root/drivers/usb/storage/datafab.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. datafab_bulk_read
  2. datafab_bulk_write
  3. datafab_read_data
  4. datafab_write_data
  5. datafab_determine_lun
  6. datafab_id_device
  7. datafab_handle_mode_sense
  8. datafab_info_destructor
  9. datafab_transport
  10. datafab_probe

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Driver for Datafab USB Compact Flash reader
   4  *
   5  * datafab driver v0.1:
   6  *
   7  * First release
   8  *
   9  * Current development and maintenance by:
  10  *   (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org)
  11  *
  12  *   Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver
  13  *   which I used as a template for this driver.
  14  *
  15  *   Some bugfixes and scatter-gather code by Gregory P. Smith 
  16  *   (greg-usb@electricrain.com)
  17  *
  18  *   Fix for media change by Joerg Schneider (js@joergschneider.com)
  19  *
  20  * Other contributors:
  21  *   (c) 2002 Alan Stern <stern@rowland.org>
  22  */
  23 
  24 /*
  25  * This driver attempts to support USB CompactFlash reader/writer devices
  26  * based on Datafab USB-to-ATA chips.  It was specifically developed for the 
  27  * Datafab MDCFE-B USB CompactFlash reader but has since been found to work 
  28  * with a variety of Datafab-based devices from a number of manufacturers.
  29  * I've received a report of this driver working with a Datafab-based
  30  * SmartMedia device though please be aware that I'm personally unable to
  31  * test SmartMedia support.
  32  *
  33  * This driver supports reading and writing.  If you're truly paranoid,
  34  * however, you can force the driver into a write-protected state by setting
  35  * the WP enable bits in datafab_handle_mode_sense().  See the comments
  36  * in that routine.
  37  */
  38 
  39 #include <linux/errno.h>
  40 #include <linux/module.h>
  41 #include <linux/slab.h>
  42 
  43 #include <scsi/scsi.h>
  44 #include <scsi/scsi_cmnd.h>
  45 
  46 #include "usb.h"
  47 #include "transport.h"
  48 #include "protocol.h"
  49 #include "debug.h"
  50 #include "scsiglue.h"
  51 
  52 #define DRV_NAME "ums-datafab"
  53 
  54 MODULE_DESCRIPTION("Driver for Datafab USB Compact Flash reader");
  55 MODULE_AUTHOR("Jimmie Mayfield <mayfield+datafab@sackheads.org>");
  56 MODULE_LICENSE("GPL");
  57 MODULE_IMPORT_NS(USB_STORAGE);
  58 
  59 struct datafab_info {
  60         unsigned long   sectors;        /* total sector count */
  61         unsigned long   ssize;          /* sector size in bytes */
  62         signed char     lun;            /* used for dual-slot readers */
  63 
  64         /* the following aren't used yet */
  65         unsigned char   sense_key;
  66         unsigned long   sense_asc;      /* additional sense code */
  67         unsigned long   sense_ascq;     /* additional sense code qualifier */
  68 };
  69 
  70 static int datafab_determine_lun(struct us_data *us,
  71                                  struct datafab_info *info);
  72 
  73 
  74 /*
  75  * The table of devices
  76  */
  77 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  78                     vendorName, productName, useProtocol, useTransport, \
  79                     initFunction, flags) \
  80 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  81   .driver_info = (flags) }
  82 
  83 static struct usb_device_id datafab_usb_ids[] = {
  84 #       include "unusual_datafab.h"
  85         { }             /* Terminating entry */
  86 };
  87 MODULE_DEVICE_TABLE(usb, datafab_usb_ids);
  88 
  89 #undef UNUSUAL_DEV
  90 
  91 /*
  92  * The flags table
  93  */
  94 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  95                     vendor_name, product_name, use_protocol, use_transport, \
  96                     init_function, Flags) \
  97 { \
  98         .vendorName = vendor_name,      \
  99         .productName = product_name,    \
 100         .useProtocol = use_protocol,    \
 101         .useTransport = use_transport,  \
 102         .initFunction = init_function,  \
 103 }
 104 
 105 static struct us_unusual_dev datafab_unusual_dev_list[] = {
 106 #       include "unusual_datafab.h"
 107         { }             /* Terminating entry */
 108 };
 109 
 110 #undef UNUSUAL_DEV
 111 
 112 
 113 static inline int
 114 datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) {
 115         if (len == 0)
 116                 return USB_STOR_XFER_GOOD;
 117 
 118         usb_stor_dbg(us, "len = %d\n", len);
 119         return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 120                         data, len, NULL);
 121 }
 122 
 123 
 124 static inline int
 125 datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) {
 126         if (len == 0)
 127                 return USB_STOR_XFER_GOOD;
 128 
 129         usb_stor_dbg(us, "len = %d\n", len);
 130         return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 131                         data, len, NULL);
 132 }
 133 
 134 
 135 static int datafab_read_data(struct us_data *us,
 136                              struct datafab_info *info,
 137                              u32 sector,
 138                              u32 sectors)
 139 {
 140         unsigned char *command = us->iobuf;
 141         unsigned char *buffer;
 142         unsigned char  thistime;
 143         unsigned int totallen, alloclen;
 144         int len, result;
 145         unsigned int sg_offset = 0;
 146         struct scatterlist *sg = NULL;
 147 
 148         // we're working in LBA mode.  according to the ATA spec, 
 149         // we can support up to 28-bit addressing.  I don't know if Datafab
 150         // supports beyond 24-bit addressing.  It's kind of hard to test 
 151         // since it requires > 8GB CF card.
 152         //
 153         if (sectors > 0x0FFFFFFF)
 154                 return USB_STOR_TRANSPORT_ERROR;
 155 
 156         if (info->lun == -1) {
 157                 result = datafab_determine_lun(us, info);
 158                 if (result != USB_STOR_TRANSPORT_GOOD)
 159                         return result;
 160         }
 161 
 162         totallen = sectors * info->ssize;
 163 
 164         // Since we don't read more than 64 KB at a time, we have to create
 165         // a bounce buffer and move the data a piece at a time between the
 166         // bounce buffer and the actual transfer buffer.
 167 
 168         alloclen = min(totallen, 65536u);
 169         buffer = kmalloc(alloclen, GFP_NOIO);
 170         if (buffer == NULL)
 171                 return USB_STOR_TRANSPORT_ERROR;
 172 
 173         do {
 174                 // loop, never allocate or transfer more than 64k at once
 175                 // (min(128k, 255*info->ssize) is the real limit)
 176 
 177                 len = min(totallen, alloclen);
 178                 thistime = (len / info->ssize) & 0xff;
 179 
 180                 command[0] = 0;
 181                 command[1] = thistime;
 182                 command[2] = sector & 0xFF;
 183                 command[3] = (sector >> 8) & 0xFF;
 184                 command[4] = (sector >> 16) & 0xFF;
 185 
 186                 command[5] = 0xE0 + (info->lun << 4);
 187                 command[5] |= (sector >> 24) & 0x0F;
 188                 command[6] = 0x20;
 189                 command[7] = 0x01;
 190 
 191                 // send the read command
 192                 result = datafab_bulk_write(us, command, 8);
 193                 if (result != USB_STOR_XFER_GOOD)
 194                         goto leave;
 195 
 196                 // read the result
 197                 result = datafab_bulk_read(us, buffer, len);
 198                 if (result != USB_STOR_XFER_GOOD)
 199                         goto leave;
 200 
 201                 // Store the data in the transfer buffer
 202                 usb_stor_access_xfer_buf(buffer, len, us->srb,
 203                                  &sg, &sg_offset, TO_XFER_BUF);
 204 
 205                 sector += thistime;
 206                 totallen -= len;
 207         } while (totallen > 0);
 208 
 209         kfree(buffer);
 210         return USB_STOR_TRANSPORT_GOOD;
 211 
 212  leave:
 213         kfree(buffer);
 214         return USB_STOR_TRANSPORT_ERROR;
 215 }
 216 
 217 
 218 static int datafab_write_data(struct us_data *us,
 219                               struct datafab_info *info,
 220                               u32 sector,
 221                               u32 sectors)
 222 {
 223         unsigned char *command = us->iobuf;
 224         unsigned char *reply = us->iobuf;
 225         unsigned char *buffer;
 226         unsigned char thistime;
 227         unsigned int totallen, alloclen;
 228         int len, result;
 229         unsigned int sg_offset = 0;
 230         struct scatterlist *sg = NULL;
 231 
 232         // we're working in LBA mode.  according to the ATA spec, 
 233         // we can support up to 28-bit addressing.  I don't know if Datafab
 234         // supports beyond 24-bit addressing.  It's kind of hard to test 
 235         // since it requires > 8GB CF card.
 236         //
 237         if (sectors > 0x0FFFFFFF)
 238                 return USB_STOR_TRANSPORT_ERROR;
 239 
 240         if (info->lun == -1) {
 241                 result = datafab_determine_lun(us, info);
 242                 if (result != USB_STOR_TRANSPORT_GOOD)
 243                         return result;
 244         }
 245 
 246         totallen = sectors * info->ssize;
 247 
 248         // Since we don't write more than 64 KB at a time, we have to create
 249         // a bounce buffer and move the data a piece at a time between the
 250         // bounce buffer and the actual transfer buffer.
 251 
 252         alloclen = min(totallen, 65536u);
 253         buffer = kmalloc(alloclen, GFP_NOIO);
 254         if (buffer == NULL)
 255                 return USB_STOR_TRANSPORT_ERROR;
 256 
 257         do {
 258                 // loop, never allocate or transfer more than 64k at once
 259                 // (min(128k, 255*info->ssize) is the real limit)
 260 
 261                 len = min(totallen, alloclen);
 262                 thistime = (len / info->ssize) & 0xff;
 263 
 264                 // Get the data from the transfer buffer
 265                 usb_stor_access_xfer_buf(buffer, len, us->srb,
 266                                 &sg, &sg_offset, FROM_XFER_BUF);
 267 
 268                 command[0] = 0;
 269                 command[1] = thistime;
 270                 command[2] = sector & 0xFF;
 271                 command[3] = (sector >> 8) & 0xFF;
 272                 command[4] = (sector >> 16) & 0xFF;
 273 
 274                 command[5] = 0xE0 + (info->lun << 4);
 275                 command[5] |= (sector >> 24) & 0x0F;
 276                 command[6] = 0x30;
 277                 command[7] = 0x02;
 278 
 279                 // send the command
 280                 result = datafab_bulk_write(us, command, 8);
 281                 if (result != USB_STOR_XFER_GOOD)
 282                         goto leave;
 283 
 284                 // send the data
 285                 result = datafab_bulk_write(us, buffer, len);
 286                 if (result != USB_STOR_XFER_GOOD)
 287                         goto leave;
 288 
 289                 // read the result
 290                 result = datafab_bulk_read(us, reply, 2);
 291                 if (result != USB_STOR_XFER_GOOD)
 292                         goto leave;
 293 
 294                 if (reply[0] != 0x50 && reply[1] != 0) {
 295                         usb_stor_dbg(us, "Gah! write return code: %02x %02x\n",
 296                                      reply[0], reply[1]);
 297                         result = USB_STOR_TRANSPORT_ERROR;
 298                         goto leave;
 299                 }
 300 
 301                 sector += thistime;
 302                 totallen -= len;
 303         } while (totallen > 0);
 304 
 305         kfree(buffer);
 306         return USB_STOR_TRANSPORT_GOOD;
 307 
 308  leave:
 309         kfree(buffer);
 310         return USB_STOR_TRANSPORT_ERROR;
 311 }
 312 
 313 
 314 static int datafab_determine_lun(struct us_data *us,
 315                                  struct datafab_info *info)
 316 {
 317         // Dual-slot readers can be thought of as dual-LUN devices.
 318         // We need to determine which card slot is being used.
 319         // We'll send an IDENTIFY DEVICE command and see which LUN responds...
 320         //
 321         // There might be a better way of doing this?
 322 
 323         static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
 324         unsigned char *command = us->iobuf;
 325         unsigned char *buf;
 326         int count = 0, rc;
 327 
 328         if (!info)
 329                 return USB_STOR_TRANSPORT_ERROR;
 330 
 331         memcpy(command, scommand, 8);
 332         buf = kmalloc(512, GFP_NOIO);
 333         if (!buf)
 334                 return USB_STOR_TRANSPORT_ERROR;
 335 
 336         usb_stor_dbg(us, "locating...\n");
 337 
 338         // we'll try 3 times before giving up...
 339         //
 340         while (count++ < 3) {
 341                 command[5] = 0xa0;
 342 
 343                 rc = datafab_bulk_write(us, command, 8);
 344                 if (rc != USB_STOR_XFER_GOOD) {
 345                         rc = USB_STOR_TRANSPORT_ERROR;
 346                         goto leave;
 347                 }
 348 
 349                 rc = datafab_bulk_read(us, buf, 512);
 350                 if (rc == USB_STOR_XFER_GOOD) {
 351                         info->lun = 0;
 352                         rc = USB_STOR_TRANSPORT_GOOD;
 353                         goto leave;
 354                 }
 355 
 356                 command[5] = 0xb0;
 357 
 358                 rc = datafab_bulk_write(us, command, 8);
 359                 if (rc != USB_STOR_XFER_GOOD) {
 360                         rc = USB_STOR_TRANSPORT_ERROR;
 361                         goto leave;
 362                 }
 363 
 364                 rc = datafab_bulk_read(us, buf, 512);
 365                 if (rc == USB_STOR_XFER_GOOD) {
 366                         info->lun = 1;
 367                         rc = USB_STOR_TRANSPORT_GOOD;
 368                         goto leave;
 369                 }
 370 
 371                 msleep(20);
 372         }
 373 
 374         rc = USB_STOR_TRANSPORT_ERROR;
 375 
 376  leave:
 377         kfree(buf);
 378         return rc;
 379 }
 380 
 381 static int datafab_id_device(struct us_data *us,
 382                              struct datafab_info *info)
 383 {
 384         // this is a variation of the ATA "IDENTIFY DEVICE" command...according
 385         // to the ATA spec, 'Sector Count' isn't used but the Windows driver
 386         // sets this bit so we do too...
 387         //
 388         static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
 389         unsigned char *command = us->iobuf;
 390         unsigned char *reply;
 391         int rc;
 392 
 393         if (!info)
 394                 return USB_STOR_TRANSPORT_ERROR;
 395 
 396         if (info->lun == -1) {
 397                 rc = datafab_determine_lun(us, info);
 398                 if (rc != USB_STOR_TRANSPORT_GOOD)
 399                         return rc;
 400         }
 401 
 402         memcpy(command, scommand, 8);
 403         reply = kmalloc(512, GFP_NOIO);
 404         if (!reply)
 405                 return USB_STOR_TRANSPORT_ERROR;
 406 
 407         command[5] += (info->lun << 4);
 408 
 409         rc = datafab_bulk_write(us, command, 8);
 410         if (rc != USB_STOR_XFER_GOOD) {
 411                 rc = USB_STOR_TRANSPORT_ERROR;
 412                 goto leave;
 413         }
 414 
 415         // we'll go ahead and extract the media capacity while we're here...
 416         //
 417         rc = datafab_bulk_read(us, reply, 512);
 418         if (rc == USB_STOR_XFER_GOOD) {
 419                 // capacity is at word offset 57-58
 420                 //
 421                 info->sectors = ((u32)(reply[117]) << 24) | 
 422                                 ((u32)(reply[116]) << 16) |
 423                                 ((u32)(reply[115]) <<  8) | 
 424                                 ((u32)(reply[114])      );
 425                 rc = USB_STOR_TRANSPORT_GOOD;
 426                 goto leave;
 427         }
 428 
 429         rc = USB_STOR_TRANSPORT_ERROR;
 430 
 431  leave:
 432         kfree(reply);
 433         return rc;
 434 }
 435 
 436 
 437 static int datafab_handle_mode_sense(struct us_data *us,
 438                                      struct scsi_cmnd * srb, 
 439                                      int sense_6)
 440 {
 441         static unsigned char rw_err_page[12] = {
 442                 0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0
 443         };
 444         static unsigned char cache_page[12] = {
 445                 0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0
 446         };
 447         static unsigned char rbac_page[12] = {
 448                 0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0
 449         };
 450         static unsigned char timer_page[8] = {
 451                 0x1C, 0x6, 0, 0, 0, 0
 452         };
 453         unsigned char pc, page_code;
 454         unsigned int i = 0;
 455         struct datafab_info *info = (struct datafab_info *) (us->extra);
 456         unsigned char *ptr = us->iobuf;
 457 
 458         // most of this stuff is just a hack to get things working.  the
 459         // datafab reader doesn't present a SCSI interface so we
 460         // fudge the SCSI commands...
 461         //
 462 
 463         pc = srb->cmnd[2] >> 6;
 464         page_code = srb->cmnd[2] & 0x3F;
 465 
 466         switch (pc) {
 467            case 0x0:
 468                    usb_stor_dbg(us, "Current values\n");
 469                 break;
 470            case 0x1:
 471                    usb_stor_dbg(us, "Changeable values\n");
 472                 break;
 473            case 0x2:
 474                    usb_stor_dbg(us, "Default values\n");
 475                 break;
 476            case 0x3:
 477                    usb_stor_dbg(us, "Saves values\n");
 478                 break;
 479         }
 480 
 481         memset(ptr, 0, 8);
 482         if (sense_6) {
 483                 ptr[2] = 0x00;          // WP enable: 0x80
 484                 i = 4;
 485         } else {
 486                 ptr[3] = 0x00;          // WP enable: 0x80
 487                 i = 8;
 488         }
 489 
 490         switch (page_code) {
 491            default:
 492                 // vendor-specific mode
 493                 info->sense_key = 0x05;
 494                 info->sense_asc = 0x24;
 495                 info->sense_ascq = 0x00;
 496                 return USB_STOR_TRANSPORT_FAILED;
 497 
 498            case 0x1:
 499                 memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
 500                 i += sizeof(rw_err_page);
 501                 break;
 502 
 503            case 0x8:
 504                 memcpy(ptr + i, cache_page, sizeof(cache_page));
 505                 i += sizeof(cache_page);
 506                 break;
 507 
 508            case 0x1B:
 509                 memcpy(ptr + i, rbac_page, sizeof(rbac_page));
 510                 i += sizeof(rbac_page);
 511                 break;
 512 
 513            case 0x1C:
 514                 memcpy(ptr + i, timer_page, sizeof(timer_page));
 515                 i += sizeof(timer_page);
 516                 break;
 517 
 518            case 0x3F:           // retrieve all pages
 519                 memcpy(ptr + i, timer_page, sizeof(timer_page));
 520                 i += sizeof(timer_page);
 521                 memcpy(ptr + i, rbac_page, sizeof(rbac_page));
 522                 i += sizeof(rbac_page);
 523                 memcpy(ptr + i, cache_page, sizeof(cache_page));
 524                 i += sizeof(cache_page);
 525                 memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
 526                 i += sizeof(rw_err_page);
 527                 break;
 528         }
 529 
 530         if (sense_6)
 531                 ptr[0] = i - 1;
 532         else
 533                 ((__be16 *) ptr)[0] = cpu_to_be16(i - 2);
 534         usb_stor_set_xfer_buf(ptr, i, srb);
 535 
 536         return USB_STOR_TRANSPORT_GOOD;
 537 }
 538 
 539 static void datafab_info_destructor(void *extra)
 540 {
 541         // this routine is a placeholder...
 542         // currently, we don't allocate any extra memory so we're okay
 543 }
 544 
 545 
 546 // Transport for the Datafab MDCFE-B
 547 //
 548 static int datafab_transport(struct scsi_cmnd *srb, struct us_data *us)
 549 {
 550         struct datafab_info *info;
 551         int rc;
 552         unsigned long block, blocks;
 553         unsigned char *ptr = us->iobuf;
 554         static unsigned char inquiry_reply[8] = {
 555                 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
 556         };
 557 
 558         if (!us->extra) {
 559                 us->extra = kzalloc(sizeof(struct datafab_info), GFP_NOIO);
 560                 if (!us->extra)
 561                         return USB_STOR_TRANSPORT_ERROR;
 562 
 563                 us->extra_destructor = datafab_info_destructor;
 564                 ((struct datafab_info *)us->extra)->lun = -1;
 565         }
 566 
 567         info = (struct datafab_info *) (us->extra);
 568 
 569         if (srb->cmnd[0] == INQUIRY) {
 570                 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
 571                 memcpy(ptr, inquiry_reply, sizeof(inquiry_reply));
 572                 fill_inquiry_response(us, ptr, 36);
 573                 return USB_STOR_TRANSPORT_GOOD;
 574         }
 575 
 576         if (srb->cmnd[0] == READ_CAPACITY) {
 577                 info->ssize = 0x200;  // hard coded 512 byte sectors as per ATA spec
 578                 rc = datafab_id_device(us, info);
 579                 if (rc != USB_STOR_TRANSPORT_GOOD)
 580                         return rc;
 581 
 582                 usb_stor_dbg(us, "READ_CAPACITY:  %ld sectors, %ld bytes per sector\n",
 583                              info->sectors, info->ssize);
 584 
 585                 // build the reply
 586                 // we need the last sector, not the number of sectors
 587                 ((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1);
 588                 ((__be32 *) ptr)[1] = cpu_to_be32(info->ssize);
 589                 usb_stor_set_xfer_buf(ptr, 8, srb);
 590 
 591                 return USB_STOR_TRANSPORT_GOOD;
 592         }
 593 
 594         if (srb->cmnd[0] == MODE_SELECT_10) {
 595                 usb_stor_dbg(us, "Gah! MODE_SELECT_10\n");
 596                 return USB_STOR_TRANSPORT_ERROR;
 597         }
 598 
 599         // don't bother implementing READ_6 or WRITE_6.
 600         //
 601         if (srb->cmnd[0] == READ_10) {
 602                 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
 603                         ((u32)(srb->cmnd[4]) <<  8) | ((u32)(srb->cmnd[5]));
 604 
 605                 blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
 606 
 607                 usb_stor_dbg(us, "READ_10: read block 0x%04lx  count %ld\n",
 608                              block, blocks);
 609                 return datafab_read_data(us, info, block, blocks);
 610         }
 611 
 612         if (srb->cmnd[0] == READ_12) {
 613                 // we'll probably never see a READ_12 but we'll do it anyway...
 614                 //
 615                 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
 616                         ((u32)(srb->cmnd[4]) <<  8) | ((u32)(srb->cmnd[5]));
 617 
 618                 blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
 619                          ((u32)(srb->cmnd[8]) <<  8) | ((u32)(srb->cmnd[9]));
 620 
 621                 usb_stor_dbg(us, "READ_12: read block 0x%04lx  count %ld\n",
 622                              block, blocks);
 623                 return datafab_read_data(us, info, block, blocks);
 624         }
 625 
 626         if (srb->cmnd[0] == WRITE_10) {
 627                 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
 628                         ((u32)(srb->cmnd[4]) <<  8) | ((u32)(srb->cmnd[5]));
 629 
 630                 blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
 631 
 632                 usb_stor_dbg(us, "WRITE_10: write block 0x%04lx count %ld\n",
 633                              block, blocks);
 634                 return datafab_write_data(us, info, block, blocks);
 635         }
 636 
 637         if (srb->cmnd[0] == WRITE_12) {
 638                 // we'll probably never see a WRITE_12 but we'll do it anyway...
 639                 //
 640                 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
 641                         ((u32)(srb->cmnd[4]) <<  8) | ((u32)(srb->cmnd[5]));
 642 
 643                 blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
 644                          ((u32)(srb->cmnd[8]) <<  8) | ((u32)(srb->cmnd[9]));
 645 
 646                 usb_stor_dbg(us, "WRITE_12: write block 0x%04lx count %ld\n",
 647                              block, blocks);
 648                 return datafab_write_data(us, info, block, blocks);
 649         }
 650 
 651         if (srb->cmnd[0] == TEST_UNIT_READY) {
 652                 usb_stor_dbg(us, "TEST_UNIT_READY\n");
 653                 return datafab_id_device(us, info);
 654         }
 655 
 656         if (srb->cmnd[0] == REQUEST_SENSE) {
 657                 usb_stor_dbg(us, "REQUEST_SENSE - Returning faked response\n");
 658 
 659                 // this response is pretty bogus right now.  eventually if necessary
 660                 // we can set the correct sense data.  so far though it hasn't been
 661                 // necessary
 662                 //
 663                 memset(ptr, 0, 18);
 664                 ptr[0] = 0xF0;
 665                 ptr[2] = info->sense_key;
 666                 ptr[7] = 11;
 667                 ptr[12] = info->sense_asc;
 668                 ptr[13] = info->sense_ascq;
 669                 usb_stor_set_xfer_buf(ptr, 18, srb);
 670 
 671                 return USB_STOR_TRANSPORT_GOOD;
 672         }
 673 
 674         if (srb->cmnd[0] == MODE_SENSE) {
 675                 usb_stor_dbg(us, "MODE_SENSE_6 detected\n");
 676                 return datafab_handle_mode_sense(us, srb, 1);
 677         }
 678 
 679         if (srb->cmnd[0] == MODE_SENSE_10) {
 680                 usb_stor_dbg(us, "MODE_SENSE_10 detected\n");
 681                 return datafab_handle_mode_sense(us, srb, 0);
 682         }
 683 
 684         if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
 685                 /*
 686                  * sure.  whatever.  not like we can stop the user from
 687                  * popping the media out of the device (no locking doors, etc)
 688                  */
 689                 return USB_STOR_TRANSPORT_GOOD;
 690         }
 691 
 692         if (srb->cmnd[0] == START_STOP) {
 693                 /*
 694                  * this is used by sd.c'check_scsidisk_media_change to detect
 695                  * media change
 696                  */
 697                 usb_stor_dbg(us, "START_STOP\n");
 698                 /*
 699                  * the first datafab_id_device after a media change returns
 700                  * an error (determined experimentally)
 701                  */
 702                 rc = datafab_id_device(us, info);
 703                 if (rc == USB_STOR_TRANSPORT_GOOD) {
 704                         info->sense_key = NO_SENSE;
 705                         srb->result = SUCCESS;
 706                 } else {
 707                         info->sense_key = UNIT_ATTENTION;
 708                         srb->result = SAM_STAT_CHECK_CONDITION;
 709                 }
 710                 return rc;
 711         }
 712 
 713         usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
 714                      srb->cmnd[0], srb->cmnd[0]);
 715         info->sense_key = 0x05;
 716         info->sense_asc = 0x20;
 717         info->sense_ascq = 0x00;
 718         return USB_STOR_TRANSPORT_FAILED;
 719 }
 720 
 721 static struct scsi_host_template datafab_host_template;
 722 
 723 static int datafab_probe(struct usb_interface *intf,
 724                          const struct usb_device_id *id)
 725 {
 726         struct us_data *us;
 727         int result;
 728 
 729         result = usb_stor_probe1(&us, intf, id,
 730                         (id - datafab_usb_ids) + datafab_unusual_dev_list,
 731                         &datafab_host_template);
 732         if (result)
 733                 return result;
 734 
 735         us->transport_name  = "Datafab Bulk-Only";
 736         us->transport = datafab_transport;
 737         us->transport_reset = usb_stor_Bulk_reset;
 738         us->max_lun = 1;
 739 
 740         result = usb_stor_probe2(us);
 741         return result;
 742 }
 743 
 744 static struct usb_driver datafab_driver = {
 745         .name =         DRV_NAME,
 746         .probe =        datafab_probe,
 747         .disconnect =   usb_stor_disconnect,
 748         .suspend =      usb_stor_suspend,
 749         .resume =       usb_stor_resume,
 750         .reset_resume = usb_stor_reset_resume,
 751         .pre_reset =    usb_stor_pre_reset,
 752         .post_reset =   usb_stor_post_reset,
 753         .id_table =     datafab_usb_ids,
 754         .soft_unbind =  1,
 755         .no_dynamic_id = 1,
 756 };
 757 
 758 module_usb_stor_driver(datafab_driver, datafab_host_template, DRV_NAME);

/* [<][>][^][v][top][bottom][index][help] */