root/drivers/iio/accel/bmc150-accel-core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bmc150_accel_set_mode
  2. bmc150_accel_set_bw
  3. bmc150_accel_update_slope
  4. bmc150_accel_any_motion_setup
  5. bmc150_accel_get_bw
  6. bmc150_accel_get_startup_times
  7. bmc150_accel_set_power_state
  8. bmc150_accel_set_power_state
  9. bmc150_accel_interrupts_setup
  10. bmc150_accel_set_interrupt
  11. bmc150_accel_set_scale
  12. bmc150_accel_get_temp
  13. bmc150_accel_get_axis
  14. bmc150_accel_read_raw
  15. bmc150_accel_write_raw
  16. bmc150_accel_read_event
  17. bmc150_accel_write_event
  18. bmc150_accel_read_event_config
  19. bmc150_accel_write_event_config
  20. bmc150_accel_validate_trigger
  21. bmc150_accel_get_fifo_watermark
  22. bmc150_accel_get_fifo_state
  23. bmc150_accel_get_mount_matrix
  24. bmc150_accel_set_watermark
  25. bmc150_accel_fifo_transfer
  26. __bmc150_accel_fifo_flush
  27. bmc150_accel_fifo_flush
  28. bmc150_accel_trigger_handler
  29. bmc150_accel_trig_try_reen
  30. bmc150_accel_trigger_set_state
  31. bmc150_accel_handle_roc_event
  32. bmc150_accel_irq_thread_handler
  33. bmc150_accel_irq_handler
  34. bmc150_accel_unregister_triggers
  35. bmc150_accel_triggers_setup
  36. bmc150_accel_fifo_set_mode
  37. bmc150_accel_buffer_preenable
  38. bmc150_accel_buffer_postenable
  39. bmc150_accel_buffer_predisable
  40. bmc150_accel_buffer_postdisable
  41. bmc150_accel_chip_init
  42. bmc150_accel_core_probe
  43. bmc150_accel_core_remove
  44. bmc150_accel_suspend
  45. bmc150_accel_resume
  46. bmc150_accel_runtime_suspend
  47. bmc150_accel_runtime_resume

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
   4  *  - BMC150
   5  *  - BMI055
   6  *  - BMA255
   7  *  - BMA250E
   8  *  - BMA222E
   9  *  - BMA280
  10  *
  11  * Copyright (c) 2014, Intel Corporation.
  12  */
  13 
  14 #include <linux/module.h>
  15 #include <linux/i2c.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/delay.h>
  18 #include <linux/slab.h>
  19 #include <linux/acpi.h>
  20 #include <linux/pm.h>
  21 #include <linux/pm_runtime.h>
  22 #include <linux/iio/iio.h>
  23 #include <linux/iio/sysfs.h>
  24 #include <linux/iio/buffer.h>
  25 #include <linux/iio/events.h>
  26 #include <linux/iio/trigger.h>
  27 #include <linux/iio/trigger_consumer.h>
  28 #include <linux/iio/triggered_buffer.h>
  29 #include <linux/regmap.h>
  30 
  31 #include "bmc150-accel.h"
  32 
  33 #define BMC150_ACCEL_DRV_NAME                   "bmc150_accel"
  34 #define BMC150_ACCEL_IRQ_NAME                   "bmc150_accel_event"
  35 
  36 #define BMC150_ACCEL_REG_CHIP_ID                0x00
  37 
  38 #define BMC150_ACCEL_REG_INT_STATUS_2           0x0B
  39 #define BMC150_ACCEL_ANY_MOTION_MASK            0x07
  40 #define BMC150_ACCEL_ANY_MOTION_BIT_X           BIT(0)
  41 #define BMC150_ACCEL_ANY_MOTION_BIT_Y           BIT(1)
  42 #define BMC150_ACCEL_ANY_MOTION_BIT_Z           BIT(2)
  43 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN        BIT(3)
  44 
  45 #define BMC150_ACCEL_REG_PMU_LPW                0x11
  46 #define BMC150_ACCEL_PMU_MODE_MASK              0xE0
  47 #define BMC150_ACCEL_PMU_MODE_SHIFT             5
  48 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK     0x17
  49 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT    1
  50 
  51 #define BMC150_ACCEL_REG_PMU_RANGE              0x0F
  52 
  53 #define BMC150_ACCEL_DEF_RANGE_2G               0x03
  54 #define BMC150_ACCEL_DEF_RANGE_4G               0x05
  55 #define BMC150_ACCEL_DEF_RANGE_8G               0x08
  56 #define BMC150_ACCEL_DEF_RANGE_16G              0x0C
  57 
  58 /* Default BW: 125Hz */
  59 #define BMC150_ACCEL_REG_PMU_BW         0x10
  60 #define BMC150_ACCEL_DEF_BW                     125
  61 
  62 #define BMC150_ACCEL_REG_RESET                  0x14
  63 #define BMC150_ACCEL_RESET_VAL                  0xB6
  64 
  65 #define BMC150_ACCEL_REG_INT_MAP_0              0x19
  66 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE        BIT(2)
  67 
  68 #define BMC150_ACCEL_REG_INT_MAP_1              0x1A
  69 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA         BIT(0)
  70 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM          BIT(1)
  71 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL        BIT(2)
  72 
  73 #define BMC150_ACCEL_REG_INT_RST_LATCH          0x21
  74 #define BMC150_ACCEL_INT_MODE_LATCH_RESET       0x80
  75 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  76 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT     0x00
  77 
  78 #define BMC150_ACCEL_REG_INT_EN_0               0x16
  79 #define BMC150_ACCEL_INT_EN_BIT_SLP_X           BIT(0)
  80 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y           BIT(1)
  81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z           BIT(2)
  82 
  83 #define BMC150_ACCEL_REG_INT_EN_1               0x17
  84 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN         BIT(4)
  85 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN        BIT(5)
  86 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN          BIT(6)
  87 
  88 #define BMC150_ACCEL_REG_INT_OUT_CTRL           0x20
  89 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL      BIT(0)
  90 
  91 #define BMC150_ACCEL_REG_INT_5                  0x27
  92 #define BMC150_ACCEL_SLOPE_DUR_MASK             0x03
  93 
  94 #define BMC150_ACCEL_REG_INT_6                  0x28
  95 #define BMC150_ACCEL_SLOPE_THRES_MASK           0xFF
  96 
  97 /* Slope duration in terms of number of samples */
  98 #define BMC150_ACCEL_DEF_SLOPE_DURATION         1
  99 /* in terms of multiples of g's/LSB, based on range */
 100 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD        1
 101 
 102 #define BMC150_ACCEL_REG_XOUT_L         0x02
 103 
 104 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS        100
 105 
 106 /* Sleep Duration values */
 107 #define BMC150_ACCEL_SLEEP_500_MICRO            0x05
 108 #define BMC150_ACCEL_SLEEP_1_MS         0x06
 109 #define BMC150_ACCEL_SLEEP_2_MS         0x07
 110 #define BMC150_ACCEL_SLEEP_4_MS         0x08
 111 #define BMC150_ACCEL_SLEEP_6_MS         0x09
 112 #define BMC150_ACCEL_SLEEP_10_MS                0x0A
 113 #define BMC150_ACCEL_SLEEP_25_MS                0x0B
 114 #define BMC150_ACCEL_SLEEP_50_MS                0x0C
 115 #define BMC150_ACCEL_SLEEP_100_MS               0x0D
 116 #define BMC150_ACCEL_SLEEP_500_MS               0x0E
 117 #define BMC150_ACCEL_SLEEP_1_SEC                0x0F
 118 
 119 #define BMC150_ACCEL_REG_TEMP                   0x08
 120 #define BMC150_ACCEL_TEMP_CENTER_VAL            23
 121 
 122 #define BMC150_ACCEL_AXIS_TO_REG(axis)  (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
 123 #define BMC150_AUTO_SUSPEND_DELAY_MS            2000
 124 
 125 #define BMC150_ACCEL_REG_FIFO_STATUS            0x0E
 126 #define BMC150_ACCEL_REG_FIFO_CONFIG0           0x30
 127 #define BMC150_ACCEL_REG_FIFO_CONFIG1           0x3E
 128 #define BMC150_ACCEL_REG_FIFO_DATA              0x3F
 129 #define BMC150_ACCEL_FIFO_LENGTH                32
 130 
 131 enum bmc150_accel_axis {
 132         AXIS_X,
 133         AXIS_Y,
 134         AXIS_Z,
 135         AXIS_MAX,
 136 };
 137 
 138 enum bmc150_power_modes {
 139         BMC150_ACCEL_SLEEP_MODE_NORMAL,
 140         BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
 141         BMC150_ACCEL_SLEEP_MODE_LPM,
 142         BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
 143 };
 144 
 145 struct bmc150_scale_info {
 146         int scale;
 147         u8 reg_range;
 148 };
 149 
 150 struct bmc150_accel_chip_info {
 151         const char *name;
 152         u8 chip_id;
 153         const struct iio_chan_spec *channels;
 154         int num_channels;
 155         const struct bmc150_scale_info scale_table[4];
 156 };
 157 
 158 struct bmc150_accel_interrupt {
 159         const struct bmc150_accel_interrupt_info *info;
 160         atomic_t users;
 161 };
 162 
 163 struct bmc150_accel_trigger {
 164         struct bmc150_accel_data *data;
 165         struct iio_trigger *indio_trig;
 166         int (*setup)(struct bmc150_accel_trigger *t, bool state);
 167         int intr;
 168         bool enabled;
 169 };
 170 
 171 enum bmc150_accel_interrupt_id {
 172         BMC150_ACCEL_INT_DATA_READY,
 173         BMC150_ACCEL_INT_ANY_MOTION,
 174         BMC150_ACCEL_INT_WATERMARK,
 175         BMC150_ACCEL_INTERRUPTS,
 176 };
 177 
 178 enum bmc150_accel_trigger_id {
 179         BMC150_ACCEL_TRIGGER_DATA_READY,
 180         BMC150_ACCEL_TRIGGER_ANY_MOTION,
 181         BMC150_ACCEL_TRIGGERS,
 182 };
 183 
 184 struct bmc150_accel_data {
 185         struct regmap *regmap;
 186         int irq;
 187         struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
 188         struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
 189         struct mutex mutex;
 190         u8 fifo_mode, watermark;
 191         s16 buffer[8];
 192         u8 bw_bits;
 193         u32 slope_dur;
 194         u32 slope_thres;
 195         u32 range;
 196         int ev_enable_state;
 197         int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
 198         const struct bmc150_accel_chip_info *chip_info;
 199         struct iio_mount_matrix orientation;
 200 };
 201 
 202 static const struct {
 203         int val;
 204         int val2;
 205         u8 bw_bits;
 206 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
 207                                      {31, 260000, 0x09},
 208                                      {62, 500000, 0x0A},
 209                                      {125, 0, 0x0B},
 210                                      {250, 0, 0x0C},
 211                                      {500, 0, 0x0D},
 212                                      {1000, 0, 0x0E},
 213                                      {2000, 0, 0x0F} };
 214 
 215 static const struct {
 216         int bw_bits;
 217         int msec;
 218 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
 219                                      {0x09, 32},
 220                                      {0x0A, 16},
 221                                      {0x0B, 8},
 222                                      {0x0C, 4},
 223                                      {0x0D, 2},
 224                                      {0x0E, 1},
 225                                      {0x0F, 1} };
 226 
 227 static const struct {
 228         int sleep_dur;
 229         u8 reg_value;
 230 } bmc150_accel_sleep_value_table[] = { {0, 0},
 231                                        {500, BMC150_ACCEL_SLEEP_500_MICRO},
 232                                        {1000, BMC150_ACCEL_SLEEP_1_MS},
 233                                        {2000, BMC150_ACCEL_SLEEP_2_MS},
 234                                        {4000, BMC150_ACCEL_SLEEP_4_MS},
 235                                        {6000, BMC150_ACCEL_SLEEP_6_MS},
 236                                        {10000, BMC150_ACCEL_SLEEP_10_MS},
 237                                        {25000, BMC150_ACCEL_SLEEP_25_MS},
 238                                        {50000, BMC150_ACCEL_SLEEP_50_MS},
 239                                        {100000, BMC150_ACCEL_SLEEP_100_MS},
 240                                        {500000, BMC150_ACCEL_SLEEP_500_MS},
 241                                        {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
 242 
 243 const struct regmap_config bmc150_regmap_conf = {
 244         .reg_bits = 8,
 245         .val_bits = 8,
 246         .max_register = 0x3f,
 247 };
 248 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
 249 
 250 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
 251                                  enum bmc150_power_modes mode,
 252                                  int dur_us)
 253 {
 254         struct device *dev = regmap_get_device(data->regmap);
 255         int i;
 256         int ret;
 257         u8 lpw_bits;
 258         int dur_val = -1;
 259 
 260         if (dur_us > 0) {
 261                 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
 262                                                                          ++i) {
 263                         if (bmc150_accel_sleep_value_table[i].sleep_dur ==
 264                                                                         dur_us)
 265                                 dur_val =
 266                                 bmc150_accel_sleep_value_table[i].reg_value;
 267                 }
 268         } else {
 269                 dur_val = 0;
 270         }
 271 
 272         if (dur_val < 0)
 273                 return -EINVAL;
 274 
 275         lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
 276         lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
 277 
 278         dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
 279 
 280         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
 281         if (ret < 0) {
 282                 dev_err(dev, "Error writing reg_pmu_lpw\n");
 283                 return ret;
 284         }
 285 
 286         return 0;
 287 }
 288 
 289 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
 290                                int val2)
 291 {
 292         int i;
 293         int ret;
 294 
 295         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 296                 if (bmc150_accel_samp_freq_table[i].val == val &&
 297                     bmc150_accel_samp_freq_table[i].val2 == val2) {
 298                         ret = regmap_write(data->regmap,
 299                                 BMC150_ACCEL_REG_PMU_BW,
 300                                 bmc150_accel_samp_freq_table[i].bw_bits);
 301                         if (ret < 0)
 302                                 return ret;
 303 
 304                         data->bw_bits =
 305                                 bmc150_accel_samp_freq_table[i].bw_bits;
 306                         return 0;
 307                 }
 308         }
 309 
 310         return -EINVAL;
 311 }
 312 
 313 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
 314 {
 315         struct device *dev = regmap_get_device(data->regmap);
 316         int ret;
 317 
 318         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
 319                                         data->slope_thres);
 320         if (ret < 0) {
 321                 dev_err(dev, "Error writing reg_int_6\n");
 322                 return ret;
 323         }
 324 
 325         ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
 326                                  BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
 327         if (ret < 0) {
 328                 dev_err(dev, "Error updating reg_int_5\n");
 329                 return ret;
 330         }
 331 
 332         dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
 333 
 334         return ret;
 335 }
 336 
 337 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
 338                                          bool state)
 339 {
 340         if (state)
 341                 return bmc150_accel_update_slope(t->data);
 342 
 343         return 0;
 344 }
 345 
 346 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
 347                                int *val2)
 348 {
 349         int i;
 350 
 351         for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
 352                 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
 353                         *val = bmc150_accel_samp_freq_table[i].val;
 354                         *val2 = bmc150_accel_samp_freq_table[i].val2;
 355                         return IIO_VAL_INT_PLUS_MICRO;
 356                 }
 357         }
 358 
 359         return -EINVAL;
 360 }
 361 
 362 #ifdef CONFIG_PM
 363 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
 364 {
 365         int i;
 366 
 367         for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
 368                 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
 369                         return bmc150_accel_sample_upd_time[i].msec;
 370         }
 371 
 372         return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
 373 }
 374 
 375 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 376 {
 377         struct device *dev = regmap_get_device(data->regmap);
 378         int ret;
 379 
 380         if (on) {
 381                 ret = pm_runtime_get_sync(dev);
 382         } else {
 383                 pm_runtime_mark_last_busy(dev);
 384                 ret = pm_runtime_put_autosuspend(dev);
 385         }
 386 
 387         if (ret < 0) {
 388                 dev_err(dev,
 389                         "Failed: %s for %d\n", __func__, on);
 390                 if (on)
 391                         pm_runtime_put_noidle(dev);
 392 
 393                 return ret;
 394         }
 395 
 396         return 0;
 397 }
 398 #else
 399 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
 400 {
 401         return 0;
 402 }
 403 #endif
 404 
 405 static const struct bmc150_accel_interrupt_info {
 406         u8 map_reg;
 407         u8 map_bitmask;
 408         u8 en_reg;
 409         u8 en_bitmask;
 410 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
 411         { /* data ready interrupt */
 412                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 413                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
 414                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 415                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
 416         },
 417         {  /* motion interrupt */
 418                 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
 419                 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
 420                 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
 421                 .en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
 422                         BMC150_ACCEL_INT_EN_BIT_SLP_Y |
 423                         BMC150_ACCEL_INT_EN_BIT_SLP_Z
 424         },
 425         { /* fifo watermark interrupt */
 426                 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
 427                 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
 428                 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
 429                 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
 430         },
 431 };
 432 
 433 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
 434                                           struct bmc150_accel_data *data)
 435 {
 436         int i;
 437 
 438         for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
 439                 data->interrupts[i].info = &bmc150_accel_interrupts[i];
 440 }
 441 
 442 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
 443                                       bool state)
 444 {
 445         struct device *dev = regmap_get_device(data->regmap);
 446         struct bmc150_accel_interrupt *intr = &data->interrupts[i];
 447         const struct bmc150_accel_interrupt_info *info = intr->info;
 448         int ret;
 449 
 450         if (state) {
 451                 if (atomic_inc_return(&intr->users) > 1)
 452                         return 0;
 453         } else {
 454                 if (atomic_dec_return(&intr->users) > 0)
 455                         return 0;
 456         }
 457 
 458         /*
 459          * We will expect the enable and disable to do operation in reverse
 460          * order. This will happen here anyway, as our resume operation uses
 461          * sync mode runtime pm calls. The suspend operation will be delayed
 462          * by autosuspend delay.
 463          * So the disable operation will still happen in reverse order of
 464          * enable operation. When runtime pm is disabled the mode is always on,
 465          * so sequence doesn't matter.
 466          */
 467         ret = bmc150_accel_set_power_state(data, state);
 468         if (ret < 0)
 469                 return ret;
 470 
 471         /* map the interrupt to the appropriate pins */
 472         ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
 473                                  (state ? info->map_bitmask : 0));
 474         if (ret < 0) {
 475                 dev_err(dev, "Error updating reg_int_map\n");
 476                 goto out_fix_power_state;
 477         }
 478 
 479         /* enable/disable the interrupt */
 480         ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
 481                                  (state ? info->en_bitmask : 0));
 482         if (ret < 0) {
 483                 dev_err(dev, "Error updating reg_int_en\n");
 484                 goto out_fix_power_state;
 485         }
 486 
 487         return 0;
 488 
 489 out_fix_power_state:
 490         bmc150_accel_set_power_state(data, false);
 491         return ret;
 492 }
 493 
 494 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
 495 {
 496         struct device *dev = regmap_get_device(data->regmap);
 497         int ret, i;
 498 
 499         for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
 500                 if (data->chip_info->scale_table[i].scale == val) {
 501                         ret = regmap_write(data->regmap,
 502                                      BMC150_ACCEL_REG_PMU_RANGE,
 503                                      data->chip_info->scale_table[i].reg_range);
 504                         if (ret < 0) {
 505                                 dev_err(dev, "Error writing pmu_range\n");
 506                                 return ret;
 507                         }
 508 
 509                         data->range = data->chip_info->scale_table[i].reg_range;
 510                         return 0;
 511                 }
 512         }
 513 
 514         return -EINVAL;
 515 }
 516 
 517 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
 518 {
 519         struct device *dev = regmap_get_device(data->regmap);
 520         int ret;
 521         unsigned int value;
 522 
 523         mutex_lock(&data->mutex);
 524 
 525         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
 526         if (ret < 0) {
 527                 dev_err(dev, "Error reading reg_temp\n");
 528                 mutex_unlock(&data->mutex);
 529                 return ret;
 530         }
 531         *val = sign_extend32(value, 7);
 532 
 533         mutex_unlock(&data->mutex);
 534 
 535         return IIO_VAL_INT;
 536 }
 537 
 538 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
 539                                  struct iio_chan_spec const *chan,
 540                                  int *val)
 541 {
 542         struct device *dev = regmap_get_device(data->regmap);
 543         int ret;
 544         int axis = chan->scan_index;
 545         __le16 raw_val;
 546 
 547         mutex_lock(&data->mutex);
 548         ret = bmc150_accel_set_power_state(data, true);
 549         if (ret < 0) {
 550                 mutex_unlock(&data->mutex);
 551                 return ret;
 552         }
 553 
 554         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
 555                                &raw_val, sizeof(raw_val));
 556         if (ret < 0) {
 557                 dev_err(dev, "Error reading axis %d\n", axis);
 558                 bmc150_accel_set_power_state(data, false);
 559                 mutex_unlock(&data->mutex);
 560                 return ret;
 561         }
 562         *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
 563                              chan->scan_type.realbits - 1);
 564         ret = bmc150_accel_set_power_state(data, false);
 565         mutex_unlock(&data->mutex);
 566         if (ret < 0)
 567                 return ret;
 568 
 569         return IIO_VAL_INT;
 570 }
 571 
 572 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
 573                                  struct iio_chan_spec const *chan,
 574                                  int *val, int *val2, long mask)
 575 {
 576         struct bmc150_accel_data *data = iio_priv(indio_dev);
 577         int ret;
 578 
 579         switch (mask) {
 580         case IIO_CHAN_INFO_RAW:
 581                 switch (chan->type) {
 582                 case IIO_TEMP:
 583                         return bmc150_accel_get_temp(data, val);
 584                 case IIO_ACCEL:
 585                         if (iio_buffer_enabled(indio_dev))
 586                                 return -EBUSY;
 587                         else
 588                                 return bmc150_accel_get_axis(data, chan, val);
 589                 default:
 590                         return -EINVAL;
 591                 }
 592         case IIO_CHAN_INFO_OFFSET:
 593                 if (chan->type == IIO_TEMP) {
 594                         *val = BMC150_ACCEL_TEMP_CENTER_VAL;
 595                         return IIO_VAL_INT;
 596                 } else {
 597                         return -EINVAL;
 598                 }
 599         case IIO_CHAN_INFO_SCALE:
 600                 *val = 0;
 601                 switch (chan->type) {
 602                 case IIO_TEMP:
 603                         *val2 = 500000;
 604                         return IIO_VAL_INT_PLUS_MICRO;
 605                 case IIO_ACCEL:
 606                 {
 607                         int i;
 608                         const struct bmc150_scale_info *si;
 609                         int st_size = ARRAY_SIZE(data->chip_info->scale_table);
 610 
 611                         for (i = 0; i < st_size; ++i) {
 612                                 si = &data->chip_info->scale_table[i];
 613                                 if (si->reg_range == data->range) {
 614                                         *val2 = si->scale;
 615                                         return IIO_VAL_INT_PLUS_MICRO;
 616                                 }
 617                         }
 618                         return -EINVAL;
 619                 }
 620                 default:
 621                         return -EINVAL;
 622                 }
 623         case IIO_CHAN_INFO_SAMP_FREQ:
 624                 mutex_lock(&data->mutex);
 625                 ret = bmc150_accel_get_bw(data, val, val2);
 626                 mutex_unlock(&data->mutex);
 627                 return ret;
 628         default:
 629                 return -EINVAL;
 630         }
 631 }
 632 
 633 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
 634                                   struct iio_chan_spec const *chan,
 635                                   int val, int val2, long mask)
 636 {
 637         struct bmc150_accel_data *data = iio_priv(indio_dev);
 638         int ret;
 639 
 640         switch (mask) {
 641         case IIO_CHAN_INFO_SAMP_FREQ:
 642                 mutex_lock(&data->mutex);
 643                 ret = bmc150_accel_set_bw(data, val, val2);
 644                 mutex_unlock(&data->mutex);
 645                 break;
 646         case IIO_CHAN_INFO_SCALE:
 647                 if (val)
 648                         return -EINVAL;
 649 
 650                 mutex_lock(&data->mutex);
 651                 ret = bmc150_accel_set_scale(data, val2);
 652                 mutex_unlock(&data->mutex);
 653                 return ret;
 654         default:
 655                 ret = -EINVAL;
 656         }
 657 
 658         return ret;
 659 }
 660 
 661 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
 662                                    const struct iio_chan_spec *chan,
 663                                    enum iio_event_type type,
 664                                    enum iio_event_direction dir,
 665                                    enum iio_event_info info,
 666                                    int *val, int *val2)
 667 {
 668         struct bmc150_accel_data *data = iio_priv(indio_dev);
 669 
 670         *val2 = 0;
 671         switch (info) {
 672         case IIO_EV_INFO_VALUE:
 673                 *val = data->slope_thres;
 674                 break;
 675         case IIO_EV_INFO_PERIOD:
 676                 *val = data->slope_dur;
 677                 break;
 678         default:
 679                 return -EINVAL;
 680         }
 681 
 682         return IIO_VAL_INT;
 683 }
 684 
 685 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
 686                                     const struct iio_chan_spec *chan,
 687                                     enum iio_event_type type,
 688                                     enum iio_event_direction dir,
 689                                     enum iio_event_info info,
 690                                     int val, int val2)
 691 {
 692         struct bmc150_accel_data *data = iio_priv(indio_dev);
 693 
 694         if (data->ev_enable_state)
 695                 return -EBUSY;
 696 
 697         switch (info) {
 698         case IIO_EV_INFO_VALUE:
 699                 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
 700                 break;
 701         case IIO_EV_INFO_PERIOD:
 702                 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
 703                 break;
 704         default:
 705                 return -EINVAL;
 706         }
 707 
 708         return 0;
 709 }
 710 
 711 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
 712                                           const struct iio_chan_spec *chan,
 713                                           enum iio_event_type type,
 714                                           enum iio_event_direction dir)
 715 {
 716         struct bmc150_accel_data *data = iio_priv(indio_dev);
 717 
 718         return data->ev_enable_state;
 719 }
 720 
 721 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
 722                                            const struct iio_chan_spec *chan,
 723                                            enum iio_event_type type,
 724                                            enum iio_event_direction dir,
 725                                            int state)
 726 {
 727         struct bmc150_accel_data *data = iio_priv(indio_dev);
 728         int ret;
 729 
 730         if (state == data->ev_enable_state)
 731                 return 0;
 732 
 733         mutex_lock(&data->mutex);
 734 
 735         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
 736                                          state);
 737         if (ret < 0) {
 738                 mutex_unlock(&data->mutex);
 739                 return ret;
 740         }
 741 
 742         data->ev_enable_state = state;
 743         mutex_unlock(&data->mutex);
 744 
 745         return 0;
 746 }
 747 
 748 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
 749                                          struct iio_trigger *trig)
 750 {
 751         struct bmc150_accel_data *data = iio_priv(indio_dev);
 752         int i;
 753 
 754         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
 755                 if (data->triggers[i].indio_trig == trig)
 756                         return 0;
 757         }
 758 
 759         return -EINVAL;
 760 }
 761 
 762 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
 763                                                struct device_attribute *attr,
 764                                                char *buf)
 765 {
 766         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 767         struct bmc150_accel_data *data = iio_priv(indio_dev);
 768         int wm;
 769 
 770         mutex_lock(&data->mutex);
 771         wm = data->watermark;
 772         mutex_unlock(&data->mutex);
 773 
 774         return sprintf(buf, "%d\n", wm);
 775 }
 776 
 777 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
 778                                            struct device_attribute *attr,
 779                                            char *buf)
 780 {
 781         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 782         struct bmc150_accel_data *data = iio_priv(indio_dev);
 783         bool state;
 784 
 785         mutex_lock(&data->mutex);
 786         state = data->fifo_mode;
 787         mutex_unlock(&data->mutex);
 788 
 789         return sprintf(buf, "%d\n", state);
 790 }
 791 
 792 static const struct iio_mount_matrix *
 793 bmc150_accel_get_mount_matrix(const struct iio_dev *indio_dev,
 794                                 const struct iio_chan_spec *chan)
 795 {
 796         struct bmc150_accel_data *data = iio_priv(indio_dev);
 797 
 798         return &data->orientation;
 799 }
 800 
 801 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info[] = {
 802         IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_accel_get_mount_matrix),
 803         { }
 804 };
 805 
 806 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
 807 static IIO_CONST_ATTR(hwfifo_watermark_max,
 808                       __stringify(BMC150_ACCEL_FIFO_LENGTH));
 809 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
 810                        bmc150_accel_get_fifo_state, NULL, 0);
 811 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
 812                        bmc150_accel_get_fifo_watermark, NULL, 0);
 813 
 814 static const struct attribute *bmc150_accel_fifo_attributes[] = {
 815         &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
 816         &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
 817         &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
 818         &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
 819         NULL,
 820 };
 821 
 822 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
 823 {
 824         struct bmc150_accel_data *data = iio_priv(indio_dev);
 825 
 826         if (val > BMC150_ACCEL_FIFO_LENGTH)
 827                 val = BMC150_ACCEL_FIFO_LENGTH;
 828 
 829         mutex_lock(&data->mutex);
 830         data->watermark = val;
 831         mutex_unlock(&data->mutex);
 832 
 833         return 0;
 834 }
 835 
 836 /*
 837  * We must read at least one full frame in one burst, otherwise the rest of the
 838  * frame data is discarded.
 839  */
 840 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
 841                                       char *buffer, int samples)
 842 {
 843         struct device *dev = regmap_get_device(data->regmap);
 844         int sample_length = 3 * 2;
 845         int ret;
 846         int total_length = samples * sample_length;
 847 
 848         ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
 849                               buffer, total_length);
 850         if (ret)
 851                 dev_err(dev,
 852                         "Error transferring data from fifo: %d\n", ret);
 853 
 854         return ret;
 855 }
 856 
 857 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
 858                                      unsigned samples, bool irq)
 859 {
 860         struct bmc150_accel_data *data = iio_priv(indio_dev);
 861         struct device *dev = regmap_get_device(data->regmap);
 862         int ret, i;
 863         u8 count;
 864         u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
 865         int64_t tstamp;
 866         uint64_t sample_period;
 867         unsigned int val;
 868 
 869         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
 870         if (ret < 0) {
 871                 dev_err(dev, "Error reading reg_fifo_status\n");
 872                 return ret;
 873         }
 874 
 875         count = val & 0x7F;
 876 
 877         if (!count)
 878                 return 0;
 879 
 880         /*
 881          * If we getting called from IRQ handler we know the stored timestamp is
 882          * fairly accurate for the last stored sample. Otherwise, if we are
 883          * called as a result of a read operation from userspace and hence
 884          * before the watermark interrupt was triggered, take a timestamp
 885          * now. We can fall anywhere in between two samples so the error in this
 886          * case is at most one sample period.
 887          */
 888         if (!irq) {
 889                 data->old_timestamp = data->timestamp;
 890                 data->timestamp = iio_get_time_ns(indio_dev);
 891         }
 892 
 893         /*
 894          * Approximate timestamps for each of the sample based on the sampling
 895          * frequency, timestamp for last sample and number of samples.
 896          *
 897          * Note that we can't use the current bandwidth settings to compute the
 898          * sample period because the sample rate varies with the device
 899          * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
 900          * small variation adds when we store a large number of samples and
 901          * creates significant jitter between the last and first samples in
 902          * different batches (e.g. 32ms vs 21ms).
 903          *
 904          * To avoid this issue we compute the actual sample period ourselves
 905          * based on the timestamp delta between the last two flush operations.
 906          */
 907         sample_period = (data->timestamp - data->old_timestamp);
 908         do_div(sample_period, count);
 909         tstamp = data->timestamp - (count - 1) * sample_period;
 910 
 911         if (samples && count > samples)
 912                 count = samples;
 913 
 914         ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
 915         if (ret)
 916                 return ret;
 917 
 918         /*
 919          * Ideally we want the IIO core to handle the demux when running in fifo
 920          * mode but not when running in triggered buffer mode. Unfortunately
 921          * this does not seem to be possible, so stick with driver demux for
 922          * now.
 923          */
 924         for (i = 0; i < count; i++) {
 925                 u16 sample[8];
 926                 int j, bit;
 927 
 928                 j = 0;
 929                 for_each_set_bit(bit, indio_dev->active_scan_mask,
 930                                  indio_dev->masklength)
 931                         memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
 932 
 933                 iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
 934 
 935                 tstamp += sample_period;
 936         }
 937 
 938         return count;
 939 }
 940 
 941 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
 942 {
 943         struct bmc150_accel_data *data = iio_priv(indio_dev);
 944         int ret;
 945 
 946         mutex_lock(&data->mutex);
 947         ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
 948         mutex_unlock(&data->mutex);
 949 
 950         return ret;
 951 }
 952 
 953 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
 954                 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
 955 
 956 static struct attribute *bmc150_accel_attributes[] = {
 957         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
 958         NULL,
 959 };
 960 
 961 static const struct attribute_group bmc150_accel_attrs_group = {
 962         .attrs = bmc150_accel_attributes,
 963 };
 964 
 965 static const struct iio_event_spec bmc150_accel_event = {
 966                 .type = IIO_EV_TYPE_ROC,
 967                 .dir = IIO_EV_DIR_EITHER,
 968                 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
 969                                  BIT(IIO_EV_INFO_ENABLE) |
 970                                  BIT(IIO_EV_INFO_PERIOD)
 971 };
 972 
 973 #define BMC150_ACCEL_CHANNEL(_axis, bits) {                             \
 974         .type = IIO_ACCEL,                                              \
 975         .modified = 1,                                                  \
 976         .channel2 = IIO_MOD_##_axis,                                    \
 977         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),                   \
 978         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |          \
 979                                 BIT(IIO_CHAN_INFO_SAMP_FREQ),           \
 980         .scan_index = AXIS_##_axis,                                     \
 981         .scan_type = {                                                  \
 982                 .sign = 's',                                            \
 983                 .realbits = (bits),                                     \
 984                 .storagebits = 16,                                      \
 985                 .shift = 16 - (bits),                                   \
 986                 .endianness = IIO_LE,                                   \
 987         },                                                              \
 988         .ext_info = bmc150_accel_ext_info,                              \
 989         .event_spec = &bmc150_accel_event,                              \
 990         .num_event_specs = 1                                            \
 991 }
 992 
 993 #define BMC150_ACCEL_CHANNELS(bits) {                                   \
 994         {                                                               \
 995                 .type = IIO_TEMP,                                       \
 996                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |          \
 997                                       BIT(IIO_CHAN_INFO_SCALE) |        \
 998                                       BIT(IIO_CHAN_INFO_OFFSET),        \
 999                 .scan_index = -1,                                       \
1000         },                                                              \
1001         BMC150_ACCEL_CHANNEL(X, bits),                                  \
1002         BMC150_ACCEL_CHANNEL(Y, bits),                                  \
1003         BMC150_ACCEL_CHANNEL(Z, bits),                                  \
1004         IIO_CHAN_SOFT_TIMESTAMP(3),                                     \
1005 }
1006 
1007 static const struct iio_chan_spec bma222e_accel_channels[] =
1008         BMC150_ACCEL_CHANNELS(8);
1009 static const struct iio_chan_spec bma250e_accel_channels[] =
1010         BMC150_ACCEL_CHANNELS(10);
1011 static const struct iio_chan_spec bmc150_accel_channels[] =
1012         BMC150_ACCEL_CHANNELS(12);
1013 static const struct iio_chan_spec bma280_accel_channels[] =
1014         BMC150_ACCEL_CHANNELS(14);
1015 
1016 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1017         [bmc150] = {
1018                 .name = "BMC150A",
1019                 .chip_id = 0xFA,
1020                 .channels = bmc150_accel_channels,
1021                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1022                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1023                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1024                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1025                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1026         },
1027         [bmi055] = {
1028                 .name = "BMI055A",
1029                 .chip_id = 0xFA,
1030                 .channels = bmc150_accel_channels,
1031                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1032                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1033                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1034                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1035                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1036         },
1037         [bma255] = {
1038                 .name = "BMA0255",
1039                 .chip_id = 0xFA,
1040                 .channels = bmc150_accel_channels,
1041                 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1042                 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1043                                  {19122, BMC150_ACCEL_DEF_RANGE_4G},
1044                                  {38344, BMC150_ACCEL_DEF_RANGE_8G},
1045                                  {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1046         },
1047         [bma250e] = {
1048                 .name = "BMA250E",
1049                 .chip_id = 0xF9,
1050                 .channels = bma250e_accel_channels,
1051                 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1052                 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1053                                  {76590, BMC150_ACCEL_DEF_RANGE_4G},
1054                                  {153277, BMC150_ACCEL_DEF_RANGE_8G},
1055                                  {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1056         },
1057         [bma222e] = {
1058                 .name = "BMA222E",
1059                 .chip_id = 0xF8,
1060                 .channels = bma222e_accel_channels,
1061                 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1062                 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1063                                  {306457, BMC150_ACCEL_DEF_RANGE_4G},
1064                                  {612915, BMC150_ACCEL_DEF_RANGE_8G},
1065                                  {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1066         },
1067         [bma280] = {
1068                 .name = "BMA0280",
1069                 .chip_id = 0xFB,
1070                 .channels = bma280_accel_channels,
1071                 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1072                 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1073                                  {4785, BMC150_ACCEL_DEF_RANGE_4G},
1074                                  {9581, BMC150_ACCEL_DEF_RANGE_8G},
1075                                  {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1076         },
1077 };
1078 
1079 static const struct iio_info bmc150_accel_info = {
1080         .attrs                  = &bmc150_accel_attrs_group,
1081         .read_raw               = bmc150_accel_read_raw,
1082         .write_raw              = bmc150_accel_write_raw,
1083         .read_event_value       = bmc150_accel_read_event,
1084         .write_event_value      = bmc150_accel_write_event,
1085         .write_event_config     = bmc150_accel_write_event_config,
1086         .read_event_config      = bmc150_accel_read_event_config,
1087 };
1088 
1089 static const struct iio_info bmc150_accel_info_fifo = {
1090         .attrs                  = &bmc150_accel_attrs_group,
1091         .read_raw               = bmc150_accel_read_raw,
1092         .write_raw              = bmc150_accel_write_raw,
1093         .read_event_value       = bmc150_accel_read_event,
1094         .write_event_value      = bmc150_accel_write_event,
1095         .write_event_config     = bmc150_accel_write_event_config,
1096         .read_event_config      = bmc150_accel_read_event_config,
1097         .validate_trigger       = bmc150_accel_validate_trigger,
1098         .hwfifo_set_watermark   = bmc150_accel_set_watermark,
1099         .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1100 };
1101 
1102 static const unsigned long bmc150_accel_scan_masks[] = {
1103                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1104                                         0};
1105 
1106 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1107 {
1108         struct iio_poll_func *pf = p;
1109         struct iio_dev *indio_dev = pf->indio_dev;
1110         struct bmc150_accel_data *data = iio_priv(indio_dev);
1111         int ret;
1112 
1113         mutex_lock(&data->mutex);
1114         ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1115                                data->buffer, AXIS_MAX * 2);
1116         mutex_unlock(&data->mutex);
1117         if (ret < 0)
1118                 goto err_read;
1119 
1120         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1121                                            pf->timestamp);
1122 err_read:
1123         iio_trigger_notify_done(indio_dev->trig);
1124 
1125         return IRQ_HANDLED;
1126 }
1127 
1128 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1129 {
1130         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1131         struct bmc150_accel_data *data = t->data;
1132         struct device *dev = regmap_get_device(data->regmap);
1133         int ret;
1134 
1135         /* new data interrupts don't need ack */
1136         if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1137                 return 0;
1138 
1139         mutex_lock(&data->mutex);
1140         /* clear any latched interrupt */
1141         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1142                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1143                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1144         mutex_unlock(&data->mutex);
1145         if (ret < 0) {
1146                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1147                 return ret;
1148         }
1149 
1150         return 0;
1151 }
1152 
1153 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1154                                           bool state)
1155 {
1156         struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1157         struct bmc150_accel_data *data = t->data;
1158         int ret;
1159 
1160         mutex_lock(&data->mutex);
1161 
1162         if (t->enabled == state) {
1163                 mutex_unlock(&data->mutex);
1164                 return 0;
1165         }
1166 
1167         if (t->setup) {
1168                 ret = t->setup(t, state);
1169                 if (ret < 0) {
1170                         mutex_unlock(&data->mutex);
1171                         return ret;
1172                 }
1173         }
1174 
1175         ret = bmc150_accel_set_interrupt(data, t->intr, state);
1176         if (ret < 0) {
1177                 mutex_unlock(&data->mutex);
1178                 return ret;
1179         }
1180 
1181         t->enabled = state;
1182 
1183         mutex_unlock(&data->mutex);
1184 
1185         return ret;
1186 }
1187 
1188 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1189         .set_trigger_state = bmc150_accel_trigger_set_state,
1190         .try_reenable = bmc150_accel_trig_try_reen,
1191 };
1192 
1193 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1194 {
1195         struct bmc150_accel_data *data = iio_priv(indio_dev);
1196         struct device *dev = regmap_get_device(data->regmap);
1197         int dir;
1198         int ret;
1199         unsigned int val;
1200 
1201         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1202         if (ret < 0) {
1203                 dev_err(dev, "Error reading reg_int_status_2\n");
1204                 return ret;
1205         }
1206 
1207         if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1208                 dir = IIO_EV_DIR_FALLING;
1209         else
1210                 dir = IIO_EV_DIR_RISING;
1211 
1212         if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1213                 iio_push_event(indio_dev,
1214                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1215                                                   0,
1216                                                   IIO_MOD_X,
1217                                                   IIO_EV_TYPE_ROC,
1218                                                   dir),
1219                                data->timestamp);
1220 
1221         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1222                 iio_push_event(indio_dev,
1223                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1224                                                   0,
1225                                                   IIO_MOD_Y,
1226                                                   IIO_EV_TYPE_ROC,
1227                                                   dir),
1228                                data->timestamp);
1229 
1230         if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1231                 iio_push_event(indio_dev,
1232                                IIO_MOD_EVENT_CODE(IIO_ACCEL,
1233                                                   0,
1234                                                   IIO_MOD_Z,
1235                                                   IIO_EV_TYPE_ROC,
1236                                                   dir),
1237                                data->timestamp);
1238 
1239         return ret;
1240 }
1241 
1242 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1243 {
1244         struct iio_dev *indio_dev = private;
1245         struct bmc150_accel_data *data = iio_priv(indio_dev);
1246         struct device *dev = regmap_get_device(data->regmap);
1247         bool ack = false;
1248         int ret;
1249 
1250         mutex_lock(&data->mutex);
1251 
1252         if (data->fifo_mode) {
1253                 ret = __bmc150_accel_fifo_flush(indio_dev,
1254                                                 BMC150_ACCEL_FIFO_LENGTH, true);
1255                 if (ret > 0)
1256                         ack = true;
1257         }
1258 
1259         if (data->ev_enable_state) {
1260                 ret = bmc150_accel_handle_roc_event(indio_dev);
1261                 if (ret > 0)
1262                         ack = true;
1263         }
1264 
1265         if (ack) {
1266                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1267                                    BMC150_ACCEL_INT_MODE_LATCH_INT |
1268                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1269                 if (ret)
1270                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1271 
1272                 ret = IRQ_HANDLED;
1273         } else {
1274                 ret = IRQ_NONE;
1275         }
1276 
1277         mutex_unlock(&data->mutex);
1278 
1279         return ret;
1280 }
1281 
1282 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1283 {
1284         struct iio_dev *indio_dev = private;
1285         struct bmc150_accel_data *data = iio_priv(indio_dev);
1286         bool ack = false;
1287         int i;
1288 
1289         data->old_timestamp = data->timestamp;
1290         data->timestamp = iio_get_time_ns(indio_dev);
1291 
1292         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1293                 if (data->triggers[i].enabled) {
1294                         iio_trigger_poll(data->triggers[i].indio_trig);
1295                         ack = true;
1296                         break;
1297                 }
1298         }
1299 
1300         if (data->ev_enable_state || data->fifo_mode)
1301                 return IRQ_WAKE_THREAD;
1302 
1303         if (ack)
1304                 return IRQ_HANDLED;
1305 
1306         return IRQ_NONE;
1307 }
1308 
1309 static const struct {
1310         int intr;
1311         const char *name;
1312         int (*setup)(struct bmc150_accel_trigger *t, bool state);
1313 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1314         {
1315                 .intr = 0,
1316                 .name = "%s-dev%d",
1317         },
1318         {
1319                 .intr = 1,
1320                 .name = "%s-any-motion-dev%d",
1321                 .setup = bmc150_accel_any_motion_setup,
1322         },
1323 };
1324 
1325 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1326                                              int from)
1327 {
1328         int i;
1329 
1330         for (i = from; i >= 0; i--) {
1331                 if (data->triggers[i].indio_trig) {
1332                         iio_trigger_unregister(data->triggers[i].indio_trig);
1333                         data->triggers[i].indio_trig = NULL;
1334                 }
1335         }
1336 }
1337 
1338 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1339                                        struct bmc150_accel_data *data)
1340 {
1341         struct device *dev = regmap_get_device(data->regmap);
1342         int i, ret;
1343 
1344         for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1345                 struct bmc150_accel_trigger *t = &data->triggers[i];
1346 
1347                 t->indio_trig = devm_iio_trigger_alloc(dev,
1348                                         bmc150_accel_triggers[i].name,
1349                                                        indio_dev->name,
1350                                                        indio_dev->id);
1351                 if (!t->indio_trig) {
1352                         ret = -ENOMEM;
1353                         break;
1354                 }
1355 
1356                 t->indio_trig->dev.parent = dev;
1357                 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1358                 t->intr = bmc150_accel_triggers[i].intr;
1359                 t->data = data;
1360                 t->setup = bmc150_accel_triggers[i].setup;
1361                 iio_trigger_set_drvdata(t->indio_trig, t);
1362 
1363                 ret = iio_trigger_register(t->indio_trig);
1364                 if (ret)
1365                         break;
1366         }
1367 
1368         if (ret)
1369                 bmc150_accel_unregister_triggers(data, i - 1);
1370 
1371         return ret;
1372 }
1373 
1374 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1375 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1376 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1377 
1378 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1379 {
1380         struct device *dev = regmap_get_device(data->regmap);
1381         u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1382         int ret;
1383 
1384         ret = regmap_write(data->regmap, reg, data->fifo_mode);
1385         if (ret < 0) {
1386                 dev_err(dev, "Error writing reg_fifo_config1\n");
1387                 return ret;
1388         }
1389 
1390         if (!data->fifo_mode)
1391                 return 0;
1392 
1393         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1394                            data->watermark);
1395         if (ret < 0)
1396                 dev_err(dev, "Error writing reg_fifo_config0\n");
1397 
1398         return ret;
1399 }
1400 
1401 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1402 {
1403         struct bmc150_accel_data *data = iio_priv(indio_dev);
1404 
1405         return bmc150_accel_set_power_state(data, true);
1406 }
1407 
1408 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1409 {
1410         struct bmc150_accel_data *data = iio_priv(indio_dev);
1411         int ret = 0;
1412 
1413         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1414                 return iio_triggered_buffer_postenable(indio_dev);
1415 
1416         mutex_lock(&data->mutex);
1417 
1418         if (!data->watermark)
1419                 goto out;
1420 
1421         ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1422                                          true);
1423         if (ret)
1424                 goto out;
1425 
1426         data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1427 
1428         ret = bmc150_accel_fifo_set_mode(data);
1429         if (ret) {
1430                 data->fifo_mode = 0;
1431                 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1432                                            false);
1433         }
1434 
1435 out:
1436         mutex_unlock(&data->mutex);
1437 
1438         return ret;
1439 }
1440 
1441 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1442 {
1443         struct bmc150_accel_data *data = iio_priv(indio_dev);
1444 
1445         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1446                 return iio_triggered_buffer_predisable(indio_dev);
1447 
1448         mutex_lock(&data->mutex);
1449 
1450         if (!data->fifo_mode)
1451                 goto out;
1452 
1453         bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1454         __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1455         data->fifo_mode = 0;
1456         bmc150_accel_fifo_set_mode(data);
1457 
1458 out:
1459         mutex_unlock(&data->mutex);
1460 
1461         return 0;
1462 }
1463 
1464 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1465 {
1466         struct bmc150_accel_data *data = iio_priv(indio_dev);
1467 
1468         return bmc150_accel_set_power_state(data, false);
1469 }
1470 
1471 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1472         .preenable = bmc150_accel_buffer_preenable,
1473         .postenable = bmc150_accel_buffer_postenable,
1474         .predisable = bmc150_accel_buffer_predisable,
1475         .postdisable = bmc150_accel_buffer_postdisable,
1476 };
1477 
1478 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1479 {
1480         struct device *dev = regmap_get_device(data->regmap);
1481         int ret, i;
1482         unsigned int val;
1483 
1484         /*
1485          * Reset chip to get it in a known good state. A delay of 1.8ms after
1486          * reset is required according to the data sheets of supported chips.
1487          */
1488         regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1489                      BMC150_ACCEL_RESET_VAL);
1490         usleep_range(1800, 2500);
1491 
1492         ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1493         if (ret < 0) {
1494                 dev_err(dev, "Error: Reading chip id\n");
1495                 return ret;
1496         }
1497 
1498         dev_dbg(dev, "Chip Id %x\n", val);
1499         for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1500                 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1501                         data->chip_info = &bmc150_accel_chip_info_tbl[i];
1502                         break;
1503                 }
1504         }
1505 
1506         if (!data->chip_info) {
1507                 dev_err(dev, "Invalid chip %x\n", val);
1508                 return -ENODEV;
1509         }
1510 
1511         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1512         if (ret < 0)
1513                 return ret;
1514 
1515         /* Set Bandwidth */
1516         ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1517         if (ret < 0)
1518                 return ret;
1519 
1520         /* Set Default Range */
1521         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1522                            BMC150_ACCEL_DEF_RANGE_4G);
1523         if (ret < 0) {
1524                 dev_err(dev, "Error writing reg_pmu_range\n");
1525                 return ret;
1526         }
1527 
1528         data->range = BMC150_ACCEL_DEF_RANGE_4G;
1529 
1530         /* Set default slope duration and thresholds */
1531         data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1532         data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1533         ret = bmc150_accel_update_slope(data);
1534         if (ret < 0)
1535                 return ret;
1536 
1537         /* Set default as latched interrupts */
1538         ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1539                            BMC150_ACCEL_INT_MODE_LATCH_INT |
1540                            BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541         if (ret < 0) {
1542                 dev_err(dev, "Error writing reg_int_rst_latch\n");
1543                 return ret;
1544         }
1545 
1546         return 0;
1547 }
1548 
1549 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1550                             const char *name, bool block_supported)
1551 {
1552         struct bmc150_accel_data *data;
1553         struct iio_dev *indio_dev;
1554         int ret;
1555 
1556         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1557         if (!indio_dev)
1558                 return -ENOMEM;
1559 
1560         data = iio_priv(indio_dev);
1561         dev_set_drvdata(dev, indio_dev);
1562         data->irq = irq;
1563 
1564         data->regmap = regmap;
1565 
1566         ret = iio_read_mount_matrix(dev, "mount-matrix",
1567                                      &data->orientation);
1568         if (ret)
1569                 return ret;
1570 
1571         ret = bmc150_accel_chip_init(data);
1572         if (ret < 0)
1573                 return ret;
1574 
1575         mutex_init(&data->mutex);
1576 
1577         indio_dev->dev.parent = dev;
1578         indio_dev->channels = data->chip_info->channels;
1579         indio_dev->num_channels = data->chip_info->num_channels;
1580         indio_dev->name = name ? name : data->chip_info->name;
1581         indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1582         indio_dev->modes = INDIO_DIRECT_MODE;
1583         indio_dev->info = &bmc150_accel_info;
1584 
1585         ret = iio_triggered_buffer_setup(indio_dev,
1586                                          &iio_pollfunc_store_time,
1587                                          bmc150_accel_trigger_handler,
1588                                          &bmc150_accel_buffer_ops);
1589         if (ret < 0) {
1590                 dev_err(dev, "Failed: iio triggered buffer setup\n");
1591                 return ret;
1592         }
1593 
1594         if (data->irq > 0) {
1595                 ret = devm_request_threaded_irq(
1596                                                 dev, data->irq,
1597                                                 bmc150_accel_irq_handler,
1598                                                 bmc150_accel_irq_thread_handler,
1599                                                 IRQF_TRIGGER_RISING,
1600                                                 BMC150_ACCEL_IRQ_NAME,
1601                                                 indio_dev);
1602                 if (ret)
1603                         goto err_buffer_cleanup;
1604 
1605                 /*
1606                  * Set latched mode interrupt. While certain interrupts are
1607                  * non-latched regardless of this settings (e.g. new data) we
1608                  * want to use latch mode when we can to prevent interrupt
1609                  * flooding.
1610                  */
1611                 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1612                                    BMC150_ACCEL_INT_MODE_LATCH_RESET);
1613                 if (ret < 0) {
1614                         dev_err(dev, "Error writing reg_int_rst_latch\n");
1615                         goto err_buffer_cleanup;
1616                 }
1617 
1618                 bmc150_accel_interrupts_setup(indio_dev, data);
1619 
1620                 ret = bmc150_accel_triggers_setup(indio_dev, data);
1621                 if (ret)
1622                         goto err_buffer_cleanup;
1623 
1624                 if (block_supported) {
1625                         indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1626                         indio_dev->info = &bmc150_accel_info_fifo;
1627                         iio_buffer_set_attrs(indio_dev->buffer,
1628                                              bmc150_accel_fifo_attributes);
1629                 }
1630         }
1631 
1632         ret = pm_runtime_set_active(dev);
1633         if (ret)
1634                 goto err_trigger_unregister;
1635 
1636         pm_runtime_enable(dev);
1637         pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1638         pm_runtime_use_autosuspend(dev);
1639 
1640         ret = iio_device_register(indio_dev);
1641         if (ret < 0) {
1642                 dev_err(dev, "Unable to register iio device\n");
1643                 goto err_trigger_unregister;
1644         }
1645 
1646         return 0;
1647 
1648 err_trigger_unregister:
1649         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1650 err_buffer_cleanup:
1651         iio_triggered_buffer_cleanup(indio_dev);
1652 
1653         return ret;
1654 }
1655 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1656 
1657 int bmc150_accel_core_remove(struct device *dev)
1658 {
1659         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1660         struct bmc150_accel_data *data = iio_priv(indio_dev);
1661 
1662         iio_device_unregister(indio_dev);
1663 
1664         pm_runtime_disable(dev);
1665         pm_runtime_set_suspended(dev);
1666         pm_runtime_put_noidle(dev);
1667 
1668         bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1669 
1670         iio_triggered_buffer_cleanup(indio_dev);
1671 
1672         mutex_lock(&data->mutex);
1673         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1674         mutex_unlock(&data->mutex);
1675 
1676         return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1679 
1680 #ifdef CONFIG_PM_SLEEP
1681 static int bmc150_accel_suspend(struct device *dev)
1682 {
1683         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1684         struct bmc150_accel_data *data = iio_priv(indio_dev);
1685 
1686         mutex_lock(&data->mutex);
1687         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1688         mutex_unlock(&data->mutex);
1689 
1690         return 0;
1691 }
1692 
1693 static int bmc150_accel_resume(struct device *dev)
1694 {
1695         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1696         struct bmc150_accel_data *data = iio_priv(indio_dev);
1697 
1698         mutex_lock(&data->mutex);
1699         bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1700         bmc150_accel_fifo_set_mode(data);
1701         mutex_unlock(&data->mutex);
1702 
1703         return 0;
1704 }
1705 #endif
1706 
1707 #ifdef CONFIG_PM
1708 static int bmc150_accel_runtime_suspend(struct device *dev)
1709 {
1710         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1711         struct bmc150_accel_data *data = iio_priv(indio_dev);
1712         int ret;
1713 
1714         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1715         if (ret < 0)
1716                 return -EAGAIN;
1717 
1718         return 0;
1719 }
1720 
1721 static int bmc150_accel_runtime_resume(struct device *dev)
1722 {
1723         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1724         struct bmc150_accel_data *data = iio_priv(indio_dev);
1725         int ret;
1726         int sleep_val;
1727 
1728         ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1729         if (ret < 0)
1730                 return ret;
1731         ret = bmc150_accel_fifo_set_mode(data);
1732         if (ret < 0)
1733                 return ret;
1734 
1735         sleep_val = bmc150_accel_get_startup_times(data);
1736         if (sleep_val < 20)
1737                 usleep_range(sleep_val * 1000, 20000);
1738         else
1739                 msleep_interruptible(sleep_val);
1740 
1741         return 0;
1742 }
1743 #endif
1744 
1745 const struct dev_pm_ops bmc150_accel_pm_ops = {
1746         SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1747         SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1748                            bmc150_accel_runtime_resume, NULL)
1749 };
1750 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1751 
1752 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1753 MODULE_LICENSE("GPL v2");
1754 MODULE_DESCRIPTION("BMC150 accelerometer driver");

/* [<][>][^][v][top][bottom][index][help] */