raw_unlock;
 350                 default:
 351                         ret = -EINVAL;
 352                         goto out_read_raw_unlock;
 353                 }
 354         default:
 355                 break;
 356         }
 357 
 358         return -EINVAL;
 359 
 360 out_read_raw_unlock:
 361         mutex_unlock(&mpu3050->lock);
 362         pm_runtime_mark_last_busy(mpu3050->dev);
 363         pm_runtime_put_autosuspend(mpu3050->dev);
 364 
 365         return ret;
 366 }
 367 
 368 static int mpu3050_write_raw(struct iio_dev *indio_dev,
 369                              const struct iio_chan_spec *chan,
 370                              int val, int val2, long mask)
 371 {
 372         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 373         /*
 374          * Couldn't figure out a way to precalculate these at compile time.
 375          */
 376         unsigned int fs250 =
 377                 DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
 378                                   U16_MAX);
 379         unsigned int fs500 =
 380                 DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
 381                                   U16_MAX);
 382         unsigned int fs1000 =
 383                 DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
 384                                   U16_MAX);
 385         unsigned int fs2000 =
 386                 DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
 387                                   U16_MAX);
 388 
 389         switch (mask) {
 390         case IIO_CHAN_INFO_CALIBBIAS:
 391                 if (chan->type != IIO_ANGL_VEL)
 392                         return -EINVAL;
 393                 mpu3050->calibration[chan->scan_index-1] = val;
 394                 return 0;
 395         case IIO_CHAN_INFO_SAMP_FREQ:
 396                 /*
 397                  * The max samplerate is 8000 Hz, the minimum
 398                  * 1000 / 256 ~= 4 Hz
 399                  */
 400                 if (val < 4 || val > 8000)
 401                         return -EINVAL;
 402 
 403                 /*
 404                  * Above 1000 Hz we must turn off the digital low pass filter
 405                  * so we get a base frequency of 8kHz to the divider
 406                  */
 407                 if (val > 1000) {
 408                         mpu3050->lpf = LPF_256_HZ_NOLPF;
 409                         mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
 410                         return 0;
 411                 }
 412 
 413                 mpu3050->lpf = LPF_188_HZ;
 414                 mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
 415                 return 0;
 416         case IIO_CHAN_INFO_SCALE:
 417                 if (chan->type != IIO_ANGL_VEL)
 418                         return -EINVAL;
 419                 /*
 420                  * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
 421                  * which means we need to round to the closest radians
 422                  * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
 423                  * rad/s. The scale is then for the 16 bits used to cover
 424                  * it 2/(2^16) of that.
 425                  */
 426 
 427                 /* Just too large, set the max range */
 428                 if (val != 0) {
 429                         mpu3050->fullscale = FS_2000_DPS;
 430                         return 0;
 431                 }
 432 
 433                 /*
 434                  * Now we're dealing with fractions below zero in millirad/s
 435                  * do some integer interpolation and match with the closest
 436                  * fullscale in the table.
 437                  */
 438                 if (val2 <= fs250 ||
 439                     val2 < ((fs500 + fs250) / 2))
 440                         mpu3050->fullscale = FS_250_DPS;
 441                 else if (val2 <= fs500 ||
 442                          val2 < ((fs1000 + fs500) / 2))
 443                         mpu3050->fullscale = FS_500_DPS;
 444                 else if (val2 <= fs1000 ||
 445                          val2 < ((fs2000 + fs1000) / 2))
 446                         mpu3050->fullscale = FS_1000_DPS;
 447                 else
 448                         /* Catch-all */
 449                         mpu3050->fullscale = FS_2000_DPS;
 450                 return 0;
 451         default:
 452                 break;
 453         }
 454 
 455         return -EINVAL;
 456 }
 457 
 458 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
 459 {
 460         const struct iio_poll_func *pf = p;
 461         struct iio_dev *indio_dev = pf->indio_dev;
 462         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 463         int ret;
 464         /*
 465          * Temperature 1*16 bits
 466          * Three axes 3*16 bits
 467          * Timestamp 64 bits (4*16 bits)
 468          * Sum total 8*16 bits
 469          */
 470         __be16 hw_values[8];
 471         s64 timestamp;
 472         unsigned int datums_from_fifo = 0;
 473 
 474         /*
 475          * If we're using the hardware trigger, get the precise timestamp from
 476          * the top half of the threaded IRQ handler. Otherwise get the
 477          * timestamp here so it will be close in time to the actual values
 478          * read from the registers.
 479          */
 480         if (iio_trigger_using_own(indio_dev))
 481                 timestamp = mpu3050->hw_timestamp;
 482         else
 483                 timestamp = iio_get_time_ns(indio_dev);
 484 
 485         mutex_lock(&mpu3050->lock);
 486 
 487         /* Using the hardware IRQ trigger? Check the buffer then. */
 488         if (mpu3050->hw_irq_trigger) {
 489                 __be16 raw_fifocnt;
 490                 u16 fifocnt;
 491                 /* X, Y, Z + temperature */
 492                 unsigned int bytes_per_datum = 8;
 493                 bool fifo_overflow = false;
 494 
 495                 ret = regmap_bulk_read(mpu3050->map,
 496                                        MPU3050_FIFO_COUNT_H,
 497                                        &raw_fifocnt,
 498                                        sizeof(raw_fifocnt));
 499                 if (ret)
 500                         goto out_trigger_unlock;
 501                 fifocnt = be16_to_cpu(raw_fifocnt);
 502 
 503                 if (fifocnt == 512) {
 504                         dev_info(mpu3050->dev,
 505                                  "FIFO overflow! Emptying and resetting FIFO\n");
 506                         fifo_overflow = true;
 507                         /* Reset and enable the FIFO */
 508                         ret = regmap_update_bits(mpu3050->map,
 509                                                  MPU3050_USR_CTRL,
 510                                                  MPU3050_USR_CTRL_FIFO_EN |
 511                                                  MPU3050_USR_CTRL_FIFO_RST,
 512                                                  MPU3050_USR_CTRL_FIFO_EN |
 513                                                  MPU3050_USR_CTRL_FIFO_RST);
 514                         if (ret) {
 515                                 dev_info(mpu3050->dev, "error resetting FIFO\n");
 516                                 goto out_trigger_unlock;
 517                         }
 518                         mpu3050->pending_fifo_footer = false;
 519                 }
 520 
 521                 if (fifocnt)
 522                         dev_dbg(mpu3050->dev,
 523                                 "%d bytes in the FIFO\n",
 524                                 fifocnt);
 525 
 526                 while (!fifo_overflow && fifocnt > bytes_per_datum) {
 527                         unsigned int toread;
 528                         unsigned int offset;
 529                         __be16 fifo_values[5];
 530 
 531                         /*
 532                          * If there is a FIFO footer in the pipe, first clear
 533                          * that out. This follows the complex algorithm in the
 534                          * datasheet that states that you may never leave the
 535                          * FIFO empty after the first reading: you have to
 536                          * always leave two footer bytes in it. The footer is
 537                          * in practice just two zero bytes.
 538                          */
 539                         if (mpu3050->pending_fifo_footer) {
 540                                 toread = bytes_per_datum + 2;
 541                                 offset = 0;
 542                         } else {
 543                                 toread = bytes_per_datum;
 544                                 offset = 1;
 545                                 /* Put in some dummy value */
 546                                 fifo_values[0] = 0xAAAA;
 547                         }
 548 
 549                         ret = regmap_bulk_read(mpu3050->map,
 550                                                MPU3050_FIFO_R,
 551                                                &fifo_values[offset],
 552                                                toread);
 553 
 554                         dev_dbg(mpu3050->dev,
 555                                 "%04x %04x %04x %04x %04x\n",
 556                                 fifo_values[0],
 557                                 fifo_values[1],
 558                                 fifo_values[2],
 559                                 fifo_values[3],
 560                                 fifo_values[4]);
 561 
 562                         /* Index past the footer (fifo_values[0]) and push */
 563                         iio_push_to_buffers_with_timestamp(indio_dev,
 564                                                            &fifo_values[1],
 565                                                            timestamp);
 566 
 567                         fifocnt -= toread;
 568                         datums_from_fifo++;
 569                         mpu3050->pending_fifo_footer = true;
 570 
 571                         /*
 572                          * If we're emptying the FIFO, just make sure to
 573                          * check if something new appeared.
 574                          */
 575                         if (fifocnt < bytes_per_datum) {
 576                                 ret = regmap_bulk_read(mpu3050->map,
 577                                                        MPU3050_FIFO_COUNT_H,
 578                                                        &raw_fifocnt,
 579                                                        sizeof(raw_fifocnt));
 580                                 if (ret)
 581                                         goto out_trigger_unlock;
 582                                 fifocnt = be16_to_cpu(raw_fifocnt);
 583                         }
 584 
 585                         if (fifocnt < bytes_per_datum)
 586                                 dev_dbg(mpu3050->dev,
 587                                         "%d bytes left in the FIFO\n",
 588                                         fifocnt);
 589 
 590                         /*
 591                          * At this point, the timestamp that triggered the
 592                          * hardware interrupt is no longer valid for what
 593                          * we are reading (the interrupt likely fired for
 594                          * the value on the top of the FIFO), so set the
 595                          * timestamp to zero and let userspace deal with it.
 596                          */
 597                         timestamp = 0;
 598                 }
 599         }
 600 
 601         /*
 602          * If we picked some datums from the FIFO that's enough, else
 603          * fall through and just read from the current value registers.
 604          * This happens in two cases:
 605          *
 606          * - We are using some other trigger (external, like an HRTimer)
 607          *   than the sensor's own sample generator. In this case the
 608          *   sensor is just set to the max sampling frequency and we give
 609          *   the trigger a copy of the latest value every time we get here.
 610          *
 611          * - The hardware trigger is active but unused and we actually use
 612          *   another trigger which calls here with a frequency higher
 613          *   than what the device provides data. We will then just read
 614          *   duplicate values directly from the hardware registers.
 615          */
 616         if (datums_from_fifo) {
 617                 dev_dbg(mpu3050->dev,
 618                         "read %d datums from the FIFO\n",
 619                         datums_from_fifo);
 620                 goto out_trigger_unlock;
 621         }
 622 
 623         ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
 624                                sizeof(hw_values));
 625         if (ret) {
 626                 dev_err(mpu3050->dev,
 627                         "error reading axis data\n");
 628                 goto out_trigger_unlock;
 629         }
 630 
 631         iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
 632 
 633 out_trigger_unlock:
 634         mutex_unlock(&mpu3050->lock);
 635         iio_trigger_notify_done(indio_dev->trig);
 636 
 637         return IRQ_HANDLED;
 638 }
 639 
 640 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
 641 {
 642         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 643 
 644         pm_runtime_get_sync(mpu3050->dev);
 645 
 646         /* Unless we have OUR trigger active, run at full speed */
 647         if (!mpu3050->hw_irq_trigger)
 648                 return mpu3050_set_8khz_samplerate(mpu3050);
 649 
 650         return 0;
 651 }
 652 
 653 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
 654 {
 655         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 656 
 657         pm_runtime_mark_last_busy(mpu3050->dev);
 658         pm_runtime_put_autosuspend(mpu3050->dev);
 659 
 660         return 0;
 661 }
 662 
 663 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
 664         .preenable = mpu3050_buffer_preenable,
 665         .postenable = iio_triggered_buffer_postenable,
 666         .predisable = iio_triggered_buffer_predisable,
 667         .postdisable = mpu3050_buffer_postdisable,
 668 };
 669 
 670 static const struct iio_mount_matrix *
 671 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
 672                          const struct iio_chan_spec *chan)
 673 {
 674         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 675 
 676         return &mpu3050->orientation;
 677 }
 678 
 679 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
 680         IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
 681         { },
 682 };
 683 
 684 #define MPU3050_AXIS_CHANNEL(axis, index)                               \
 685         {                                                               \
 686                 .type = IIO_ANGL_VEL,                                   \
 687                 .modified = 1,                                          \
 688                 .channel2 = IIO_MOD_##axis,                             \
 689                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
 690                         BIT(IIO_CHAN_INFO_CALIBBIAS),                   \
 691                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),   \
 692                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
 693                 .ext_info = mpu3050_ext_info,                           \
 694                 .scan_index = index,                                    \
 695                 .scan_type = {                                          \
 696                         .sign = 's',                                    \
 697                         .realbits = 16,                                 \
 698                         .storagebits = 16,                              \
 699                         .endianness = IIO_BE,                           \
 700                 },                                                      \
 701         }
 702 
 703 static const struct iio_chan_spec mpu3050_channels[] = {
 704         {
 705                 .type = IIO_TEMP,
 706                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
 707                                       BIT(IIO_CHAN_INFO_SCALE) |
 708                                       BIT(IIO_CHAN_INFO_OFFSET),
 709                 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
 710                 .scan_index = 0,
 711                 .scan_type = {
 712                         .sign = 's',
 713                         .realbits = 16,
 714                         .storagebits = 16,
 715                         .endianness = IIO_BE,
 716                 },
 717         },
 718         MPU3050_AXIS_CHANNEL(X, 1),
 719         MPU3050_AXIS_CHANNEL(Y, 2),
 720         MPU3050_AXIS_CHANNEL(Z, 3),
 721         IIO_CHAN_SOFT_TIMESTAMP(4),
 722 };
 723 
 724 /* Four channels apart from timestamp, scan mask = 0x0f */
 725 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
 726 
 727 /*
 728  * These are just the hardcoded factors resulting from the more elaborate
 729  * calculations done with fractions in the scale raw get/set functions.
 730  */
 731 static IIO_CONST_ATTR(anglevel_scale_available,
 732                       "0.000122070 "
 733                       "0.000274658 "
 734                       "0.000518798 "
 735                       "0.001068115");
 736 
 737 static struct attribute *mpu3050_attributes[] = {
 738         &iio_const_attr_anglevel_scale_available.dev_attr.attr,
 739         NULL,
 740 };
 741 
 742 static const struct attribute_group mpu3050_attribute_group = {
 743         .attrs = mpu3050_attributes,
 744 };
 745 
 746 static const struct iio_info mpu3050_info = {
 747         .read_raw = mpu3050_read_raw,
 748         .write_raw = mpu3050_write_raw,
 749         .attrs = &mpu3050_attribute_group,
 750 };
 751 
 752 /**
 753  * mpu3050_read_mem() - read MPU-3050 internal memory
 754  * @mpu3050: device to read from
 755  * @bank: target bank
 756  * @addr: target address
 757  * @len: number of bytes
 758  * @buf: the buffer to store the read bytes in
 759  */
 760 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
 761                             u8 bank,
 762                             u8 addr,
 763                             u8 len,
 764                             u8 *buf)
 765 {
 766         int ret;
 767 
 768         ret = regmap_write(mpu3050->map,
 769                            MPU3050_BANK_SEL,
 770                            bank);
 771         if (ret)
 772                 return ret;
 773 
 774         ret = regmap_write(mpu3050->map,
 775                            MPU3050_MEM_START_ADDR,
 776                            addr);
 777         if (ret)
 778                 return ret;
 779 
 780         return regmap_bulk_read(mpu3050->map,
 781                                 MPU3050_MEM_R_W,
 782                                 buf,
 783                                 len);
 784 }
 785 
 786 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
 787 {
 788         int ret;
 789         u8 otp[8];
 790 
 791         /* Reset */
 792         ret = regmap_update_bits(mpu3050->map,
 793                                  MPU3050_PWR_MGM,
 794                                  MPU3050_PWR_MGM_RESET,
 795                                  MPU3050_PWR_MGM_RESET);
 796         if (ret)
 797                 return ret;
 798 
 799         /* Turn on the PLL */
 800         ret = regmap_update_bits(mpu3050->map,
 801                                  MPU3050_PWR_MGM,
 802                                  MPU3050_PWR_MGM_CLKSEL_MASK,
 803                                  MPU3050_PWR_MGM_PLL_Z);
 804         if (ret)
 805                 return ret;
 806 
 807         /* Disable IRQs */
 808         ret = regmap_write(mpu3050->map,
 809                            MPU3050_INT_CFG,
 810                            0);
 811         if (ret)
 812                 return ret;
 813 
 814         /* Read out the 8 bytes of OTP (one-time-programmable) memory */
 815         ret = mpu3050_read_mem(mpu3050,
 816                                (MPU3050_MEM_PRFTCH |
 817                                 MPU3050_MEM_USER_BANK |
 818                                 MPU3050_MEM_OTP_BANK_0),
 819                                0,
 820                                sizeof(otp),
 821                                otp);
 822         if (ret)
 823                 return ret;
 824 
 825         /* This is device-unique data so it goes into the entropy pool */
 826         add_device_randomness(otp, sizeof(otp));
 827 
 828         dev_info(mpu3050->dev,
 829                  "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
 830                  "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
 831                  /* Die ID, bits 0-12 */
 832                  (otp[1] << 8 | otp[0]) & 0x1fff,
 833                  /* Wafer ID, bits 13-17 */
 834                  ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
 835                  /* A lot ID, bits 18-33 */
 836                  ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
 837                  /* W lot ID, bits 34-45 */
 838                  ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
 839                  /* WP ID, bits 47-49 */
 840                  ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
 841                  /* rev ID, bits 50-55 */
 842                  otp[6] >> 2);
 843 
 844         return 0;
 845 }
 846 
 847 static int mpu3050_power_up(struct mpu3050 *mpu3050)
 848 {
 849         int ret;
 850 
 851         ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 852         if (ret) {
 853                 dev_err(mpu3050->dev, "cannot enable regulators\n");
 854                 return ret;
 855         }
 856         /*
 857          * 20-100 ms start-up time for register read/write according to
 858          * the datasheet, be on the safe side and wait 200 ms.
 859          */
 860         msleep(200);
 861 
 862         /* Take device out of sleep mode */
 863         ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 864                                  MPU3050_PWR_MGM_SLEEP, 0);
 865         if (ret) {
 866                 dev_err(mpu3050->dev, "error setting power mode\n");
 867                 return ret;
 868         }
 869         usleep_range(10000, 20000);
 870 
 871         return 0;
 872 }
 873 
 874 static int mpu3050_power_down(struct mpu3050 *mpu3050)
 875 {
 876         int ret;
 877 
 878         /*
 879          * Put MPU-3050 into sleep mode before cutting regulators.
 880          * This is important, because we may not be the sole user
 881          * of the regulator so the power may stay on after this, and
 882          * then we would be wasting power unless we go to sleep mode
 883          * first.
 884          */
 885         ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
 886                                  MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
 887         if (ret)
 888                 dev_err(mpu3050->dev, "error putting to sleep\n");
 889 
 890         ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
 891         if (ret)
 892                 dev_err(mpu3050->dev, "error disabling regulators\n");
 893 
 894         return 0;
 895 }
 896 
 897 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
 898 {
 899         struct iio_trigger *trig = p;
 900         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 901         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 902 
 903         if (!mpu3050->hw_irq_trigger)
 904                 return IRQ_NONE;
 905 
 906         /* Get the time stamp as close in time as possible */
 907         mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
 908 
 909         return IRQ_WAKE_THREAD;
 910 }
 911 
 912 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
 913 {
 914         struct iio_trigger *trig = p;
 915         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 916         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 917         unsigned int val;
 918         int ret;
 919 
 920         /* ACK IRQ and check if it was from us */
 921         ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 922         if (ret) {
 923                 dev_err(mpu3050->dev, "error reading IRQ status\n");
 924                 return IRQ_HANDLED;
 925         }
 926         if (!(val & MPU3050_INT_STATUS_RAW_RDY))
 927                 return IRQ_NONE;
 928 
 929         iio_trigger_poll_chained(p);
 930 
 931         return IRQ_HANDLED;
 932 }
 933 
 934 /**
 935  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
 936  * @trig: trigger instance
 937  * @enable: true if trigger should be enabled, false to disable
 938  */
 939 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
 940                                           bool enable)
 941 {
 942         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
 943         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
 944         unsigned int val;
 945         int ret;
 946 
 947         /* Disabling trigger: disable interrupt and return */
 948         if (!enable) {
 949                 /* Disable all interrupts */
 950                 ret = regmap_write(mpu3050->map,
 951                                    MPU3050_INT_CFG,
 952                                    0);
 953                 if (ret)
 954                         dev_err(mpu3050->dev, "error disabling IRQ\n");
 955 
 956                 /* Clear IRQ flag */
 957                 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
 958                 if (ret)
 959                         dev_err(mpu3050->dev, "error clearing IRQ status\n");
 960 
 961                 /* Disable all things in the FIFO and reset it */
 962                 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 963                 if (ret)
 964                         dev_err(mpu3050->dev, "error disabling FIFO\n");
 965 
 966                 ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
 967                                    MPU3050_USR_CTRL_FIFO_RST);
 968                 if (ret)
 969                         dev_err(mpu3050->dev, "error resetting FIFO\n");
 970 
 971                 pm_runtime_mark_last_busy(mpu3050->dev);
 972                 pm_runtime_put_autosuspend(mpu3050->dev);
 973                 mpu3050->hw_irq_trigger = false;
 974 
 975                 return 0;
 976         } else {
 977                 /* Else we're enabling the trigger from this point */
 978                 pm_runtime_get_sync(mpu3050->dev);
 979                 mpu3050->hw_irq_trigger = true;
 980 
 981                 /* Disable all things in the FIFO */
 982                 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
 983                 if (ret)
 984                         return ret;
 985 
 986                 /* Reset and enable the FIFO */
 987                 ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
 988                                          MPU3050_USR_CTRL_FIFO_EN |
 989                                          MPU3050_USR_CTRL_FIFO_RST,
 990                                          MPU3050_USR_CTRL_FIFO_EN |
 991                                          MPU3050_USR_CTRL_FIFO_RST);
 992                 if (ret)
 993                         return ret;
 994 
 995                 mpu3050->pending_fifo_footer = false;
 996 
 997                 /* Turn on the FIFO for temp+X+Y+Z */
 998                 ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
 999                                    MPU3050_FIFO_EN_TEMP_OUT |
1000                                    MPU3050_FIFO_EN_GYRO_XOUT |
1001                                    MPU3050_FIFO_EN_GYRO_YOUT |
1002                                    MPU3050_FIFO_EN_GYRO_ZOUT |
1003                                    MPU3050_FIFO_EN_FOOTER);
1004                 if (ret)
1005                         return ret;
1006 
1007                 /* Configure the sample engine */
1008                 ret = mpu3050_start_sampling(mpu3050);
1009                 if (ret)
1010                         return ret;
1011 
1012                 /* Clear IRQ flag */
1013                 ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1014                 if (ret)
1015                         dev_err(mpu3050->dev, "error clearing IRQ status\n");
1016 
1017                 /* Give us interrupts whenever there is new data ready */
1018                 val = MPU3050_INT_RAW_RDY_EN;
1019 
1020                 if (mpu3050->irq_actl)
1021                         val |= MPU3050_INT_ACTL;
1022                 if (mpu3050->irq_latch)
1023                         val |= MPU3050_INT_LATCH_EN;
1024                 if (mpu3050->irq_opendrain)
1025                         val |= MPU3050_INT_OPEN;
1026 
1027                 ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1028                 if (ret)
1029                         return ret;
1030         }
1031 
1032         return 0;
1033 }
1034 
1035 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1036         .set_trigger_state = mpu3050_drdy_trigger_set_state,
1037 };
1038 
1039 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1040 {
1041         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1042         unsigned long irq_trig;
1043         int ret;
1044 
1045         mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1046                                                "%s-dev%d",
1047                                                indio_dev->name,
1048                                                indio_dev->id);
1049         if (!mpu3050->trig)
1050                 return -ENOMEM;
1051 
1052         /* Check if IRQ is open drain */
1053         if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1054                 mpu3050->irq_opendrain = true;
1055 
1056         irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1057         /*
1058          * Configure the interrupt generator hardware to supply whatever
1059          * the interrupt is configured for, edges low/high level low/high,
1060          * we can provide it all.
1061          */
1062         switch (irq_trig) {
1063         case IRQF_TRIGGER_RISING:
1064                 dev_info(&indio_dev->dev,
1065                          "pulse interrupts on the rising edge\n");
1066                 break;
1067         case IRQF_TRIGGER_FALLING:
1068                 mpu3050->irq_actl = true;
1069                 dev_info(&indio_dev->dev,
1070                          "pulse interrupts on the falling edge\n");
1071                 break;
1072         case IRQF_TRIGGER_HIGH:
1073                 mpu3050->irq_latch = true;
1074                 dev_info(&indio_dev->dev,
1075                          "interrupts active high level\n");
1076                 /*
1077                  * With level IRQs, we mask the IRQ until it is processed,
1078                  * but with edge IRQs (pulses) we can queue several interrupts
1079                  * in the top half.
1080                  */
1081                 irq_trig |= IRQF_ONESHOT;
1082                 break;
1083         case IRQF_TRIGGER_LOW:
1084                 mpu3050->irq_latch = true;
1085                 mpu3050->irq_actl = true;
1086                 irq_trig |= IRQF_ONESHOT;
1087                 dev_info(&indio_dev->dev,
1088                          "interrupts active low level\n");
1089                 break;
1090         default:
1091                 /* This is the most preferred mode, if possible */
1092                 dev_err(&indio_dev->dev,
1093                         "unsupported IRQ trigger specified (%lx), enforce "
1094                         "rising edge\n", irq_trig);
1095                 irq_trig = IRQF_TRIGGER_RISING;
1096                 break;
1097         }
1098 
1099         /* An open drain line can be shared with several devices */
1100         if (mpu3050->irq_opendrain)
1101                 irq_trig |= IRQF_SHARED;
1102 
1103         ret = request_threaded_irq(irq,
1104                                    mpu3050_irq_handler,
1105                                    mpu3050_irq_thread,
1106                                    irq_trig,
1107                                    mpu3050->trig->name,
1108                                    mpu3050->trig);
1109         if (ret) {
1110                 dev_err(mpu3050->dev,
1111                         "can't get IRQ %d, error %d\n", irq, ret);
1112                 return ret;
1113         }
1114 
1115         mpu3050->irq = irq;
1116         mpu3050->trig->dev.parent = mpu3050->dev;
1117         mpu3050->trig->ops = &mpu3050_trigger_ops;
1118         iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1119 
1120         ret = iio_trigger_register(mpu3050->trig);
1121         if (ret)
1122                 return ret;
1123 
1124         indio_dev->trig = iio_trigger_get(mpu3050->trig);
1125 
1126         return 0;
1127 }
1128 
1129 int mpu3050_common_probe(struct device *dev,
1130                          struct regmap *map,
1131                          int irq,
1132                          const char *name)
1133 {
1134         struct iio_dev *indio_dev;
1135         struct mpu3050 *mpu3050;
1136         unsigned int val;
1137         int ret;
1138 
1139         indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1140         if (!indio_dev)
1141                 return -ENOMEM;
1142         mpu3050 = iio_priv(indio_dev);
1143 
1144         mpu3050->dev = dev;
1145         mpu3050->map = map;
1146         mutex_init(&mpu3050->lock);
1147         /* Default fullscale: 2000 degrees per second */
1148         mpu3050->fullscale = FS_2000_DPS;
1149         /* 1 kHz, divide by 100, default frequency = 10 Hz */
1150         mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1151         mpu3050->divisor = 99;
1152 
1153         /* Read the mounting matrix, if present */
1154         ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1155         if (ret)
1156                 return ret;
1157 
1158         /* Fetch and turn on regulators */
1159         mpu3050->regs[0].supply = mpu3050_reg_vdd;
1160         mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1161         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1162                                       mpu3050->regs);
1163         if (ret) {
1164                 dev_err(dev, "Cannot get regulators\n");
1165                 return ret;
1166         }
1167 
1168         ret = mpu3050_power_up(mpu3050);
1169         if (ret)
1170                 return ret;
1171 
1172         ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1173         if (ret) {
1174                 dev_err(dev, "could not read device ID\n");
1175                 ret = -ENODEV;
1176 
1177                 goto err_power_down;
1178         }
1179 
1180         if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1181                 dev_err(dev, "unsupported chip id %02x\n",
1182                                 (u8)(val & MPU3050_CHIP_ID_MASK));
1183                 ret = -ENODEV;
1184                 goto err_power_down;
1185         }
1186 
1187         ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1188         if (ret) {
1189                 dev_err(dev, "could not read device ID\n");
1190                 ret = -ENODEV;
1191 
1192                 goto err_power_down;
1193         }
1194         dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1195                  ((val >> 4) & 0xf), (val & 0xf));
1196 
1197         ret = mpu3050_hw_init(mpu3050);
1198         if (ret)
1199                 goto err_power_down;
1200 
1201         indio_dev->dev.parent = dev;
1202         indio_dev->channels = mpu3050_channels;
1203         indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1204         indio_dev->info = &mpu3050_info;
1205         indio_dev->available_scan_masks = mpu3050_scan_masks;
1206         indio_dev->modes = INDIO_DIRECT_MODE;
1207         indio_dev->name = name;
1208 
1209         ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1210                                          mpu3050_trigger_handler,
1211                                          &mpu3050_buffer_setup_ops);
1212         if (ret) {
1213                 dev_err(dev, "triggered buffer setup failed\n");
1214                 goto err_power_down;
1215         }
1216 
1217         ret = iio_device_register(indio_dev);
1218         if (ret) {
1219                 dev_err(dev, "device register failed\n");
1220                 goto err_cleanup_buffer;
1221         }
1222 
1223         dev_set_drvdata(dev, indio_dev);
1224 
1225         /* Check if we have an assigned IRQ to use as trigger */
1226         if (irq) {
1227                 ret = mpu3050_trigger_probe(indio_dev, irq);
1228                 if (ret)
1229                         dev_err(dev, "failed to register trigger\n");
1230         }
1231 
1232         /* Enable runtime PM */
1233         pm_runtime_get_noresume(dev);
1234         pm_runtime_set_active(dev);
1235         pm_runtime_enable(dev);
1236         /*
1237          * Set autosuspend to two orders of magnitude larger than the
1238          * start-up time. 100ms start-up time means 10000ms autosuspend,
1239          * i.e. 10 seconds.
1240          */
1241         pm_runtime_set_autosuspend_delay(dev, 10000);
1242         pm_runtime_use_autosuspend(dev);
1243         pm_runtime_put(dev);
1244 
1245         return 0;
1246 
1247 err_cleanup_buffer:
1248         iio_triggered_buffer_cleanup(indio_dev);
1249 err_power_down:
1250         mpu3050_power_down(mpu3050);
1251 
1252         return ret;
1253 }
1254 EXPORT_SYMBOL(mpu3050_common_probe);
1255 
1256 int mpu3050_common_remove(struct device *dev)
1257 {
1258         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1259         struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1260 
1261         pm_runtime_get_sync(dev);
1262         pm_runtime_put_noidle(dev);
1263         pm_runtime_disable(dev);
1264         iio_triggered_buffer_cleanup(indio_dev);
1265         if (mpu3050->irq)
1266                 free_irq(mpu3050->irq, mpu3050);
1267         iio_device_unregister(indio_dev);
1268         mpu3050_power_down(mpu3050);
1269 
1270         return 0;
1271 }
1272 EXPORT_SYMBOL(mpu3050_common_remove);
1273 
1274 #ifdef CONFIG_PM
1275 static int mpu3050_runtime_suspend(struct device *dev)
1276 {
1277         return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1278 }
1279 
1280 static int mpu3050_runtime_resume(struct device *dev)
1281 {
1282         return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1283 }
1284 #endif /* CONFIG_PM */
1285 
1286 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1287         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1288                                 pm_runtime_force_resume)
1289         SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1290                            mpu3050_runtime_resume, NULL)
1291 };
1292 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1293 
1294 MODULE_AUTHOR("Linus Walleij");
1295 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1296 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */