root/drivers/usb/gadget/udc/core.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. usb_ep_set_maxpacket_limit
  2. usb_ep_enable
  3. usb_ep_disable
  4. usb_ep_alloc_request
  5. usb_ep_free_request
  6. usb_ep_queue
  7. usb_ep_dequeue
  8. usb_ep_set_halt
  9. usb_ep_clear_halt
  10. usb_ep_set_wedge
  11. usb_ep_fifo_status
  12. usb_ep_fifo_flush
  13. usb_gadget_frame_number
  14. usb_gadget_wakeup
  15. usb_gadget_set_selfpowered
  16. usb_gadget_clear_selfpowered
  17. usb_gadget_vbus_connect
  18. usb_gadget_vbus_draw
  19. usb_gadget_vbus_disconnect
  20. usb_gadget_connect
  21. usb_gadget_disconnect
  22. usb_gadget_deactivate
  23. usb_gadget_activate
  24. usb_gadget_map_request_by_dev
  25. usb_gadget_map_request
  26. usb_gadget_unmap_request_by_dev
  27. usb_gadget_unmap_request
  28. usb_gadget_giveback_request
  29. gadget_find_ep_by_name
  30. usb_gadget_ep_match_desc
  31. usb_gadget_state_work
  32. usb_gadget_set_state
  33. usb_udc_connect_control
  34. usb_udc_vbus_handler
  35. usb_gadget_udc_reset
  36. usb_gadget_udc_start
  37. usb_gadget_udc_stop
  38. usb_gadget_udc_set_speed
  39. usb_udc_release
  40. usb_udc_nop_release
  41. check_pending_gadget_drivers
  42. usb_add_gadget_udc_release
  43. usb_get_gadget_udc_name
  44. usb_add_gadget_udc
  45. usb_gadget_remove_driver
  46. usb_del_gadget_udc
  47. udc_bind_to_driver
  48. usb_gadget_probe_driver
  49. usb_gadget_unregister_driver
  50. srp_store
  51. soft_connect_store
  52. state_show
  53. function_show
  54. usb_udc_uevent
  55. usb_udc_init
  56. usb_udc_exit

   1 // SPDX-License-Identifier: GPL-2.0
   2 /**
   3  * udc.c - Core UDC Framework
   4  *
   5  * Copyright (C) 2010 Texas Instruments
   6  * Author: Felipe Balbi <balbi@ti.com>
   7  */
   8 
   9 #include <linux/kernel.h>
  10 #include <linux/module.h>
  11 #include <linux/device.h>
  12 #include <linux/list.h>
  13 #include <linux/err.h>
  14 #include <linux/dma-mapping.h>
  15 #include <linux/sched/task_stack.h>
  16 #include <linux/workqueue.h>
  17 
  18 #include <linux/usb/ch9.h>
  19 #include <linux/usb/gadget.h>
  20 #include <linux/usb.h>
  21 
  22 #include "trace.h"
  23 
  24 /**
  25  * struct usb_udc - describes one usb device controller
  26  * @driver - the gadget driver pointer. For use by the class code
  27  * @dev - the child device to the actual controller
  28  * @gadget - the gadget. For use by the class code
  29  * @list - for use by the udc class driver
  30  * @vbus - for udcs who care about vbus status, this value is real vbus status;
  31  * for udcs who do not care about vbus status, this value is always true
  32  *
  33  * This represents the internal data structure which is used by the UDC-class
  34  * to hold information about udc driver and gadget together.
  35  */
  36 struct usb_udc {
  37         struct usb_gadget_driver        *driver;
  38         struct usb_gadget               *gadget;
  39         struct device                   dev;
  40         struct list_head                list;
  41         bool                            vbus;
  42 };
  43 
  44 static struct class *udc_class;
  45 static LIST_HEAD(udc_list);
  46 static LIST_HEAD(gadget_driver_pending_list);
  47 static DEFINE_MUTEX(udc_lock);
  48 
  49 static int udc_bind_to_driver(struct usb_udc *udc,
  50                 struct usb_gadget_driver *driver);
  51 
  52 /* ------------------------------------------------------------------------- */
  53 
  54 /**
  55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
  56  * @ep:the endpoint being configured
  57  * @maxpacket_limit:value of maximum packet size limit
  58  *
  59  * This function should be used only in UDC drivers to initialize endpoint
  60  * (usually in probe function).
  61  */
  62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
  63                                               unsigned maxpacket_limit)
  64 {
  65         ep->maxpacket_limit = maxpacket_limit;
  66         ep->maxpacket = maxpacket_limit;
  67 
  68         trace_usb_ep_set_maxpacket_limit(ep, 0);
  69 }
  70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
  71 
  72 /**
  73  * usb_ep_enable - configure endpoint, making it usable
  74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
  75  *      drivers discover endpoints through the ep_list of a usb_gadget.
  76  *
  77  * When configurations are set, or when interface settings change, the driver
  78  * will enable or disable the relevant endpoints.  while it is enabled, an
  79  * endpoint may be used for i/o until the driver receives a disconnect() from
  80  * the host or until the endpoint is disabled.
  81  *
  82  * the ep0 implementation (which calls this routine) must ensure that the
  83  * hardware capabilities of each endpoint match the descriptor provided
  84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
  85  * for interrupt transfers as well as bulk, but it likely couldn't be used
  86  * for iso transfers or for endpoint 14.  some endpoints are fully
  87  * configurable, with more generic names like "ep-a".  (remember that for
  88  * USB, "in" means "towards the USB master".)
  89  *
  90  * This routine must be called in process context.
  91  *
  92  * returns zero, or a negative error code.
  93  */
  94 int usb_ep_enable(struct usb_ep *ep)
  95 {
  96         int ret = 0;
  97 
  98         if (ep->enabled)
  99                 goto out;
 100 
 101         /* UDC drivers can't handle endpoints with maxpacket size 0 */
 102         if (usb_endpoint_maxp(ep->desc) == 0) {
 103                 /*
 104                  * We should log an error message here, but we can't call
 105                  * dev_err() because there's no way to find the gadget
 106                  * given only ep.
 107                  */
 108                 ret = -EINVAL;
 109                 goto out;
 110         }
 111 
 112         ret = ep->ops->enable(ep, ep->desc);
 113         if (ret)
 114                 goto out;
 115 
 116         ep->enabled = true;
 117 
 118 out:
 119         trace_usb_ep_enable(ep, ret);
 120 
 121         return ret;
 122 }
 123 EXPORT_SYMBOL_GPL(usb_ep_enable);
 124 
 125 /**
 126  * usb_ep_disable - endpoint is no longer usable
 127  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
 128  *
 129  * no other task may be using this endpoint when this is called.
 130  * any pending and uncompleted requests will complete with status
 131  * indicating disconnect (-ESHUTDOWN) before this call returns.
 132  * gadget drivers must call usb_ep_enable() again before queueing
 133  * requests to the endpoint.
 134  *
 135  * This routine must be called in process context.
 136  *
 137  * returns zero, or a negative error code.
 138  */
 139 int usb_ep_disable(struct usb_ep *ep)
 140 {
 141         int ret = 0;
 142 
 143         if (!ep->enabled)
 144                 goto out;
 145 
 146         ret = ep->ops->disable(ep);
 147         if (ret)
 148                 goto out;
 149 
 150         ep->enabled = false;
 151 
 152 out:
 153         trace_usb_ep_disable(ep, ret);
 154 
 155         return ret;
 156 }
 157 EXPORT_SYMBOL_GPL(usb_ep_disable);
 158 
 159 /**
 160  * usb_ep_alloc_request - allocate a request object to use with this endpoint
 161  * @ep:the endpoint to be used with with the request
 162  * @gfp_flags:GFP_* flags to use
 163  *
 164  * Request objects must be allocated with this call, since they normally
 165  * need controller-specific setup and may even need endpoint-specific
 166  * resources such as allocation of DMA descriptors.
 167  * Requests may be submitted with usb_ep_queue(), and receive a single
 168  * completion callback.  Free requests with usb_ep_free_request(), when
 169  * they are no longer needed.
 170  *
 171  * Returns the request, or null if one could not be allocated.
 172  */
 173 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
 174                                                        gfp_t gfp_flags)
 175 {
 176         struct usb_request *req = NULL;
 177 
 178         req = ep->ops->alloc_request(ep, gfp_flags);
 179 
 180         trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
 181 
 182         return req;
 183 }
 184 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
 185 
 186 /**
 187  * usb_ep_free_request - frees a request object
 188  * @ep:the endpoint associated with the request
 189  * @req:the request being freed
 190  *
 191  * Reverses the effect of usb_ep_alloc_request().
 192  * Caller guarantees the request is not queued, and that it will
 193  * no longer be requeued (or otherwise used).
 194  */
 195 void usb_ep_free_request(struct usb_ep *ep,
 196                                        struct usb_request *req)
 197 {
 198         trace_usb_ep_free_request(ep, req, 0);
 199         ep->ops->free_request(ep, req);
 200 }
 201 EXPORT_SYMBOL_GPL(usb_ep_free_request);
 202 
 203 /**
 204  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
 205  * @ep:the endpoint associated with the request
 206  * @req:the request being submitted
 207  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
 208  *      pre-allocate all necessary memory with the request.
 209  *
 210  * This tells the device controller to perform the specified request through
 211  * that endpoint (reading or writing a buffer).  When the request completes,
 212  * including being canceled by usb_ep_dequeue(), the request's completion
 213  * routine is called to return the request to the driver.  Any endpoint
 214  * (except control endpoints like ep0) may have more than one transfer
 215  * request queued; they complete in FIFO order.  Once a gadget driver
 216  * submits a request, that request may not be examined or modified until it
 217  * is given back to that driver through the completion callback.
 218  *
 219  * Each request is turned into one or more packets.  The controller driver
 220  * never merges adjacent requests into the same packet.  OUT transfers
 221  * will sometimes use data that's already buffered in the hardware.
 222  * Drivers can rely on the fact that the first byte of the request's buffer
 223  * always corresponds to the first byte of some USB packet, for both
 224  * IN and OUT transfers.
 225  *
 226  * Bulk endpoints can queue any amount of data; the transfer is packetized
 227  * automatically.  The last packet will be short if the request doesn't fill it
 228  * out completely.  Zero length packets (ZLPs) should be avoided in portable
 229  * protocols since not all usb hardware can successfully handle zero length
 230  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
 231  * the request 'zero' flag is set.)  Bulk endpoints may also be used
 232  * for interrupt transfers; but the reverse is not true, and some endpoints
 233  * won't support every interrupt transfer.  (Such as 768 byte packets.)
 234  *
 235  * Interrupt-only endpoints are less functional than bulk endpoints, for
 236  * example by not supporting queueing or not handling buffers that are
 237  * larger than the endpoint's maxpacket size.  They may also treat data
 238  * toggle differently.
 239  *
 240  * Control endpoints ... after getting a setup() callback, the driver queues
 241  * one response (even if it would be zero length).  That enables the
 242  * status ack, after transferring data as specified in the response.  Setup
 243  * functions may return negative error codes to generate protocol stalls.
 244  * (Note that some USB device controllers disallow protocol stall responses
 245  * in some cases.)  When control responses are deferred (the response is
 246  * written after the setup callback returns), then usb_ep_set_halt() may be
 247  * used on ep0 to trigger protocol stalls.  Depending on the controller,
 248  * it may not be possible to trigger a status-stage protocol stall when the
 249  * data stage is over, that is, from within the response's completion
 250  * routine.
 251  *
 252  * For periodic endpoints, like interrupt or isochronous ones, the usb host
 253  * arranges to poll once per interval, and the gadget driver usually will
 254  * have queued some data to transfer at that time.
 255  *
 256  * Note that @req's ->complete() callback must never be called from
 257  * within usb_ep_queue() as that can create deadlock situations.
 258  *
 259  * This routine may be called in interrupt context.
 260  *
 261  * Returns zero, or a negative error code.  Endpoints that are not enabled
 262  * report errors; errors will also be
 263  * reported when the usb peripheral is disconnected.
 264  *
 265  * If and only if @req is successfully queued (the return value is zero),
 266  * @req->complete() will be called exactly once, when the Gadget core and
 267  * UDC are finished with the request.  When the completion function is called,
 268  * control of the request is returned to the device driver which submitted it.
 269  * The completion handler may then immediately free or reuse @req.
 270  */
 271 int usb_ep_queue(struct usb_ep *ep,
 272                                struct usb_request *req, gfp_t gfp_flags)
 273 {
 274         int ret = 0;
 275 
 276         if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
 277                 ret = -ESHUTDOWN;
 278                 goto out;
 279         }
 280 
 281         ret = ep->ops->queue(ep, req, gfp_flags);
 282 
 283 out:
 284         trace_usb_ep_queue(ep, req, ret);
 285 
 286         return ret;
 287 }
 288 EXPORT_SYMBOL_GPL(usb_ep_queue);
 289 
 290 /**
 291  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
 292  * @ep:the endpoint associated with the request
 293  * @req:the request being canceled
 294  *
 295  * If the request is still active on the endpoint, it is dequeued and
 296  * eventually its completion routine is called (with status -ECONNRESET);
 297  * else a negative error code is returned.  This routine is asynchronous,
 298  * that is, it may return before the completion routine runs.
 299  *
 300  * Note that some hardware can't clear out write fifos (to unlink the request
 301  * at the head of the queue) except as part of disconnecting from usb. Such
 302  * restrictions prevent drivers from supporting configuration changes,
 303  * even to configuration zero (a "chapter 9" requirement).
 304  *
 305  * This routine may be called in interrupt context.
 306  */
 307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
 308 {
 309         int ret;
 310 
 311         ret = ep->ops->dequeue(ep, req);
 312         trace_usb_ep_dequeue(ep, req, ret);
 313 
 314         return ret;
 315 }
 316 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
 317 
 318 /**
 319  * usb_ep_set_halt - sets the endpoint halt feature.
 320  * @ep: the non-isochronous endpoint being stalled
 321  *
 322  * Use this to stall an endpoint, perhaps as an error report.
 323  * Except for control endpoints,
 324  * the endpoint stays halted (will not stream any data) until the host
 325  * clears this feature; drivers may need to empty the endpoint's request
 326  * queue first, to make sure no inappropriate transfers happen.
 327  *
 328  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
 329  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
 330  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
 331  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
 332  *
 333  * This routine may be called in interrupt context.
 334  *
 335  * Returns zero, or a negative error code.  On success, this call sets
 336  * underlying hardware state that blocks data transfers.
 337  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
 338  * transfer requests are still queued, or if the controller hardware
 339  * (usually a FIFO) still holds bytes that the host hasn't collected.
 340  */
 341 int usb_ep_set_halt(struct usb_ep *ep)
 342 {
 343         int ret;
 344 
 345         ret = ep->ops->set_halt(ep, 1);
 346         trace_usb_ep_set_halt(ep, ret);
 347 
 348         return ret;
 349 }
 350 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
 351 
 352 /**
 353  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
 354  * @ep:the bulk or interrupt endpoint being reset
 355  *
 356  * Use this when responding to the standard usb "set interface" request,
 357  * for endpoints that aren't reconfigured, after clearing any other state
 358  * in the endpoint's i/o queue.
 359  *
 360  * This routine may be called in interrupt context.
 361  *
 362  * Returns zero, or a negative error code.  On success, this call clears
 363  * the underlying hardware state reflecting endpoint halt and data toggle.
 364  * Note that some hardware can't support this request (like pxa2xx_udc),
 365  * and accordingly can't correctly implement interface altsettings.
 366  */
 367 int usb_ep_clear_halt(struct usb_ep *ep)
 368 {
 369         int ret;
 370 
 371         ret = ep->ops->set_halt(ep, 0);
 372         trace_usb_ep_clear_halt(ep, ret);
 373 
 374         return ret;
 375 }
 376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
 377 
 378 /**
 379  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
 380  * @ep: the endpoint being wedged
 381  *
 382  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
 383  * requests. If the gadget driver clears the halt status, it will
 384  * automatically unwedge the endpoint.
 385  *
 386  * This routine may be called in interrupt context.
 387  *
 388  * Returns zero on success, else negative errno.
 389  */
 390 int usb_ep_set_wedge(struct usb_ep *ep)
 391 {
 392         int ret;
 393 
 394         if (ep->ops->set_wedge)
 395                 ret = ep->ops->set_wedge(ep);
 396         else
 397                 ret = ep->ops->set_halt(ep, 1);
 398 
 399         trace_usb_ep_set_wedge(ep, ret);
 400 
 401         return ret;
 402 }
 403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
 404 
 405 /**
 406  * usb_ep_fifo_status - returns number of bytes in fifo, or error
 407  * @ep: the endpoint whose fifo status is being checked.
 408  *
 409  * FIFO endpoints may have "unclaimed data" in them in certain cases,
 410  * such as after aborted transfers.  Hosts may not have collected all
 411  * the IN data written by the gadget driver (and reported by a request
 412  * completion).  The gadget driver may not have collected all the data
 413  * written OUT to it by the host.  Drivers that need precise handling for
 414  * fault reporting or recovery may need to use this call.
 415  *
 416  * This routine may be called in interrupt context.
 417  *
 418  * This returns the number of such bytes in the fifo, or a negative
 419  * errno if the endpoint doesn't use a FIFO or doesn't support such
 420  * precise handling.
 421  */
 422 int usb_ep_fifo_status(struct usb_ep *ep)
 423 {
 424         int ret;
 425 
 426         if (ep->ops->fifo_status)
 427                 ret = ep->ops->fifo_status(ep);
 428         else
 429                 ret = -EOPNOTSUPP;
 430 
 431         trace_usb_ep_fifo_status(ep, ret);
 432 
 433         return ret;
 434 }
 435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
 436 
 437 /**
 438  * usb_ep_fifo_flush - flushes contents of a fifo
 439  * @ep: the endpoint whose fifo is being flushed.
 440  *
 441  * This call may be used to flush the "unclaimed data" that may exist in
 442  * an endpoint fifo after abnormal transaction terminations.  The call
 443  * must never be used except when endpoint is not being used for any
 444  * protocol translation.
 445  *
 446  * This routine may be called in interrupt context.
 447  */
 448 void usb_ep_fifo_flush(struct usb_ep *ep)
 449 {
 450         if (ep->ops->fifo_flush)
 451                 ep->ops->fifo_flush(ep);
 452 
 453         trace_usb_ep_fifo_flush(ep, 0);
 454 }
 455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
 456 
 457 /* ------------------------------------------------------------------------- */
 458 
 459 /**
 460  * usb_gadget_frame_number - returns the current frame number
 461  * @gadget: controller that reports the frame number
 462  *
 463  * Returns the usb frame number, normally eleven bits from a SOF packet,
 464  * or negative errno if this device doesn't support this capability.
 465  */
 466 int usb_gadget_frame_number(struct usb_gadget *gadget)
 467 {
 468         int ret;
 469 
 470         ret = gadget->ops->get_frame(gadget);
 471 
 472         trace_usb_gadget_frame_number(gadget, ret);
 473 
 474         return ret;
 475 }
 476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
 477 
 478 /**
 479  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
 480  * @gadget: controller used to wake up the host
 481  *
 482  * Returns zero on success, else negative error code if the hardware
 483  * doesn't support such attempts, or its support has not been enabled
 484  * by the usb host.  Drivers must return device descriptors that report
 485  * their ability to support this, or hosts won't enable it.
 486  *
 487  * This may also try to use SRP to wake the host and start enumeration,
 488  * even if OTG isn't otherwise in use.  OTG devices may also start
 489  * remote wakeup even when hosts don't explicitly enable it.
 490  */
 491 int usb_gadget_wakeup(struct usb_gadget *gadget)
 492 {
 493         int ret = 0;
 494 
 495         if (!gadget->ops->wakeup) {
 496                 ret = -EOPNOTSUPP;
 497                 goto out;
 498         }
 499 
 500         ret = gadget->ops->wakeup(gadget);
 501 
 502 out:
 503         trace_usb_gadget_wakeup(gadget, ret);
 504 
 505         return ret;
 506 }
 507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
 508 
 509 /**
 510  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
 511  * @gadget:the device being declared as self-powered
 512  *
 513  * this affects the device status reported by the hardware driver
 514  * to reflect that it now has a local power supply.
 515  *
 516  * returns zero on success, else negative errno.
 517  */
 518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
 519 {
 520         int ret = 0;
 521 
 522         if (!gadget->ops->set_selfpowered) {
 523                 ret = -EOPNOTSUPP;
 524                 goto out;
 525         }
 526 
 527         ret = gadget->ops->set_selfpowered(gadget, 1);
 528 
 529 out:
 530         trace_usb_gadget_set_selfpowered(gadget, ret);
 531 
 532         return ret;
 533 }
 534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
 535 
 536 /**
 537  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
 538  * @gadget:the device being declared as bus-powered
 539  *
 540  * this affects the device status reported by the hardware driver.
 541  * some hardware may not support bus-powered operation, in which
 542  * case this feature's value can never change.
 543  *
 544  * returns zero on success, else negative errno.
 545  */
 546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
 547 {
 548         int ret = 0;
 549 
 550         if (!gadget->ops->set_selfpowered) {
 551                 ret = -EOPNOTSUPP;
 552                 goto out;
 553         }
 554 
 555         ret = gadget->ops->set_selfpowered(gadget, 0);
 556 
 557 out:
 558         trace_usb_gadget_clear_selfpowered(gadget, ret);
 559 
 560         return ret;
 561 }
 562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
 563 
 564 /**
 565  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
 566  * @gadget:The device which now has VBUS power.
 567  * Context: can sleep
 568  *
 569  * This call is used by a driver for an external transceiver (or GPIO)
 570  * that detects a VBUS power session starting.  Common responses include
 571  * resuming the controller, activating the D+ (or D-) pullup to let the
 572  * host detect that a USB device is attached, and starting to draw power
 573  * (8mA or possibly more, especially after SET_CONFIGURATION).
 574  *
 575  * Returns zero on success, else negative errno.
 576  */
 577 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
 578 {
 579         int ret = 0;
 580 
 581         if (!gadget->ops->vbus_session) {
 582                 ret = -EOPNOTSUPP;
 583                 goto out;
 584         }
 585 
 586         ret = gadget->ops->vbus_session(gadget, 1);
 587 
 588 out:
 589         trace_usb_gadget_vbus_connect(gadget, ret);
 590 
 591         return ret;
 592 }
 593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
 594 
 595 /**
 596  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
 597  * @gadget:The device whose VBUS usage is being described
 598  * @mA:How much current to draw, in milliAmperes.  This should be twice
 599  *      the value listed in the configuration descriptor bMaxPower field.
 600  *
 601  * This call is used by gadget drivers during SET_CONFIGURATION calls,
 602  * reporting how much power the device may consume.  For example, this
 603  * could affect how quickly batteries are recharged.
 604  *
 605  * Returns zero on success, else negative errno.
 606  */
 607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
 608 {
 609         int ret = 0;
 610 
 611         if (!gadget->ops->vbus_draw) {
 612                 ret = -EOPNOTSUPP;
 613                 goto out;
 614         }
 615 
 616         ret = gadget->ops->vbus_draw(gadget, mA);
 617         if (!ret)
 618                 gadget->mA = mA;
 619 
 620 out:
 621         trace_usb_gadget_vbus_draw(gadget, ret);
 622 
 623         return ret;
 624 }
 625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
 626 
 627 /**
 628  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
 629  * @gadget:the device whose VBUS supply is being described
 630  * Context: can sleep
 631  *
 632  * This call is used by a driver for an external transceiver (or GPIO)
 633  * that detects a VBUS power session ending.  Common responses include
 634  * reversing everything done in usb_gadget_vbus_connect().
 635  *
 636  * Returns zero on success, else negative errno.
 637  */
 638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
 639 {
 640         int ret = 0;
 641 
 642         if (!gadget->ops->vbus_session) {
 643                 ret = -EOPNOTSUPP;
 644                 goto out;
 645         }
 646 
 647         ret = gadget->ops->vbus_session(gadget, 0);
 648 
 649 out:
 650         trace_usb_gadget_vbus_disconnect(gadget, ret);
 651 
 652         return ret;
 653 }
 654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
 655 
 656 /**
 657  * usb_gadget_connect - software-controlled connect to USB host
 658  * @gadget:the peripheral being connected
 659  *
 660  * Enables the D+ (or potentially D-) pullup.  The host will start
 661  * enumerating this gadget when the pullup is active and a VBUS session
 662  * is active (the link is powered).  This pullup is always enabled unless
 663  * usb_gadget_disconnect() has been used to disable it.
 664  *
 665  * Returns zero on success, else negative errno.
 666  */
 667 int usb_gadget_connect(struct usb_gadget *gadget)
 668 {
 669         int ret = 0;
 670 
 671         if (!gadget->ops->pullup) {
 672                 ret = -EOPNOTSUPP;
 673                 goto out;
 674         }
 675 
 676         if (gadget->deactivated) {
 677                 /*
 678                  * If gadget is deactivated we only save new state.
 679                  * Gadget will be connected automatically after activation.
 680                  */
 681                 gadget->connected = true;
 682                 goto out;
 683         }
 684 
 685         ret = gadget->ops->pullup(gadget, 1);
 686         if (!ret)
 687                 gadget->connected = 1;
 688 
 689 out:
 690         trace_usb_gadget_connect(gadget, ret);
 691 
 692         return ret;
 693 }
 694 EXPORT_SYMBOL_GPL(usb_gadget_connect);
 695 
 696 /**
 697  * usb_gadget_disconnect - software-controlled disconnect from USB host
 698  * @gadget:the peripheral being disconnected
 699  *
 700  * Disables the D+ (or potentially D-) pullup, which the host may see
 701  * as a disconnect (when a VBUS session is active).  Not all systems
 702  * support software pullup controls.
 703  *
 704  * Following a successful disconnect, invoke the ->disconnect() callback
 705  * for the current gadget driver so that UDC drivers don't need to.
 706  *
 707  * Returns zero on success, else negative errno.
 708  */
 709 int usb_gadget_disconnect(struct usb_gadget *gadget)
 710 {
 711         int ret = 0;
 712 
 713         if (!gadget->ops->pullup) {
 714                 ret = -EOPNOTSUPP;
 715                 goto out;
 716         }
 717 
 718         if (gadget->deactivated) {
 719                 /*
 720                  * If gadget is deactivated we only save new state.
 721                  * Gadget will stay disconnected after activation.
 722                  */
 723                 gadget->connected = false;
 724                 goto out;
 725         }
 726 
 727         ret = gadget->ops->pullup(gadget, 0);
 728         if (!ret) {
 729                 gadget->connected = 0;
 730                 gadget->udc->driver->disconnect(gadget);
 731         }
 732 
 733 out:
 734         trace_usb_gadget_disconnect(gadget, ret);
 735 
 736         return ret;
 737 }
 738 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
 739 
 740 /**
 741  * usb_gadget_deactivate - deactivate function which is not ready to work
 742  * @gadget: the peripheral being deactivated
 743  *
 744  * This routine may be used during the gadget driver bind() call to prevent
 745  * the peripheral from ever being visible to the USB host, unless later
 746  * usb_gadget_activate() is called.  For example, user mode components may
 747  * need to be activated before the system can talk to hosts.
 748  *
 749  * Returns zero on success, else negative errno.
 750  */
 751 int usb_gadget_deactivate(struct usb_gadget *gadget)
 752 {
 753         int ret = 0;
 754 
 755         if (gadget->deactivated)
 756                 goto out;
 757 
 758         if (gadget->connected) {
 759                 ret = usb_gadget_disconnect(gadget);
 760                 if (ret)
 761                         goto out;
 762 
 763                 /*
 764                  * If gadget was being connected before deactivation, we want
 765                  * to reconnect it in usb_gadget_activate().
 766                  */
 767                 gadget->connected = true;
 768         }
 769         gadget->deactivated = true;
 770 
 771 out:
 772         trace_usb_gadget_deactivate(gadget, ret);
 773 
 774         return ret;
 775 }
 776 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
 777 
 778 /**
 779  * usb_gadget_activate - activate function which is not ready to work
 780  * @gadget: the peripheral being activated
 781  *
 782  * This routine activates gadget which was previously deactivated with
 783  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
 784  *
 785  * Returns zero on success, else negative errno.
 786  */
 787 int usb_gadget_activate(struct usb_gadget *gadget)
 788 {
 789         int ret = 0;
 790 
 791         if (!gadget->deactivated)
 792                 goto out;
 793 
 794         gadget->deactivated = false;
 795 
 796         /*
 797          * If gadget has been connected before deactivation, or became connected
 798          * while it was being deactivated, we call usb_gadget_connect().
 799          */
 800         if (gadget->connected)
 801                 ret = usb_gadget_connect(gadget);
 802 
 803 out:
 804         trace_usb_gadget_activate(gadget, ret);
 805 
 806         return ret;
 807 }
 808 EXPORT_SYMBOL_GPL(usb_gadget_activate);
 809 
 810 /* ------------------------------------------------------------------------- */
 811 
 812 #ifdef  CONFIG_HAS_DMA
 813 
 814 int usb_gadget_map_request_by_dev(struct device *dev,
 815                 struct usb_request *req, int is_in)
 816 {
 817         if (req->length == 0)
 818                 return 0;
 819 
 820         if (req->num_sgs) {
 821                 int     mapped;
 822 
 823                 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
 824                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 825                 if (mapped == 0) {
 826                         dev_err(dev, "failed to map SGs\n");
 827                         return -EFAULT;
 828                 }
 829 
 830                 req->num_mapped_sgs = mapped;
 831         } else {
 832                 if (is_vmalloc_addr(req->buf)) {
 833                         dev_err(dev, "buffer is not dma capable\n");
 834                         return -EFAULT;
 835                 } else if (object_is_on_stack(req->buf)) {
 836                         dev_err(dev, "buffer is on stack\n");
 837                         return -EFAULT;
 838                 }
 839 
 840                 req->dma = dma_map_single(dev, req->buf, req->length,
 841                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 842 
 843                 if (dma_mapping_error(dev, req->dma)) {
 844                         dev_err(dev, "failed to map buffer\n");
 845                         return -EFAULT;
 846                 }
 847 
 848                 req->dma_mapped = 1;
 849         }
 850 
 851         return 0;
 852 }
 853 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
 854 
 855 int usb_gadget_map_request(struct usb_gadget *gadget,
 856                 struct usb_request *req, int is_in)
 857 {
 858         return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
 859 }
 860 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
 861 
 862 void usb_gadget_unmap_request_by_dev(struct device *dev,
 863                 struct usb_request *req, int is_in)
 864 {
 865         if (req->length == 0)
 866                 return;
 867 
 868         if (req->num_mapped_sgs) {
 869                 dma_unmap_sg(dev, req->sg, req->num_sgs,
 870                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 871 
 872                 req->num_mapped_sgs = 0;
 873         } else if (req->dma_mapped) {
 874                 dma_unmap_single(dev, req->dma, req->length,
 875                                 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 876                 req->dma_mapped = 0;
 877         }
 878 }
 879 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
 880 
 881 void usb_gadget_unmap_request(struct usb_gadget *gadget,
 882                 struct usb_request *req, int is_in)
 883 {
 884         usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
 885 }
 886 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
 887 
 888 #endif  /* CONFIG_HAS_DMA */
 889 
 890 /* ------------------------------------------------------------------------- */
 891 
 892 /**
 893  * usb_gadget_giveback_request - give the request back to the gadget layer
 894  * Context: in_interrupt()
 895  *
 896  * This is called by device controller drivers in order to return the
 897  * completed request back to the gadget layer.
 898  */
 899 void usb_gadget_giveback_request(struct usb_ep *ep,
 900                 struct usb_request *req)
 901 {
 902         if (likely(req->status == 0))
 903                 usb_led_activity(USB_LED_EVENT_GADGET);
 904 
 905         trace_usb_gadget_giveback_request(ep, req, 0);
 906 
 907         req->complete(ep, req);
 908 }
 909 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
 910 
 911 /* ------------------------------------------------------------------------- */
 912 
 913 /**
 914  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
 915  *      in second parameter or NULL if searched endpoint not found
 916  * @g: controller to check for quirk
 917  * @name: name of searched endpoint
 918  */
 919 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
 920 {
 921         struct usb_ep *ep;
 922 
 923         gadget_for_each_ep(ep, g) {
 924                 if (!strcmp(ep->name, name))
 925                         return ep;
 926         }
 927 
 928         return NULL;
 929 }
 930 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
 931 
 932 /* ------------------------------------------------------------------------- */
 933 
 934 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
 935                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
 936                 struct usb_ss_ep_comp_descriptor *ep_comp)
 937 {
 938         u8              type;
 939         u16             max;
 940         int             num_req_streams = 0;
 941 
 942         /* endpoint already claimed? */
 943         if (ep->claimed)
 944                 return 0;
 945 
 946         type = usb_endpoint_type(desc);
 947         max = usb_endpoint_maxp(desc);
 948 
 949         if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
 950                 return 0;
 951         if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
 952                 return 0;
 953 
 954         if (max > ep->maxpacket_limit)
 955                 return 0;
 956 
 957         /* "high bandwidth" works only at high speed */
 958         if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
 959                 return 0;
 960 
 961         switch (type) {
 962         case USB_ENDPOINT_XFER_CONTROL:
 963                 /* only support ep0 for portable CONTROL traffic */
 964                 return 0;
 965         case USB_ENDPOINT_XFER_ISOC:
 966                 if (!ep->caps.type_iso)
 967                         return 0;
 968                 /* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
 969                 if (!gadget_is_dualspeed(gadget) && max > 1023)
 970                         return 0;
 971                 break;
 972         case USB_ENDPOINT_XFER_BULK:
 973                 if (!ep->caps.type_bulk)
 974                         return 0;
 975                 if (ep_comp && gadget_is_superspeed(gadget)) {
 976                         /* Get the number of required streams from the
 977                          * EP companion descriptor and see if the EP
 978                          * matches it
 979                          */
 980                         num_req_streams = ep_comp->bmAttributes & 0x1f;
 981                         if (num_req_streams > ep->max_streams)
 982                                 return 0;
 983                 }
 984                 break;
 985         case USB_ENDPOINT_XFER_INT:
 986                 /* Bulk endpoints handle interrupt transfers,
 987                  * except the toggle-quirky iso-synch kind
 988                  */
 989                 if (!ep->caps.type_int && !ep->caps.type_bulk)
 990                         return 0;
 991                 /* INT:  limit 64 bytes full speed, 1024 high/super speed */
 992                 if (!gadget_is_dualspeed(gadget) && max > 64)
 993                         return 0;
 994                 break;
 995         }
 996 
 997         return 1;
 998 }
 999 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1000 
1001 /* ------------------------------------------------------------------------- */
1002 
1003 static void usb_gadget_state_work(struct work_struct *work)
1004 {
1005         struct usb_gadget *gadget = work_to_gadget(work);
1006         struct usb_udc *udc = gadget->udc;
1007 
1008         if (udc)
1009                 sysfs_notify(&udc->dev.kobj, NULL, "state");
1010 }
1011 
1012 void usb_gadget_set_state(struct usb_gadget *gadget,
1013                 enum usb_device_state state)
1014 {
1015         gadget->state = state;
1016         schedule_work(&gadget->work);
1017 }
1018 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1019 
1020 /* ------------------------------------------------------------------------- */
1021 
1022 static void usb_udc_connect_control(struct usb_udc *udc)
1023 {
1024         if (udc->vbus)
1025                 usb_gadget_connect(udc->gadget);
1026         else
1027                 usb_gadget_disconnect(udc->gadget);
1028 }
1029 
1030 /**
1031  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1032  * connect or disconnect gadget
1033  * @gadget: The gadget which vbus change occurs
1034  * @status: The vbus status
1035  *
1036  * The udc driver calls it when it wants to connect or disconnect gadget
1037  * according to vbus status.
1038  */
1039 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1040 {
1041         struct usb_udc *udc = gadget->udc;
1042 
1043         if (udc) {
1044                 udc->vbus = status;
1045                 usb_udc_connect_control(udc);
1046         }
1047 }
1048 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1049 
1050 /**
1051  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1052  * @gadget: The gadget which bus reset occurs
1053  * @driver: The gadget driver we want to notify
1054  *
1055  * If the udc driver has bus reset handler, it needs to call this when the bus
1056  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1057  * well as updates gadget state.
1058  */
1059 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1060                 struct usb_gadget_driver *driver)
1061 {
1062         driver->reset(gadget);
1063         usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1064 }
1065 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1066 
1067 /**
1068  * usb_gadget_udc_start - tells usb device controller to start up
1069  * @udc: The UDC to be started
1070  *
1071  * This call is issued by the UDC Class driver when it's about
1072  * to register a gadget driver to the device controller, before
1073  * calling gadget driver's bind() method.
1074  *
1075  * It allows the controller to be powered off until strictly
1076  * necessary to have it powered on.
1077  *
1078  * Returns zero on success, else negative errno.
1079  */
1080 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1081 {
1082         return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1083 }
1084 
1085 /**
1086  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1087  * @gadget: The device we want to stop activity
1088  * @driver: The driver to unbind from @gadget
1089  *
1090  * This call is issued by the UDC Class driver after calling
1091  * gadget driver's unbind() method.
1092  *
1093  * The details are implementation specific, but it can go as
1094  * far as powering off UDC completely and disable its data
1095  * line pullups.
1096  */
1097 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1098 {
1099         udc->gadget->ops->udc_stop(udc->gadget);
1100 }
1101 
1102 /**
1103  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1104  *    current driver
1105  * @udc: The device we want to set maximum speed
1106  * @speed: The maximum speed to allowed to run
1107  *
1108  * This call is issued by the UDC Class driver before calling
1109  * usb_gadget_udc_start() in order to make sure that we don't try to
1110  * connect on speeds the gadget driver doesn't support.
1111  */
1112 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1113                                             enum usb_device_speed speed)
1114 {
1115         if (udc->gadget->ops->udc_set_speed) {
1116                 enum usb_device_speed s;
1117 
1118                 s = min(speed, udc->gadget->max_speed);
1119                 udc->gadget->ops->udc_set_speed(udc->gadget, s);
1120         }
1121 }
1122 
1123 /**
1124  * usb_udc_release - release the usb_udc struct
1125  * @dev: the dev member within usb_udc
1126  *
1127  * This is called by driver's core in order to free memory once the last
1128  * reference is released.
1129  */
1130 static void usb_udc_release(struct device *dev)
1131 {
1132         struct usb_udc *udc;
1133 
1134         udc = container_of(dev, struct usb_udc, dev);
1135         dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1136         kfree(udc);
1137 }
1138 
1139 static const struct attribute_group *usb_udc_attr_groups[];
1140 
1141 static void usb_udc_nop_release(struct device *dev)
1142 {
1143         dev_vdbg(dev, "%s\n", __func__);
1144 }
1145 
1146 /* should be called with udc_lock held */
1147 static int check_pending_gadget_drivers(struct usb_udc *udc)
1148 {
1149         struct usb_gadget_driver *driver;
1150         int ret = 0;
1151 
1152         list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1153                 if (!driver->udc_name || strcmp(driver->udc_name,
1154                                                 dev_name(&udc->dev)) == 0) {
1155                         ret = udc_bind_to_driver(udc, driver);
1156                         if (ret != -EPROBE_DEFER)
1157                                 list_del_init(&driver->pending);
1158                         break;
1159                 }
1160 
1161         return ret;
1162 }
1163 
1164 /**
1165  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1166  * @parent: the parent device to this udc. Usually the controller driver's
1167  * device.
1168  * @gadget: the gadget to be added to the list.
1169  * @release: a gadget release function.
1170  *
1171  * Returns zero on success, negative errno otherwise.
1172  * Calls the gadget release function in the latter case.
1173  */
1174 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1175                 void (*release)(struct device *dev))
1176 {
1177         struct usb_udc          *udc;
1178         int                     ret = -ENOMEM;
1179 
1180         dev_set_name(&gadget->dev, "gadget");
1181         INIT_WORK(&gadget->work, usb_gadget_state_work);
1182         gadget->dev.parent = parent;
1183 
1184         if (release)
1185                 gadget->dev.release = release;
1186         else
1187                 gadget->dev.release = usb_udc_nop_release;
1188 
1189         device_initialize(&gadget->dev);
1190 
1191         udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1192         if (!udc)
1193                 goto err_put_gadget;
1194 
1195         device_initialize(&udc->dev);
1196         udc->dev.release = usb_udc_release;
1197         udc->dev.class = udc_class;
1198         udc->dev.groups = usb_udc_attr_groups;
1199         udc->dev.parent = parent;
1200         ret = dev_set_name(&udc->dev, "%s", kobject_name(&parent->kobj));
1201         if (ret)
1202                 goto err_put_udc;
1203 
1204         ret = device_add(&gadget->dev);
1205         if (ret)
1206                 goto err_put_udc;
1207 
1208         udc->gadget = gadget;
1209         gadget->udc = udc;
1210 
1211         mutex_lock(&udc_lock);
1212         list_add_tail(&udc->list, &udc_list);
1213 
1214         ret = device_add(&udc->dev);
1215         if (ret)
1216                 goto err_unlist_udc;
1217 
1218         usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1219         udc->vbus = true;
1220 
1221         /* pick up one of pending gadget drivers */
1222         ret = check_pending_gadget_drivers(udc);
1223         if (ret)
1224                 goto err_del_udc;
1225 
1226         mutex_unlock(&udc_lock);
1227 
1228         return 0;
1229 
1230  err_del_udc:
1231         device_del(&udc->dev);
1232 
1233  err_unlist_udc:
1234         list_del(&udc->list);
1235         mutex_unlock(&udc_lock);
1236 
1237         device_del(&gadget->dev);
1238 
1239  err_put_udc:
1240         put_device(&udc->dev);
1241 
1242  err_put_gadget:
1243         put_device(&gadget->dev);
1244         return ret;
1245 }
1246 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1247 
1248 /**
1249  * usb_get_gadget_udc_name - get the name of the first UDC controller
1250  * This functions returns the name of the first UDC controller in the system.
1251  * Please note that this interface is usefull only for legacy drivers which
1252  * assume that there is only one UDC controller in the system and they need to
1253  * get its name before initialization. There is no guarantee that the UDC
1254  * of the returned name will be still available, when gadget driver registers
1255  * itself.
1256  *
1257  * Returns pointer to string with UDC controller name on success, NULL
1258  * otherwise. Caller should kfree() returned string.
1259  */
1260 char *usb_get_gadget_udc_name(void)
1261 {
1262         struct usb_udc *udc;
1263         char *name = NULL;
1264 
1265         /* For now we take the first available UDC */
1266         mutex_lock(&udc_lock);
1267         list_for_each_entry(udc, &udc_list, list) {
1268                 if (!udc->driver) {
1269                         name = kstrdup(udc->gadget->name, GFP_KERNEL);
1270                         break;
1271                 }
1272         }
1273         mutex_unlock(&udc_lock);
1274         return name;
1275 }
1276 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1277 
1278 /**
1279  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1280  * @parent: the parent device to this udc. Usually the controller
1281  * driver's device.
1282  * @gadget: the gadget to be added to the list
1283  *
1284  * Returns zero on success, negative errno otherwise.
1285  */
1286 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1287 {
1288         return usb_add_gadget_udc_release(parent, gadget, NULL);
1289 }
1290 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1291 
1292 static void usb_gadget_remove_driver(struct usb_udc *udc)
1293 {
1294         dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1295                         udc->driver->function);
1296 
1297         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1298 
1299         usb_gadget_disconnect(udc->gadget);
1300         udc->driver->unbind(udc->gadget);
1301         usb_gadget_udc_stop(udc);
1302 
1303         udc->driver = NULL;
1304         udc->dev.driver = NULL;
1305         udc->gadget->dev.driver = NULL;
1306 }
1307 
1308 /**
1309  * usb_del_gadget_udc - deletes @udc from udc_list
1310  * @gadget: the gadget to be removed.
1311  *
1312  * This, will call usb_gadget_unregister_driver() if
1313  * the @udc is still busy.
1314  */
1315 void usb_del_gadget_udc(struct usb_gadget *gadget)
1316 {
1317         struct usb_udc *udc = gadget->udc;
1318 
1319         if (!udc)
1320                 return;
1321 
1322         dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1323 
1324         mutex_lock(&udc_lock);
1325         list_del(&udc->list);
1326 
1327         if (udc->driver) {
1328                 struct usb_gadget_driver *driver = udc->driver;
1329 
1330                 usb_gadget_remove_driver(udc);
1331                 list_add(&driver->pending, &gadget_driver_pending_list);
1332         }
1333         mutex_unlock(&udc_lock);
1334 
1335         kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1336         flush_work(&gadget->work);
1337         device_unregister(&udc->dev);
1338         device_unregister(&gadget->dev);
1339         memset(&gadget->dev, 0x00, sizeof(gadget->dev));
1340 }
1341 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1342 
1343 /* ------------------------------------------------------------------------- */
1344 
1345 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1346 {
1347         int ret;
1348 
1349         dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1350                         driver->function);
1351 
1352         udc->driver = driver;
1353         udc->dev.driver = &driver->driver;
1354         udc->gadget->dev.driver = &driver->driver;
1355 
1356         usb_gadget_udc_set_speed(udc, driver->max_speed);
1357 
1358         ret = driver->bind(udc->gadget, driver);
1359         if (ret)
1360                 goto err1;
1361         ret = usb_gadget_udc_start(udc);
1362         if (ret) {
1363                 driver->unbind(udc->gadget);
1364                 goto err1;
1365         }
1366         usb_udc_connect_control(udc);
1367 
1368         kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1369         return 0;
1370 err1:
1371         if (ret != -EISNAM)
1372                 dev_err(&udc->dev, "failed to start %s: %d\n",
1373                         udc->driver->function, ret);
1374         udc->driver = NULL;
1375         udc->dev.driver = NULL;
1376         udc->gadget->dev.driver = NULL;
1377         return ret;
1378 }
1379 
1380 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1381 {
1382         struct usb_udc          *udc = NULL;
1383         int                     ret = -ENODEV;
1384 
1385         if (!driver || !driver->bind || !driver->setup)
1386                 return -EINVAL;
1387 
1388         mutex_lock(&udc_lock);
1389         if (driver->udc_name) {
1390                 list_for_each_entry(udc, &udc_list, list) {
1391                         ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1392                         if (!ret)
1393                                 break;
1394                 }
1395                 if (ret)
1396                         ret = -ENODEV;
1397                 else if (udc->driver)
1398                         ret = -EBUSY;
1399                 else
1400                         goto found;
1401         } else {
1402                 list_for_each_entry(udc, &udc_list, list) {
1403                         /* For now we take the first one */
1404                         if (!udc->driver)
1405                                 goto found;
1406                 }
1407         }
1408 
1409         if (!driver->match_existing_only) {
1410                 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1411                 pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1412                         driver->function);
1413                 ret = 0;
1414         }
1415 
1416         mutex_unlock(&udc_lock);
1417         return ret;
1418 found:
1419         ret = udc_bind_to_driver(udc, driver);
1420         mutex_unlock(&udc_lock);
1421         return ret;
1422 }
1423 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1424 
1425 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1426 {
1427         struct usb_udc          *udc = NULL;
1428         int                     ret = -ENODEV;
1429 
1430         if (!driver || !driver->unbind)
1431                 return -EINVAL;
1432 
1433         mutex_lock(&udc_lock);
1434         list_for_each_entry(udc, &udc_list, list) {
1435                 if (udc->driver == driver) {
1436                         usb_gadget_remove_driver(udc);
1437                         usb_gadget_set_state(udc->gadget,
1438                                              USB_STATE_NOTATTACHED);
1439 
1440                         /* Maybe there is someone waiting for this UDC? */
1441                         check_pending_gadget_drivers(udc);
1442                         /*
1443                          * For now we ignore bind errors as probably it's
1444                          * not a valid reason to fail other's gadget unbind
1445                          */
1446                         ret = 0;
1447                         break;
1448                 }
1449         }
1450 
1451         if (ret) {
1452                 list_del(&driver->pending);
1453                 ret = 0;
1454         }
1455         mutex_unlock(&udc_lock);
1456         return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1459 
1460 /* ------------------------------------------------------------------------- */
1461 
1462 static ssize_t srp_store(struct device *dev,
1463                 struct device_attribute *attr, const char *buf, size_t n)
1464 {
1465         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1466 
1467         if (sysfs_streq(buf, "1"))
1468                 usb_gadget_wakeup(udc->gadget);
1469 
1470         return n;
1471 }
1472 static DEVICE_ATTR_WO(srp);
1473 
1474 static ssize_t soft_connect_store(struct device *dev,
1475                 struct device_attribute *attr, const char *buf, size_t n)
1476 {
1477         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1478 
1479         if (!udc->driver) {
1480                 dev_err(dev, "soft-connect without a gadget driver\n");
1481                 return -EOPNOTSUPP;
1482         }
1483 
1484         if (sysfs_streq(buf, "connect")) {
1485                 usb_gadget_udc_start(udc);
1486                 usb_gadget_connect(udc->gadget);
1487         } else if (sysfs_streq(buf, "disconnect")) {
1488                 usb_gadget_disconnect(udc->gadget);
1489                 usb_gadget_udc_stop(udc);
1490         } else {
1491                 dev_err(dev, "unsupported command '%s'\n", buf);
1492                 return -EINVAL;
1493         }
1494 
1495         return n;
1496 }
1497 static DEVICE_ATTR_WO(soft_connect);
1498 
1499 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1500                           char *buf)
1501 {
1502         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1503         struct usb_gadget       *gadget = udc->gadget;
1504 
1505         return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1506 }
1507 static DEVICE_ATTR_RO(state);
1508 
1509 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1510                              char *buf)
1511 {
1512         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1513         struct usb_gadget_driver *drv = udc->driver;
1514 
1515         if (!drv || !drv->function)
1516                 return 0;
1517         return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1518 }
1519 static DEVICE_ATTR_RO(function);
1520 
1521 #define USB_UDC_SPEED_ATTR(name, param)                                 \
1522 ssize_t name##_show(struct device *dev,                                 \
1523                 struct device_attribute *attr, char *buf)               \
1524 {                                                                       \
1525         struct usb_udc *udc = container_of(dev, struct usb_udc, dev);   \
1526         return scnprintf(buf, PAGE_SIZE, "%s\n",                        \
1527                         usb_speed_string(udc->gadget->param));          \
1528 }                                                                       \
1529 static DEVICE_ATTR_RO(name)
1530 
1531 static USB_UDC_SPEED_ATTR(current_speed, speed);
1532 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1533 
1534 #define USB_UDC_ATTR(name)                                      \
1535 ssize_t name##_show(struct device *dev,                         \
1536                 struct device_attribute *attr, char *buf)       \
1537 {                                                               \
1538         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev); \
1539         struct usb_gadget       *gadget = udc->gadget;          \
1540                                                                 \
1541         return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1542 }                                                               \
1543 static DEVICE_ATTR_RO(name)
1544 
1545 static USB_UDC_ATTR(is_otg);
1546 static USB_UDC_ATTR(is_a_peripheral);
1547 static USB_UDC_ATTR(b_hnp_enable);
1548 static USB_UDC_ATTR(a_hnp_support);
1549 static USB_UDC_ATTR(a_alt_hnp_support);
1550 static USB_UDC_ATTR(is_selfpowered);
1551 
1552 static struct attribute *usb_udc_attrs[] = {
1553         &dev_attr_srp.attr,
1554         &dev_attr_soft_connect.attr,
1555         &dev_attr_state.attr,
1556         &dev_attr_function.attr,
1557         &dev_attr_current_speed.attr,
1558         &dev_attr_maximum_speed.attr,
1559 
1560         &dev_attr_is_otg.attr,
1561         &dev_attr_is_a_peripheral.attr,
1562         &dev_attr_b_hnp_enable.attr,
1563         &dev_attr_a_hnp_support.attr,
1564         &dev_attr_a_alt_hnp_support.attr,
1565         &dev_attr_is_selfpowered.attr,
1566         NULL,
1567 };
1568 
1569 static const struct attribute_group usb_udc_attr_group = {
1570         .attrs = usb_udc_attrs,
1571 };
1572 
1573 static const struct attribute_group *usb_udc_attr_groups[] = {
1574         &usb_udc_attr_group,
1575         NULL,
1576 };
1577 
1578 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1579 {
1580         struct usb_udc          *udc = container_of(dev, struct usb_udc, dev);
1581         int                     ret;
1582 
1583         ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1584         if (ret) {
1585                 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1586                 return ret;
1587         }
1588 
1589         if (udc->driver) {
1590                 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1591                                 udc->driver->function);
1592                 if (ret) {
1593                         dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1594                         return ret;
1595                 }
1596         }
1597 
1598         return 0;
1599 }
1600 
1601 static int __init usb_udc_init(void)
1602 {
1603         udc_class = class_create(THIS_MODULE, "udc");
1604         if (IS_ERR(udc_class)) {
1605                 pr_err("failed to create udc class --> %ld\n",
1606                                 PTR_ERR(udc_class));
1607                 return PTR_ERR(udc_class);
1608         }
1609 
1610         udc_class->dev_uevent = usb_udc_uevent;
1611         return 0;
1612 }
1613 subsys_initcall(usb_udc_init);
1614 
1615 static void __exit usb_udc_exit(void)
1616 {
1617         class_destroy(udc_class);
1618 }
1619 module_exit(usb_udc_exit);
1620 
1621 MODULE_DESCRIPTION("UDC Framework");
1622 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1623 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */