root/drivers/iommu/intel_irq_remapping.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ir_pre_enabled
  2. clear_ir_pre_enabled
  3. init_ir_status
  4. alloc_irte
  5. qi_flush_iec
  6. modify_irte
  7. map_hpet_to_ir
  8. map_ioapic_to_ir
  9. map_dev_to_ir
  10. clear_entries
  11. set_irte_sid
  12. set_irte_verify_bus
  13. set_ioapic_sid
  14. set_hpet_sid
  15. set_msi_sid_cb
  16. set_msi_sid
  17. iommu_load_old_irte
  18. iommu_set_irq_remapping
  19. iommu_enable_irq_remapping
  20. intel_setup_irq_remapping
  21. intel_teardown_irq_remapping
  22. iommu_disable_irq_remapping
  23. dmar_x2apic_optout
  24. intel_cleanup_irq_remapping
  25. intel_prepare_irq_remapping
  26. set_irq_posting_cap
  27. intel_enable_irq_remapping
  28. ir_parse_one_hpet_scope
  29. ir_parse_one_ioapic_scope
  30. ir_parse_ioapic_hpet_scope
  31. ir_remove_ioapic_hpet_scope
  32. parse_ioapics_under_ir
  33. ir_dev_scope_init
  34. disable_irq_remapping
  35. reenable_irq_remapping
  36. prepare_irte
  37. intel_get_ir_irq_domain
  38. intel_get_irq_domain
  39. intel_ir_reconfigure_irte
  40. intel_ir_set_affinity
  41. intel_ir_compose_msi_msg
  42. intel_ir_set_vcpu_affinity
  43. intel_irq_remapping_prepare_irte
  44. intel_free_irq_resources
  45. intel_irq_remapping_alloc
  46. intel_irq_remapping_free
  47. intel_irq_remapping_activate
  48. intel_irq_remapping_deactivate
  49. dmar_ir_add
  50. dmar_ir_hotplug

   1 // SPDX-License-Identifier: GPL-2.0
   2 
   3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
   4 
   5 #include <linux/interrupt.h>
   6 #include <linux/dmar.h>
   7 #include <linux/spinlock.h>
   8 #include <linux/slab.h>
   9 #include <linux/jiffies.h>
  10 #include <linux/hpet.h>
  11 #include <linux/pci.h>
  12 #include <linux/irq.h>
  13 #include <linux/intel-iommu.h>
  14 #include <linux/acpi.h>
  15 #include <linux/irqdomain.h>
  16 #include <linux/crash_dump.h>
  17 #include <asm/io_apic.h>
  18 #include <asm/smp.h>
  19 #include <asm/cpu.h>
  20 #include <asm/irq_remapping.h>
  21 #include <asm/pci-direct.h>
  22 #include <asm/msidef.h>
  23 
  24 #include "irq_remapping.h"
  25 
  26 enum irq_mode {
  27         IRQ_REMAPPING,
  28         IRQ_POSTING,
  29 };
  30 
  31 struct ioapic_scope {
  32         struct intel_iommu *iommu;
  33         unsigned int id;
  34         unsigned int bus;       /* PCI bus number */
  35         unsigned int devfn;     /* PCI devfn number */
  36 };
  37 
  38 struct hpet_scope {
  39         struct intel_iommu *iommu;
  40         u8 id;
  41         unsigned int bus;
  42         unsigned int devfn;
  43 };
  44 
  45 struct irq_2_iommu {
  46         struct intel_iommu *iommu;
  47         u16 irte_index;
  48         u16 sub_handle;
  49         u8  irte_mask;
  50         enum irq_mode mode;
  51 };
  52 
  53 struct intel_ir_data {
  54         struct irq_2_iommu                      irq_2_iommu;
  55         struct irte                             irte_entry;
  56         union {
  57                 struct msi_msg                  msi_entry;
  58         };
  59 };
  60 
  61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
  62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
  63 
  64 static int __read_mostly eim_mode;
  65 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  66 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
  67 
  68 /*
  69  * Lock ordering:
  70  * ->dmar_global_lock
  71  *      ->irq_2_ir_lock
  72  *              ->qi->q_lock
  73  *      ->iommu->register_lock
  74  * Note:
  75  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
  76  * in single-threaded environment with interrupt disabled, so no need to tabke
  77  * the dmar_global_lock.
  78  */
  79 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
  80 static const struct irq_domain_ops intel_ir_domain_ops;
  81 
  82 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
  83 static int __init parse_ioapics_under_ir(void);
  84 
  85 static bool ir_pre_enabled(struct intel_iommu *iommu)
  86 {
  87         return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
  88 }
  89 
  90 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
  91 {
  92         iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
  93 }
  94 
  95 static void init_ir_status(struct intel_iommu *iommu)
  96 {
  97         u32 gsts;
  98 
  99         gsts = readl(iommu->reg + DMAR_GSTS_REG);
 100         if (gsts & DMA_GSTS_IRES)
 101                 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
 102 }
 103 
 104 static int alloc_irte(struct intel_iommu *iommu,
 105                       struct irq_2_iommu *irq_iommu, u16 count)
 106 {
 107         struct ir_table *table = iommu->ir_table;
 108         unsigned int mask = 0;
 109         unsigned long flags;
 110         int index;
 111 
 112         if (!count || !irq_iommu)
 113                 return -1;
 114 
 115         if (count > 1) {
 116                 count = __roundup_pow_of_two(count);
 117                 mask = ilog2(count);
 118         }
 119 
 120         if (mask > ecap_max_handle_mask(iommu->ecap)) {
 121                 pr_err("Requested mask %x exceeds the max invalidation handle"
 122                        " mask value %Lx\n", mask,
 123                        ecap_max_handle_mask(iommu->ecap));
 124                 return -1;
 125         }
 126 
 127         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 128         index = bitmap_find_free_region(table->bitmap,
 129                                         INTR_REMAP_TABLE_ENTRIES, mask);
 130         if (index < 0) {
 131                 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
 132         } else {
 133                 irq_iommu->iommu = iommu;
 134                 irq_iommu->irte_index =  index;
 135                 irq_iommu->sub_handle = 0;
 136                 irq_iommu->irte_mask = mask;
 137                 irq_iommu->mode = IRQ_REMAPPING;
 138         }
 139         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 140 
 141         return index;
 142 }
 143 
 144 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
 145 {
 146         struct qi_desc desc;
 147 
 148         desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
 149                    | QI_IEC_SELECTIVE;
 150         desc.qw1 = 0;
 151         desc.qw2 = 0;
 152         desc.qw3 = 0;
 153 
 154         return qi_submit_sync(&desc, iommu);
 155 }
 156 
 157 static int modify_irte(struct irq_2_iommu *irq_iommu,
 158                        struct irte *irte_modified)
 159 {
 160         struct intel_iommu *iommu;
 161         unsigned long flags;
 162         struct irte *irte;
 163         int rc, index;
 164 
 165         if (!irq_iommu)
 166                 return -1;
 167 
 168         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 169 
 170         iommu = irq_iommu->iommu;
 171 
 172         index = irq_iommu->irte_index + irq_iommu->sub_handle;
 173         irte = &iommu->ir_table->base[index];
 174 
 175 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
 176         if ((irte->pst == 1) || (irte_modified->pst == 1)) {
 177                 bool ret;
 178 
 179                 ret = cmpxchg_double(&irte->low, &irte->high,
 180                                      irte->low, irte->high,
 181                                      irte_modified->low, irte_modified->high);
 182                 /*
 183                  * We use cmpxchg16 to atomically update the 128-bit IRTE,
 184                  * and it cannot be updated by the hardware or other processors
 185                  * behind us, so the return value of cmpxchg16 should be the
 186                  * same as the old value.
 187                  */
 188                 WARN_ON(!ret);
 189         } else
 190 #endif
 191         {
 192                 set_64bit(&irte->low, irte_modified->low);
 193                 set_64bit(&irte->high, irte_modified->high);
 194         }
 195         __iommu_flush_cache(iommu, irte, sizeof(*irte));
 196 
 197         rc = qi_flush_iec(iommu, index, 0);
 198 
 199         /* Update iommu mode according to the IRTE mode */
 200         irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
 201         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 202 
 203         return rc;
 204 }
 205 
 206 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
 207 {
 208         int i;
 209 
 210         for (i = 0; i < MAX_HPET_TBS; i++)
 211                 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
 212                         return ir_hpet[i].iommu;
 213         return NULL;
 214 }
 215 
 216 static struct intel_iommu *map_ioapic_to_ir(int apic)
 217 {
 218         int i;
 219 
 220         for (i = 0; i < MAX_IO_APICS; i++)
 221                 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
 222                         return ir_ioapic[i].iommu;
 223         return NULL;
 224 }
 225 
 226 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
 227 {
 228         struct dmar_drhd_unit *drhd;
 229 
 230         drhd = dmar_find_matched_drhd_unit(dev);
 231         if (!drhd)
 232                 return NULL;
 233 
 234         return drhd->iommu;
 235 }
 236 
 237 static int clear_entries(struct irq_2_iommu *irq_iommu)
 238 {
 239         struct irte *start, *entry, *end;
 240         struct intel_iommu *iommu;
 241         int index;
 242 
 243         if (irq_iommu->sub_handle)
 244                 return 0;
 245 
 246         iommu = irq_iommu->iommu;
 247         index = irq_iommu->irte_index;
 248 
 249         start = iommu->ir_table->base + index;
 250         end = start + (1 << irq_iommu->irte_mask);
 251 
 252         for (entry = start; entry < end; entry++) {
 253                 set_64bit(&entry->low, 0);
 254                 set_64bit(&entry->high, 0);
 255         }
 256         bitmap_release_region(iommu->ir_table->bitmap, index,
 257                               irq_iommu->irte_mask);
 258 
 259         return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
 260 }
 261 
 262 /*
 263  * source validation type
 264  */
 265 #define SVT_NO_VERIFY           0x0  /* no verification is required */
 266 #define SVT_VERIFY_SID_SQ       0x1  /* verify using SID and SQ fields */
 267 #define SVT_VERIFY_BUS          0x2  /* verify bus of request-id */
 268 
 269 /*
 270  * source-id qualifier
 271  */
 272 #define SQ_ALL_16       0x0  /* verify all 16 bits of request-id */
 273 #define SQ_13_IGNORE_1  0x1  /* verify most significant 13 bits, ignore
 274                               * the third least significant bit
 275                               */
 276 #define SQ_13_IGNORE_2  0x2  /* verify most significant 13 bits, ignore
 277                               * the second and third least significant bits
 278                               */
 279 #define SQ_13_IGNORE_3  0x3  /* verify most significant 13 bits, ignore
 280                               * the least three significant bits
 281                               */
 282 
 283 /*
 284  * set SVT, SQ and SID fields of irte to verify
 285  * source ids of interrupt requests
 286  */
 287 static void set_irte_sid(struct irte *irte, unsigned int svt,
 288                          unsigned int sq, unsigned int sid)
 289 {
 290         if (disable_sourceid_checking)
 291                 svt = SVT_NO_VERIFY;
 292         irte->svt = svt;
 293         irte->sq = sq;
 294         irte->sid = sid;
 295 }
 296 
 297 /*
 298  * Set an IRTE to match only the bus number. Interrupt requests that reference
 299  * this IRTE must have a requester-id whose bus number is between or equal
 300  * to the start_bus and end_bus arguments.
 301  */
 302 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
 303                                 unsigned int end_bus)
 304 {
 305         set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
 306                      (start_bus << 8) | end_bus);
 307 }
 308 
 309 static int set_ioapic_sid(struct irte *irte, int apic)
 310 {
 311         int i;
 312         u16 sid = 0;
 313 
 314         if (!irte)
 315                 return -1;
 316 
 317         down_read(&dmar_global_lock);
 318         for (i = 0; i < MAX_IO_APICS; i++) {
 319                 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
 320                         sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
 321                         break;
 322                 }
 323         }
 324         up_read(&dmar_global_lock);
 325 
 326         if (sid == 0) {
 327                 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
 328                 return -1;
 329         }
 330 
 331         set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
 332 
 333         return 0;
 334 }
 335 
 336 static int set_hpet_sid(struct irte *irte, u8 id)
 337 {
 338         int i;
 339         u16 sid = 0;
 340 
 341         if (!irte)
 342                 return -1;
 343 
 344         down_read(&dmar_global_lock);
 345         for (i = 0; i < MAX_HPET_TBS; i++) {
 346                 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
 347                         sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
 348                         break;
 349                 }
 350         }
 351         up_read(&dmar_global_lock);
 352 
 353         if (sid == 0) {
 354                 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
 355                 return -1;
 356         }
 357 
 358         /*
 359          * Should really use SQ_ALL_16. Some platforms are broken.
 360          * While we figure out the right quirks for these broken platforms, use
 361          * SQ_13_IGNORE_3 for now.
 362          */
 363         set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
 364 
 365         return 0;
 366 }
 367 
 368 struct set_msi_sid_data {
 369         struct pci_dev *pdev;
 370         u16 alias;
 371         int count;
 372         int busmatch_count;
 373 };
 374 
 375 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
 376 {
 377         struct set_msi_sid_data *data = opaque;
 378 
 379         if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
 380                 data->busmatch_count++;
 381 
 382         data->pdev = pdev;
 383         data->alias = alias;
 384         data->count++;
 385 
 386         return 0;
 387 }
 388 
 389 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
 390 {
 391         struct set_msi_sid_data data;
 392 
 393         if (!irte || !dev)
 394                 return -1;
 395 
 396         data.count = 0;
 397         data.busmatch_count = 0;
 398         pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
 399 
 400         /*
 401          * DMA alias provides us with a PCI device and alias.  The only case
 402          * where the it will return an alias on a different bus than the
 403          * device is the case of a PCIe-to-PCI bridge, where the alias is for
 404          * the subordinate bus.  In this case we can only verify the bus.
 405          *
 406          * If there are multiple aliases, all with the same bus number,
 407          * then all we can do is verify the bus. This is typical in NTB
 408          * hardware which use proxy IDs where the device will generate traffic
 409          * from multiple devfn numbers on the same bus.
 410          *
 411          * If the alias device is on a different bus than our source device
 412          * then we have a topology based alias, use it.
 413          *
 414          * Otherwise, the alias is for a device DMA quirk and we cannot
 415          * assume that MSI uses the same requester ID.  Therefore use the
 416          * original device.
 417          */
 418         if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
 419                 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
 420                                     dev->bus->number);
 421         else if (data.count >= 2 && data.busmatch_count == data.count)
 422                 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
 423         else if (data.pdev->bus->number != dev->bus->number)
 424                 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
 425         else
 426                 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
 427                              pci_dev_id(dev));
 428 
 429         return 0;
 430 }
 431 
 432 static int iommu_load_old_irte(struct intel_iommu *iommu)
 433 {
 434         struct irte *old_ir_table;
 435         phys_addr_t irt_phys;
 436         unsigned int i;
 437         size_t size;
 438         u64 irta;
 439 
 440         /* Check whether the old ir-table has the same size as ours */
 441         irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
 442         if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
 443              != INTR_REMAP_TABLE_REG_SIZE)
 444                 return -EINVAL;
 445 
 446         irt_phys = irta & VTD_PAGE_MASK;
 447         size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
 448 
 449         /* Map the old IR table */
 450         old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
 451         if (!old_ir_table)
 452                 return -ENOMEM;
 453 
 454         /* Copy data over */
 455         memcpy(iommu->ir_table->base, old_ir_table, size);
 456 
 457         __iommu_flush_cache(iommu, iommu->ir_table->base, size);
 458 
 459         /*
 460          * Now check the table for used entries and mark those as
 461          * allocated in the bitmap
 462          */
 463         for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
 464                 if (iommu->ir_table->base[i].present)
 465                         bitmap_set(iommu->ir_table->bitmap, i, 1);
 466         }
 467 
 468         memunmap(old_ir_table);
 469 
 470         return 0;
 471 }
 472 
 473 
 474 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
 475 {
 476         unsigned long flags;
 477         u64 addr;
 478         u32 sts;
 479 
 480         addr = virt_to_phys((void *)iommu->ir_table->base);
 481 
 482         raw_spin_lock_irqsave(&iommu->register_lock, flags);
 483 
 484         dmar_writeq(iommu->reg + DMAR_IRTA_REG,
 485                     (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
 486 
 487         /* Set interrupt-remapping table pointer */
 488         writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
 489 
 490         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 491                       readl, (sts & DMA_GSTS_IRTPS), sts);
 492         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 493 
 494         /*
 495          * Global invalidation of interrupt entry cache to make sure the
 496          * hardware uses the new irq remapping table.
 497          */
 498         qi_global_iec(iommu);
 499 }
 500 
 501 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
 502 {
 503         unsigned long flags;
 504         u32 sts;
 505 
 506         raw_spin_lock_irqsave(&iommu->register_lock, flags);
 507 
 508         /* Enable interrupt-remapping */
 509         iommu->gcmd |= DMA_GCMD_IRE;
 510         iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
 511         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 512 
 513         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 514                       readl, (sts & DMA_GSTS_IRES), sts);
 515 
 516         /*
 517          * With CFI clear in the Global Command register, we should be
 518          * protected from dangerous (i.e. compatibility) interrupts
 519          * regardless of x2apic status.  Check just to be sure.
 520          */
 521         if (sts & DMA_GSTS_CFIS)
 522                 WARN(1, KERN_WARNING
 523                         "Compatibility-format IRQs enabled despite intr remapping;\n"
 524                         "you are vulnerable to IRQ injection.\n");
 525 
 526         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 527 }
 528 
 529 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
 530 {
 531         struct ir_table *ir_table;
 532         struct fwnode_handle *fn;
 533         unsigned long *bitmap;
 534         struct page *pages;
 535 
 536         if (iommu->ir_table)
 537                 return 0;
 538 
 539         ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
 540         if (!ir_table)
 541                 return -ENOMEM;
 542 
 543         pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
 544                                  INTR_REMAP_PAGE_ORDER);
 545         if (!pages) {
 546                 pr_err("IR%d: failed to allocate pages of order %d\n",
 547                        iommu->seq_id, INTR_REMAP_PAGE_ORDER);
 548                 goto out_free_table;
 549         }
 550 
 551         bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
 552         if (bitmap == NULL) {
 553                 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
 554                 goto out_free_pages;
 555         }
 556 
 557         fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
 558         if (!fn)
 559                 goto out_free_bitmap;
 560 
 561         iommu->ir_domain =
 562                 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
 563                                             0, INTR_REMAP_TABLE_ENTRIES,
 564                                             fn, &intel_ir_domain_ops,
 565                                             iommu);
 566         irq_domain_free_fwnode(fn);
 567         if (!iommu->ir_domain) {
 568                 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
 569                 goto out_free_bitmap;
 570         }
 571         iommu->ir_msi_domain =
 572                 arch_create_remap_msi_irq_domain(iommu->ir_domain,
 573                                                  "INTEL-IR-MSI",
 574                                                  iommu->seq_id);
 575 
 576         ir_table->base = page_address(pages);
 577         ir_table->bitmap = bitmap;
 578         iommu->ir_table = ir_table;
 579 
 580         /*
 581          * If the queued invalidation is already initialized,
 582          * shouldn't disable it.
 583          */
 584         if (!iommu->qi) {
 585                 /*
 586                  * Clear previous faults.
 587                  */
 588                 dmar_fault(-1, iommu);
 589                 dmar_disable_qi(iommu);
 590 
 591                 if (dmar_enable_qi(iommu)) {
 592                         pr_err("Failed to enable queued invalidation\n");
 593                         goto out_free_bitmap;
 594                 }
 595         }
 596 
 597         init_ir_status(iommu);
 598 
 599         if (ir_pre_enabled(iommu)) {
 600                 if (!is_kdump_kernel()) {
 601                         pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
 602                                 iommu->name);
 603                         clear_ir_pre_enabled(iommu);
 604                         iommu_disable_irq_remapping(iommu);
 605                 } else if (iommu_load_old_irte(iommu))
 606                         pr_err("Failed to copy IR table for %s from previous kernel\n",
 607                                iommu->name);
 608                 else
 609                         pr_info("Copied IR table for %s from previous kernel\n",
 610                                 iommu->name);
 611         }
 612 
 613         iommu_set_irq_remapping(iommu, eim_mode);
 614 
 615         return 0;
 616 
 617 out_free_bitmap:
 618         bitmap_free(bitmap);
 619 out_free_pages:
 620         __free_pages(pages, INTR_REMAP_PAGE_ORDER);
 621 out_free_table:
 622         kfree(ir_table);
 623 
 624         iommu->ir_table  = NULL;
 625 
 626         return -ENOMEM;
 627 }
 628 
 629 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
 630 {
 631         if (iommu && iommu->ir_table) {
 632                 if (iommu->ir_msi_domain) {
 633                         irq_domain_remove(iommu->ir_msi_domain);
 634                         iommu->ir_msi_domain = NULL;
 635                 }
 636                 if (iommu->ir_domain) {
 637                         irq_domain_remove(iommu->ir_domain);
 638                         iommu->ir_domain = NULL;
 639                 }
 640                 free_pages((unsigned long)iommu->ir_table->base,
 641                            INTR_REMAP_PAGE_ORDER);
 642                 bitmap_free(iommu->ir_table->bitmap);
 643                 kfree(iommu->ir_table);
 644                 iommu->ir_table = NULL;
 645         }
 646 }
 647 
 648 /*
 649  * Disable Interrupt Remapping.
 650  */
 651 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
 652 {
 653         unsigned long flags;
 654         u32 sts;
 655 
 656         if (!ecap_ir_support(iommu->ecap))
 657                 return;
 658 
 659         /*
 660          * global invalidation of interrupt entry cache before disabling
 661          * interrupt-remapping.
 662          */
 663         qi_global_iec(iommu);
 664 
 665         raw_spin_lock_irqsave(&iommu->register_lock, flags);
 666 
 667         sts = readl(iommu->reg + DMAR_GSTS_REG);
 668         if (!(sts & DMA_GSTS_IRES))
 669                 goto end;
 670 
 671         iommu->gcmd &= ~DMA_GCMD_IRE;
 672         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 673 
 674         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 675                       readl, !(sts & DMA_GSTS_IRES), sts);
 676 
 677 end:
 678         raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 679 }
 680 
 681 static int __init dmar_x2apic_optout(void)
 682 {
 683         struct acpi_table_dmar *dmar;
 684         dmar = (struct acpi_table_dmar *)dmar_tbl;
 685         if (!dmar || no_x2apic_optout)
 686                 return 0;
 687         return dmar->flags & DMAR_X2APIC_OPT_OUT;
 688 }
 689 
 690 static void __init intel_cleanup_irq_remapping(void)
 691 {
 692         struct dmar_drhd_unit *drhd;
 693         struct intel_iommu *iommu;
 694 
 695         for_each_iommu(iommu, drhd) {
 696                 if (ecap_ir_support(iommu->ecap)) {
 697                         iommu_disable_irq_remapping(iommu);
 698                         intel_teardown_irq_remapping(iommu);
 699                 }
 700         }
 701 
 702         if (x2apic_supported())
 703                 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
 704 }
 705 
 706 static int __init intel_prepare_irq_remapping(void)
 707 {
 708         struct dmar_drhd_unit *drhd;
 709         struct intel_iommu *iommu;
 710         int eim = 0;
 711 
 712         if (irq_remap_broken) {
 713                 pr_warn("This system BIOS has enabled interrupt remapping\n"
 714                         "on a chipset that contains an erratum making that\n"
 715                         "feature unstable.  To maintain system stability\n"
 716                         "interrupt remapping is being disabled.  Please\n"
 717                         "contact your BIOS vendor for an update\n");
 718                 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 719                 return -ENODEV;
 720         }
 721 
 722         if (dmar_table_init() < 0)
 723                 return -ENODEV;
 724 
 725         if (!dmar_ir_support())
 726                 return -ENODEV;
 727 
 728         if (parse_ioapics_under_ir()) {
 729                 pr_info("Not enabling interrupt remapping\n");
 730                 goto error;
 731         }
 732 
 733         /* First make sure all IOMMUs support IRQ remapping */
 734         for_each_iommu(iommu, drhd)
 735                 if (!ecap_ir_support(iommu->ecap))
 736                         goto error;
 737 
 738         /* Detect remapping mode: lapic or x2apic */
 739         if (x2apic_supported()) {
 740                 eim = !dmar_x2apic_optout();
 741                 if (!eim) {
 742                         pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
 743                         pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
 744                 }
 745         }
 746 
 747         for_each_iommu(iommu, drhd) {
 748                 if (eim && !ecap_eim_support(iommu->ecap)) {
 749                         pr_info("%s does not support EIM\n", iommu->name);
 750                         eim = 0;
 751                 }
 752         }
 753 
 754         eim_mode = eim;
 755         if (eim)
 756                 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
 757 
 758         /* Do the initializations early */
 759         for_each_iommu(iommu, drhd) {
 760                 if (intel_setup_irq_remapping(iommu)) {
 761                         pr_err("Failed to setup irq remapping for %s\n",
 762                                iommu->name);
 763                         goto error;
 764                 }
 765         }
 766 
 767         return 0;
 768 
 769 error:
 770         intel_cleanup_irq_remapping();
 771         return -ENODEV;
 772 }
 773 
 774 /*
 775  * Set Posted-Interrupts capability.
 776  */
 777 static inline void set_irq_posting_cap(void)
 778 {
 779         struct dmar_drhd_unit *drhd;
 780         struct intel_iommu *iommu;
 781 
 782         if (!disable_irq_post) {
 783                 /*
 784                  * If IRTE is in posted format, the 'pda' field goes across the
 785                  * 64-bit boundary, we need use cmpxchg16b to atomically update
 786                  * it. We only expose posted-interrupt when X86_FEATURE_CX16
 787                  * is supported. Actually, hardware platforms supporting PI
 788                  * should have X86_FEATURE_CX16 support, this has been confirmed
 789                  * with Intel hardware guys.
 790                  */
 791                 if (boot_cpu_has(X86_FEATURE_CX16))
 792                         intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
 793 
 794                 for_each_iommu(iommu, drhd)
 795                         if (!cap_pi_support(iommu->cap)) {
 796                                 intel_irq_remap_ops.capability &=
 797                                                 ~(1 << IRQ_POSTING_CAP);
 798                                 break;
 799                         }
 800         }
 801 }
 802 
 803 static int __init intel_enable_irq_remapping(void)
 804 {
 805         struct dmar_drhd_unit *drhd;
 806         struct intel_iommu *iommu;
 807         bool setup = false;
 808 
 809         /*
 810          * Setup Interrupt-remapping for all the DRHD's now.
 811          */
 812         for_each_iommu(iommu, drhd) {
 813                 if (!ir_pre_enabled(iommu))
 814                         iommu_enable_irq_remapping(iommu);
 815                 setup = true;
 816         }
 817 
 818         if (!setup)
 819                 goto error;
 820 
 821         irq_remapping_enabled = 1;
 822 
 823         set_irq_posting_cap();
 824 
 825         pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
 826 
 827         return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
 828 
 829 error:
 830         intel_cleanup_irq_remapping();
 831         return -1;
 832 }
 833 
 834 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
 835                                    struct intel_iommu *iommu,
 836                                    struct acpi_dmar_hardware_unit *drhd)
 837 {
 838         struct acpi_dmar_pci_path *path;
 839         u8 bus;
 840         int count, free = -1;
 841 
 842         bus = scope->bus;
 843         path = (struct acpi_dmar_pci_path *)(scope + 1);
 844         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 845                 / sizeof(struct acpi_dmar_pci_path);
 846 
 847         while (--count > 0) {
 848                 /*
 849                  * Access PCI directly due to the PCI
 850                  * subsystem isn't initialized yet.
 851                  */
 852                 bus = read_pci_config_byte(bus, path->device, path->function,
 853                                            PCI_SECONDARY_BUS);
 854                 path++;
 855         }
 856 
 857         for (count = 0; count < MAX_HPET_TBS; count++) {
 858                 if (ir_hpet[count].iommu == iommu &&
 859                     ir_hpet[count].id == scope->enumeration_id)
 860                         return 0;
 861                 else if (ir_hpet[count].iommu == NULL && free == -1)
 862                         free = count;
 863         }
 864         if (free == -1) {
 865                 pr_warn("Exceeded Max HPET blocks\n");
 866                 return -ENOSPC;
 867         }
 868 
 869         ir_hpet[free].iommu = iommu;
 870         ir_hpet[free].id    = scope->enumeration_id;
 871         ir_hpet[free].bus   = bus;
 872         ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
 873         pr_info("HPET id %d under DRHD base 0x%Lx\n",
 874                 scope->enumeration_id, drhd->address);
 875 
 876         return 0;
 877 }
 878 
 879 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
 880                                      struct intel_iommu *iommu,
 881                                      struct acpi_dmar_hardware_unit *drhd)
 882 {
 883         struct acpi_dmar_pci_path *path;
 884         u8 bus;
 885         int count, free = -1;
 886 
 887         bus = scope->bus;
 888         path = (struct acpi_dmar_pci_path *)(scope + 1);
 889         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 890                 / sizeof(struct acpi_dmar_pci_path);
 891 
 892         while (--count > 0) {
 893                 /*
 894                  * Access PCI directly due to the PCI
 895                  * subsystem isn't initialized yet.
 896                  */
 897                 bus = read_pci_config_byte(bus, path->device, path->function,
 898                                            PCI_SECONDARY_BUS);
 899                 path++;
 900         }
 901 
 902         for (count = 0; count < MAX_IO_APICS; count++) {
 903                 if (ir_ioapic[count].iommu == iommu &&
 904                     ir_ioapic[count].id == scope->enumeration_id)
 905                         return 0;
 906                 else if (ir_ioapic[count].iommu == NULL && free == -1)
 907                         free = count;
 908         }
 909         if (free == -1) {
 910                 pr_warn("Exceeded Max IO APICS\n");
 911                 return -ENOSPC;
 912         }
 913 
 914         ir_ioapic[free].bus   = bus;
 915         ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
 916         ir_ioapic[free].iommu = iommu;
 917         ir_ioapic[free].id    = scope->enumeration_id;
 918         pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
 919                 scope->enumeration_id, drhd->address, iommu->seq_id);
 920 
 921         return 0;
 922 }
 923 
 924 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
 925                                       struct intel_iommu *iommu)
 926 {
 927         int ret = 0;
 928         struct acpi_dmar_hardware_unit *drhd;
 929         struct acpi_dmar_device_scope *scope;
 930         void *start, *end;
 931 
 932         drhd = (struct acpi_dmar_hardware_unit *)header;
 933         start = (void *)(drhd + 1);
 934         end = ((void *)drhd) + header->length;
 935 
 936         while (start < end && ret == 0) {
 937                 scope = start;
 938                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
 939                         ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
 940                 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
 941                         ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
 942                 start += scope->length;
 943         }
 944 
 945         return ret;
 946 }
 947 
 948 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
 949 {
 950         int i;
 951 
 952         for (i = 0; i < MAX_HPET_TBS; i++)
 953                 if (ir_hpet[i].iommu == iommu)
 954                         ir_hpet[i].iommu = NULL;
 955 
 956         for (i = 0; i < MAX_IO_APICS; i++)
 957                 if (ir_ioapic[i].iommu == iommu)
 958                         ir_ioapic[i].iommu = NULL;
 959 }
 960 
 961 /*
 962  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 963  * hardware unit.
 964  */
 965 static int __init parse_ioapics_under_ir(void)
 966 {
 967         struct dmar_drhd_unit *drhd;
 968         struct intel_iommu *iommu;
 969         bool ir_supported = false;
 970         int ioapic_idx;
 971 
 972         for_each_iommu(iommu, drhd) {
 973                 int ret;
 974 
 975                 if (!ecap_ir_support(iommu->ecap))
 976                         continue;
 977 
 978                 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
 979                 if (ret)
 980                         return ret;
 981 
 982                 ir_supported = true;
 983         }
 984 
 985         if (!ir_supported)
 986                 return -ENODEV;
 987 
 988         for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
 989                 int ioapic_id = mpc_ioapic_id(ioapic_idx);
 990                 if (!map_ioapic_to_ir(ioapic_id)) {
 991                         pr_err(FW_BUG "ioapic %d has no mapping iommu, "
 992                                "interrupt remapping will be disabled\n",
 993                                ioapic_id);
 994                         return -1;
 995                 }
 996         }
 997 
 998         return 0;
 999 }
1000 
1001 static int __init ir_dev_scope_init(void)
1002 {
1003         int ret;
1004 
1005         if (!irq_remapping_enabled)
1006                 return 0;
1007 
1008         down_write(&dmar_global_lock);
1009         ret = dmar_dev_scope_init();
1010         up_write(&dmar_global_lock);
1011 
1012         return ret;
1013 }
1014 rootfs_initcall(ir_dev_scope_init);
1015 
1016 static void disable_irq_remapping(void)
1017 {
1018         struct dmar_drhd_unit *drhd;
1019         struct intel_iommu *iommu = NULL;
1020 
1021         /*
1022          * Disable Interrupt-remapping for all the DRHD's now.
1023          */
1024         for_each_iommu(iommu, drhd) {
1025                 if (!ecap_ir_support(iommu->ecap))
1026                         continue;
1027 
1028                 iommu_disable_irq_remapping(iommu);
1029         }
1030 
1031         /*
1032          * Clear Posted-Interrupts capability.
1033          */
1034         if (!disable_irq_post)
1035                 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1036 }
1037 
1038 static int reenable_irq_remapping(int eim)
1039 {
1040         struct dmar_drhd_unit *drhd;
1041         bool setup = false;
1042         struct intel_iommu *iommu = NULL;
1043 
1044         for_each_iommu(iommu, drhd)
1045                 if (iommu->qi)
1046                         dmar_reenable_qi(iommu);
1047 
1048         /*
1049          * Setup Interrupt-remapping for all the DRHD's now.
1050          */
1051         for_each_iommu(iommu, drhd) {
1052                 if (!ecap_ir_support(iommu->ecap))
1053                         continue;
1054 
1055                 /* Set up interrupt remapping for iommu.*/
1056                 iommu_set_irq_remapping(iommu, eim);
1057                 iommu_enable_irq_remapping(iommu);
1058                 setup = true;
1059         }
1060 
1061         if (!setup)
1062                 goto error;
1063 
1064         set_irq_posting_cap();
1065 
1066         return 0;
1067 
1068 error:
1069         /*
1070          * handle error condition gracefully here!
1071          */
1072         return -1;
1073 }
1074 
1075 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1076 {
1077         memset(irte, 0, sizeof(*irte));
1078 
1079         irte->present = 1;
1080         irte->dst_mode = apic->irq_dest_mode;
1081         /*
1082          * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1083          * actual level or edge trigger will be setup in the IO-APIC
1084          * RTE. This will help simplify level triggered irq migration.
1085          * For more details, see the comments (in io_apic.c) explainig IO-APIC
1086          * irq migration in the presence of interrupt-remapping.
1087         */
1088         irte->trigger_mode = 0;
1089         irte->dlvry_mode = apic->irq_delivery_mode;
1090         irte->vector = vector;
1091         irte->dest_id = IRTE_DEST(dest);
1092         irte->redir_hint = 1;
1093 }
1094 
1095 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1096 {
1097         struct intel_iommu *iommu = NULL;
1098 
1099         if (!info)
1100                 return NULL;
1101 
1102         switch (info->type) {
1103         case X86_IRQ_ALLOC_TYPE_IOAPIC:
1104                 iommu = map_ioapic_to_ir(info->ioapic_id);
1105                 break;
1106         case X86_IRQ_ALLOC_TYPE_HPET:
1107                 iommu = map_hpet_to_ir(info->hpet_id);
1108                 break;
1109         case X86_IRQ_ALLOC_TYPE_MSI:
1110         case X86_IRQ_ALLOC_TYPE_MSIX:
1111                 iommu = map_dev_to_ir(info->msi_dev);
1112                 break;
1113         default:
1114                 BUG_ON(1);
1115                 break;
1116         }
1117 
1118         return iommu ? iommu->ir_domain : NULL;
1119 }
1120 
1121 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1122 {
1123         struct intel_iommu *iommu;
1124 
1125         if (!info)
1126                 return NULL;
1127 
1128         switch (info->type) {
1129         case X86_IRQ_ALLOC_TYPE_MSI:
1130         case X86_IRQ_ALLOC_TYPE_MSIX:
1131                 iommu = map_dev_to_ir(info->msi_dev);
1132                 if (iommu)
1133                         return iommu->ir_msi_domain;
1134                 break;
1135         default:
1136                 break;
1137         }
1138 
1139         return NULL;
1140 }
1141 
1142 struct irq_remap_ops intel_irq_remap_ops = {
1143         .prepare                = intel_prepare_irq_remapping,
1144         .enable                 = intel_enable_irq_remapping,
1145         .disable                = disable_irq_remapping,
1146         .reenable               = reenable_irq_remapping,
1147         .enable_faulting        = enable_drhd_fault_handling,
1148         .get_ir_irq_domain      = intel_get_ir_irq_domain,
1149         .get_irq_domain         = intel_get_irq_domain,
1150 };
1151 
1152 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1153 {
1154         struct intel_ir_data *ir_data = irqd->chip_data;
1155         struct irte *irte = &ir_data->irte_entry;
1156         struct irq_cfg *cfg = irqd_cfg(irqd);
1157 
1158         /*
1159          * Atomically updates the IRTE with the new destination, vector
1160          * and flushes the interrupt entry cache.
1161          */
1162         irte->vector = cfg->vector;
1163         irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1164 
1165         /* Update the hardware only if the interrupt is in remapped mode. */
1166         if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1167                 modify_irte(&ir_data->irq_2_iommu, irte);
1168 }
1169 
1170 /*
1171  * Migrate the IO-APIC irq in the presence of intr-remapping.
1172  *
1173  * For both level and edge triggered, irq migration is a simple atomic
1174  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1175  *
1176  * For level triggered, we eliminate the io-apic RTE modification (with the
1177  * updated vector information), by using a virtual vector (io-apic pin number).
1178  * Real vector that is used for interrupting cpu will be coming from
1179  * the interrupt-remapping table entry.
1180  *
1181  * As the migration is a simple atomic update of IRTE, the same mechanism
1182  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1183  */
1184 static int
1185 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1186                       bool force)
1187 {
1188         struct irq_data *parent = data->parent_data;
1189         struct irq_cfg *cfg = irqd_cfg(data);
1190         int ret;
1191 
1192         ret = parent->chip->irq_set_affinity(parent, mask, force);
1193         if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1194                 return ret;
1195 
1196         intel_ir_reconfigure_irte(data, false);
1197         /*
1198          * After this point, all the interrupts will start arriving
1199          * at the new destination. So, time to cleanup the previous
1200          * vector allocation.
1201          */
1202         send_cleanup_vector(cfg);
1203 
1204         return IRQ_SET_MASK_OK_DONE;
1205 }
1206 
1207 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1208                                      struct msi_msg *msg)
1209 {
1210         struct intel_ir_data *ir_data = irq_data->chip_data;
1211 
1212         *msg = ir_data->msi_entry;
1213 }
1214 
1215 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1216 {
1217         struct intel_ir_data *ir_data = data->chip_data;
1218         struct vcpu_data *vcpu_pi_info = info;
1219 
1220         /* stop posting interrupts, back to remapping mode */
1221         if (!vcpu_pi_info) {
1222                 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1223         } else {
1224                 struct irte irte_pi;
1225 
1226                 /*
1227                  * We are not caching the posted interrupt entry. We
1228                  * copy the data from the remapped entry and modify
1229                  * the fields which are relevant for posted mode. The
1230                  * cached remapped entry is used for switching back to
1231                  * remapped mode.
1232                  */
1233                 memset(&irte_pi, 0, sizeof(irte_pi));
1234                 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1235 
1236                 /* Update the posted mode fields */
1237                 irte_pi.p_pst = 1;
1238                 irte_pi.p_urgent = 0;
1239                 irte_pi.p_vector = vcpu_pi_info->vector;
1240                 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1241                                 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1242                 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1243                                 ~(-1UL << PDA_HIGH_BIT);
1244 
1245                 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1246         }
1247 
1248         return 0;
1249 }
1250 
1251 static struct irq_chip intel_ir_chip = {
1252         .name                   = "INTEL-IR",
1253         .irq_ack                = apic_ack_irq,
1254         .irq_set_affinity       = intel_ir_set_affinity,
1255         .irq_compose_msi_msg    = intel_ir_compose_msi_msg,
1256         .irq_set_vcpu_affinity  = intel_ir_set_vcpu_affinity,
1257 };
1258 
1259 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1260                                              struct irq_cfg *irq_cfg,
1261                                              struct irq_alloc_info *info,
1262                                              int index, int sub_handle)
1263 {
1264         struct IR_IO_APIC_route_entry *entry;
1265         struct irte *irte = &data->irte_entry;
1266         struct msi_msg *msg = &data->msi_entry;
1267 
1268         prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1269         switch (info->type) {
1270         case X86_IRQ_ALLOC_TYPE_IOAPIC:
1271                 /* Set source-id of interrupt request */
1272                 set_ioapic_sid(irte, info->ioapic_id);
1273                 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1274                         info->ioapic_id, irte->present, irte->fpd,
1275                         irte->dst_mode, irte->redir_hint,
1276                         irte->trigger_mode, irte->dlvry_mode,
1277                         irte->avail, irte->vector, irte->dest_id,
1278                         irte->sid, irte->sq, irte->svt);
1279 
1280                 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1281                 info->ioapic_entry = NULL;
1282                 memset(entry, 0, sizeof(*entry));
1283                 entry->index2   = (index >> 15) & 0x1;
1284                 entry->zero     = 0;
1285                 entry->format   = 1;
1286                 entry->index    = (index & 0x7fff);
1287                 /*
1288                  * IO-APIC RTE will be configured with virtual vector.
1289                  * irq handler will do the explicit EOI to the io-apic.
1290                  */
1291                 entry->vector   = info->ioapic_pin;
1292                 entry->mask     = 0;                    /* enable IRQ */
1293                 entry->trigger  = info->ioapic_trigger;
1294                 entry->polarity = info->ioapic_polarity;
1295                 if (info->ioapic_trigger)
1296                         entry->mask = 1; /* Mask level triggered irqs. */
1297                 break;
1298 
1299         case X86_IRQ_ALLOC_TYPE_HPET:
1300         case X86_IRQ_ALLOC_TYPE_MSI:
1301         case X86_IRQ_ALLOC_TYPE_MSIX:
1302                 if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1303                         set_hpet_sid(irte, info->hpet_id);
1304                 else
1305                         set_msi_sid(irte, info->msi_dev);
1306 
1307                 msg->address_hi = MSI_ADDR_BASE_HI;
1308                 msg->data = sub_handle;
1309                 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1310                                   MSI_ADDR_IR_SHV |
1311                                   MSI_ADDR_IR_INDEX1(index) |
1312                                   MSI_ADDR_IR_INDEX2(index);
1313                 break;
1314 
1315         default:
1316                 BUG_ON(1);
1317                 break;
1318         }
1319 }
1320 
1321 static void intel_free_irq_resources(struct irq_domain *domain,
1322                                      unsigned int virq, unsigned int nr_irqs)
1323 {
1324         struct irq_data *irq_data;
1325         struct intel_ir_data *data;
1326         struct irq_2_iommu *irq_iommu;
1327         unsigned long flags;
1328         int i;
1329         for (i = 0; i < nr_irqs; i++) {
1330                 irq_data = irq_domain_get_irq_data(domain, virq  + i);
1331                 if (irq_data && irq_data->chip_data) {
1332                         data = irq_data->chip_data;
1333                         irq_iommu = &data->irq_2_iommu;
1334                         raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1335                         clear_entries(irq_iommu);
1336                         raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1337                         irq_domain_reset_irq_data(irq_data);
1338                         kfree(data);
1339                 }
1340         }
1341 }
1342 
1343 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1344                                      unsigned int virq, unsigned int nr_irqs,
1345                                      void *arg)
1346 {
1347         struct intel_iommu *iommu = domain->host_data;
1348         struct irq_alloc_info *info = arg;
1349         struct intel_ir_data *data, *ird;
1350         struct irq_data *irq_data;
1351         struct irq_cfg *irq_cfg;
1352         int i, ret, index;
1353 
1354         if (!info || !iommu)
1355                 return -EINVAL;
1356         if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1357             info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1358                 return -EINVAL;
1359 
1360         /*
1361          * With IRQ remapping enabled, don't need contiguous CPU vectors
1362          * to support multiple MSI interrupts.
1363          */
1364         if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1365                 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1366 
1367         ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1368         if (ret < 0)
1369                 return ret;
1370 
1371         ret = -ENOMEM;
1372         data = kzalloc(sizeof(*data), GFP_KERNEL);
1373         if (!data)
1374                 goto out_free_parent;
1375 
1376         down_read(&dmar_global_lock);
1377         index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1378         up_read(&dmar_global_lock);
1379         if (index < 0) {
1380                 pr_warn("Failed to allocate IRTE\n");
1381                 kfree(data);
1382                 goto out_free_parent;
1383         }
1384 
1385         for (i = 0; i < nr_irqs; i++) {
1386                 irq_data = irq_domain_get_irq_data(domain, virq + i);
1387                 irq_cfg = irqd_cfg(irq_data);
1388                 if (!irq_data || !irq_cfg) {
1389                         ret = -EINVAL;
1390                         goto out_free_data;
1391                 }
1392 
1393                 if (i > 0) {
1394                         ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1395                         if (!ird)
1396                                 goto out_free_data;
1397                         /* Initialize the common data */
1398                         ird->irq_2_iommu = data->irq_2_iommu;
1399                         ird->irq_2_iommu.sub_handle = i;
1400                 } else {
1401                         ird = data;
1402                 }
1403 
1404                 irq_data->hwirq = (index << 16) + i;
1405                 irq_data->chip_data = ird;
1406                 irq_data->chip = &intel_ir_chip;
1407                 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1408                 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1409         }
1410         return 0;
1411 
1412 out_free_data:
1413         intel_free_irq_resources(domain, virq, i);
1414 out_free_parent:
1415         irq_domain_free_irqs_common(domain, virq, nr_irqs);
1416         return ret;
1417 }
1418 
1419 static void intel_irq_remapping_free(struct irq_domain *domain,
1420                                      unsigned int virq, unsigned int nr_irqs)
1421 {
1422         intel_free_irq_resources(domain, virq, nr_irqs);
1423         irq_domain_free_irqs_common(domain, virq, nr_irqs);
1424 }
1425 
1426 static int intel_irq_remapping_activate(struct irq_domain *domain,
1427                                         struct irq_data *irq_data, bool reserve)
1428 {
1429         intel_ir_reconfigure_irte(irq_data, true);
1430         return 0;
1431 }
1432 
1433 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1434                                            struct irq_data *irq_data)
1435 {
1436         struct intel_ir_data *data = irq_data->chip_data;
1437         struct irte entry;
1438 
1439         memset(&entry, 0, sizeof(entry));
1440         modify_irte(&data->irq_2_iommu, &entry);
1441 }
1442 
1443 static const struct irq_domain_ops intel_ir_domain_ops = {
1444         .alloc = intel_irq_remapping_alloc,
1445         .free = intel_irq_remapping_free,
1446         .activate = intel_irq_remapping_activate,
1447         .deactivate = intel_irq_remapping_deactivate,
1448 };
1449 
1450 /*
1451  * Support of Interrupt Remapping Unit Hotplug
1452  */
1453 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1454 {
1455         int ret;
1456         int eim = x2apic_enabled();
1457 
1458         if (eim && !ecap_eim_support(iommu->ecap)) {
1459                 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1460                         iommu->reg_phys, iommu->ecap);
1461                 return -ENODEV;
1462         }
1463 
1464         if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1465                 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1466                         iommu->reg_phys);
1467                 return -ENODEV;
1468         }
1469 
1470         /* TODO: check all IOAPICs are covered by IOMMU */
1471 
1472         /* Setup Interrupt-remapping now. */
1473         ret = intel_setup_irq_remapping(iommu);
1474         if (ret) {
1475                 pr_err("Failed to setup irq remapping for %s\n",
1476                        iommu->name);
1477                 intel_teardown_irq_remapping(iommu);
1478                 ir_remove_ioapic_hpet_scope(iommu);
1479         } else {
1480                 iommu_enable_irq_remapping(iommu);
1481         }
1482 
1483         return ret;
1484 }
1485 
1486 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1487 {
1488         int ret = 0;
1489         struct intel_iommu *iommu = dmaru->iommu;
1490 
1491         if (!irq_remapping_enabled)
1492                 return 0;
1493         if (iommu == NULL)
1494                 return -EINVAL;
1495         if (!ecap_ir_support(iommu->ecap))
1496                 return 0;
1497         if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1498             !cap_pi_support(iommu->cap))
1499                 return -EBUSY;
1500 
1501         if (insert) {
1502                 if (!iommu->ir_table)
1503                         ret = dmar_ir_add(dmaru, iommu);
1504         } else {
1505                 if (iommu->ir_table) {
1506                         if (!bitmap_empty(iommu->ir_table->bitmap,
1507                                           INTR_REMAP_TABLE_ENTRIES)) {
1508                                 ret = -EBUSY;
1509                         } else {
1510                                 iommu_disable_irq_remapping(iommu);
1511                                 intel_teardown_irq_remapping(iommu);
1512                                 ir_remove_ioapic_hpet_scope(iommu);
1513                         }
1514                 }
1515         }
1516 
1517         return ret;
1518 }

/* [<][>][^][v][top][bottom][index][help] */