root/drivers/usb/gadget/udc/pxa27x_udc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. state_dbg_show
  2. queues_dbg_show
  3. eps_dbg_show
  4. pxa_init_debugfs
  5. pxa_cleanup_debugfs
  6. pxa_init_debugfs
  7. pxa_cleanup_debugfs
  8. is_match_usb_pxa
  9. find_pxa_ep
  10. update_pxa_ep_matches
  11. pio_irq_enable
  12. pio_irq_disable
  13. udc_set_mask_UDCCR
  14. udc_clear_mask_UDCCR
  15. ep_write_UDCCSR
  16. ep_count_bytes_remain
  17. ep_is_empty
  18. ep_is_full
  19. epout_has_pkt
  20. set_ep0state
  21. ep0_idle
  22. inc_ep_stats_reqs
  23. inc_ep_stats_bytes
  24. pxa_ep_setup
  25. pxa_eps_setup
  26. pxa_ep_alloc_request
  27. pxa_ep_free_request
  28. ep_add_request
  29. ep_del_request
  30. req_done
  31. ep_end_out_req
  32. ep0_end_out_req
  33. ep_end_in_req
  34. ep0_end_in_req
  35. nuke
  36. read_packet
  37. write_packet
  38. read_fifo
  39. write_fifo
  40. read_ep0_fifo
  41. write_ep0_fifo
  42. pxa_ep_queue
  43. pxa_ep_dequeue
  44. pxa_ep_set_halt
  45. pxa_ep_fifo_status
  46. pxa_ep_fifo_flush
  47. pxa_ep_enable
  48. pxa_ep_disable
  49. dplus_pullup
  50. pxa_udc_get_frame
  51. pxa_udc_wakeup
  52. should_enable_udc
  53. should_disable_udc
  54. pxa_udc_pullup
  55. pxa_udc_vbus_session
  56. pxa_udc_vbus_draw
  57. pxa_udc_phy_event
  58. udc_disable
  59. udc_init_data
  60. udc_enable
  61. pxa27x_udc_start
  62. stop_activity
  63. pxa27x_udc_stop
  64. handle_ep0_ctrl_req
  65. handle_ep0
  66. handle_ep
  67. pxa27x_change_configuration
  68. pxa27x_change_interface
  69. irq_handle_data
  70. irq_udc_suspend
  71. irq_udc_resume
  72. irq_udc_reconfig
  73. irq_udc_reset
  74. pxa_udc_irq
  75. pxa_udc_probe
  76. pxa_udc_remove
  77. pxa_udc_shutdown
  78. pxa_udc_suspend
  79. pxa_udc_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Handles the Intel 27x USB Device Controller (UDC)
   4  *
   5  * Inspired by original driver by Frank Becker, David Brownell, and others.
   6  * Copyright (C) 2008 Robert Jarzmik
   7  */
   8 #include <linux/module.h>
   9 #include <linux/kernel.h>
  10 #include <linux/types.h>
  11 #include <linux/errno.h>
  12 #include <linux/err.h>
  13 #include <linux/platform_device.h>
  14 #include <linux/delay.h>
  15 #include <linux/list.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/proc_fs.h>
  18 #include <linux/clk.h>
  19 #include <linux/irq.h>
  20 #include <linux/gpio.h>
  21 #include <linux/gpio/consumer.h>
  22 #include <linux/slab.h>
  23 #include <linux/prefetch.h>
  24 #include <linux/byteorder/generic.h>
  25 #include <linux/platform_data/pxa2xx_udc.h>
  26 #include <linux/of_device.h>
  27 #include <linux/of_gpio.h>
  28 
  29 #include <linux/usb.h>
  30 #include <linux/usb/ch9.h>
  31 #include <linux/usb/gadget.h>
  32 #include <linux/usb/phy.h>
  33 
  34 #include "pxa27x_udc.h"
  35 
  36 /*
  37  * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
  38  * series processors.
  39  *
  40  * Such controller drivers work with a gadget driver.  The gadget driver
  41  * returns descriptors, implements configuration and data protocols used
  42  * by the host to interact with this device, and allocates endpoints to
  43  * the different protocol interfaces.  The controller driver virtualizes
  44  * usb hardware so that the gadget drivers will be more portable.
  45  *
  46  * This UDC hardware wants to implement a bit too much USB protocol. The
  47  * biggest issues are:  that the endpoints have to be set up before the
  48  * controller can be enabled (minor, and not uncommon); and each endpoint
  49  * can only have one configuration, interface and alternative interface
  50  * number (major, and very unusual). Once set up, these cannot be changed
  51  * without a controller reset.
  52  *
  53  * The workaround is to setup all combinations necessary for the gadgets which
  54  * will work with this driver. This is done in pxa_udc structure, statically.
  55  * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
  56  * (You could modify this if needed.  Some drivers have a "fifo_mode" module
  57  * parameter to facilitate such changes.)
  58  *
  59  * The combinations have been tested with these gadgets :
  60  *  - zero gadget
  61  *  - file storage gadget
  62  *  - ether gadget
  63  *
  64  * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
  65  * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
  66  *
  67  * All the requests are handled the same way :
  68  *  - the drivers tries to handle the request directly to the IO
  69  *  - if the IO fifo is not big enough, the remaining is send/received in
  70  *    interrupt handling.
  71  */
  72 
  73 #define DRIVER_VERSION  "2008-04-18"
  74 #define DRIVER_DESC     "PXA 27x USB Device Controller driver"
  75 
  76 static const char driver_name[] = "pxa27x_udc";
  77 static struct pxa_udc *the_controller;
  78 
  79 static void handle_ep(struct pxa_ep *ep);
  80 
  81 /*
  82  * Debug filesystem
  83  */
  84 #ifdef CONFIG_USB_GADGET_DEBUG_FS
  85 
  86 #include <linux/debugfs.h>
  87 #include <linux/uaccess.h>
  88 #include <linux/seq_file.h>
  89 
  90 static int state_dbg_show(struct seq_file *s, void *p)
  91 {
  92         struct pxa_udc *udc = s->private;
  93         u32 tmp;
  94 
  95         if (!udc->driver)
  96                 return -ENODEV;
  97 
  98         /* basic device status */
  99         seq_printf(s, DRIVER_DESC "\n"
 100                    "%s version: %s\n"
 101                    "Gadget driver: %s\n",
 102                    driver_name, DRIVER_VERSION,
 103                    udc->driver ? udc->driver->driver.name : "(none)");
 104 
 105         tmp = udc_readl(udc, UDCCR);
 106         seq_printf(s,
 107                    "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
 108                    tmp,
 109                    (tmp & UDCCR_OEN) ? " oen":"",
 110                    (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
 111                    (tmp & UDCCR_AHNP) ? " rem" : "",
 112                    (tmp & UDCCR_BHNP) ? " rstir" : "",
 113                    (tmp & UDCCR_DWRE) ? " dwre" : "",
 114                    (tmp & UDCCR_SMAC) ? " smac" : "",
 115                    (tmp & UDCCR_EMCE) ? " emce" : "",
 116                    (tmp & UDCCR_UDR) ? " udr" : "",
 117                    (tmp & UDCCR_UDA) ? " uda" : "",
 118                    (tmp & UDCCR_UDE) ? " ude" : "",
 119                    (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
 120                    (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
 121                    (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
 122         /* registers for device and ep0 */
 123         seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
 124                    udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
 125         seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
 126                    udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
 127         seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
 128         seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
 129                    udc->stats.irqs_reset, udc->stats.irqs_suspend,
 130                    udc->stats.irqs_resume, udc->stats.irqs_reconfig);
 131 
 132         return 0;
 133 }
 134 DEFINE_SHOW_ATTRIBUTE(state_dbg);
 135 
 136 static int queues_dbg_show(struct seq_file *s, void *p)
 137 {
 138         struct pxa_udc *udc = s->private;
 139         struct pxa_ep *ep;
 140         struct pxa27x_request *req;
 141         int i, maxpkt;
 142 
 143         if (!udc->driver)
 144                 return -ENODEV;
 145 
 146         /* dump endpoint queues */
 147         for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
 148                 ep = &udc->pxa_ep[i];
 149                 maxpkt = ep->fifo_size;
 150                 seq_printf(s,  "%-12s max_pkt=%d %s\n",
 151                            EPNAME(ep), maxpkt, "pio");
 152 
 153                 if (list_empty(&ep->queue)) {
 154                         seq_puts(s, "\t(nothing queued)\n");
 155                         continue;
 156                 }
 157 
 158                 list_for_each_entry(req, &ep->queue, queue) {
 159                         seq_printf(s,  "\treq %p len %d/%d buf %p\n",
 160                                    &req->req, req->req.actual,
 161                                    req->req.length, req->req.buf);
 162                 }
 163         }
 164 
 165         return 0;
 166 }
 167 DEFINE_SHOW_ATTRIBUTE(queues_dbg);
 168 
 169 static int eps_dbg_show(struct seq_file *s, void *p)
 170 {
 171         struct pxa_udc *udc = s->private;
 172         struct pxa_ep *ep;
 173         int i;
 174         u32 tmp;
 175 
 176         if (!udc->driver)
 177                 return -ENODEV;
 178 
 179         ep = &udc->pxa_ep[0];
 180         tmp = udc_ep_readl(ep, UDCCSR);
 181         seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
 182                    tmp,
 183                    (tmp & UDCCSR0_SA) ? " sa" : "",
 184                    (tmp & UDCCSR0_RNE) ? " rne" : "",
 185                    (tmp & UDCCSR0_FST) ? " fst" : "",
 186                    (tmp & UDCCSR0_SST) ? " sst" : "",
 187                    (tmp & UDCCSR0_DME) ? " dme" : "",
 188                    (tmp & UDCCSR0_IPR) ? " ipr" : "",
 189                    (tmp & UDCCSR0_OPC) ? " opc" : "");
 190         for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
 191                 ep = &udc->pxa_ep[i];
 192                 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
 193                 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
 194                            EPNAME(ep),
 195                            ep->stats.in_bytes, ep->stats.in_ops,
 196                            ep->stats.out_bytes, ep->stats.out_ops,
 197                            ep->stats.irqs,
 198                            tmp, udc_ep_readl(ep, UDCCSR),
 199                            udc_ep_readl(ep, UDCBCR));
 200         }
 201 
 202         return 0;
 203 }
 204 DEFINE_SHOW_ATTRIBUTE(eps_dbg);
 205 
 206 static void pxa_init_debugfs(struct pxa_udc *udc)
 207 {
 208         struct dentry *root;
 209 
 210         root = debugfs_create_dir(udc->gadget.name, NULL);
 211         udc->debugfs_root = root;
 212 
 213         debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops);
 214         debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops);
 215         debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops);
 216 }
 217 
 218 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
 219 {
 220         debugfs_remove_recursive(udc->debugfs_root);
 221 }
 222 
 223 #else
 224 static inline void pxa_init_debugfs(struct pxa_udc *udc)
 225 {
 226 }
 227 
 228 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
 229 {
 230 }
 231 #endif
 232 
 233 /**
 234  * is_match_usb_pxa - check if usb_ep and pxa_ep match
 235  * @udc_usb_ep: usb endpoint
 236  * @ep: pxa endpoint
 237  * @config: configuration required in pxa_ep
 238  * @interface: interface required in pxa_ep
 239  * @altsetting: altsetting required in pxa_ep
 240  *
 241  * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
 242  */
 243 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
 244                 int config, int interface, int altsetting)
 245 {
 246         if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
 247                 return 0;
 248         if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
 249                 return 0;
 250         if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
 251                 return 0;
 252         if ((ep->config != config) || (ep->interface != interface)
 253                         || (ep->alternate != altsetting))
 254                 return 0;
 255         return 1;
 256 }
 257 
 258 /**
 259  * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
 260  * @udc: pxa udc
 261  * @udc_usb_ep: udc_usb_ep structure
 262  *
 263  * Match udc_usb_ep and all pxa_ep available, to see if one matches.
 264  * This is necessary because of the strong pxa hardware restriction requiring
 265  * that once pxa endpoints are initialized, their configuration is freezed, and
 266  * no change can be made to their address, direction, or in which configuration,
 267  * interface or altsetting they are active ... which differs from more usual
 268  * models which have endpoints be roughly just addressable fifos, and leave
 269  * configuration events up to gadget drivers (like all control messages).
 270  *
 271  * Note that there is still a blurred point here :
 272  *   - we rely on UDCCR register "active interface" and "active altsetting".
 273  *     This is a nonsense in regard of USB spec, where multiple interfaces are
 274  *     active at the same time.
 275  *   - if we knew for sure that the pxa can handle multiple interface at the
 276  *     same time, assuming Intel's Developer Guide is wrong, this function
 277  *     should be reviewed, and a cache of couples (iface, altsetting) should
 278  *     be kept in the pxa_udc structure. In this case this function would match
 279  *     against the cache of couples instead of the "last altsetting" set up.
 280  *
 281  * Returns the matched pxa_ep structure or NULL if none found
 282  */
 283 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
 284                 struct udc_usb_ep *udc_usb_ep)
 285 {
 286         int i;
 287         struct pxa_ep *ep;
 288         int cfg = udc->config;
 289         int iface = udc->last_interface;
 290         int alt = udc->last_alternate;
 291 
 292         if (udc_usb_ep == &udc->udc_usb_ep[0])
 293                 return &udc->pxa_ep[0];
 294 
 295         for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
 296                 ep = &udc->pxa_ep[i];
 297                 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
 298                         return ep;
 299         }
 300         return NULL;
 301 }
 302 
 303 /**
 304  * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
 305  * @udc: pxa udc
 306  *
 307  * Context: in_interrupt()
 308  *
 309  * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
 310  * previously set up (and is not NULL). The update is necessary is a
 311  * configuration change or altsetting change was issued by the USB host.
 312  */
 313 static void update_pxa_ep_matches(struct pxa_udc *udc)
 314 {
 315         int i;
 316         struct udc_usb_ep *udc_usb_ep;
 317 
 318         for (i = 1; i < NR_USB_ENDPOINTS; i++) {
 319                 udc_usb_ep = &udc->udc_usb_ep[i];
 320                 if (udc_usb_ep->pxa_ep)
 321                         udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
 322         }
 323 }
 324 
 325 /**
 326  * pio_irq_enable - Enables irq generation for one endpoint
 327  * @ep: udc endpoint
 328  */
 329 static void pio_irq_enable(struct pxa_ep *ep)
 330 {
 331         struct pxa_udc *udc = ep->dev;
 332         int index = EPIDX(ep);
 333         u32 udcicr0 = udc_readl(udc, UDCICR0);
 334         u32 udcicr1 = udc_readl(udc, UDCICR1);
 335 
 336         if (index < 16)
 337                 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
 338         else
 339                 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
 340 }
 341 
 342 /**
 343  * pio_irq_disable - Disables irq generation for one endpoint
 344  * @ep: udc endpoint
 345  */
 346 static void pio_irq_disable(struct pxa_ep *ep)
 347 {
 348         struct pxa_udc *udc = ep->dev;
 349         int index = EPIDX(ep);
 350         u32 udcicr0 = udc_readl(udc, UDCICR0);
 351         u32 udcicr1 = udc_readl(udc, UDCICR1);
 352 
 353         if (index < 16)
 354                 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
 355         else
 356                 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
 357 }
 358 
 359 /**
 360  * udc_set_mask_UDCCR - set bits in UDCCR
 361  * @udc: udc device
 362  * @mask: bits to set in UDCCR
 363  *
 364  * Sets bits in UDCCR, leaving DME and FST bits as they were.
 365  */
 366 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
 367 {
 368         u32 udccr = udc_readl(udc, UDCCR);
 369         udc_writel(udc, UDCCR,
 370                         (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
 371 }
 372 
 373 /**
 374  * udc_clear_mask_UDCCR - clears bits in UDCCR
 375  * @udc: udc device
 376  * @mask: bit to clear in UDCCR
 377  *
 378  * Clears bits in UDCCR, leaving DME and FST bits as they were.
 379  */
 380 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
 381 {
 382         u32 udccr = udc_readl(udc, UDCCR);
 383         udc_writel(udc, UDCCR,
 384                         (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
 385 }
 386 
 387 /**
 388  * ep_write_UDCCSR - set bits in UDCCSR
 389  * @udc: udc device
 390  * @mask: bits to set in UDCCR
 391  *
 392  * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
 393  *
 394  * A specific case is applied to ep0 : the ACM bit is always set to 1, for
 395  * SET_INTERFACE and SET_CONFIGURATION.
 396  */
 397 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
 398 {
 399         if (is_ep0(ep))
 400                 mask |= UDCCSR0_ACM;
 401         udc_ep_writel(ep, UDCCSR, mask);
 402 }
 403 
 404 /**
 405  * ep_count_bytes_remain - get how many bytes in udc endpoint
 406  * @ep: udc endpoint
 407  *
 408  * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
 409  */
 410 static int ep_count_bytes_remain(struct pxa_ep *ep)
 411 {
 412         if (ep->dir_in)
 413                 return -EOPNOTSUPP;
 414         return udc_ep_readl(ep, UDCBCR) & 0x3ff;
 415 }
 416 
 417 /**
 418  * ep_is_empty - checks if ep has byte ready for reading
 419  * @ep: udc endpoint
 420  *
 421  * If endpoint is the control endpoint, checks if there are bytes in the
 422  * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
 423  * are ready for reading on OUT endpoint.
 424  *
 425  * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
 426  */
 427 static int ep_is_empty(struct pxa_ep *ep)
 428 {
 429         int ret;
 430 
 431         if (!is_ep0(ep) && ep->dir_in)
 432                 return -EOPNOTSUPP;
 433         if (is_ep0(ep))
 434                 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
 435         else
 436                 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
 437         return ret;
 438 }
 439 
 440 /**
 441  * ep_is_full - checks if ep has place to write bytes
 442  * @ep: udc endpoint
 443  *
 444  * If endpoint is not the control endpoint and is an IN endpoint, checks if
 445  * there is place to write bytes into the endpoint.
 446  *
 447  * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
 448  */
 449 static int ep_is_full(struct pxa_ep *ep)
 450 {
 451         if (is_ep0(ep))
 452                 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
 453         if (!ep->dir_in)
 454                 return -EOPNOTSUPP;
 455         return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
 456 }
 457 
 458 /**
 459  * epout_has_pkt - checks if OUT endpoint fifo has a packet available
 460  * @ep: pxa endpoint
 461  *
 462  * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
 463  */
 464 static int epout_has_pkt(struct pxa_ep *ep)
 465 {
 466         if (!is_ep0(ep) && ep->dir_in)
 467                 return -EOPNOTSUPP;
 468         if (is_ep0(ep))
 469                 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
 470         return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
 471 }
 472 
 473 /**
 474  * set_ep0state - Set ep0 automata state
 475  * @dev: udc device
 476  * @state: state
 477  */
 478 static void set_ep0state(struct pxa_udc *udc, int state)
 479 {
 480         struct pxa_ep *ep = &udc->pxa_ep[0];
 481         char *old_stname = EP0_STNAME(udc);
 482 
 483         udc->ep0state = state;
 484         ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
 485                 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
 486                 udc_ep_readl(ep, UDCBCR));
 487 }
 488 
 489 /**
 490  * ep0_idle - Put control endpoint into idle state
 491  * @dev: udc device
 492  */
 493 static void ep0_idle(struct pxa_udc *dev)
 494 {
 495         set_ep0state(dev, WAIT_FOR_SETUP);
 496 }
 497 
 498 /**
 499  * inc_ep_stats_reqs - Update ep stats counts
 500  * @ep: physical endpoint
 501  * @req: usb request
 502  * @is_in: ep direction (USB_DIR_IN or 0)
 503  *
 504  */
 505 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
 506 {
 507         if (is_in)
 508                 ep->stats.in_ops++;
 509         else
 510                 ep->stats.out_ops++;
 511 }
 512 
 513 /**
 514  * inc_ep_stats_bytes - Update ep stats counts
 515  * @ep: physical endpoint
 516  * @count: bytes transferred on endpoint
 517  * @is_in: ep direction (USB_DIR_IN or 0)
 518  */
 519 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
 520 {
 521         if (is_in)
 522                 ep->stats.in_bytes += count;
 523         else
 524                 ep->stats.out_bytes += count;
 525 }
 526 
 527 /**
 528  * pxa_ep_setup - Sets up an usb physical endpoint
 529  * @ep: pxa27x physical endpoint
 530  *
 531  * Find the physical pxa27x ep, and setup its UDCCR
 532  */
 533 static void pxa_ep_setup(struct pxa_ep *ep)
 534 {
 535         u32 new_udccr;
 536 
 537         new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
 538                 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
 539                 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
 540                 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
 541                 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
 542                 | ((ep->dir_in) ? UDCCONR_ED : 0)
 543                 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
 544                 | UDCCONR_EE;
 545 
 546         udc_ep_writel(ep, UDCCR, new_udccr);
 547 }
 548 
 549 /**
 550  * pxa_eps_setup - Sets up all usb physical endpoints
 551  * @dev: udc device
 552  *
 553  * Setup all pxa physical endpoints, except ep0
 554  */
 555 static void pxa_eps_setup(struct pxa_udc *dev)
 556 {
 557         unsigned int i;
 558 
 559         dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
 560 
 561         for (i = 1; i < NR_PXA_ENDPOINTS; i++)
 562                 pxa_ep_setup(&dev->pxa_ep[i]);
 563 }
 564 
 565 /**
 566  * pxa_ep_alloc_request - Allocate usb request
 567  * @_ep: usb endpoint
 568  * @gfp_flags:
 569  *
 570  * For the pxa27x, these can just wrap kmalloc/kfree.  gadget drivers
 571  * must still pass correctly initialized endpoints, since other controller
 572  * drivers may care about how it's currently set up (dma issues etc).
 573   */
 574 static struct usb_request *
 575 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
 576 {
 577         struct pxa27x_request *req;
 578 
 579         req = kzalloc(sizeof *req, gfp_flags);
 580         if (!req)
 581                 return NULL;
 582 
 583         INIT_LIST_HEAD(&req->queue);
 584         req->in_use = 0;
 585         req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
 586 
 587         return &req->req;
 588 }
 589 
 590 /**
 591  * pxa_ep_free_request - Free usb request
 592  * @_ep: usb endpoint
 593  * @_req: usb request
 594  *
 595  * Wrapper around kfree to free _req
 596  */
 597 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
 598 {
 599         struct pxa27x_request *req;
 600 
 601         req = container_of(_req, struct pxa27x_request, req);
 602         WARN_ON(!list_empty(&req->queue));
 603         kfree(req);
 604 }
 605 
 606 /**
 607  * ep_add_request - add a request to the endpoint's queue
 608  * @ep: usb endpoint
 609  * @req: usb request
 610  *
 611  * Context: ep->lock held
 612  *
 613  * Queues the request in the endpoint's queue, and enables the interrupts
 614  * on the endpoint.
 615  */
 616 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
 617 {
 618         if (unlikely(!req))
 619                 return;
 620         ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
 621                 req->req.length, udc_ep_readl(ep, UDCCSR));
 622 
 623         req->in_use = 1;
 624         list_add_tail(&req->queue, &ep->queue);
 625         pio_irq_enable(ep);
 626 }
 627 
 628 /**
 629  * ep_del_request - removes a request from the endpoint's queue
 630  * @ep: usb endpoint
 631  * @req: usb request
 632  *
 633  * Context: ep->lock held
 634  *
 635  * Unqueue the request from the endpoint's queue. If there are no more requests
 636  * on the endpoint, and if it's not the control endpoint, interrupts are
 637  * disabled on the endpoint.
 638  */
 639 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
 640 {
 641         if (unlikely(!req))
 642                 return;
 643         ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
 644                 req->req.length, udc_ep_readl(ep, UDCCSR));
 645 
 646         list_del_init(&req->queue);
 647         req->in_use = 0;
 648         if (!is_ep0(ep) && list_empty(&ep->queue))
 649                 pio_irq_disable(ep);
 650 }
 651 
 652 /**
 653  * req_done - Complete an usb request
 654  * @ep: pxa physical endpoint
 655  * @req: pxa request
 656  * @status: usb request status sent to gadget API
 657  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
 658  *
 659  * Context: ep->lock held if flags not NULL, else ep->lock released
 660  *
 661  * Retire a pxa27x usb request. Endpoint must be locked.
 662  */
 663 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
 664         unsigned long *pflags)
 665 {
 666         unsigned long   flags;
 667 
 668         ep_del_request(ep, req);
 669         if (likely(req->req.status == -EINPROGRESS))
 670                 req->req.status = status;
 671         else
 672                 status = req->req.status;
 673 
 674         if (status && status != -ESHUTDOWN)
 675                 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
 676                         &req->req, status,
 677                         req->req.actual, req->req.length);
 678 
 679         if (pflags)
 680                 spin_unlock_irqrestore(&ep->lock, *pflags);
 681         local_irq_save(flags);
 682         usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
 683         local_irq_restore(flags);
 684         if (pflags)
 685                 spin_lock_irqsave(&ep->lock, *pflags);
 686 }
 687 
 688 /**
 689  * ep_end_out_req - Ends endpoint OUT request
 690  * @ep: physical endpoint
 691  * @req: pxa request
 692  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
 693  *
 694  * Context: ep->lock held or released (see req_done())
 695  *
 696  * Ends endpoint OUT request (completes usb request).
 697  */
 698 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
 699         unsigned long *pflags)
 700 {
 701         inc_ep_stats_reqs(ep, !USB_DIR_IN);
 702         req_done(ep, req, 0, pflags);
 703 }
 704 
 705 /**
 706  * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
 707  * @ep: physical endpoint
 708  * @req: pxa request
 709  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
 710  *
 711  * Context: ep->lock held or released (see req_done())
 712  *
 713  * Ends control endpoint OUT request (completes usb request), and puts
 714  * control endpoint into idle state
 715  */
 716 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
 717         unsigned long *pflags)
 718 {
 719         set_ep0state(ep->dev, OUT_STATUS_STAGE);
 720         ep_end_out_req(ep, req, pflags);
 721         ep0_idle(ep->dev);
 722 }
 723 
 724 /**
 725  * ep_end_in_req - Ends endpoint IN request
 726  * @ep: physical endpoint
 727  * @req: pxa request
 728  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
 729  *
 730  * Context: ep->lock held or released (see req_done())
 731  *
 732  * Ends endpoint IN request (completes usb request).
 733  */
 734 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
 735         unsigned long *pflags)
 736 {
 737         inc_ep_stats_reqs(ep, USB_DIR_IN);
 738         req_done(ep, req, 0, pflags);
 739 }
 740 
 741 /**
 742  * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
 743  * @ep: physical endpoint
 744  * @req: pxa request
 745  * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
 746  *
 747  * Context: ep->lock held or released (see req_done())
 748  *
 749  * Ends control endpoint IN request (completes usb request), and puts
 750  * control endpoint into status state
 751  */
 752 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
 753         unsigned long *pflags)
 754 {
 755         set_ep0state(ep->dev, IN_STATUS_STAGE);
 756         ep_end_in_req(ep, req, pflags);
 757 }
 758 
 759 /**
 760  * nuke - Dequeue all requests
 761  * @ep: pxa endpoint
 762  * @status: usb request status
 763  *
 764  * Context: ep->lock released
 765  *
 766  * Dequeues all requests on an endpoint. As a side effect, interrupts will be
 767  * disabled on that endpoint (because no more requests).
 768  */
 769 static void nuke(struct pxa_ep *ep, int status)
 770 {
 771         struct pxa27x_request   *req;
 772         unsigned long           flags;
 773 
 774         spin_lock_irqsave(&ep->lock, flags);
 775         while (!list_empty(&ep->queue)) {
 776                 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
 777                 req_done(ep, req, status, &flags);
 778         }
 779         spin_unlock_irqrestore(&ep->lock, flags);
 780 }
 781 
 782 /**
 783  * read_packet - transfer 1 packet from an OUT endpoint into request
 784  * @ep: pxa physical endpoint
 785  * @req: usb request
 786  *
 787  * Takes bytes from OUT endpoint and transfers them info the usb request.
 788  * If there is less space in request than bytes received in OUT endpoint,
 789  * bytes are left in the OUT endpoint.
 790  *
 791  * Returns how many bytes were actually transferred
 792  */
 793 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
 794 {
 795         u32 *buf;
 796         int bytes_ep, bufferspace, count, i;
 797 
 798         bytes_ep = ep_count_bytes_remain(ep);
 799         bufferspace = req->req.length - req->req.actual;
 800 
 801         buf = (u32 *)(req->req.buf + req->req.actual);
 802         prefetchw(buf);
 803 
 804         if (likely(!ep_is_empty(ep)))
 805                 count = min(bytes_ep, bufferspace);
 806         else /* zlp */
 807                 count = 0;
 808 
 809         for (i = count; i > 0; i -= 4)
 810                 *buf++ = udc_ep_readl(ep, UDCDR);
 811         req->req.actual += count;
 812 
 813         ep_write_UDCCSR(ep, UDCCSR_PC);
 814 
 815         return count;
 816 }
 817 
 818 /**
 819  * write_packet - transfer 1 packet from request into an IN endpoint
 820  * @ep: pxa physical endpoint
 821  * @req: usb request
 822  * @max: max bytes that fit into endpoint
 823  *
 824  * Takes bytes from usb request, and transfers them into the physical
 825  * endpoint. If there are no bytes to transfer, doesn't write anything
 826  * to physical endpoint.
 827  *
 828  * Returns how many bytes were actually transferred.
 829  */
 830 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
 831                         unsigned int max)
 832 {
 833         int length, count, remain, i;
 834         u32 *buf;
 835         u8 *buf_8;
 836 
 837         buf = (u32 *)(req->req.buf + req->req.actual);
 838         prefetch(buf);
 839 
 840         length = min(req->req.length - req->req.actual, max);
 841         req->req.actual += length;
 842 
 843         remain = length & 0x3;
 844         count = length & ~(0x3);
 845         for (i = count; i > 0 ; i -= 4)
 846                 udc_ep_writel(ep, UDCDR, *buf++);
 847 
 848         buf_8 = (u8 *)buf;
 849         for (i = remain; i > 0; i--)
 850                 udc_ep_writeb(ep, UDCDR, *buf_8++);
 851 
 852         ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
 853                 udc_ep_readl(ep, UDCCSR));
 854 
 855         return length;
 856 }
 857 
 858 /**
 859  * read_fifo - Transfer packets from OUT endpoint into usb request
 860  * @ep: pxa physical endpoint
 861  * @req: usb request
 862  *
 863  * Context: callable when in_interrupt()
 864  *
 865  * Unload as many packets as possible from the fifo we use for usb OUT
 866  * transfers and put them into the request. Caller should have made sure
 867  * there's at least one packet ready.
 868  * Doesn't complete the request, that's the caller's job
 869  *
 870  * Returns 1 if the request completed, 0 otherwise
 871  */
 872 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
 873 {
 874         int count, is_short, completed = 0;
 875 
 876         while (epout_has_pkt(ep)) {
 877                 count = read_packet(ep, req);
 878                 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
 879 
 880                 is_short = (count < ep->fifo_size);
 881                 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
 882                         udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
 883                         &req->req, req->req.actual, req->req.length);
 884 
 885                 /* completion */
 886                 if (is_short || req->req.actual == req->req.length) {
 887                         completed = 1;
 888                         break;
 889                 }
 890                 /* finished that packet.  the next one may be waiting... */
 891         }
 892         return completed;
 893 }
 894 
 895 /**
 896  * write_fifo - transfer packets from usb request into an IN endpoint
 897  * @ep: pxa physical endpoint
 898  * @req: pxa usb request
 899  *
 900  * Write to an IN endpoint fifo, as many packets as possible.
 901  * irqs will use this to write the rest later.
 902  * caller guarantees at least one packet buffer is ready (or a zlp).
 903  * Doesn't complete the request, that's the caller's job
 904  *
 905  * Returns 1 if request fully transferred, 0 if partial transfer
 906  */
 907 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
 908 {
 909         unsigned max;
 910         int count, is_short, is_last = 0, completed = 0, totcount = 0;
 911         u32 udccsr;
 912 
 913         max = ep->fifo_size;
 914         do {
 915                 udccsr = udc_ep_readl(ep, UDCCSR);
 916                 if (udccsr & UDCCSR_PC) {
 917                         ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
 918                                 udccsr);
 919                         ep_write_UDCCSR(ep, UDCCSR_PC);
 920                 }
 921                 if (udccsr & UDCCSR_TRN) {
 922                         ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
 923                                 udccsr);
 924                         ep_write_UDCCSR(ep, UDCCSR_TRN);
 925                 }
 926 
 927                 count = write_packet(ep, req, max);
 928                 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
 929                 totcount += count;
 930 
 931                 /* last packet is usually short (or a zlp) */
 932                 if (unlikely(count < max)) {
 933                         is_last = 1;
 934                         is_short = 1;
 935                 } else {
 936                         if (likely(req->req.length > req->req.actual)
 937                                         || req->req.zero)
 938                                 is_last = 0;
 939                         else
 940                                 is_last = 1;
 941                         /* interrupt/iso maxpacket may not fill the fifo */
 942                         is_short = unlikely(max < ep->fifo_size);
 943                 }
 944 
 945                 if (is_short)
 946                         ep_write_UDCCSR(ep, UDCCSR_SP);
 947 
 948                 /* requests complete when all IN data is in the FIFO */
 949                 if (is_last) {
 950                         completed = 1;
 951                         break;
 952                 }
 953         } while (!ep_is_full(ep));
 954 
 955         ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
 956                         totcount, is_last ? "/L" : "", is_short ? "/S" : "",
 957                         req->req.length - req->req.actual, &req->req);
 958 
 959         return completed;
 960 }
 961 
 962 /**
 963  * read_ep0_fifo - Transfer packets from control endpoint into usb request
 964  * @ep: control endpoint
 965  * @req: pxa usb request
 966  *
 967  * Special ep0 version of the above read_fifo. Reads as many bytes from control
 968  * endpoint as can be read, and stores them into usb request (limited by request
 969  * maximum length).
 970  *
 971  * Returns 0 if usb request only partially filled, 1 if fully filled
 972  */
 973 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
 974 {
 975         int count, is_short, completed = 0;
 976 
 977         while (epout_has_pkt(ep)) {
 978                 count = read_packet(ep, req);
 979                 ep_write_UDCCSR(ep, UDCCSR0_OPC);
 980                 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
 981 
 982                 is_short = (count < ep->fifo_size);
 983                 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
 984                         udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
 985                         &req->req, req->req.actual, req->req.length);
 986 
 987                 if (is_short || req->req.actual >= req->req.length) {
 988                         completed = 1;
 989                         break;
 990                 }
 991         }
 992 
 993         return completed;
 994 }
 995 
 996 /**
 997  * write_ep0_fifo - Send a request to control endpoint (ep0 in)
 998  * @ep: control endpoint
 999  * @req: request
1000  *
1001  * Context: callable when in_interrupt()
1002  *
1003  * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1004  * If the request doesn't fit, the remaining part will be sent from irq.
1005  * The request is considered fully written only if either :
1006  *   - last write transferred all remaining bytes, but fifo was not fully filled
1007  *   - last write was a 0 length write
1008  *
1009  * Returns 1 if request fully written, 0 if request only partially sent
1010  */
1011 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1012 {
1013         unsigned        count;
1014         int             is_last, is_short;
1015 
1016         count = write_packet(ep, req, EP0_FIFO_SIZE);
1017         inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1018 
1019         is_short = (count < EP0_FIFO_SIZE);
1020         is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1021 
1022         /* Sends either a short packet or a 0 length packet */
1023         if (unlikely(is_short))
1024                 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1025 
1026         ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1027                 count, is_short ? "/S" : "", is_last ? "/L" : "",
1028                 req->req.length - req->req.actual,
1029                 &req->req, udc_ep_readl(ep, UDCCSR));
1030 
1031         return is_last;
1032 }
1033 
1034 /**
1035  * pxa_ep_queue - Queue a request into an IN endpoint
1036  * @_ep: usb endpoint
1037  * @_req: usb request
1038  * @gfp_flags: flags
1039  *
1040  * Context: normally called when !in_interrupt, but callable when in_interrupt()
1041  * in the special case of ep0 setup :
1042  *   (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1043  *
1044  * Returns 0 if succedeed, error otherwise
1045  */
1046 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1047                         gfp_t gfp_flags)
1048 {
1049         struct udc_usb_ep       *udc_usb_ep;
1050         struct pxa_ep           *ep;
1051         struct pxa27x_request   *req;
1052         struct pxa_udc          *dev;
1053         unsigned long           flags;
1054         int                     rc = 0;
1055         int                     is_first_req;
1056         unsigned                length;
1057         int                     recursion_detected;
1058 
1059         req = container_of(_req, struct pxa27x_request, req);
1060         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1061 
1062         if (unlikely(!_req || !_req->complete || !_req->buf))
1063                 return -EINVAL;
1064 
1065         if (unlikely(!_ep))
1066                 return -EINVAL;
1067 
1068         ep = udc_usb_ep->pxa_ep;
1069         if (unlikely(!ep))
1070                 return -EINVAL;
1071 
1072         dev = ep->dev;
1073         if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1074                 ep_dbg(ep, "bogus device state\n");
1075                 return -ESHUTDOWN;
1076         }
1077 
1078         /* iso is always one packet per request, that's the only way
1079          * we can report per-packet status.  that also helps with dma.
1080          */
1081         if (unlikely(EPXFERTYPE_is_ISO(ep)
1082                         && req->req.length > ep->fifo_size))
1083                 return -EMSGSIZE;
1084 
1085         spin_lock_irqsave(&ep->lock, flags);
1086         recursion_detected = ep->in_handle_ep;
1087 
1088         is_first_req = list_empty(&ep->queue);
1089         ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1090                         _req, is_first_req ? "yes" : "no",
1091                         _req->length, _req->buf);
1092 
1093         if (!ep->enabled) {
1094                 _req->status = -ESHUTDOWN;
1095                 rc = -ESHUTDOWN;
1096                 goto out_locked;
1097         }
1098 
1099         if (req->in_use) {
1100                 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1101                 goto out_locked;
1102         }
1103 
1104         length = _req->length;
1105         _req->status = -EINPROGRESS;
1106         _req->actual = 0;
1107 
1108         ep_add_request(ep, req);
1109         spin_unlock_irqrestore(&ep->lock, flags);
1110 
1111         if (is_ep0(ep)) {
1112                 switch (dev->ep0state) {
1113                 case WAIT_ACK_SET_CONF_INTERF:
1114                         if (length == 0) {
1115                                 ep_end_in_req(ep, req, NULL);
1116                         } else {
1117                                 ep_err(ep, "got a request of %d bytes while"
1118                                         "in state WAIT_ACK_SET_CONF_INTERF\n",
1119                                         length);
1120                                 ep_del_request(ep, req);
1121                                 rc = -EL2HLT;
1122                         }
1123                         ep0_idle(ep->dev);
1124                         break;
1125                 case IN_DATA_STAGE:
1126                         if (!ep_is_full(ep))
1127                                 if (write_ep0_fifo(ep, req))
1128                                         ep0_end_in_req(ep, req, NULL);
1129                         break;
1130                 case OUT_DATA_STAGE:
1131                         if ((length == 0) || !epout_has_pkt(ep))
1132                                 if (read_ep0_fifo(ep, req))
1133                                         ep0_end_out_req(ep, req, NULL);
1134                         break;
1135                 default:
1136                         ep_err(ep, "odd state %s to send me a request\n",
1137                                 EP0_STNAME(ep->dev));
1138                         ep_del_request(ep, req);
1139                         rc = -EL2HLT;
1140                         break;
1141                 }
1142         } else {
1143                 if (!recursion_detected)
1144                         handle_ep(ep);
1145         }
1146 
1147 out:
1148         return rc;
1149 out_locked:
1150         spin_unlock_irqrestore(&ep->lock, flags);
1151         goto out;
1152 }
1153 
1154 /**
1155  * pxa_ep_dequeue - Dequeue one request
1156  * @_ep: usb endpoint
1157  * @_req: usb request
1158  *
1159  * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1160  */
1161 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1162 {
1163         struct pxa_ep           *ep;
1164         struct udc_usb_ep       *udc_usb_ep;
1165         struct pxa27x_request   *req;
1166         unsigned long           flags;
1167         int                     rc = -EINVAL;
1168 
1169         if (!_ep)
1170                 return rc;
1171         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1172         ep = udc_usb_ep->pxa_ep;
1173         if (!ep || is_ep0(ep))
1174                 return rc;
1175 
1176         spin_lock_irqsave(&ep->lock, flags);
1177 
1178         /* make sure it's actually queued on this endpoint */
1179         list_for_each_entry(req, &ep->queue, queue) {
1180                 if (&req->req == _req) {
1181                         rc = 0;
1182                         break;
1183                 }
1184         }
1185 
1186         spin_unlock_irqrestore(&ep->lock, flags);
1187         if (!rc)
1188                 req_done(ep, req, -ECONNRESET, NULL);
1189         return rc;
1190 }
1191 
1192 /**
1193  * pxa_ep_set_halt - Halts operations on one endpoint
1194  * @_ep: usb endpoint
1195  * @value:
1196  *
1197  * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1198  */
1199 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1200 {
1201         struct pxa_ep           *ep;
1202         struct udc_usb_ep       *udc_usb_ep;
1203         unsigned long flags;
1204         int rc;
1205 
1206 
1207         if (!_ep)
1208                 return -EINVAL;
1209         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1210         ep = udc_usb_ep->pxa_ep;
1211         if (!ep || is_ep0(ep))
1212                 return -EINVAL;
1213 
1214         if (value == 0) {
1215                 /*
1216                  * This path (reset toggle+halt) is needed to implement
1217                  * SET_INTERFACE on normal hardware.  but it can't be
1218                  * done from software on the PXA UDC, and the hardware
1219                  * forgets to do it as part of SET_INTERFACE automagic.
1220                  */
1221                 ep_dbg(ep, "only host can clear halt\n");
1222                 return -EROFS;
1223         }
1224 
1225         spin_lock_irqsave(&ep->lock, flags);
1226 
1227         rc = -EAGAIN;
1228         if (ep->dir_in  && (ep_is_full(ep) || !list_empty(&ep->queue)))
1229                 goto out;
1230 
1231         /* FST, FEF bits are the same for control and non control endpoints */
1232         rc = 0;
1233         ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1234         if (is_ep0(ep))
1235                 set_ep0state(ep->dev, STALL);
1236 
1237 out:
1238         spin_unlock_irqrestore(&ep->lock, flags);
1239         return rc;
1240 }
1241 
1242 /**
1243  * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1244  * @_ep: usb endpoint
1245  *
1246  * Returns number of bytes in OUT fifos. Broken for IN fifos.
1247  */
1248 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1249 {
1250         struct pxa_ep           *ep;
1251         struct udc_usb_ep       *udc_usb_ep;
1252 
1253         if (!_ep)
1254                 return -ENODEV;
1255         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1256         ep = udc_usb_ep->pxa_ep;
1257         if (!ep || is_ep0(ep))
1258                 return -ENODEV;
1259 
1260         if (ep->dir_in)
1261                 return -EOPNOTSUPP;
1262         if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1263                 return 0;
1264         else
1265                 return ep_count_bytes_remain(ep) + 1;
1266 }
1267 
1268 /**
1269  * pxa_ep_fifo_flush - Flushes one endpoint
1270  * @_ep: usb endpoint
1271  *
1272  * Discards all data in one endpoint(IN or OUT), except control endpoint.
1273  */
1274 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1275 {
1276         struct pxa_ep           *ep;
1277         struct udc_usb_ep       *udc_usb_ep;
1278         unsigned long           flags;
1279 
1280         if (!_ep)
1281                 return;
1282         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1283         ep = udc_usb_ep->pxa_ep;
1284         if (!ep || is_ep0(ep))
1285                 return;
1286 
1287         spin_lock_irqsave(&ep->lock, flags);
1288 
1289         if (unlikely(!list_empty(&ep->queue)))
1290                 ep_dbg(ep, "called while queue list not empty\n");
1291         ep_dbg(ep, "called\n");
1292 
1293         /* for OUT, just read and discard the FIFO contents. */
1294         if (!ep->dir_in) {
1295                 while (!ep_is_empty(ep))
1296                         udc_ep_readl(ep, UDCDR);
1297         } else {
1298                 /* most IN status is the same, but ISO can't stall */
1299                 ep_write_UDCCSR(ep,
1300                                 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1301                                 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1302         }
1303 
1304         spin_unlock_irqrestore(&ep->lock, flags);
1305 }
1306 
1307 /**
1308  * pxa_ep_enable - Enables usb endpoint
1309  * @_ep: usb endpoint
1310  * @desc: usb endpoint descriptor
1311  *
1312  * Nothing much to do here, as ep configuration is done once and for all
1313  * before udc is enabled. After udc enable, no physical endpoint configuration
1314  * can be changed.
1315  * Function makes sanity checks and flushes the endpoint.
1316  */
1317 static int pxa_ep_enable(struct usb_ep *_ep,
1318         const struct usb_endpoint_descriptor *desc)
1319 {
1320         struct pxa_ep           *ep;
1321         struct udc_usb_ep       *udc_usb_ep;
1322         struct pxa_udc          *udc;
1323 
1324         if (!_ep || !desc)
1325                 return -EINVAL;
1326 
1327         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1328         if (udc_usb_ep->pxa_ep) {
1329                 ep = udc_usb_ep->pxa_ep;
1330                 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1331                         _ep->name);
1332         } else {
1333                 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1334         }
1335 
1336         if (!ep || is_ep0(ep)) {
1337                 dev_err(udc_usb_ep->dev->dev,
1338                         "unable to match pxa_ep for ep %s\n",
1339                         _ep->name);
1340                 return -EINVAL;
1341         }
1342 
1343         if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1344                         || (ep->type != usb_endpoint_type(desc))) {
1345                 ep_err(ep, "type mismatch\n");
1346                 return -EINVAL;
1347         }
1348 
1349         if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1350                 ep_err(ep, "bad maxpacket\n");
1351                 return -ERANGE;
1352         }
1353 
1354         udc_usb_ep->pxa_ep = ep;
1355         udc = ep->dev;
1356 
1357         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1358                 ep_err(ep, "bogus device state\n");
1359                 return -ESHUTDOWN;
1360         }
1361 
1362         ep->enabled = 1;
1363 
1364         /* flush fifo (mostly for OUT buffers) */
1365         pxa_ep_fifo_flush(_ep);
1366 
1367         ep_dbg(ep, "enabled\n");
1368         return 0;
1369 }
1370 
1371 /**
1372  * pxa_ep_disable - Disable usb endpoint
1373  * @_ep: usb endpoint
1374  *
1375  * Same as for pxa_ep_enable, no physical endpoint configuration can be
1376  * changed.
1377  * Function flushes the endpoint and related requests.
1378  */
1379 static int pxa_ep_disable(struct usb_ep *_ep)
1380 {
1381         struct pxa_ep           *ep;
1382         struct udc_usb_ep       *udc_usb_ep;
1383 
1384         if (!_ep)
1385                 return -EINVAL;
1386 
1387         udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1388         ep = udc_usb_ep->pxa_ep;
1389         if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1390                 return -EINVAL;
1391 
1392         ep->enabled = 0;
1393         nuke(ep, -ESHUTDOWN);
1394 
1395         pxa_ep_fifo_flush(_ep);
1396         udc_usb_ep->pxa_ep = NULL;
1397 
1398         ep_dbg(ep, "disabled\n");
1399         return 0;
1400 }
1401 
1402 static const struct usb_ep_ops pxa_ep_ops = {
1403         .enable         = pxa_ep_enable,
1404         .disable        = pxa_ep_disable,
1405 
1406         .alloc_request  = pxa_ep_alloc_request,
1407         .free_request   = pxa_ep_free_request,
1408 
1409         .queue          = pxa_ep_queue,
1410         .dequeue        = pxa_ep_dequeue,
1411 
1412         .set_halt       = pxa_ep_set_halt,
1413         .fifo_status    = pxa_ep_fifo_status,
1414         .fifo_flush     = pxa_ep_fifo_flush,
1415 };
1416 
1417 /**
1418  * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1419  * @udc: udc device
1420  * @on: 0 if disconnect pullup resistor, 1 otherwise
1421  * Context: any
1422  *
1423  * Handle D+ pullup resistor, make the device visible to the usb bus, and
1424  * declare it as a full speed usb device
1425  */
1426 static void dplus_pullup(struct pxa_udc *udc, int on)
1427 {
1428         if (udc->gpiod) {
1429                 gpiod_set_value(udc->gpiod, on);
1430         } else if (udc->udc_command) {
1431                 if (on)
1432                         udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1433                 else
1434                         udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1435         }
1436         udc->pullup_on = on;
1437 }
1438 
1439 /**
1440  * pxa_udc_get_frame - Returns usb frame number
1441  * @_gadget: usb gadget
1442  */
1443 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1444 {
1445         struct pxa_udc *udc = to_gadget_udc(_gadget);
1446 
1447         return (udc_readl(udc, UDCFNR) & 0x7ff);
1448 }
1449 
1450 /**
1451  * pxa_udc_wakeup - Force udc device out of suspend
1452  * @_gadget: usb gadget
1453  *
1454  * Returns 0 if successful, error code otherwise
1455  */
1456 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1457 {
1458         struct pxa_udc *udc = to_gadget_udc(_gadget);
1459 
1460         /* host may not have enabled remote wakeup */
1461         if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1462                 return -EHOSTUNREACH;
1463         udc_set_mask_UDCCR(udc, UDCCR_UDR);
1464         return 0;
1465 }
1466 
1467 static void udc_enable(struct pxa_udc *udc);
1468 static void udc_disable(struct pxa_udc *udc);
1469 
1470 /**
1471  * should_enable_udc - Tells if UDC should be enabled
1472  * @udc: udc device
1473  * Context: any
1474  *
1475  * The UDC should be enabled if :
1476 
1477  *  - the pullup resistor is connected
1478  *  - and a gadget driver is bound
1479  *  - and vbus is sensed (or no vbus sense is available)
1480  *
1481  * Returns 1 if UDC should be enabled, 0 otherwise
1482  */
1483 static int should_enable_udc(struct pxa_udc *udc)
1484 {
1485         int put_on;
1486 
1487         put_on = ((udc->pullup_on) && (udc->driver));
1488         put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1489         return put_on;
1490 }
1491 
1492 /**
1493  * should_disable_udc - Tells if UDC should be disabled
1494  * @udc: udc device
1495  * Context: any
1496  *
1497  * The UDC should be disabled if :
1498  *  - the pullup resistor is not connected
1499  *  - or no gadget driver is bound
1500  *  - or no vbus is sensed (when vbus sesing is available)
1501  *
1502  * Returns 1 if UDC should be disabled
1503  */
1504 static int should_disable_udc(struct pxa_udc *udc)
1505 {
1506         int put_off;
1507 
1508         put_off = ((!udc->pullup_on) || (!udc->driver));
1509         put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1510         return put_off;
1511 }
1512 
1513 /**
1514  * pxa_udc_pullup - Offer manual D+ pullup control
1515  * @_gadget: usb gadget using the control
1516  * @is_active: 0 if disconnect, else connect D+ pullup resistor
1517  * Context: !in_interrupt()
1518  *
1519  * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1520  */
1521 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1522 {
1523         struct pxa_udc *udc = to_gadget_udc(_gadget);
1524 
1525         if (!udc->gpiod && !udc->udc_command)
1526                 return -EOPNOTSUPP;
1527 
1528         dplus_pullup(udc, is_active);
1529 
1530         if (should_enable_udc(udc))
1531                 udc_enable(udc);
1532         if (should_disable_udc(udc))
1533                 udc_disable(udc);
1534         return 0;
1535 }
1536 
1537 /**
1538  * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1539  * @_gadget: usb gadget
1540  * @is_active: 0 if should disable the udc, 1 if should enable
1541  *
1542  * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1543  * udc, and deactivates D+ pullup resistor.
1544  *
1545  * Returns 0
1546  */
1547 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1548 {
1549         struct pxa_udc *udc = to_gadget_udc(_gadget);
1550 
1551         udc->vbus_sensed = is_active;
1552         if (should_enable_udc(udc))
1553                 udc_enable(udc);
1554         if (should_disable_udc(udc))
1555                 udc_disable(udc);
1556 
1557         return 0;
1558 }
1559 
1560 /**
1561  * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1562  * @_gadget: usb gadget
1563  * @mA: current drawn
1564  *
1565  * Context: !in_interrupt()
1566  *
1567  * Called after a configuration was chosen by a USB host, to inform how much
1568  * current can be drawn by the device from VBus line.
1569  *
1570  * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1571  */
1572 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1573 {
1574         struct pxa_udc *udc;
1575 
1576         udc = to_gadget_udc(_gadget);
1577         if (!IS_ERR_OR_NULL(udc->transceiver))
1578                 return usb_phy_set_power(udc->transceiver, mA);
1579         return -EOPNOTSUPP;
1580 }
1581 
1582 /**
1583  * pxa_udc_phy_event - Called by phy upon VBus event
1584  * @nb: notifier block
1585  * @action: phy action, is vbus connect or disconnect
1586  * @data: the usb_gadget structure in pxa_udc
1587  *
1588  * Called by the USB Phy when a cable connect or disconnect is sensed.
1589  *
1590  * Returns 0
1591  */
1592 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1593                              void *data)
1594 {
1595         struct usb_gadget *gadget = data;
1596 
1597         switch (action) {
1598         case USB_EVENT_VBUS:
1599                 usb_gadget_vbus_connect(gadget);
1600                 return NOTIFY_OK;
1601         case USB_EVENT_NONE:
1602                 usb_gadget_vbus_disconnect(gadget);
1603                 return NOTIFY_OK;
1604         default:
1605                 return NOTIFY_DONE;
1606         }
1607 }
1608 
1609 static struct notifier_block pxa27x_udc_phy = {
1610         .notifier_call = pxa_udc_phy_event,
1611 };
1612 
1613 static int pxa27x_udc_start(struct usb_gadget *g,
1614                 struct usb_gadget_driver *driver);
1615 static int pxa27x_udc_stop(struct usb_gadget *g);
1616 
1617 static const struct usb_gadget_ops pxa_udc_ops = {
1618         .get_frame      = pxa_udc_get_frame,
1619         .wakeup         = pxa_udc_wakeup,
1620         .pullup         = pxa_udc_pullup,
1621         .vbus_session   = pxa_udc_vbus_session,
1622         .vbus_draw      = pxa_udc_vbus_draw,
1623         .udc_start      = pxa27x_udc_start,
1624         .udc_stop       = pxa27x_udc_stop,
1625 };
1626 
1627 /**
1628  * udc_disable - disable udc device controller
1629  * @udc: udc device
1630  * Context: any
1631  *
1632  * Disables the udc device : disables clocks, udc interrupts, control endpoint
1633  * interrupts.
1634  */
1635 static void udc_disable(struct pxa_udc *udc)
1636 {
1637         if (!udc->enabled)
1638                 return;
1639 
1640         udc_writel(udc, UDCICR0, 0);
1641         udc_writel(udc, UDCICR1, 0);
1642 
1643         udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1644 
1645         ep0_idle(udc);
1646         udc->gadget.speed = USB_SPEED_UNKNOWN;
1647         clk_disable(udc->clk);
1648 
1649         udc->enabled = 0;
1650 }
1651 
1652 /**
1653  * udc_init_data - Initialize udc device data structures
1654  * @dev: udc device
1655  *
1656  * Initializes gadget endpoint list, endpoints locks. No action is taken
1657  * on the hardware.
1658  */
1659 static void udc_init_data(struct pxa_udc *dev)
1660 {
1661         int i;
1662         struct pxa_ep *ep;
1663 
1664         /* device/ep0 records init */
1665         INIT_LIST_HEAD(&dev->gadget.ep_list);
1666         INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1667         dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1668         dev->gadget.quirk_altset_not_supp = 1;
1669         ep0_idle(dev);
1670 
1671         /* PXA endpoints init */
1672         for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1673                 ep = &dev->pxa_ep[i];
1674 
1675                 ep->enabled = is_ep0(ep);
1676                 INIT_LIST_HEAD(&ep->queue);
1677                 spin_lock_init(&ep->lock);
1678         }
1679 
1680         /* USB endpoints init */
1681         for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1682                 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1683                                 &dev->gadget.ep_list);
1684                 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1685                                            dev->udc_usb_ep[i].usb_ep.maxpacket);
1686         }
1687 }
1688 
1689 /**
1690  * udc_enable - Enables the udc device
1691  * @dev: udc device
1692  *
1693  * Enables the udc device : enables clocks, udc interrupts, control endpoint
1694  * interrupts, sets usb as UDC client and setups endpoints.
1695  */
1696 static void udc_enable(struct pxa_udc *udc)
1697 {
1698         if (udc->enabled)
1699                 return;
1700 
1701         clk_enable(udc->clk);
1702         udc_writel(udc, UDCICR0, 0);
1703         udc_writel(udc, UDCICR1, 0);
1704         udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1705 
1706         ep0_idle(udc);
1707         udc->gadget.speed = USB_SPEED_FULL;
1708         memset(&udc->stats, 0, sizeof(udc->stats));
1709 
1710         pxa_eps_setup(udc);
1711         udc_set_mask_UDCCR(udc, UDCCR_UDE);
1712         ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1713         udelay(2);
1714         if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1715                 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1716 
1717         /*
1718          * Caller must be able to sleep in order to cope with startup transients
1719          */
1720         msleep(100);
1721 
1722         /* enable suspend/resume and reset irqs */
1723         udc_writel(udc, UDCICR1,
1724                         UDCICR1_IECC | UDCICR1_IERU
1725                         | UDCICR1_IESU | UDCICR1_IERS);
1726 
1727         /* enable ep0 irqs */
1728         pio_irq_enable(&udc->pxa_ep[0]);
1729 
1730         udc->enabled = 1;
1731 }
1732 
1733 /**
1734  * pxa27x_start - Register gadget driver
1735  * @driver: gadget driver
1736  * @bind: bind function
1737  *
1738  * When a driver is successfully registered, it will receive control requests
1739  * including set_configuration(), which enables non-control requests.  Then
1740  * usb traffic follows until a disconnect is reported.  Then a host may connect
1741  * again, or the driver might get unbound.
1742  *
1743  * Note that the udc is not automatically enabled. Check function
1744  * should_enable_udc().
1745  *
1746  * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1747  */
1748 static int pxa27x_udc_start(struct usb_gadget *g,
1749                 struct usb_gadget_driver *driver)
1750 {
1751         struct pxa_udc *udc = to_pxa(g);
1752         int retval;
1753 
1754         /* first hook up the driver ... */
1755         udc->driver = driver;
1756 
1757         if (!IS_ERR_OR_NULL(udc->transceiver)) {
1758                 retval = otg_set_peripheral(udc->transceiver->otg,
1759                                                 &udc->gadget);
1760                 if (retval) {
1761                         dev_err(udc->dev, "can't bind to transceiver\n");
1762                         goto fail;
1763                 }
1764         }
1765 
1766         if (should_enable_udc(udc))
1767                 udc_enable(udc);
1768         return 0;
1769 
1770 fail:
1771         udc->driver = NULL;
1772         return retval;
1773 }
1774 
1775 /**
1776  * stop_activity - Stops udc endpoints
1777  * @udc: udc device
1778  * @driver: gadget driver
1779  *
1780  * Disables all udc endpoints (even control endpoint), report disconnect to
1781  * the gadget user.
1782  */
1783 static void stop_activity(struct pxa_udc *udc)
1784 {
1785         int i;
1786 
1787         udc->gadget.speed = USB_SPEED_UNKNOWN;
1788 
1789         for (i = 0; i < NR_USB_ENDPOINTS; i++)
1790                 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1791 }
1792 
1793 /**
1794  * pxa27x_udc_stop - Unregister the gadget driver
1795  * @driver: gadget driver
1796  *
1797  * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1798  */
1799 static int pxa27x_udc_stop(struct usb_gadget *g)
1800 {
1801         struct pxa_udc *udc = to_pxa(g);
1802 
1803         stop_activity(udc);
1804         udc_disable(udc);
1805 
1806         udc->driver = NULL;
1807 
1808         if (!IS_ERR_OR_NULL(udc->transceiver))
1809                 return otg_set_peripheral(udc->transceiver->otg, NULL);
1810         return 0;
1811 }
1812 
1813 /**
1814  * handle_ep0_ctrl_req - handle control endpoint control request
1815  * @udc: udc device
1816  * @req: control request
1817  */
1818 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1819                                 struct pxa27x_request *req)
1820 {
1821         struct pxa_ep *ep = &udc->pxa_ep[0];
1822         union {
1823                 struct usb_ctrlrequest  r;
1824                 u32                     word[2];
1825         } u;
1826         int i;
1827         int have_extrabytes = 0;
1828         unsigned long flags;
1829 
1830         nuke(ep, -EPROTO);
1831         spin_lock_irqsave(&ep->lock, flags);
1832 
1833         /*
1834          * In the PXA320 manual, in the section about Back-to-Back setup
1835          * packets, it describes this situation.  The solution is to set OPC to
1836          * get rid of the status packet, and then continue with the setup
1837          * packet. Generalize to pxa27x CPUs.
1838          */
1839         if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1840                 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1841 
1842         /* read SETUP packet */
1843         for (i = 0; i < 2; i++) {
1844                 if (unlikely(ep_is_empty(ep)))
1845                         goto stall;
1846                 u.word[i] = udc_ep_readl(ep, UDCDR);
1847         }
1848 
1849         have_extrabytes = !ep_is_empty(ep);
1850         while (!ep_is_empty(ep)) {
1851                 i = udc_ep_readl(ep, UDCDR);
1852                 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1853         }
1854 
1855         ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1856                 u.r.bRequestType, u.r.bRequest,
1857                 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1858                 le16_to_cpu(u.r.wLength));
1859         if (unlikely(have_extrabytes))
1860                 goto stall;
1861 
1862         if (u.r.bRequestType & USB_DIR_IN)
1863                 set_ep0state(udc, IN_DATA_STAGE);
1864         else
1865                 set_ep0state(udc, OUT_DATA_STAGE);
1866 
1867         /* Tell UDC to enter Data Stage */
1868         ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1869 
1870         spin_unlock_irqrestore(&ep->lock, flags);
1871         i = udc->driver->setup(&udc->gadget, &u.r);
1872         spin_lock_irqsave(&ep->lock, flags);
1873         if (i < 0)
1874                 goto stall;
1875 out:
1876         spin_unlock_irqrestore(&ep->lock, flags);
1877         return;
1878 stall:
1879         ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1880                 udc_ep_readl(ep, UDCCSR), i);
1881         ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1882         set_ep0state(udc, STALL);
1883         goto out;
1884 }
1885 
1886 /**
1887  * handle_ep0 - Handle control endpoint data transfers
1888  * @udc: udc device
1889  * @fifo_irq: 1 if triggered by fifo service type irq
1890  * @opc_irq: 1 if triggered by output packet complete type irq
1891  *
1892  * Context : when in_interrupt() or with ep->lock held
1893  *
1894  * Tries to transfer all pending request data into the endpoint and/or
1895  * transfer all pending data in the endpoint into usb requests.
1896  * Handles states of ep0 automata.
1897  *
1898  * PXA27x hardware handles several standard usb control requests without
1899  * driver notification.  The requests fully handled by hardware are :
1900  *  SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1901  *  GET_STATUS
1902  * The requests handled by hardware, but with irq notification are :
1903  *  SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1904  * The remaining standard requests really handled by handle_ep0 are :
1905  *  GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1906  * Requests standardized outside of USB 2.0 chapter 9 are handled more
1907  * uniformly, by gadget drivers.
1908  *
1909  * The control endpoint state machine is _not_ USB spec compliant, it's even
1910  * hardly compliant with Intel PXA270 developers guide.
1911  * The key points which inferred this state machine are :
1912  *   - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1913  *     software.
1914  *   - on every OUT packet received, UDCCSR0_OPC is raised and held until
1915  *     cleared by software.
1916  *   - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1917  *     before reading ep0.
1918  *     This is true only for PXA27x. This is not true anymore for PXA3xx family
1919  *     (check Back-to-Back setup packet in developers guide).
1920  *   - irq can be called on a "packet complete" event (opc_irq=1), while
1921  *     UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1922  *     from experimentation).
1923  *   - as UDCCSR0_SA can be activated while in irq handling, and clearing
1924  *     UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1925  *     => we never actually read the "status stage" packet of an IN data stage
1926  *     => this is not documented in Intel documentation
1927  *   - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1928  *     STAGE. The driver add STATUS STAGE to send last zero length packet in
1929  *     OUT_STATUS_STAGE.
1930  *   - special attention was needed for IN_STATUS_STAGE. If a packet complete
1931  *     event is detected, we terminate the status stage without ackowledging the
1932  *     packet (not to risk to loose a potential SETUP packet)
1933  */
1934 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1935 {
1936         u32                     udccsr0;
1937         struct pxa_ep           *ep = &udc->pxa_ep[0];
1938         struct pxa27x_request   *req = NULL;
1939         int                     completed = 0;
1940 
1941         if (!list_empty(&ep->queue))
1942                 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1943 
1944         udccsr0 = udc_ep_readl(ep, UDCCSR);
1945         ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1946                 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1947                 (fifo_irq << 1 | opc_irq));
1948 
1949         if (udccsr0 & UDCCSR0_SST) {
1950                 ep_dbg(ep, "clearing stall status\n");
1951                 nuke(ep, -EPIPE);
1952                 ep_write_UDCCSR(ep, UDCCSR0_SST);
1953                 ep0_idle(udc);
1954         }
1955 
1956         if (udccsr0 & UDCCSR0_SA) {
1957                 nuke(ep, 0);
1958                 set_ep0state(udc, SETUP_STAGE);
1959         }
1960 
1961         switch (udc->ep0state) {
1962         case WAIT_FOR_SETUP:
1963                 /*
1964                  * Hardware bug : beware, we cannot clear OPC, since we would
1965                  * miss a potential OPC irq for a setup packet.
1966                  * So, we only do ... nothing, and hope for a next irq with
1967                  * UDCCSR0_SA set.
1968                  */
1969                 break;
1970         case SETUP_STAGE:
1971                 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1972                 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1973                         handle_ep0_ctrl_req(udc, req);
1974                 break;
1975         case IN_DATA_STAGE:                     /* GET_DESCRIPTOR */
1976                 if (epout_has_pkt(ep))
1977                         ep_write_UDCCSR(ep, UDCCSR0_OPC);
1978                 if (req && !ep_is_full(ep))
1979                         completed = write_ep0_fifo(ep, req);
1980                 if (completed)
1981                         ep0_end_in_req(ep, req, NULL);
1982                 break;
1983         case OUT_DATA_STAGE:                    /* SET_DESCRIPTOR */
1984                 if (epout_has_pkt(ep) && req)
1985                         completed = read_ep0_fifo(ep, req);
1986                 if (completed)
1987                         ep0_end_out_req(ep, req, NULL);
1988                 break;
1989         case STALL:
1990                 ep_write_UDCCSR(ep, UDCCSR0_FST);
1991                 break;
1992         case IN_STATUS_STAGE:
1993                 /*
1994                  * Hardware bug : beware, we cannot clear OPC, since we would
1995                  * miss a potential PC irq for a setup packet.
1996                  * So, we only put the ep0 into WAIT_FOR_SETUP state.
1997                  */
1998                 if (opc_irq)
1999                         ep0_idle(udc);
2000                 break;
2001         case OUT_STATUS_STAGE:
2002         case WAIT_ACK_SET_CONF_INTERF:
2003                 ep_warn(ep, "should never get in %s state here!!!\n",
2004                                 EP0_STNAME(ep->dev));
2005                 ep0_idle(udc);
2006                 break;
2007         }
2008 }
2009 
2010 /**
2011  * handle_ep - Handle endpoint data tranfers
2012  * @ep: pxa physical endpoint
2013  *
2014  * Tries to transfer all pending request data into the endpoint and/or
2015  * transfer all pending data in the endpoint into usb requests.
2016  *
2017  * Is always called when in_interrupt() and with ep->lock released.
2018  */
2019 static void handle_ep(struct pxa_ep *ep)
2020 {
2021         struct pxa27x_request   *req;
2022         int completed;
2023         u32 udccsr;
2024         int is_in = ep->dir_in;
2025         int loop = 0;
2026         unsigned long           flags;
2027 
2028         spin_lock_irqsave(&ep->lock, flags);
2029         if (ep->in_handle_ep)
2030                 goto recursion_detected;
2031         ep->in_handle_ep = 1;
2032 
2033         do {
2034                 completed = 0;
2035                 udccsr = udc_ep_readl(ep, UDCCSR);
2036 
2037                 if (likely(!list_empty(&ep->queue)))
2038                         req = list_entry(ep->queue.next,
2039                                         struct pxa27x_request, queue);
2040                 else
2041                         req = NULL;
2042 
2043                 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2044                                 req, udccsr, loop++);
2045 
2046                 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2047                         udc_ep_writel(ep, UDCCSR,
2048                                         udccsr & (UDCCSR_SST | UDCCSR_TRN));
2049                 if (!req)
2050                         break;
2051 
2052                 if (unlikely(is_in)) {
2053                         if (likely(!ep_is_full(ep)))
2054                                 completed = write_fifo(ep, req);
2055                 } else {
2056                         if (likely(epout_has_pkt(ep)))
2057                                 completed = read_fifo(ep, req);
2058                 }
2059 
2060                 if (completed) {
2061                         if (is_in)
2062                                 ep_end_in_req(ep, req, &flags);
2063                         else
2064                                 ep_end_out_req(ep, req, &flags);
2065                 }
2066         } while (completed);
2067 
2068         ep->in_handle_ep = 0;
2069 recursion_detected:
2070         spin_unlock_irqrestore(&ep->lock, flags);
2071 }
2072 
2073 /**
2074  * pxa27x_change_configuration - Handle SET_CONF usb request notification
2075  * @udc: udc device
2076  * @config: usb configuration
2077  *
2078  * Post the request to upper level.
2079  * Don't use any pxa specific harware configuration capabilities
2080  */
2081 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2082 {
2083         struct usb_ctrlrequest req ;
2084 
2085         dev_dbg(udc->dev, "config=%d\n", config);
2086 
2087         udc->config = config;
2088         udc->last_interface = 0;
2089         udc->last_alternate = 0;
2090 
2091         req.bRequestType = 0;
2092         req.bRequest = USB_REQ_SET_CONFIGURATION;
2093         req.wValue = config;
2094         req.wIndex = 0;
2095         req.wLength = 0;
2096 
2097         set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2098         udc->driver->setup(&udc->gadget, &req);
2099         ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2100 }
2101 
2102 /**
2103  * pxa27x_change_interface - Handle SET_INTERF usb request notification
2104  * @udc: udc device
2105  * @iface: interface number
2106  * @alt: alternate setting number
2107  *
2108  * Post the request to upper level.
2109  * Don't use any pxa specific harware configuration capabilities
2110  */
2111 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2112 {
2113         struct usb_ctrlrequest  req;
2114 
2115         dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2116 
2117         udc->last_interface = iface;
2118         udc->last_alternate = alt;
2119 
2120         req.bRequestType = USB_RECIP_INTERFACE;
2121         req.bRequest = USB_REQ_SET_INTERFACE;
2122         req.wValue = alt;
2123         req.wIndex = iface;
2124         req.wLength = 0;
2125 
2126         set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2127         udc->driver->setup(&udc->gadget, &req);
2128         ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2129 }
2130 
2131 /*
2132  * irq_handle_data - Handle data transfer
2133  * @irq: irq IRQ number
2134  * @udc: dev pxa_udc device structure
2135  *
2136  * Called from irq handler, transferts data to or from endpoint to queue
2137  */
2138 static void irq_handle_data(int irq, struct pxa_udc *udc)
2139 {
2140         int i;
2141         struct pxa_ep *ep;
2142         u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2143         u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2144 
2145         if (udcisr0 & UDCISR_INT_MASK) {
2146                 udc->pxa_ep[0].stats.irqs++;
2147                 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2148                 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2149                                 !!(udcisr0 & UDCICR_PKTCOMPL));
2150         }
2151 
2152         udcisr0 >>= 2;
2153         for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2154                 if (!(udcisr0 & UDCISR_INT_MASK))
2155                         continue;
2156 
2157                 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2158 
2159                 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2160                 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2161                         ep = &udc->pxa_ep[i];
2162                         ep->stats.irqs++;
2163                         handle_ep(ep);
2164                 }
2165         }
2166 
2167         for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2168                 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2169                 if (!(udcisr1 & UDCISR_INT_MASK))
2170                         continue;
2171 
2172                 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2173                 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2174                         ep = &udc->pxa_ep[i];
2175                         ep->stats.irqs++;
2176                         handle_ep(ep);
2177                 }
2178         }
2179 
2180 }
2181 
2182 /**
2183  * irq_udc_suspend - Handle IRQ "UDC Suspend"
2184  * @udc: udc device
2185  */
2186 static void irq_udc_suspend(struct pxa_udc *udc)
2187 {
2188         udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2189         udc->stats.irqs_suspend++;
2190 
2191         if (udc->gadget.speed != USB_SPEED_UNKNOWN
2192                         && udc->driver && udc->driver->suspend)
2193                 udc->driver->suspend(&udc->gadget);
2194         ep0_idle(udc);
2195 }
2196 
2197 /**
2198   * irq_udc_resume - Handle IRQ "UDC Resume"
2199   * @udc: udc device
2200   */
2201 static void irq_udc_resume(struct pxa_udc *udc)
2202 {
2203         udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2204         udc->stats.irqs_resume++;
2205 
2206         if (udc->gadget.speed != USB_SPEED_UNKNOWN
2207                         && udc->driver && udc->driver->resume)
2208                 udc->driver->resume(&udc->gadget);
2209 }
2210 
2211 /**
2212  * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2213  * @udc: udc device
2214  */
2215 static void irq_udc_reconfig(struct pxa_udc *udc)
2216 {
2217         unsigned config, interface, alternate, config_change;
2218         u32 udccr = udc_readl(udc, UDCCR);
2219 
2220         udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2221         udc->stats.irqs_reconfig++;
2222 
2223         config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2224         config_change = (config != udc->config);
2225         pxa27x_change_configuration(udc, config);
2226 
2227         interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2228         alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2229         pxa27x_change_interface(udc, interface, alternate);
2230 
2231         if (config_change)
2232                 update_pxa_ep_matches(udc);
2233         udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2234 }
2235 
2236 /**
2237  * irq_udc_reset - Handle IRQ "UDC Reset"
2238  * @udc: udc device
2239  */
2240 static void irq_udc_reset(struct pxa_udc *udc)
2241 {
2242         u32 udccr = udc_readl(udc, UDCCR);
2243         struct pxa_ep *ep = &udc->pxa_ep[0];
2244 
2245         dev_info(udc->dev, "USB reset\n");
2246         udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2247         udc->stats.irqs_reset++;
2248 
2249         if ((udccr & UDCCR_UDA) == 0) {
2250                 dev_dbg(udc->dev, "USB reset start\n");
2251                 stop_activity(udc);
2252         }
2253         udc->gadget.speed = USB_SPEED_FULL;
2254         memset(&udc->stats, 0, sizeof udc->stats);
2255 
2256         nuke(ep, -EPROTO);
2257         ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2258         ep0_idle(udc);
2259 }
2260 
2261 /**
2262  * pxa_udc_irq - Main irq handler
2263  * @irq: irq number
2264  * @_dev: udc device
2265  *
2266  * Handles all udc interrupts
2267  */
2268 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2269 {
2270         struct pxa_udc *udc = _dev;
2271         u32 udcisr0 = udc_readl(udc, UDCISR0);
2272         u32 udcisr1 = udc_readl(udc, UDCISR1);
2273         u32 udccr = udc_readl(udc, UDCCR);
2274         u32 udcisr1_spec;
2275 
2276         dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2277                  "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2278 
2279         udcisr1_spec = udcisr1 & 0xf8000000;
2280         if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2281                 irq_udc_suspend(udc);
2282         if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2283                 irq_udc_resume(udc);
2284         if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2285                 irq_udc_reconfig(udc);
2286         if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2287                 irq_udc_reset(udc);
2288 
2289         if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2290                 irq_handle_data(irq, udc);
2291 
2292         return IRQ_HANDLED;
2293 }
2294 
2295 static struct pxa_udc memory = {
2296         .gadget = {
2297                 .ops            = &pxa_udc_ops,
2298                 .ep0            = &memory.udc_usb_ep[0].usb_ep,
2299                 .name           = driver_name,
2300                 .dev = {
2301                         .init_name      = "gadget",
2302                 },
2303         },
2304 
2305         .udc_usb_ep = {
2306                 USB_EP_CTRL,
2307                 USB_EP_OUT_BULK(1),
2308                 USB_EP_IN_BULK(2),
2309                 USB_EP_IN_ISO(3),
2310                 USB_EP_OUT_ISO(4),
2311                 USB_EP_IN_INT(5),
2312         },
2313 
2314         .pxa_ep = {
2315                 PXA_EP_CTRL,
2316                 /* Endpoints for gadget zero */
2317                 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2318                 PXA_EP_IN_BULK(2,  2, 3, 0, 0),
2319                 /* Endpoints for ether gadget, file storage gadget */
2320                 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2321                 PXA_EP_IN_BULK(4,  2, 1, 0, 0),
2322                 PXA_EP_IN_ISO(5,   3, 1, 0, 0),
2323                 PXA_EP_OUT_ISO(6,  4, 1, 0, 0),
2324                 PXA_EP_IN_INT(7,   5, 1, 0, 0),
2325                 /* Endpoints for RNDIS, serial */
2326                 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2327                 PXA_EP_IN_BULK(9,  2, 2, 0, 0),
2328                 PXA_EP_IN_INT(10,  5, 2, 0, 0),
2329                 /*
2330                  * All the following endpoints are only for completion.  They
2331                  * won't never work, as multiple interfaces are really broken on
2332                  * the pxa.
2333                 */
2334                 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2335                 PXA_EP_IN_BULK(12,  2, 2, 1, 0),
2336                 /* Endpoint for CDC Ether */
2337                 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2338                 PXA_EP_IN_BULK(14,  2, 1, 1, 1),
2339         }
2340 };
2341 
2342 #if defined(CONFIG_OF)
2343 static const struct of_device_id udc_pxa_dt_ids[] = {
2344         { .compatible = "marvell,pxa270-udc" },
2345         {}
2346 };
2347 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2348 #endif
2349 
2350 /**
2351  * pxa_udc_probe - probes the udc device
2352  * @_dev: platform device
2353  *
2354  * Perform basic init : allocates udc clock, creates sysfs files, requests
2355  * irq.
2356  */
2357 static int pxa_udc_probe(struct platform_device *pdev)
2358 {
2359         struct resource *regs;
2360         struct pxa_udc *udc = &memory;
2361         int retval = 0, gpio;
2362         struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2363         unsigned long gpio_flags;
2364 
2365         if (mach) {
2366                 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2367                 gpio = mach->gpio_pullup;
2368                 if (gpio_is_valid(gpio)) {
2369                         retval = devm_gpio_request_one(&pdev->dev, gpio,
2370                                                        gpio_flags,
2371                                                        "USB D+ pullup");
2372                         if (retval)
2373                                 return retval;
2374                         udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2375                 }
2376                 udc->udc_command = mach->udc_command;
2377         } else {
2378                 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2379         }
2380 
2381         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2382         udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2383         if (IS_ERR(udc->regs))
2384                 return PTR_ERR(udc->regs);
2385         udc->irq = platform_get_irq(pdev, 0);
2386         if (udc->irq < 0)
2387                 return udc->irq;
2388 
2389         udc->dev = &pdev->dev;
2390         if (of_have_populated_dt()) {
2391                 udc->transceiver =
2392                         devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2393                 if (IS_ERR(udc->transceiver))
2394                         return PTR_ERR(udc->transceiver);
2395         } else {
2396                 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2397         }
2398 
2399         if (IS_ERR(udc->gpiod)) {
2400                 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2401                         PTR_ERR(udc->gpiod));
2402                 return PTR_ERR(udc->gpiod);
2403         }
2404         if (udc->gpiod)
2405                 gpiod_direction_output(udc->gpiod, 0);
2406 
2407         udc->clk = devm_clk_get(&pdev->dev, NULL);
2408         if (IS_ERR(udc->clk))
2409                 return PTR_ERR(udc->clk);
2410 
2411         retval = clk_prepare(udc->clk);
2412         if (retval)
2413                 return retval;
2414 
2415         udc->vbus_sensed = 0;
2416 
2417         the_controller = udc;
2418         platform_set_drvdata(pdev, udc);
2419         udc_init_data(udc);
2420 
2421         /* irq setup after old hardware state is cleaned up */
2422         retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2423                                   IRQF_SHARED, driver_name, udc);
2424         if (retval != 0) {
2425                 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2426                         driver_name, udc->irq, retval);
2427                 goto err;
2428         }
2429 
2430         if (!IS_ERR_OR_NULL(udc->transceiver))
2431                 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2432         retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2433         if (retval)
2434                 goto err_add_gadget;
2435 
2436         pxa_init_debugfs(udc);
2437         if (should_enable_udc(udc))
2438                 udc_enable(udc);
2439         return 0;
2440 
2441 err_add_gadget:
2442         if (!IS_ERR_OR_NULL(udc->transceiver))
2443                 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2444 err:
2445         clk_unprepare(udc->clk);
2446         return retval;
2447 }
2448 
2449 /**
2450  * pxa_udc_remove - removes the udc device driver
2451  * @_dev: platform device
2452  */
2453 static int pxa_udc_remove(struct platform_device *_dev)
2454 {
2455         struct pxa_udc *udc = platform_get_drvdata(_dev);
2456 
2457         usb_del_gadget_udc(&udc->gadget);
2458         pxa_cleanup_debugfs(udc);
2459 
2460         if (!IS_ERR_OR_NULL(udc->transceiver)) {
2461                 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2462                 usb_put_phy(udc->transceiver);
2463         }
2464 
2465         udc->transceiver = NULL;
2466         the_controller = NULL;
2467         clk_unprepare(udc->clk);
2468 
2469         return 0;
2470 }
2471 
2472 static void pxa_udc_shutdown(struct platform_device *_dev)
2473 {
2474         struct pxa_udc *udc = platform_get_drvdata(_dev);
2475 
2476         if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2477                 udc_disable(udc);
2478 }
2479 
2480 #ifdef CONFIG_PXA27x
2481 extern void pxa27x_clear_otgph(void);
2482 #else
2483 #define pxa27x_clear_otgph()   do {} while (0)
2484 #endif
2485 
2486 #ifdef CONFIG_PM
2487 /**
2488  * pxa_udc_suspend - Suspend udc device
2489  * @_dev: platform device
2490  * @state: suspend state
2491  *
2492  * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2493  * device.
2494  */
2495 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2496 {
2497         struct pxa_udc *udc = platform_get_drvdata(_dev);
2498         struct pxa_ep *ep;
2499 
2500         ep = &udc->pxa_ep[0];
2501         udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2502 
2503         udc_disable(udc);
2504         udc->pullup_resume = udc->pullup_on;
2505         dplus_pullup(udc, 0);
2506 
2507         if (udc->driver)
2508                 udc->driver->disconnect(&udc->gadget);
2509 
2510         return 0;
2511 }
2512 
2513 /**
2514  * pxa_udc_resume - Resume udc device
2515  * @_dev: platform device
2516  *
2517  * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2518  * device.
2519  */
2520 static int pxa_udc_resume(struct platform_device *_dev)
2521 {
2522         struct pxa_udc *udc = platform_get_drvdata(_dev);
2523         struct pxa_ep *ep;
2524 
2525         ep = &udc->pxa_ep[0];
2526         udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2527 
2528         dplus_pullup(udc, udc->pullup_resume);
2529         if (should_enable_udc(udc))
2530                 udc_enable(udc);
2531         /*
2532          * We do not handle OTG yet.
2533          *
2534          * OTGPH bit is set when sleep mode is entered.
2535          * it indicates that OTG pad is retaining its state.
2536          * Upon exit from sleep mode and before clearing OTGPH,
2537          * Software must configure the USB OTG pad, UDC, and UHC
2538          * to the state they were in before entering sleep mode.
2539          */
2540         pxa27x_clear_otgph();
2541 
2542         return 0;
2543 }
2544 #endif
2545 
2546 /* work with hotplug and coldplug */
2547 MODULE_ALIAS("platform:pxa27x-udc");
2548 
2549 static struct platform_driver udc_driver = {
2550         .driver         = {
2551                 .name   = "pxa27x-udc",
2552                 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2553         },
2554         .probe          = pxa_udc_probe,
2555         .remove         = pxa_udc_remove,
2556         .shutdown       = pxa_udc_shutdown,
2557 #ifdef CONFIG_PM
2558         .suspend        = pxa_udc_suspend,
2559         .resume         = pxa_udc_resume
2560 #endif
2561 };
2562 
2563 module_platform_driver(udc_driver);
2564 
2565 MODULE_DESCRIPTION(DRIVER_DESC);
2566 MODULE_AUTHOR("Robert Jarzmik");
2567 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */