root/drivers/usb/dwc2/hcd.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. dwc2_hsotg_to_hcd
  2. disable_hc_int
  3. dwc2_read_hprt0
  4. dwc2_hcd_get_ep_num
  5. dwc2_hcd_get_pipe_type
  6. dwc2_hcd_get_maxp
  7. dwc2_hcd_get_maxp_mult
  8. dwc2_hcd_get_dev_addr
  9. dwc2_hcd_is_pipe_isoc
  10. dwc2_hcd_is_pipe_int
  11. dwc2_hcd_is_pipe_bulk
  12. dwc2_hcd_is_pipe_control
  13. dwc2_hcd_is_pipe_in
  14. dwc2_hcd_is_pipe_out
  15. dwc2_hcd_qtd_unlink_and_free
  16. dbg_hc
  17. dbg_qh
  18. dbg_urb
  19. dbg_perio
  20. dbg_hc
  21. dbg_qh
  22. dbg_urb
  23. dbg_perio
  24. dwc2_frame_idx_num_gt
  25. dwc2_frame_num_le
  26. dwc2_frame_num_gt
  27. dwc2_frame_num_inc
  28. dwc2_frame_num_dec
  29. dwc2_full_frame_num
  30. dwc2_micro_frame_num
  31. dwc2_read_core_intr
  32. dwc2_hcd_urb_get_status
  33. dwc2_hcd_urb_get_actual_length
  34. dwc2_hcd_urb_get_error_count
  35. dwc2_hcd_urb_set_iso_desc_params
  36. dwc2_hcd_urb_get_iso_desc_status
  37. dwc2_hcd_urb_get_iso_desc_actual_length
  38. dwc2_hcd_is_bandwidth_allocated
  39. dwc2_hcd_get_ep_bandwidth

   1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2 /*
   3  * hcd.h - DesignWare HS OTG Controller host-mode declarations
   4  *
   5  * Copyright (C) 2004-2013 Synopsys, Inc.
   6  *
   7  * Redistribution and use in source and binary forms, with or without
   8  * modification, are permitted provided that the following conditions
   9  * are met:
  10  * 1. Redistributions of source code must retain the above copyright
  11  *    notice, this list of conditions, and the following disclaimer,
  12  *    without modification.
  13  * 2. Redistributions in binary form must reproduce the above copyright
  14  *    notice, this list of conditions and the following disclaimer in the
  15  *    documentation and/or other materials provided with the distribution.
  16  * 3. The names of the above-listed copyright holders may not be used
  17  *    to endorse or promote products derived from this software without
  18  *    specific prior written permission.
  19  *
  20  * ALTERNATIVELY, this software may be distributed under the terms of the
  21  * GNU General Public License ("GPL") as published by the Free Software
  22  * Foundation; either version 2 of the License, or (at your option) any
  23  * later version.
  24  *
  25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36  */
  37 #ifndef __DWC2_HCD_H__
  38 #define __DWC2_HCD_H__
  39 
  40 /*
  41  * This file contains the structures, constants, and interfaces for the
  42  * Host Contoller Driver (HCD)
  43  *
  44  * The Host Controller Driver (HCD) is responsible for translating requests
  45  * from the USB Driver into the appropriate actions on the DWC_otg controller.
  46  * It isolates the USBD from the specifics of the controller by providing an
  47  * API to the USBD.
  48  */
  49 
  50 struct dwc2_qh;
  51 
  52 /**
  53  * struct dwc2_host_chan - Software host channel descriptor
  54  *
  55  * @hc_num:             Host channel number, used for register address lookup
  56  * @dev_addr:           Address of the device
  57  * @ep_num:             Endpoint of the device
  58  * @ep_is_in:           Endpoint direction
  59  * @speed:              Device speed. One of the following values:
  60  *                       - USB_SPEED_LOW
  61  *                       - USB_SPEED_FULL
  62  *                       - USB_SPEED_HIGH
  63  * @ep_type:            Endpoint type. One of the following values:
  64  *                       - USB_ENDPOINT_XFER_CONTROL: 0
  65  *                       - USB_ENDPOINT_XFER_ISOC:    1
  66  *                       - USB_ENDPOINT_XFER_BULK:    2
  67  *                       - USB_ENDPOINT_XFER_INTR:    3
  68  * @max_packet:         Max packet size in bytes
  69  * @data_pid_start:     PID for initial transaction.
  70  *                       0: DATA0
  71  *                       1: DATA2
  72  *                       2: DATA1
  73  *                       3: MDATA (non-Control EP),
  74  *                          SETUP (Control EP)
  75  * @multi_count:        Number of additional periodic transactions per
  76  *                      (micro)frame
  77  * @xfer_buf:           Pointer to current transfer buffer position
  78  * @xfer_dma:           DMA address of xfer_buf
  79  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
  80  *                      DWORD aligned
  81  * @xfer_len:           Total number of bytes to transfer
  82  * @xfer_count:         Number of bytes transferred so far
  83  * @start_pkt_count:    Packet count at start of transfer
  84  * @xfer_started:       True if the transfer has been started
  85  * @do_ping:            True if a PING request should be issued on this channel
  86  * @error_state:        True if the error count for this transaction is non-zero
  87  * @halt_on_queue:      True if this channel should be halted the next time a
  88  *                      request is queued for the channel. This is necessary in
  89  *                      slave mode if no request queue space is available when
  90  *                      an attempt is made to halt the channel.
  91  * @halt_pending:       True if the host channel has been halted, but the core
  92  *                      is not finished flushing queued requests
  93  * @do_split:           Enable split for the channel
  94  * @complete_split:     Enable complete split
  95  * @hub_addr:           Address of high speed hub for the split
  96  * @hub_port:           Port of the low/full speed device for the split
  97  * @xact_pos:           Split transaction position. One of the following values:
  98  *                       - DWC2_HCSPLT_XACTPOS_MID
  99  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 100  *                       - DWC2_HCSPLT_XACTPOS_END
 101  *                       - DWC2_HCSPLT_XACTPOS_ALL
 102  * @requests:           Number of requests issued for this channel since it was
 103  *                      assigned to the current transfer (not counting PINGs)
 104  * @schinfo:            Scheduling micro-frame bitmap
 105  * @ntd:                Number of transfer descriptors for the transfer
 106  * @halt_status:        Reason for halting the host channel
 107  * @hcint:               Contents of the HCINT register when the interrupt came
 108  * @qh:                 QH for the transfer being processed by this channel
 109  * @hc_list_entry:      For linking to list of host channels
 110  * @desc_list_addr:     Current QH's descriptor list DMA address
 111  * @desc_list_sz:       Current QH's descriptor list size
 112  * @split_order_list_entry: List entry for keeping track of the order of splits
 113  *
 114  * This structure represents the state of a single host channel when acting in
 115  * host mode. It contains the data items needed to transfer packets to an
 116  * endpoint via a host channel.
 117  */
 118 struct dwc2_host_chan {
 119         u8 hc_num;
 120 
 121         unsigned dev_addr:7;
 122         unsigned ep_num:4;
 123         unsigned ep_is_in:1;
 124         unsigned speed:4;
 125         unsigned ep_type:2;
 126         unsigned max_packet:11;
 127         unsigned data_pid_start:2;
 128 #define DWC2_HC_PID_DATA0       TSIZ_SC_MC_PID_DATA0
 129 #define DWC2_HC_PID_DATA2       TSIZ_SC_MC_PID_DATA2
 130 #define DWC2_HC_PID_DATA1       TSIZ_SC_MC_PID_DATA1
 131 #define DWC2_HC_PID_MDATA       TSIZ_SC_MC_PID_MDATA
 132 #define DWC2_HC_PID_SETUP       TSIZ_SC_MC_PID_SETUP
 133 
 134         unsigned multi_count:2;
 135 
 136         u8 *xfer_buf;
 137         dma_addr_t xfer_dma;
 138         dma_addr_t align_buf;
 139         u32 xfer_len;
 140         u32 xfer_count;
 141         u16 start_pkt_count;
 142         u8 xfer_started;
 143         u8 do_ping;
 144         u8 error_state;
 145         u8 halt_on_queue;
 146         u8 halt_pending;
 147         u8 do_split;
 148         u8 complete_split;
 149         u8 hub_addr;
 150         u8 hub_port;
 151         u8 xact_pos;
 152 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
 153 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
 154 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
 155 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
 156 
 157         u8 requests;
 158         u8 schinfo;
 159         u16 ntd;
 160         enum dwc2_halt_status halt_status;
 161         u32 hcint;
 162         struct dwc2_qh *qh;
 163         struct list_head hc_list_entry;
 164         dma_addr_t desc_list_addr;
 165         u32 desc_list_sz;
 166         struct list_head split_order_list_entry;
 167 };
 168 
 169 struct dwc2_hcd_pipe_info {
 170         u8 dev_addr;
 171         u8 ep_num;
 172         u8 pipe_type;
 173         u8 pipe_dir;
 174         u16 maxp;
 175         u16 maxp_mult;
 176 };
 177 
 178 struct dwc2_hcd_iso_packet_desc {
 179         u32 offset;
 180         u32 length;
 181         u32 actual_length;
 182         u32 status;
 183 };
 184 
 185 struct dwc2_qtd;
 186 
 187 struct dwc2_hcd_urb {
 188         void *priv;
 189         struct dwc2_qtd *qtd;
 190         void *buf;
 191         dma_addr_t dma;
 192         void *setup_packet;
 193         dma_addr_t setup_dma;
 194         u32 length;
 195         u32 actual_length;
 196         u32 status;
 197         u32 error_count;
 198         u32 packet_count;
 199         u32 flags;
 200         u16 interval;
 201         struct dwc2_hcd_pipe_info pipe_info;
 202         struct dwc2_hcd_iso_packet_desc iso_descs[0];
 203 };
 204 
 205 /* Phases for control transfers */
 206 enum dwc2_control_phase {
 207         DWC2_CONTROL_SETUP,
 208         DWC2_CONTROL_DATA,
 209         DWC2_CONTROL_STATUS,
 210 };
 211 
 212 /* Transaction types */
 213 enum dwc2_transaction_type {
 214         DWC2_TRANSACTION_NONE,
 215         DWC2_TRANSACTION_PERIODIC,
 216         DWC2_TRANSACTION_NON_PERIODIC,
 217         DWC2_TRANSACTION_ALL,
 218 };
 219 
 220 /* The number of elements per LS bitmap (per port on multi_tt) */
 221 #define DWC2_ELEMENTS_PER_LS_BITMAP     DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
 222                                                      BITS_PER_LONG)
 223 
 224 /**
 225  * struct dwc2_tt - dwc2 data associated with a usb_tt
 226  *
 227  * @refcount:           Number of Queue Heads (QHs) holding a reference.
 228  * @usb_tt:             Pointer back to the official usb_tt.
 229  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
 230  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
 231  *                      elements (so sizeof(long) times that in bytes).
 232  *
 233  * This structure is stored in the hcpriv of the official usb_tt.
 234  */
 235 struct dwc2_tt {
 236         int refcount;
 237         struct usb_tt *usb_tt;
 238         unsigned long periodic_bitmaps[];
 239 };
 240 
 241 /**
 242  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
 243  *
 244  * @start_schedule_us:  The start time on the main bus schedule.  Note that
 245  *                         the main bus schedule is tightly packed and this
 246  *                         time should be interpreted as tightly packed (so
 247  *                         uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
 248  *                         instead of 125 us).
 249  * @duration_us:           How long this transfer goes.
 250  */
 251 
 252 struct dwc2_hs_transfer_time {
 253         u32 start_schedule_us;
 254         u16 duration_us;
 255 };
 256 
 257 /**
 258  * struct dwc2_qh - Software queue head structure
 259  *
 260  * @hsotg:              The HCD state structure for the DWC OTG controller
 261  * @ep_type:            Endpoint type. One of the following values:
 262  *                       - USB_ENDPOINT_XFER_CONTROL
 263  *                       - USB_ENDPOINT_XFER_BULK
 264  *                       - USB_ENDPOINT_XFER_INT
 265  *                       - USB_ENDPOINT_XFER_ISOC
 266  * @ep_is_in:           Endpoint direction
 267  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 268  * @maxp_mult:          Multiplier for maxp
 269  * @dev_speed:          Device speed. One of the following values:
 270  *                       - USB_SPEED_LOW
 271  *                       - USB_SPEED_FULL
 272  *                       - USB_SPEED_HIGH
 273  * @data_toggle:        Determines the PID of the next data packet for
 274  *                      non-controltransfers. Ignored for control transfers.
 275  *                      One of the following values:
 276  *                       - DWC2_HC_PID_DATA0
 277  *                       - DWC2_HC_PID_DATA1
 278  * @ping_state:         Ping state
 279  * @do_split:           Full/low speed endpoint on high-speed hub requires split
 280  * @td_first:           Index of first activated isochronous transfer descriptor
 281  * @td_last:            Index of last activated isochronous transfer descriptor
 282  * @host_us:            Bandwidth in microseconds per transfer as seen by host
 283  * @device_us:          Bandwidth in microseconds per transfer as seen by device
 284  * @host_interval:      Interval between transfers as seen by the host.  If
 285  *                      the host is high speed and the device is low speed this
 286  *                      will be 8 times device interval.
 287  * @device_interval:    Interval between transfers as seen by the device.
 288  *                      interval.
 289  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
 290  *                      the bus.  We'll move the qh to active here.  If the
 291  *                      host is in high speed mode this will be a uframe.  If
 292  *                      the host is in low speed mode this will be a full frame.
 293  * @start_active_frame: If we are partway through a split transfer, this will be
 294  *                      what next_active_frame was when we started.  Otherwise
 295  *                      it should always be the same as next_active_frame.
 296  * @num_hs_transfers:   Number of transfers in hs_transfers.
 297  *                      Normally this is 1 but can be more than one for splits.
 298  *                      Always >= 1 unless the host is in low/full speed mode.
 299  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
 300  *                      bus.  Not used if host is in low or full speed mode (but
 301  *                      note that it IS USED if the device is low or full speed
 302  *                      as long as the HOST is in high speed mode).
 303  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
 304  *                           schedule that's being used by this device.  This
 305  *                           will be on the periodic_bitmap in a
 306  *                           "struct dwc2_tt".  Not used if this device is high
 307  *                           speed.  Note that this is in "schedule slice" which
 308  *                           is tightly packed.
 309  * @ntd:                Actual number of transfer descriptors in a list
 310  * @dw_align_buf:       Used instead of original buffer if its physical address
 311  *                      is not dword-aligned
 312  * @dw_align_buf_dma:   DMA address for dw_align_buf
 313  * @qtd_list:           List of QTDs for this QH
 314  * @channel:            Host channel currently processing transfers for this QH
 315  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
 316  *                      schedule
 317  * @desc_list:          List of transfer descriptors
 318  * @desc_list_dma:      Physical address of desc_list
 319  * @desc_list_sz:       Size of descriptors list
 320  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
 321  *                      descriptor and indicates original XferSize value for the
 322  *                      descriptor
 323  * @unreserve_timer:    Timer for releasing periodic reservation.
 324  * @wait_timer:         Timer used to wait before re-queuing.
 325  * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
 326  * @ttport:             Port number within our tt.
 327  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
 328  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
 329  * @schedule_low_speed: True if we have a low/full speed component (either the
 330  *                      host is in low/full speed mode or do_split).
 331  * @want_wait:          We should wait before re-queuing; only matters for non-
 332  *                      periodic transfers and is ignored for periodic ones.
 333  * @wait_timer_cancel:  Set to true to cancel the wait_timer.
 334  *
 335  * @tt_buffer_dirty:    True if EP's TT buffer is not clean.
 336  * A Queue Head (QH) holds the static characteristics of an endpoint and
 337  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
 338  * be entered in either the non-periodic or periodic schedule.
 339  */
 340 struct dwc2_qh {
 341         struct dwc2_hsotg *hsotg;
 342         u8 ep_type;
 343         u8 ep_is_in;
 344         u16 maxp;
 345         u16 maxp_mult;
 346         u8 dev_speed;
 347         u8 data_toggle;
 348         u8 ping_state;
 349         u8 do_split;
 350         u8 td_first;
 351         u8 td_last;
 352         u16 host_us;
 353         u16 device_us;
 354         u16 host_interval;
 355         u16 device_interval;
 356         u16 next_active_frame;
 357         u16 start_active_frame;
 358         s16 num_hs_transfers;
 359         struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
 360         u32 ls_start_schedule_slice;
 361         u16 ntd;
 362         u8 *dw_align_buf;
 363         dma_addr_t dw_align_buf_dma;
 364         struct list_head qtd_list;
 365         struct dwc2_host_chan *channel;
 366         struct list_head qh_list_entry;
 367         struct dwc2_dma_desc *desc_list;
 368         dma_addr_t desc_list_dma;
 369         u32 desc_list_sz;
 370         u32 *n_bytes;
 371         struct timer_list unreserve_timer;
 372         struct hrtimer wait_timer;
 373         struct dwc2_tt *dwc_tt;
 374         int ttport;
 375         unsigned tt_buffer_dirty:1;
 376         unsigned unreserve_pending:1;
 377         unsigned schedule_low_speed:1;
 378         unsigned want_wait:1;
 379         unsigned wait_timer_cancel:1;
 380 };
 381 
 382 /**
 383  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
 384  *
 385  * @control_phase:      Current phase for control transfers (Setup, Data, or
 386  *                      Status)
 387  * @in_process:         Indicates if this QTD is currently processed by HW
 388  * @data_toggle:        Determines the PID of the next data packet for the
 389  *                      data phase of control transfers. Ignored for other
 390  *                      transfer types. One of the following values:
 391  *                       - DWC2_HC_PID_DATA0
 392  *                       - DWC2_HC_PID_DATA1
 393  * @complete_split:     Keeps track of the current split type for FS/LS
 394  *                      endpoints on a HS Hub
 395  * @isoc_split_pos:     Position of the ISOC split in full/low speed
 396  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
 397  *                      transfer. A frame descriptor describes the buffer
 398  *                      position and length of the data to be transferred in the
 399  *                      next scheduled (micro)frame of an isochronous transfer.
 400  *                      It also holds status for that transaction. The frame
 401  *                      index starts at 0.
 402  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
 403  *                      current frame
 404  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
 405  * @error_count:        Holds the number of bus errors that have occurred for
 406  *                      a transaction within this transfer
 407  * @n_desc:             Number of DMA descriptors for this QTD
 408  * @isoc_frame_index_last: Last activated frame (packet) index, used in
 409  *                      descriptor DMA mode only
 410  * @num_naks:           Number of NAKs received on this QTD.
 411  * @urb:                URB for this transfer
 412  * @qh:                 Queue head for this QTD
 413  * @qtd_list_entry:     For linking to the QH's list of QTDs
 414  * @isoc_td_first:      Index of first activated isochronous transfer
 415  *                      descriptor in Descriptor DMA mode
 416  * @isoc_td_last:       Index of last activated isochronous transfer
 417  *                      descriptor in Descriptor DMA mode
 418  *
 419  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
 420  * interrupt, or isochronous transfer. A single QTD is created for each URB
 421  * (of one of these types) submitted to the HCD. The transfer associated with
 422  * a QTD may require one or multiple transactions.
 423  *
 424  * A QTD is linked to a Queue Head, which is entered in either the
 425  * non-periodic or periodic schedule for execution. When a QTD is chosen for
 426  * execution, some or all of its transactions may be executed. After
 427  * execution, the state of the QTD is updated. The QTD may be retired if all
 428  * its transactions are complete or if an error occurred. Otherwise, it
 429  * remains in the schedule so more transactions can be executed later.
 430  */
 431 struct dwc2_qtd {
 432         enum dwc2_control_phase control_phase;
 433         u8 in_process;
 434         u8 data_toggle;
 435         u8 complete_split;
 436         u8 isoc_split_pos;
 437         u16 isoc_frame_index;
 438         u16 isoc_split_offset;
 439         u16 isoc_td_last;
 440         u16 isoc_td_first;
 441         u32 ssplit_out_xfer_count;
 442         u8 error_count;
 443         u8 n_desc;
 444         u16 isoc_frame_index_last;
 445         u16 num_naks;
 446         struct dwc2_hcd_urb *urb;
 447         struct dwc2_qh *qh;
 448         struct list_head qtd_list_entry;
 449 };
 450 
 451 #ifdef DEBUG
 452 struct hc_xfer_info {
 453         struct dwc2_hsotg *hsotg;
 454         struct dwc2_host_chan *chan;
 455 };
 456 #endif
 457 
 458 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
 459 
 460 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
 461 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
 462 {
 463         return (struct usb_hcd *)hsotg->priv;
 464 }
 465 
 466 /*
 467  * Inline used to disable one channel interrupt. Channel interrupts are
 468  * disabled when the channel is halted or released by the interrupt handler.
 469  * There is no need to handle further interrupts of that type until the
 470  * channel is re-assigned. In fact, subsequent handling may cause crashes
 471  * because the channel structures are cleaned up when the channel is released.
 472  */
 473 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
 474 {
 475         u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
 476 
 477         mask &= ~intr;
 478         dwc2_writel(hsotg, mask, HCINTMSK(chnum));
 479 }
 480 
 481 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
 482 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 483                   enum dwc2_halt_status halt_status);
 484 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
 485                                  struct dwc2_host_chan *chan);
 486 
 487 /*
 488  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
 489  * are read as 1, they won't clear when written back.
 490  */
 491 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
 492 {
 493         u32 hprt0 = dwc2_readl(hsotg, HPRT0);
 494 
 495         hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
 496         return hprt0;
 497 }
 498 
 499 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
 500 {
 501         return pipe->ep_num;
 502 }
 503 
 504 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
 505 {
 506         return pipe->pipe_type;
 507 }
 508 
 509 static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
 510 {
 511         return pipe->maxp;
 512 }
 513 
 514 static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
 515 {
 516         return pipe->maxp_mult;
 517 }
 518 
 519 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
 520 {
 521         return pipe->dev_addr;
 522 }
 523 
 524 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
 525 {
 526         return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
 527 }
 528 
 529 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
 530 {
 531         return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
 532 }
 533 
 534 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
 535 {
 536         return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
 537 }
 538 
 539 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
 540 {
 541         return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
 542 }
 543 
 544 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
 545 {
 546         return pipe->pipe_dir == USB_DIR_IN;
 547 }
 548 
 549 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
 550 {
 551         return !dwc2_hcd_is_pipe_in(pipe);
 552 }
 553 
 554 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
 555 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
 556 
 557 /* Transaction Execution Functions */
 558 enum dwc2_transaction_type dwc2_hcd_select_transactions(
 559                                                 struct dwc2_hsotg *hsotg);
 560 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
 561                                  enum dwc2_transaction_type tr_type);
 562 
 563 /* Schedule Queue Functions */
 564 /* Implemented in hcd_queue.c */
 565 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
 566                                    struct dwc2_hcd_urb *urb,
 567                                           gfp_t mem_flags);
 568 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 569 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 570 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 571 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 572                             int sched_csplit);
 573 
 574 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
 575 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 576                      struct dwc2_qh *qh);
 577 
 578 /* Unlinks and frees a QTD */
 579 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
 580                                                 struct dwc2_qtd *qtd,
 581                                                 struct dwc2_qh *qh)
 582 {
 583         list_del(&qtd->qtd_list_entry);
 584         kfree(qtd);
 585 }
 586 
 587 /* Descriptor DMA support functions */
 588 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
 589                               struct dwc2_qh *qh);
 590 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
 591                                  struct dwc2_host_chan *chan, int chnum,
 592                                         enum dwc2_halt_status halt_status);
 593 
 594 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
 595                           gfp_t mem_flags);
 596 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
 597 
 598 /* Check if QH is non-periodic */
 599 #define dwc2_qh_is_non_per(_qh_ptr_) \
 600         ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
 601          (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
 602 
 603 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
 604 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
 605 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
 606 static inline bool dbg_urb(struct urb *urb) { return true; }
 607 static inline bool dbg_perio(void) { return true; }
 608 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
 609 static inline bool dbg_hc(struct dwc2_host_chan *hc)
 610 {
 611         return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
 612                hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
 613 }
 614 
 615 static inline bool dbg_qh(struct dwc2_qh *qh)
 616 {
 617         return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
 618                qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
 619 }
 620 
 621 static inline bool dbg_urb(struct urb *urb)
 622 {
 623         return usb_pipetype(urb->pipe) == PIPE_BULK ||
 624                usb_pipetype(urb->pipe) == PIPE_CONTROL;
 625 }
 626 
 627 static inline bool dbg_perio(void) { return false; }
 628 #endif
 629 
 630 /*
 631  * Returns true if frame1 index is greater than frame2 index. The comparison
 632  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
 633  * frame number when the max index frame number is reached.
 634  */
 635 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
 636 {
 637         u16 diff = fr_idx1 - fr_idx2;
 638         u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
 639 
 640         return diff && !sign;
 641 }
 642 
 643 /*
 644  * Returns true if frame1 is less than or equal to frame2. The comparison is
 645  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
 646  * frame number when the max frame number is reached.
 647  */
 648 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
 649 {
 650         return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
 651 }
 652 
 653 /*
 654  * Returns true if frame1 is greater than frame2. The comparison is done
 655  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
 656  * number when the max frame number is reached.
 657  */
 658 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
 659 {
 660         return (frame1 != frame2) &&
 661                ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
 662 }
 663 
 664 /*
 665  * Increments frame by the amount specified by inc. The addition is done
 666  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
 667  */
 668 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
 669 {
 670         return (frame + inc) & HFNUM_MAX_FRNUM;
 671 }
 672 
 673 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
 674 {
 675         return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
 676 }
 677 
 678 static inline u16 dwc2_full_frame_num(u16 frame)
 679 {
 680         return (frame & HFNUM_MAX_FRNUM) >> 3;
 681 }
 682 
 683 static inline u16 dwc2_micro_frame_num(u16 frame)
 684 {
 685         return frame & 0x7;
 686 }
 687 
 688 /*
 689  * Returns the Core Interrupt Status register contents, ANDed with the Core
 690  * Interrupt Mask register contents
 691  */
 692 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
 693 {
 694         return dwc2_readl(hsotg, GINTSTS) &
 695                dwc2_readl(hsotg, GINTMSK);
 696 }
 697 
 698 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
 699 {
 700         return dwc2_urb->status;
 701 }
 702 
 703 static inline u32 dwc2_hcd_urb_get_actual_length(
 704                 struct dwc2_hcd_urb *dwc2_urb)
 705 {
 706         return dwc2_urb->actual_length;
 707 }
 708 
 709 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
 710 {
 711         return dwc2_urb->error_count;
 712 }
 713 
 714 static inline void dwc2_hcd_urb_set_iso_desc_params(
 715                 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
 716                 u32 length)
 717 {
 718         dwc2_urb->iso_descs[desc_num].offset = offset;
 719         dwc2_urb->iso_descs[desc_num].length = length;
 720 }
 721 
 722 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
 723                 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 724 {
 725         return dwc2_urb->iso_descs[desc_num].status;
 726 }
 727 
 728 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
 729                 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
 730 {
 731         return dwc2_urb->iso_descs[desc_num].actual_length;
 732 }
 733 
 734 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
 735                                                   struct usb_host_endpoint *ep)
 736 {
 737         struct dwc2_qh *qh = ep->hcpriv;
 738 
 739         if (qh && !list_empty(&qh->qh_list_entry))
 740                 return 1;
 741 
 742         return 0;
 743 }
 744 
 745 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
 746                                             struct usb_host_endpoint *ep)
 747 {
 748         struct dwc2_qh *qh = ep->hcpriv;
 749 
 750         if (!qh) {
 751                 WARN_ON(1);
 752                 return 0;
 753         }
 754 
 755         return qh->host_us;
 756 }
 757 
 758 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
 759                                struct dwc2_host_chan *chan, int chnum,
 760                                       struct dwc2_qtd *qtd);
 761 
 762 /* HCD Core API */
 763 
 764 /**
 765  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
 766  *
 767  * @hsotg: The DWC2 HCD
 768  *
 769  * Returns IRQ_HANDLED if interrupt is handled
 770  * Return IRQ_NONE if interrupt is not handled
 771  */
 772 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
 773 
 774 /**
 775  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
 776  *
 777  * @hsotg: The DWC2 HCD
 778  */
 779 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
 780 
 781 /**
 782  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
 783  * and 0 otherwise
 784  *
 785  * @hsotg: The DWC2 HCD
 786  */
 787 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
 788 
 789 /**
 790  * dwc2_hcd_dump_state() - Dumps hsotg state
 791  *
 792  * @hsotg: The DWC2 HCD
 793  *
 794  * NOTE: This function will be removed once the peripheral controller code
 795  * is integrated and the driver is stable
 796  */
 797 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 798 
 799 /* URB interface */
 800 
 801 /* Transfer flags */
 802 #define URB_GIVEBACK_ASAP       0x1
 803 #define URB_SEND_ZERO_PACKET    0x2
 804 
 805 /* Host driver callbacks */
 806 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
 807                                       void *context, gfp_t mem_flags,
 808                                       int *ttport);
 809 
 810 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
 811                            struct dwc2_tt *dwc_tt);
 812 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
 813 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
 814                         int status);
 815 
 816 #endif /* __DWC2_HCD_H__ */

/* [<][>][^][v][top][bottom][index][help] */