root/drivers/iio/chemical/sps30.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. sps30_write_then_read
  2. sps30_do_cmd
  3. sps30_float_to_int_clamped
  4. sps30_do_meas
  5. sps30_trigger_handler
  6. sps30_read_raw
  7. sps30_do_cmd_reset
  8. start_cleaning_store
  9. cleaning_period_show
  10. cleaning_period_store
  11. cleaning_period_available_show
  12. sps30_stop_meas
  13. sps30_probe

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Sensirion SPS30 particulate matter sensor driver
   4  *
   5  * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
   6  *
   7  * I2C slave address: 0x69
   8  */
   9 
  10 #include <asm/unaligned.h>
  11 #include <linux/crc8.h>
  12 #include <linux/delay.h>
  13 #include <linux/i2c.h>
  14 #include <linux/iio/buffer.h>
  15 #include <linux/iio/iio.h>
  16 #include <linux/iio/sysfs.h>
  17 #include <linux/iio/trigger_consumer.h>
  18 #include <linux/iio/triggered_buffer.h>
  19 #include <linux/kernel.h>
  20 #include <linux/module.h>
  21 
  22 #define SPS30_CRC8_POLYNOMIAL 0x31
  23 /* max number of bytes needed to store PM measurements or serial string */
  24 #define SPS30_MAX_READ_SIZE 48
  25 /* sensor measures reliably up to 3000 ug / m3 */
  26 #define SPS30_MAX_PM 3000
  27 /* minimum and maximum self cleaning periods in seconds */
  28 #define SPS30_AUTO_CLEANING_PERIOD_MIN 0
  29 #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
  30 
  31 /* SPS30 commands */
  32 #define SPS30_START_MEAS 0x0010
  33 #define SPS30_STOP_MEAS 0x0104
  34 #define SPS30_RESET 0xd304
  35 #define SPS30_READ_DATA_READY_FLAG 0x0202
  36 #define SPS30_READ_DATA 0x0300
  37 #define SPS30_READ_SERIAL 0xd033
  38 #define SPS30_START_FAN_CLEANING 0x5607
  39 #define SPS30_AUTO_CLEANING_PERIOD 0x8004
  40 /* not a sensor command per se, used only to distinguish write from read */
  41 #define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005
  42 
  43 enum {
  44         PM1,
  45         PM2P5,
  46         PM4,
  47         PM10,
  48 };
  49 
  50 enum {
  51         RESET,
  52         MEASURING,
  53 };
  54 
  55 struct sps30_state {
  56         struct i2c_client *client;
  57         /*
  58          * Guards against concurrent access to sensor registers.
  59          * Must be held whenever sequence of commands is to be executed.
  60          */
  61         struct mutex lock;
  62         int state;
  63 };
  64 
  65 DECLARE_CRC8_TABLE(sps30_crc8_table);
  66 
  67 static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
  68                                  int txsize, u8 *rxbuf, int rxsize)
  69 {
  70         int ret;
  71 
  72         /*
  73          * Sensor does not support repeated start so instead of
  74          * sending two i2c messages in a row we just send one by one.
  75          */
  76         ret = i2c_master_send(state->client, txbuf, txsize);
  77         if (ret != txsize)
  78                 return ret < 0 ? ret : -EIO;
  79 
  80         if (!rxbuf)
  81                 return 0;
  82 
  83         ret = i2c_master_recv(state->client, rxbuf, rxsize);
  84         if (ret != rxsize)
  85                 return ret < 0 ? ret : -EIO;
  86 
  87         return 0;
  88 }
  89 
  90 static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
  91 {
  92         /*
  93          * Internally sensor stores measurements in a following manner:
  94          *
  95          * PM1: upper two bytes, crc8, lower two bytes, crc8
  96          * PM2P5: upper two bytes, crc8, lower two bytes, crc8
  97          * PM4: upper two bytes, crc8, lower two bytes, crc8
  98          * PM10: upper two bytes, crc8, lower two bytes, crc8
  99          *
 100          * What follows next are number concentration measurements and
 101          * typical particle size measurement which we omit.
 102          */
 103         u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
 104         int i, ret = 0;
 105 
 106         switch (cmd) {
 107         case SPS30_START_MEAS:
 108                 buf[2] = 0x03;
 109                 buf[3] = 0x00;
 110                 buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 111                 ret = sps30_write_then_read(state, buf, 5, NULL, 0);
 112                 break;
 113         case SPS30_STOP_MEAS:
 114         case SPS30_RESET:
 115         case SPS30_START_FAN_CLEANING:
 116                 ret = sps30_write_then_read(state, buf, 2, NULL, 0);
 117                 break;
 118         case SPS30_READ_AUTO_CLEANING_PERIOD:
 119                 buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8;
 120                 buf[1] = (u8)SPS30_AUTO_CLEANING_PERIOD;
 121                 /* fall through */
 122         case SPS30_READ_DATA_READY_FLAG:
 123         case SPS30_READ_DATA:
 124         case SPS30_READ_SERIAL:
 125                 /* every two data bytes are checksummed */
 126                 size += size / 2;
 127                 ret = sps30_write_then_read(state, buf, 2, buf, size);
 128                 break;
 129         case SPS30_AUTO_CLEANING_PERIOD:
 130                 buf[2] = data[0];
 131                 buf[3] = data[1];
 132                 buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 133                 buf[5] = data[2];
 134                 buf[6] = data[3];
 135                 buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE);
 136                 ret = sps30_write_then_read(state, buf, 8, NULL, 0);
 137                 break;
 138         }
 139 
 140         if (ret)
 141                 return ret;
 142 
 143         /* validate received data and strip off crc bytes */
 144         for (i = 0; i < size; i += 3) {
 145                 u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
 146 
 147                 if (crc != buf[i + 2]) {
 148                         dev_err(&state->client->dev,
 149                                 "data integrity check failed\n");
 150                         return -EIO;
 151                 }
 152 
 153                 *data++ = buf[i];
 154                 *data++ = buf[i + 1];
 155         }
 156 
 157         return 0;
 158 }
 159 
 160 static s32 sps30_float_to_int_clamped(const u8 *fp)
 161 {
 162         int val = get_unaligned_be32(fp);
 163         int mantissa = val & GENMASK(22, 0);
 164         /* this is fine since passed float is always non-negative */
 165         int exp = val >> 23;
 166         int fraction, shift;
 167 
 168         /* special case 0 */
 169         if (!exp && !mantissa)
 170                 return 0;
 171 
 172         exp -= 127;
 173         if (exp < 0) {
 174                 /* return values ranging from 1 to 99 */
 175                 return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
 176         }
 177 
 178         /* return values ranging from 100 to 300000 */
 179         shift = 23 - exp;
 180         val = (1 << exp) + (mantissa >> shift);
 181         if (val >= SPS30_MAX_PM)
 182                 return SPS30_MAX_PM * 100;
 183 
 184         fraction = mantissa & GENMASK(shift - 1, 0);
 185 
 186         return val * 100 + ((fraction * 100) >> shift);
 187 }
 188 
 189 static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
 190 {
 191         int i, ret, tries = 5;
 192         u8 tmp[16];
 193 
 194         if (state->state == RESET) {
 195                 ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
 196                 if (ret)
 197                         return ret;
 198 
 199                 state->state = MEASURING;
 200         }
 201 
 202         while (tries--) {
 203                 ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
 204                 if (ret)
 205                         return -EIO;
 206 
 207                 /* new measurements ready to be read */
 208                 if (tmp[1] == 1)
 209                         break;
 210 
 211                 msleep_interruptible(300);
 212         }
 213 
 214         if (tries == -1)
 215                 return -ETIMEDOUT;
 216 
 217         ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
 218         if (ret)
 219                 return ret;
 220 
 221         for (i = 0; i < size; i++)
 222                 data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
 223 
 224         return 0;
 225 }
 226 
 227 static irqreturn_t sps30_trigger_handler(int irq, void *p)
 228 {
 229         struct iio_poll_func *pf = p;
 230         struct iio_dev *indio_dev = pf->indio_dev;
 231         struct sps30_state *state = iio_priv(indio_dev);
 232         int ret;
 233         struct {
 234                 s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
 235                 s64 ts;
 236         } scan;
 237 
 238         mutex_lock(&state->lock);
 239         ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
 240         mutex_unlock(&state->lock);
 241         if (ret)
 242                 goto err;
 243 
 244         iio_push_to_buffers_with_timestamp(indio_dev, &scan,
 245                                            iio_get_time_ns(indio_dev));
 246 err:
 247         iio_trigger_notify_done(indio_dev->trig);
 248 
 249         return IRQ_HANDLED;
 250 }
 251 
 252 static int sps30_read_raw(struct iio_dev *indio_dev,
 253                           struct iio_chan_spec const *chan,
 254                           int *val, int *val2, long mask)
 255 {
 256         struct sps30_state *state = iio_priv(indio_dev);
 257         int data[4], ret = -EINVAL;
 258 
 259         switch (mask) {
 260         case IIO_CHAN_INFO_PROCESSED:
 261                 switch (chan->type) {
 262                 case IIO_MASSCONCENTRATION:
 263                         mutex_lock(&state->lock);
 264                         /* read up to the number of bytes actually needed */
 265                         switch (chan->channel2) {
 266                         case IIO_MOD_PM1:
 267                                 ret = sps30_do_meas(state, data, 1);
 268                                 break;
 269                         case IIO_MOD_PM2P5:
 270                                 ret = sps30_do_meas(state, data, 2);
 271                                 break;
 272                         case IIO_MOD_PM4:
 273                                 ret = sps30_do_meas(state, data, 3);
 274                                 break;
 275                         case IIO_MOD_PM10:
 276                                 ret = sps30_do_meas(state, data, 4);
 277                                 break;
 278                         }
 279                         mutex_unlock(&state->lock);
 280                         if (ret)
 281                                 return ret;
 282 
 283                         *val = data[chan->address] / 100;
 284                         *val2 = (data[chan->address] % 100) * 10000;
 285 
 286                         return IIO_VAL_INT_PLUS_MICRO;
 287                 default:
 288                         return -EINVAL;
 289                 }
 290         case IIO_CHAN_INFO_SCALE:
 291                 switch (chan->type) {
 292                 case IIO_MASSCONCENTRATION:
 293                         switch (chan->channel2) {
 294                         case IIO_MOD_PM1:
 295                         case IIO_MOD_PM2P5:
 296                         case IIO_MOD_PM4:
 297                         case IIO_MOD_PM10:
 298                                 *val = 0;
 299                                 *val2 = 10000;
 300 
 301                                 return IIO_VAL_INT_PLUS_MICRO;
 302                         default:
 303                                 return -EINVAL;
 304                         }
 305                 default:
 306                         return -EINVAL;
 307                 }
 308         }
 309 
 310         return -EINVAL;
 311 }
 312 
 313 static int sps30_do_cmd_reset(struct sps30_state *state)
 314 {
 315         int ret;
 316 
 317         ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
 318         msleep(300);
 319         /*
 320          * Power-on-reset causes sensor to produce some glitch on i2c bus and
 321          * some controllers end up in error state. Recover simply by placing
 322          * some data on the bus, for example STOP_MEAS command, which
 323          * is NOP in this case.
 324          */
 325         sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 326         state->state = RESET;
 327 
 328         return ret;
 329 }
 330 
 331 static ssize_t start_cleaning_store(struct device *dev,
 332                                     struct device_attribute *attr,
 333                                     const char *buf, size_t len)
 334 {
 335         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 336         struct sps30_state *state = iio_priv(indio_dev);
 337         int val, ret;
 338 
 339         if (kstrtoint(buf, 0, &val) || val != 1)
 340                 return -EINVAL;
 341 
 342         mutex_lock(&state->lock);
 343         ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0);
 344         mutex_unlock(&state->lock);
 345         if (ret)
 346                 return ret;
 347 
 348         return len;
 349 }
 350 
 351 static ssize_t cleaning_period_show(struct device *dev,
 352                                       struct device_attribute *attr,
 353                                       char *buf)
 354 {
 355         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 356         struct sps30_state *state = iio_priv(indio_dev);
 357         u8 tmp[4];
 358         int ret;
 359 
 360         mutex_lock(&state->lock);
 361         ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4);
 362         mutex_unlock(&state->lock);
 363         if (ret)
 364                 return ret;
 365 
 366         return sprintf(buf, "%d\n", get_unaligned_be32(tmp));
 367 }
 368 
 369 static ssize_t cleaning_period_store(struct device *dev,
 370                                        struct device_attribute *attr,
 371                                        const char *buf, size_t len)
 372 {
 373         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 374         struct sps30_state *state = iio_priv(indio_dev);
 375         int val, ret;
 376         u8 tmp[4];
 377 
 378         if (kstrtoint(buf, 0, &val))
 379                 return -EINVAL;
 380 
 381         if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
 382             (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
 383                 return -EINVAL;
 384 
 385         put_unaligned_be32(val, tmp);
 386 
 387         mutex_lock(&state->lock);
 388         ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0);
 389         if (ret) {
 390                 mutex_unlock(&state->lock);
 391                 return ret;
 392         }
 393 
 394         msleep(20);
 395 
 396         /*
 397          * sensor requires reset in order to return up to date self cleaning
 398          * period
 399          */
 400         ret = sps30_do_cmd_reset(state);
 401         if (ret)
 402                 dev_warn(dev,
 403                          "period changed but reads will return the old value\n");
 404 
 405         mutex_unlock(&state->lock);
 406 
 407         return len;
 408 }
 409 
 410 static ssize_t cleaning_period_available_show(struct device *dev,
 411                                               struct device_attribute *attr,
 412                                               char *buf)
 413 {
 414         return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n",
 415                         SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
 416                         SPS30_AUTO_CLEANING_PERIOD_MAX);
 417 }
 418 
 419 static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
 420 static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
 421 static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
 422 
 423 static struct attribute *sps30_attrs[] = {
 424         &iio_dev_attr_start_cleaning.dev_attr.attr,
 425         &iio_dev_attr_cleaning_period.dev_attr.attr,
 426         &iio_dev_attr_cleaning_period_available.dev_attr.attr,
 427         NULL
 428 };
 429 
 430 static const struct attribute_group sps30_attr_group = {
 431         .attrs = sps30_attrs,
 432 };
 433 
 434 static const struct iio_info sps30_info = {
 435         .attrs = &sps30_attr_group,
 436         .read_raw = sps30_read_raw,
 437 };
 438 
 439 #define SPS30_CHAN(_index, _mod) { \
 440         .type = IIO_MASSCONCENTRATION, \
 441         .modified = 1, \
 442         .channel2 = IIO_MOD_ ## _mod, \
 443         .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
 444         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
 445         .address = _mod, \
 446         .scan_index = _index, \
 447         .scan_type = { \
 448                 .sign = 'u', \
 449                 .realbits = 19, \
 450                 .storagebits = 32, \
 451                 .endianness = IIO_CPU, \
 452         }, \
 453 }
 454 
 455 static const struct iio_chan_spec sps30_channels[] = {
 456         SPS30_CHAN(0, PM1),
 457         SPS30_CHAN(1, PM2P5),
 458         SPS30_CHAN(2, PM4),
 459         SPS30_CHAN(3, PM10),
 460         IIO_CHAN_SOFT_TIMESTAMP(4),
 461 };
 462 
 463 static void sps30_stop_meas(void *data)
 464 {
 465         struct sps30_state *state = data;
 466 
 467         sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 468 }
 469 
 470 static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
 471 
 472 static int sps30_probe(struct i2c_client *client)
 473 {
 474         struct iio_dev *indio_dev;
 475         struct sps30_state *state;
 476         u8 buf[32];
 477         int ret;
 478 
 479         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
 480                 return -EOPNOTSUPP;
 481 
 482         indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
 483         if (!indio_dev)
 484                 return -ENOMEM;
 485 
 486         state = iio_priv(indio_dev);
 487         i2c_set_clientdata(client, indio_dev);
 488         state->client = client;
 489         state->state = RESET;
 490         indio_dev->dev.parent = &client->dev;
 491         indio_dev->info = &sps30_info;
 492         indio_dev->name = client->name;
 493         indio_dev->channels = sps30_channels;
 494         indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
 495         indio_dev->modes = INDIO_DIRECT_MODE;
 496         indio_dev->available_scan_masks = sps30_scan_masks;
 497 
 498         mutex_init(&state->lock);
 499         crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
 500 
 501         ret = sps30_do_cmd_reset(state);
 502         if (ret) {
 503                 dev_err(&client->dev, "failed to reset device\n");
 504                 return ret;
 505         }
 506 
 507         ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
 508         if (ret) {
 509                 dev_err(&client->dev, "failed to read serial number\n");
 510                 return ret;
 511         }
 512         /* returned serial number is already NUL terminated */
 513         dev_info(&client->dev, "serial number: %s\n", buf);
 514 
 515         ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
 516         if (ret)
 517                 return ret;
 518 
 519         ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
 520                                               sps30_trigger_handler, NULL);
 521         if (ret)
 522                 return ret;
 523 
 524         return devm_iio_device_register(&client->dev, indio_dev);
 525 }
 526 
 527 static const struct i2c_device_id sps30_id[] = {
 528         { "sps30" },
 529         { }
 530 };
 531 MODULE_DEVICE_TABLE(i2c, sps30_id);
 532 
 533 static const struct of_device_id sps30_of_match[] = {
 534         { .compatible = "sensirion,sps30" },
 535         { }
 536 };
 537 MODULE_DEVICE_TABLE(of, sps30_of_match);
 538 
 539 static struct i2c_driver sps30_driver = {
 540         .driver = {
 541                 .name = "sps30",
 542                 .of_match_table = sps30_of_match,
 543         },
 544         .id_table = sps30_id,
 545         .probe_new = sps30_probe,
 546 };
 547 module_i2c_driver(sps30_driver);
 548 
 549 MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
 550 MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
 551 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */