root/drivers/usb/host/oxu210hp-hcd.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. oxu_to_hcd
  2. hcd_to_oxu
  3. dbg_status_buf
  4. dbg_intr_buf
  5. dbg_command_buf
  6. dbg_port_buf
  7. dbg_status_buf
  8. dbg_command_buf
  9. dbg_intr_buf
  10. dbg_port_buf
  11. oxu_readl
  12. oxu_writel
  13. timer_action_done
  14. timer_action
  15. handshake
  16. ehci_halt
  17. tdi_reset
  18. ehci_reset
  19. ehci_quiesce
  20. check_reset_complete
  21. ehci_hub_descriptor
  22. oxu_buf_alloc
  23. oxu_buf_free
  24. ehci_qtd_init
  25. oxu_qtd_free
  26. ehci_qtd_alloc
  27. oxu_qh_free
  28. qh_destroy
  29. oxu_qh_alloc
  30. qh_get
  31. qh_put
  32. oxu_murb_free
  33. oxu_murb_alloc
  34. ehci_mem_cleanup
  35. ehci_mem_init
  36. qtd_fill
  37. qh_update
  38. qh_refresh
  39. qtd_copy_status
  40. ehci_urb_done
  41. qh_completions
  42. qtd_list_free
  43. qh_urb_transaction
  44. qh_make
  45. qh_link_async
  46. qh_append_tds
  47. submit_async
  48. end_unlink_async
  49. start_unlink_async
  50. scan_async
  51. periodic_next_shadow
  52. periodic_unlink
  53. periodic_usecs
  54. enable_periodic
  55. disable_periodic
  56. qh_link_periodic
  57. qh_unlink_periodic
  58. intr_deschedule
  59. check_period
  60. check_intr_schedule
  61. qh_schedule
  62. intr_submit
  63. itd_submit
  64. sitd_submit
  65. scan_periodic
  66. ehci_turn_off_all_ports
  67. ehci_port_power
  68. ehci_work
  69. unlink_async
  70. oxu210_hcd_irq
  71. oxu_irq
  72. oxu_watchdog
  73. oxu_hcd_init
  74. oxu_reset
  75. oxu_run
  76. oxu_stop
  77. oxu_shutdown
  78. __oxu_urb_enqueue
  79. oxu_urb_enqueue
  80. oxu_urb_dequeue
  81. oxu_endpoint_disable
  82. oxu_get_frame
  83. oxu_hub_status_data
  84. oxu_port_speed
  85. oxu_hub_control
  86. oxu_bus_suspend
  87. oxu_bus_resume
  88. oxu_bus_suspend
  89. oxu_bus_resume
  90. oxu_configuration
  91. oxu_verify_id
  92. oxu_create
  93. oxu_init
  94. oxu_drv_probe
  95. oxu_remove
  96. oxu_drv_remove
  97. oxu_drv_shutdown
  98. oxu_drv_suspend
  99. oxu_drv_resume

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
   4  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
   5  *
   6  * This code is *strongly* based on EHCI-HCD code by David Brownell since
   7  * the chip is a quasi-EHCI compatible.
   8  */
   9 
  10 #include <linux/module.h>
  11 #include <linux/pci.h>
  12 #include <linux/dmapool.h>
  13 #include <linux/kernel.h>
  14 #include <linux/delay.h>
  15 #include <linux/ioport.h>
  16 #include <linux/sched.h>
  17 #include <linux/slab.h>
  18 #include <linux/errno.h>
  19 #include <linux/timer.h>
  20 #include <linux/list.h>
  21 #include <linux/interrupt.h>
  22 #include <linux/usb.h>
  23 #include <linux/usb/hcd.h>
  24 #include <linux/moduleparam.h>
  25 #include <linux/dma-mapping.h>
  26 #include <linux/io.h>
  27 
  28 #include <asm/irq.h>
  29 #include <asm/unaligned.h>
  30 
  31 #include <linux/irq.h>
  32 #include <linux/platform_device.h>
  33 
  34 #define DRIVER_VERSION "0.0.50"
  35 
  36 #define OXU_DEVICEID                    0x00
  37         #define OXU_REV_MASK            0xffff0000
  38         #define OXU_REV_SHIFT           16
  39         #define OXU_REV_2100            0x2100
  40         #define OXU_BO_SHIFT            8
  41         #define OXU_BO_MASK             (0x3 << OXU_BO_SHIFT)
  42         #define OXU_MAJ_REV_SHIFT       4
  43         #define OXU_MAJ_REV_MASK        (0xf << OXU_MAJ_REV_SHIFT)
  44         #define OXU_MIN_REV_SHIFT       0
  45         #define OXU_MIN_REV_MASK        (0xf << OXU_MIN_REV_SHIFT)
  46 #define OXU_HOSTIFCONFIG                0x04
  47 #define OXU_SOFTRESET                   0x08
  48         #define OXU_SRESET              (1 << 0)
  49 
  50 #define OXU_PIOBURSTREADCTRL            0x0C
  51 
  52 #define OXU_CHIPIRQSTATUS               0x10
  53 #define OXU_CHIPIRQEN_SET               0x14
  54 #define OXU_CHIPIRQEN_CLR               0x18
  55         #define OXU_USBSPHLPWUI         0x00000080
  56         #define OXU_USBOTGLPWUI         0x00000040
  57         #define OXU_USBSPHI             0x00000002
  58         #define OXU_USBOTGI             0x00000001
  59 
  60 #define OXU_CLKCTRL_SET                 0x1C
  61         #define OXU_SYSCLKEN            0x00000008
  62         #define OXU_USBSPHCLKEN         0x00000002
  63         #define OXU_USBOTGCLKEN         0x00000001
  64 
  65 #define OXU_ASO                         0x68
  66         #define OXU_SPHPOEN             0x00000100
  67         #define OXU_OVRCCURPUPDEN       0x00000800
  68         #define OXU_ASO_OP              (1 << 10)
  69         #define OXU_COMPARATOR          0x000004000
  70 
  71 #define OXU_USBMODE                     0x1A8
  72         #define OXU_VBPS                0x00000020
  73         #define OXU_ES_LITTLE           0x00000000
  74         #define OXU_CM_HOST_ONLY        0x00000003
  75 
  76 /*
  77  * Proper EHCI structs & defines
  78  */
  79 
  80 /* Magic numbers that can affect system performance */
  81 #define EHCI_TUNE_CERR          3       /* 0-3 qtd retries; 0 == don't stop */
  82 #define EHCI_TUNE_RL_HS         4       /* nak throttle; see 4.9 */
  83 #define EHCI_TUNE_RL_TT         0
  84 #define EHCI_TUNE_MULT_HS       1       /* 1-3 transactions/uframe; 4.10.3 */
  85 #define EHCI_TUNE_MULT_TT       1
  86 #define EHCI_TUNE_FLS           2       /* (small) 256 frame schedule */
  87 
  88 struct oxu_hcd;
  89 
  90 /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
  91 
  92 /* Section 2.2 Host Controller Capability Registers */
  93 struct ehci_caps {
  94         /* these fields are specified as 8 and 16 bit registers,
  95          * but some hosts can't perform 8 or 16 bit PCI accesses.
  96          */
  97         u32             hc_capbase;
  98 #define HC_LENGTH(p)            (((p)>>00)&0x00ff)      /* bits 7:0 */
  99 #define HC_VERSION(p)           (((p)>>16)&0xffff)      /* bits 31:16 */
 100         u32             hcs_params;     /* HCSPARAMS - offset 0x4 */
 101 #define HCS_DEBUG_PORT(p)       (((p)>>20)&0xf) /* bits 23:20, debug port? */
 102 #define HCS_INDICATOR(p)        ((p)&(1 << 16)) /* true: has port indicators */
 103 #define HCS_N_CC(p)             (((p)>>12)&0xf) /* bits 15:12, #companion HCs */
 104 #define HCS_N_PCC(p)            (((p)>>8)&0xf)  /* bits 11:8, ports per CC */
 105 #define HCS_PORTROUTED(p)       ((p)&(1 << 7))  /* true: port routing */
 106 #define HCS_PPC(p)              ((p)&(1 << 4))  /* true: port power control */
 107 #define HCS_N_PORTS(p)          (((p)>>0)&0xf)  /* bits 3:0, ports on HC */
 108 
 109         u32             hcc_params;      /* HCCPARAMS - offset 0x8 */
 110 #define HCC_EXT_CAPS(p)         (((p)>>8)&0xff) /* for pci extended caps */
 111 #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
 112 #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
 113 #define HCC_CANPARK(p)          ((p)&(1 << 2))  /* true: can park on async qh */
 114 #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
 115 #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
 116         u8              portroute[8];    /* nibbles for routing - offset 0xC */
 117 } __packed;
 118 
 119 
 120 /* Section 2.3 Host Controller Operational Registers */
 121 struct ehci_regs {
 122         /* USBCMD: offset 0x00 */
 123         u32             command;
 124 /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
 125 #define CMD_PARK        (1<<11)         /* enable "park" on async qh */
 126 #define CMD_PARK_CNT(c) (((c)>>8)&3)    /* how many transfers to park for */
 127 #define CMD_LRESET      (1<<7)          /* partial reset (no ports, etc) */
 128 #define CMD_IAAD        (1<<6)          /* "doorbell" interrupt async advance */
 129 #define CMD_ASE         (1<<5)          /* async schedule enable */
 130 #define CMD_PSE         (1<<4)          /* periodic schedule enable */
 131 /* 3:2 is periodic frame list size */
 132 #define CMD_RESET       (1<<1)          /* reset HC not bus */
 133 #define CMD_RUN         (1<<0)          /* start/stop HC */
 134 
 135         /* USBSTS: offset 0x04 */
 136         u32             status;
 137 #define STS_ASS         (1<<15)         /* Async Schedule Status */
 138 #define STS_PSS         (1<<14)         /* Periodic Schedule Status */
 139 #define STS_RECL        (1<<13)         /* Reclamation */
 140 #define STS_HALT        (1<<12)         /* Not running (any reason) */
 141 /* some bits reserved */
 142         /* these STS_* flags are also intr_enable bits (USBINTR) */
 143 #define STS_IAA         (1<<5)          /* Interrupted on async advance */
 144 #define STS_FATAL       (1<<4)          /* such as some PCI access errors */
 145 #define STS_FLR         (1<<3)          /* frame list rolled over */
 146 #define STS_PCD         (1<<2)          /* port change detect */
 147 #define STS_ERR         (1<<1)          /* "error" completion (overflow, ...) */
 148 #define STS_INT         (1<<0)          /* "normal" completion (short, ...) */
 149 
 150 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
 151 
 152         /* USBINTR: offset 0x08 */
 153         u32             intr_enable;
 154 
 155         /* FRINDEX: offset 0x0C */
 156         u32             frame_index;    /* current microframe number */
 157         /* CTRLDSSEGMENT: offset 0x10 */
 158         u32             segment;        /* address bits 63:32 if needed */
 159         /* PERIODICLISTBASE: offset 0x14 */
 160         u32             frame_list;     /* points to periodic list */
 161         /* ASYNCLISTADDR: offset 0x18 */
 162         u32             async_next;     /* address of next async queue head */
 163 
 164         u32             reserved[9];
 165 
 166         /* CONFIGFLAG: offset 0x40 */
 167         u32             configured_flag;
 168 #define FLAG_CF         (1<<0)          /* true: we'll support "high speed" */
 169 
 170         /* PORTSC: offset 0x44 */
 171         u32             port_status[0]; /* up to N_PORTS */
 172 /* 31:23 reserved */
 173 #define PORT_WKOC_E     (1<<22)         /* wake on overcurrent (enable) */
 174 #define PORT_WKDISC_E   (1<<21)         /* wake on disconnect (enable) */
 175 #define PORT_WKCONN_E   (1<<20)         /* wake on connect (enable) */
 176 /* 19:16 for port testing */
 177 #define PORT_LED_OFF    (0<<14)
 178 #define PORT_LED_AMBER  (1<<14)
 179 #define PORT_LED_GREEN  (2<<14)
 180 #define PORT_LED_MASK   (3<<14)
 181 #define PORT_OWNER      (1<<13)         /* true: companion hc owns this port */
 182 #define PORT_POWER      (1<<12)         /* true: has power (see PPC) */
 183 #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))        /* USB 1.1 device */
 184 /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
 185 /* 9 reserved */
 186 #define PORT_RESET      (1<<8)          /* reset port */
 187 #define PORT_SUSPEND    (1<<7)          /* suspend port */
 188 #define PORT_RESUME     (1<<6)          /* resume it */
 189 #define PORT_OCC        (1<<5)          /* over current change */
 190 #define PORT_OC         (1<<4)          /* over current active */
 191 #define PORT_PEC        (1<<3)          /* port enable change */
 192 #define PORT_PE         (1<<2)          /* port enable */
 193 #define PORT_CSC        (1<<1)          /* connect status change */
 194 #define PORT_CONNECT    (1<<0)          /* device connected */
 195 #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
 196 } __packed;
 197 
 198 /* Appendix C, Debug port ... intended for use with special "debug devices"
 199  * that can help if there's no serial console.  (nonstandard enumeration.)
 200  */
 201 struct ehci_dbg_port {
 202         u32     control;
 203 #define DBGP_OWNER      (1<<30)
 204 #define DBGP_ENABLED    (1<<28)
 205 #define DBGP_DONE       (1<<16)
 206 #define DBGP_INUSE      (1<<10)
 207 #define DBGP_ERRCODE(x) (((x)>>7)&0x07)
 208 #       define DBGP_ERR_BAD     1
 209 #       define DBGP_ERR_SIGNAL  2
 210 #define DBGP_ERROR      (1<<6)
 211 #define DBGP_GO         (1<<5)
 212 #define DBGP_OUT        (1<<4)
 213 #define DBGP_LEN(x)     (((x)>>0)&0x0f)
 214         u32     pids;
 215 #define DBGP_PID_GET(x)         (((x)>>16)&0xff)
 216 #define DBGP_PID_SET(data, tok) (((data)<<8)|(tok))
 217         u32     data03;
 218         u32     data47;
 219         u32     address;
 220 #define DBGP_EPADDR(dev, ep)    (((dev)<<8)|(ep))
 221 } __packed;
 222 
 223 #define QTD_NEXT(dma)   cpu_to_le32((u32)dma)
 224 
 225 /*
 226  * EHCI Specification 0.95 Section 3.5
 227  * QTD: describe data transfer components (buffer, direction, ...)
 228  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
 229  *
 230  * These are associated only with "QH" (Queue Head) structures,
 231  * used with control, bulk, and interrupt transfers.
 232  */
 233 struct ehci_qtd {
 234         /* first part defined by EHCI spec */
 235         __le32                  hw_next;                /* see EHCI 3.5.1 */
 236         __le32                  hw_alt_next;            /* see EHCI 3.5.2 */
 237         __le32                  hw_token;               /* see EHCI 3.5.3 */
 238 #define QTD_TOGGLE      (1 << 31)       /* data toggle */
 239 #define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
 240 #define QTD_IOC         (1 << 15)       /* interrupt on complete */
 241 #define QTD_CERR(tok)   (((tok)>>10) & 0x3)
 242 #define QTD_PID(tok)    (((tok)>>8) & 0x3)
 243 #define QTD_STS_ACTIVE  (1 << 7)        /* HC may execute this */
 244 #define QTD_STS_HALT    (1 << 6)        /* halted on error */
 245 #define QTD_STS_DBE     (1 << 5)        /* data buffer error (in HC) */
 246 #define QTD_STS_BABBLE  (1 << 4)        /* device was babbling (qtd halted) */
 247 #define QTD_STS_XACT    (1 << 3)        /* device gave illegal response */
 248 #define QTD_STS_MMF     (1 << 2)        /* incomplete split transaction */
 249 #define QTD_STS_STS     (1 << 1)        /* split transaction state */
 250 #define QTD_STS_PING    (1 << 0)        /* issue PING? */
 251         __le32                  hw_buf[5];              /* see EHCI 3.5.4 */
 252         __le32                  hw_buf_hi[5];           /* Appendix B */
 253 
 254         /* the rest is HCD-private */
 255         dma_addr_t              qtd_dma;                /* qtd address */
 256         struct list_head        qtd_list;               /* sw qtd list */
 257         struct urb              *urb;                   /* qtd's urb */
 258         size_t                  length;                 /* length of buffer */
 259 
 260         u32                     qtd_buffer_len;
 261         void                    *buffer;
 262         dma_addr_t              buffer_dma;
 263         void                    *transfer_buffer;
 264         void                    *transfer_dma;
 265 } __aligned(32);
 266 
 267 /* mask NakCnt+T in qh->hw_alt_next */
 268 #define QTD_MASK cpu_to_le32 (~0x1f)
 269 
 270 #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
 271 
 272 /* Type tag from {qh, itd, sitd, fstn}->hw_next */
 273 #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
 274 
 275 /* values for that type tag */
 276 #define Q_TYPE_QH       cpu_to_le32 (1 << 1)
 277 
 278 /* next async queue entry, or pointer to interrupt/periodic QH */
 279 #define QH_NEXT(dma)    (cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
 280 
 281 /* for periodic/async schedules and qtd lists, mark end of list */
 282 #define EHCI_LIST_END   cpu_to_le32(1) /* "null pointer" to hw */
 283 
 284 /*
 285  * Entries in periodic shadow table are pointers to one of four kinds
 286  * of data structure.  That's dictated by the hardware; a type tag is
 287  * encoded in the low bits of the hardware's periodic schedule.  Use
 288  * Q_NEXT_TYPE to get the tag.
 289  *
 290  * For entries in the async schedule, the type tag always says "qh".
 291  */
 292 union ehci_shadow {
 293         struct ehci_qh          *qh;            /* Q_TYPE_QH */
 294         __le32                  *hw_next;       /* (all types) */
 295         void                    *ptr;
 296 };
 297 
 298 /*
 299  * EHCI Specification 0.95 Section 3.6
 300  * QH: describes control/bulk/interrupt endpoints
 301  * See Fig 3-7 "Queue Head Structure Layout".
 302  *
 303  * These appear in both the async and (for interrupt) periodic schedules.
 304  */
 305 
 306 struct ehci_qh {
 307         /* first part defined by EHCI spec */
 308         __le32                  hw_next;         /* see EHCI 3.6.1 */
 309         __le32                  hw_info1;       /* see EHCI 3.6.2 */
 310 #define QH_HEAD         0x00008000
 311         __le32                  hw_info2;       /* see EHCI 3.6.2 */
 312 #define QH_SMASK        0x000000ff
 313 #define QH_CMASK        0x0000ff00
 314 #define QH_HUBADDR      0x007f0000
 315 #define QH_HUBPORT      0x3f800000
 316 #define QH_MULT         0xc0000000
 317         __le32                  hw_current;      /* qtd list - see EHCI 3.6.4 */
 318 
 319         /* qtd overlay (hardware parts of a struct ehci_qtd) */
 320         __le32                  hw_qtd_next;
 321         __le32                  hw_alt_next;
 322         __le32                  hw_token;
 323         __le32                  hw_buf[5];
 324         __le32                  hw_buf_hi[5];
 325 
 326         /* the rest is HCD-private */
 327         dma_addr_t              qh_dma;         /* address of qh */
 328         union ehci_shadow       qh_next;        /* ptr to qh; or periodic */
 329         struct list_head        qtd_list;       /* sw qtd list */
 330         struct ehci_qtd         *dummy;
 331         struct ehci_qh          *reclaim;       /* next to reclaim */
 332 
 333         struct oxu_hcd          *oxu;
 334         struct kref             kref;
 335         unsigned int            stamp;
 336 
 337         u8                      qh_state;
 338 #define QH_STATE_LINKED         1               /* HC sees this */
 339 #define QH_STATE_UNLINK         2               /* HC may still see this */
 340 #define QH_STATE_IDLE           3               /* HC doesn't see this */
 341 #define QH_STATE_UNLINK_WAIT    4               /* LINKED and on reclaim q */
 342 #define QH_STATE_COMPLETING     5               /* don't touch token.HALT */
 343 
 344         /* periodic schedule info */
 345         u8                      usecs;          /* intr bandwidth */
 346         u8                      gap_uf;         /* uframes split/csplit gap */
 347         u8                      c_usecs;        /* ... split completion bw */
 348         u16                     tt_usecs;       /* tt downstream bandwidth */
 349         unsigned short          period;         /* polling interval */
 350         unsigned short          start;          /* where polling starts */
 351 #define NO_FRAME ((unsigned short)~0)                   /* pick new start */
 352         struct usb_device       *dev;           /* access to TT */
 353 } __aligned(32);
 354 
 355 /*
 356  * Proper OXU210HP structs
 357  */
 358 
 359 #define OXU_OTG_CORE_OFFSET     0x00400
 360 #define OXU_OTG_CAP_OFFSET      (OXU_OTG_CORE_OFFSET + 0x100)
 361 #define OXU_SPH_CORE_OFFSET     0x00800
 362 #define OXU_SPH_CAP_OFFSET      (OXU_SPH_CORE_OFFSET + 0x100)
 363 
 364 #define OXU_OTG_MEM             0xE000
 365 #define OXU_SPH_MEM             0x16000
 366 
 367 /* Only how many elements & element structure are specifies here. */
 368 /* 2 host controllers are enabled - total size <= 28 kbytes */
 369 #define DEFAULT_I_TDPS          1024
 370 #define QHEAD_NUM               16
 371 #define QTD_NUM                 32
 372 #define SITD_NUM                8
 373 #define MURB_NUM                8
 374 
 375 #define BUFFER_NUM              8
 376 #define BUFFER_SIZE             512
 377 
 378 struct oxu_info {
 379         struct usb_hcd *hcd[2];
 380 };
 381 
 382 struct oxu_buf {
 383         u8                      buffer[BUFFER_SIZE];
 384 } __aligned(BUFFER_SIZE);
 385 
 386 struct oxu_onchip_mem {
 387         struct oxu_buf          db_pool[BUFFER_NUM];
 388 
 389         u32                     frame_list[DEFAULT_I_TDPS];
 390         struct ehci_qh          qh_pool[QHEAD_NUM];
 391         struct ehci_qtd         qtd_pool[QTD_NUM];
 392 } __aligned(4 << 10);
 393 
 394 #define EHCI_MAX_ROOT_PORTS     15              /* see HCS_N_PORTS */
 395 
 396 struct oxu_murb {
 397         struct urb              urb;
 398         struct urb              *main;
 399         u8                      last;
 400 };
 401 
 402 struct oxu_hcd {                                /* one per controller */
 403         unsigned int            is_otg:1;
 404 
 405         u8                      qh_used[QHEAD_NUM];
 406         u8                      qtd_used[QTD_NUM];
 407         u8                      db_used[BUFFER_NUM];
 408         u8                      murb_used[MURB_NUM];
 409 
 410         struct oxu_onchip_mem   __iomem *mem;
 411         spinlock_t              mem_lock;
 412 
 413         struct timer_list       urb_timer;
 414 
 415         struct ehci_caps __iomem *caps;
 416         struct ehci_regs __iomem *regs;
 417 
 418         u32                     hcs_params;     /* cached register copy */
 419         spinlock_t              lock;
 420 
 421         /* async schedule support */
 422         struct ehci_qh          *async;
 423         struct ehci_qh          *reclaim;
 424         unsigned int            reclaim_ready:1;
 425         unsigned int            scanning:1;
 426 
 427         /* periodic schedule support */
 428         unsigned int            periodic_size;
 429         __le32                  *periodic;      /* hw periodic table */
 430         dma_addr_t              periodic_dma;
 431         unsigned int            i_thresh;       /* uframes HC might cache */
 432 
 433         union ehci_shadow       *pshadow;       /* mirror hw periodic table */
 434         int                     next_uframe;    /* scan periodic, start here */
 435         unsigned int            periodic_sched; /* periodic activity count */
 436 
 437         /* per root hub port */
 438         unsigned long           reset_done[EHCI_MAX_ROOT_PORTS];
 439         /* bit vectors (one bit per port) */
 440         unsigned long           bus_suspended;  /* which ports were
 441                                                  * already suspended at the
 442                                                  * start of a bus suspend
 443                                                  */
 444         unsigned long           companion_ports;/* which ports are dedicated
 445                                                  * to the companion controller
 446                                                  */
 447 
 448         struct timer_list       watchdog;
 449         unsigned long           actions;
 450         unsigned int            stamp;
 451         unsigned long           next_statechange;
 452         u32                     command;
 453 
 454         /* SILICON QUIRKS */
 455         struct list_head        urb_list;       /* this is the head to urb
 456                                                  * queue that didn't get enough
 457                                                  * resources
 458                                                  */
 459         struct oxu_murb         *murb_pool;     /* murb per split big urb */
 460         unsigned int            urb_len;
 461 
 462         u8                      sbrn;           /* packed release number */
 463 };
 464 
 465 #define EHCI_IAA_JIFFIES        (HZ/100)        /* arbitrary; ~10 msec */
 466 #define EHCI_IO_JIFFIES         (HZ/10)         /* io watchdog > irq_thresh */
 467 #define EHCI_ASYNC_JIFFIES      (HZ/20)         /* async idle timeout */
 468 #define EHCI_SHRINK_JIFFIES     (HZ/200)        /* async qh unlink delay */
 469 
 470 enum ehci_timer_action {
 471         TIMER_IO_WATCHDOG,
 472         TIMER_IAA_WATCHDOG,
 473         TIMER_ASYNC_SHRINK,
 474         TIMER_ASYNC_OFF,
 475 };
 476 
 477 /*
 478  * Main defines
 479  */
 480 
 481 #define oxu_dbg(oxu, fmt, args...) \
 482                 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 483 #define oxu_err(oxu, fmt, args...) \
 484                 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 485 #define oxu_info(oxu, fmt, args...) \
 486                 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 487 
 488 #ifdef CONFIG_DYNAMIC_DEBUG
 489 #define DEBUG
 490 #endif
 491 
 492 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
 493 {
 494         return container_of((void *) oxu, struct usb_hcd, hcd_priv);
 495 }
 496 
 497 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
 498 {
 499         return (struct oxu_hcd *) (hcd->hcd_priv);
 500 }
 501 
 502 /*
 503  * Debug stuff
 504  */
 505 
 506 #undef OXU_URB_TRACE
 507 #undef OXU_VERBOSE_DEBUG
 508 
 509 #ifdef OXU_VERBOSE_DEBUG
 510 #define oxu_vdbg                        oxu_dbg
 511 #else
 512 #define oxu_vdbg(oxu, fmt, args...)     /* Nop */
 513 #endif
 514 
 515 #ifdef DEBUG
 516 
 517 static int __attribute__((__unused__))
 518 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 519 {
 520         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 521                 label, label[0] ? " " : "", status,
 522                 (status & STS_ASS) ? " Async" : "",
 523                 (status & STS_PSS) ? " Periodic" : "",
 524                 (status & STS_RECL) ? " Recl" : "",
 525                 (status & STS_HALT) ? " Halt" : "",
 526                 (status & STS_IAA) ? " IAA" : "",
 527                 (status & STS_FATAL) ? " FATAL" : "",
 528                 (status & STS_FLR) ? " FLR" : "",
 529                 (status & STS_PCD) ? " PCD" : "",
 530                 (status & STS_ERR) ? " ERR" : "",
 531                 (status & STS_INT) ? " INT" : ""
 532                 );
 533 }
 534 
 535 static int __attribute__((__unused__))
 536 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 537 {
 538         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 539                 label, label[0] ? " " : "", enable,
 540                 (enable & STS_IAA) ? " IAA" : "",
 541                 (enable & STS_FATAL) ? " FATAL" : "",
 542                 (enable & STS_FLR) ? " FLR" : "",
 543                 (enable & STS_PCD) ? " PCD" : "",
 544                 (enable & STS_ERR) ? " ERR" : "",
 545                 (enable & STS_INT) ? " INT" : ""
 546                 );
 547 }
 548 
 549 static const char *const fls_strings[] =
 550     { "1024", "512", "256", "??" };
 551 
 552 static int dbg_command_buf(char *buf, unsigned len,
 553                                 const char *label, u32 command)
 554 {
 555         return scnprintf(buf, len,
 556                 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
 557                 label, label[0] ? " " : "", command,
 558                 (command & CMD_PARK) ? "park" : "(park)",
 559                 CMD_PARK_CNT(command),
 560                 (command >> 16) & 0x3f,
 561                 (command & CMD_LRESET) ? " LReset" : "",
 562                 (command & CMD_IAAD) ? " IAAD" : "",
 563                 (command & CMD_ASE) ? " Async" : "",
 564                 (command & CMD_PSE) ? " Periodic" : "",
 565                 fls_strings[(command >> 2) & 0x3],
 566                 (command & CMD_RESET) ? " Reset" : "",
 567                 (command & CMD_RUN) ? "RUN" : "HALT"
 568                 );
 569 }
 570 
 571 static int dbg_port_buf(char *buf, unsigned len, const char *label,
 572                                 int port, u32 status)
 573 {
 574         char    *sig;
 575 
 576         /* signaling state */
 577         switch (status & (3 << 10)) {
 578         case 0 << 10:
 579                 sig = "se0";
 580                 break;
 581         case 1 << 10:
 582                 sig = "k";      /* low speed */
 583                 break;
 584         case 2 << 10:
 585                 sig = "j";
 586                 break;
 587         default:
 588                 sig = "?";
 589                 break;
 590         }
 591 
 592         return scnprintf(buf, len,
 593                 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
 594                 label, label[0] ? " " : "", port, status,
 595                 (status & PORT_POWER) ? " POWER" : "",
 596                 (status & PORT_OWNER) ? " OWNER" : "",
 597                 sig,
 598                 (status & PORT_RESET) ? " RESET" : "",
 599                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
 600                 (status & PORT_RESUME) ? " RESUME" : "",
 601                 (status & PORT_OCC) ? " OCC" : "",
 602                 (status & PORT_OC) ? " OC" : "",
 603                 (status & PORT_PEC) ? " PEC" : "",
 604                 (status & PORT_PE) ? " PE" : "",
 605                 (status & PORT_CSC) ? " CSC" : "",
 606                 (status & PORT_CONNECT) ? " CONNECT" : ""
 607             );
 608 }
 609 
 610 #else
 611 
 612 static inline int __attribute__((__unused__))
 613 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 614 { return 0; }
 615 
 616 static inline int __attribute__((__unused__))
 617 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
 618 { return 0; }
 619 
 620 static inline int __attribute__((__unused__))
 621 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 622 { return 0; }
 623 
 624 static inline int __attribute__((__unused__))
 625 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
 626 { return 0; }
 627 
 628 #endif /* DEBUG */
 629 
 630 /* functions have the "wrong" filename when they're output... */
 631 #define dbg_status(oxu, label, status) { \
 632         char _buf[80]; \
 633         dbg_status_buf(_buf, sizeof _buf, label, status); \
 634         oxu_dbg(oxu, "%s\n", _buf); \
 635 }
 636 
 637 #define dbg_cmd(oxu, label, command) { \
 638         char _buf[80]; \
 639         dbg_command_buf(_buf, sizeof _buf, label, command); \
 640         oxu_dbg(oxu, "%s\n", _buf); \
 641 }
 642 
 643 #define dbg_port(oxu, label, port, status) { \
 644         char _buf[80]; \
 645         dbg_port_buf(_buf, sizeof _buf, label, port, status); \
 646         oxu_dbg(oxu, "%s\n", _buf); \
 647 }
 648 
 649 /*
 650  * Module parameters
 651  */
 652 
 653 /* Initial IRQ latency: faster than hw default */
 654 static int log2_irq_thresh;                     /* 0 to 6 */
 655 module_param(log2_irq_thresh, int, S_IRUGO);
 656 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
 657 
 658 /* Initial park setting: slower than hw default */
 659 static unsigned park;
 660 module_param(park, uint, S_IRUGO);
 661 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
 662 
 663 /* For flakey hardware, ignore overcurrent indicators */
 664 static bool ignore_oc;
 665 module_param(ignore_oc, bool, S_IRUGO);
 666 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
 667 
 668 
 669 static void ehci_work(struct oxu_hcd *oxu);
 670 static int oxu_hub_control(struct usb_hcd *hcd,
 671                                 u16 typeReq, u16 wValue, u16 wIndex,
 672                                 char *buf, u16 wLength);
 673 
 674 /*
 675  * Local functions
 676  */
 677 
 678 /* Low level read/write registers functions */
 679 static inline u32 oxu_readl(void *base, u32 reg)
 680 {
 681         return readl(base + reg);
 682 }
 683 
 684 static inline void oxu_writel(void *base, u32 reg, u32 val)
 685 {
 686         writel(val, base + reg);
 687 }
 688 
 689 static inline void timer_action_done(struct oxu_hcd *oxu,
 690                                         enum ehci_timer_action action)
 691 {
 692         clear_bit(action, &oxu->actions);
 693 }
 694 
 695 static inline void timer_action(struct oxu_hcd *oxu,
 696                                         enum ehci_timer_action action)
 697 {
 698         if (!test_and_set_bit(action, &oxu->actions)) {
 699                 unsigned long t;
 700 
 701                 switch (action) {
 702                 case TIMER_IAA_WATCHDOG:
 703                         t = EHCI_IAA_JIFFIES;
 704                         break;
 705                 case TIMER_IO_WATCHDOG:
 706                         t = EHCI_IO_JIFFIES;
 707                         break;
 708                 case TIMER_ASYNC_OFF:
 709                         t = EHCI_ASYNC_JIFFIES;
 710                         break;
 711                 case TIMER_ASYNC_SHRINK:
 712                 default:
 713                         t = EHCI_SHRINK_JIFFIES;
 714                         break;
 715                 }
 716                 t += jiffies;
 717                 /* all timings except IAA watchdog can be overridden.
 718                  * async queue SHRINK often precedes IAA.  while it's ready
 719                  * to go OFF neither can matter, and afterwards the IO
 720                  * watchdog stops unless there's still periodic traffic.
 721                  */
 722                 if (action != TIMER_IAA_WATCHDOG
 723                                 && t > oxu->watchdog.expires
 724                                 && timer_pending(&oxu->watchdog))
 725                         return;
 726                 mod_timer(&oxu->watchdog, t);
 727         }
 728 }
 729 
 730 /*
 731  * handshake - spin reading hc until handshake completes or fails
 732  * @ptr: address of hc register to be read
 733  * @mask: bits to look at in result of read
 734  * @done: value of those bits when handshake succeeds
 735  * @usec: timeout in microseconds
 736  *
 737  * Returns negative errno, or zero on success
 738  *
 739  * Success happens when the "mask" bits have the specified value (hardware
 740  * handshake done).  There are two failure modes:  "usec" have passed (major
 741  * hardware flakeout), or the register reads as all-ones (hardware removed).
 742  *
 743  * That last failure should_only happen in cases like physical cardbus eject
 744  * before driver shutdown. But it also seems to be caused by bugs in cardbus
 745  * bridge shutdown:  shutting down the bridge before the devices using it.
 746  */
 747 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
 748                                         u32 mask, u32 done, int usec)
 749 {
 750         u32 result;
 751 
 752         do {
 753                 result = readl(ptr);
 754                 if (result == ~(u32)0)          /* card removed */
 755                         return -ENODEV;
 756                 result &= mask;
 757                 if (result == done)
 758                         return 0;
 759                 udelay(1);
 760                 usec--;
 761         } while (usec > 0);
 762         return -ETIMEDOUT;
 763 }
 764 
 765 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
 766 static int ehci_halt(struct oxu_hcd *oxu)
 767 {
 768         u32     temp = readl(&oxu->regs->status);
 769 
 770         /* disable any irqs left enabled by previous code */
 771         writel(0, &oxu->regs->intr_enable);
 772 
 773         if ((temp & STS_HALT) != 0)
 774                 return 0;
 775 
 776         temp = readl(&oxu->regs->command);
 777         temp &= ~CMD_RUN;
 778         writel(temp, &oxu->regs->command);
 779         return handshake(oxu, &oxu->regs->status,
 780                           STS_HALT, STS_HALT, 16 * 125);
 781 }
 782 
 783 /* Put TDI/ARC silicon into EHCI mode */
 784 static void tdi_reset(struct oxu_hcd *oxu)
 785 {
 786         u32 __iomem *reg_ptr;
 787         u32 tmp;
 788 
 789         reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
 790         tmp = readl(reg_ptr);
 791         tmp |= 0x3;
 792         writel(tmp, reg_ptr);
 793 }
 794 
 795 /* Reset a non-running (STS_HALT == 1) controller */
 796 static int ehci_reset(struct oxu_hcd *oxu)
 797 {
 798         int     retval;
 799         u32     command = readl(&oxu->regs->command);
 800 
 801         command |= CMD_RESET;
 802         dbg_cmd(oxu, "reset", command);
 803         writel(command, &oxu->regs->command);
 804         oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 805         oxu->next_statechange = jiffies;
 806         retval = handshake(oxu, &oxu->regs->command,
 807                             CMD_RESET, 0, 250 * 1000);
 808 
 809         if (retval)
 810                 return retval;
 811 
 812         tdi_reset(oxu);
 813 
 814         return retval;
 815 }
 816 
 817 /* Idle the controller (from running) */
 818 static void ehci_quiesce(struct oxu_hcd *oxu)
 819 {
 820         u32     temp;
 821 
 822 #ifdef DEBUG
 823         BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
 824 #endif
 825 
 826         /* wait for any schedule enables/disables to take effect */
 827         temp = readl(&oxu->regs->command) << 10;
 828         temp &= STS_ASS | STS_PSS;
 829         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 830                                 temp, 16 * 125) != 0) {
 831                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 832                 return;
 833         }
 834 
 835         /* then disable anything that's still active */
 836         temp = readl(&oxu->regs->command);
 837         temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
 838         writel(temp, &oxu->regs->command);
 839 
 840         /* hardware can take 16 microframes to turn off ... */
 841         if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 842                                 0, 16 * 125) != 0) {
 843                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 844                 return;
 845         }
 846 }
 847 
 848 static int check_reset_complete(struct oxu_hcd *oxu, int index,
 849                                 u32 __iomem *status_reg, int port_status)
 850 {
 851         if (!(port_status & PORT_CONNECT)) {
 852                 oxu->reset_done[index] = 0;
 853                 return port_status;
 854         }
 855 
 856         /* if reset finished and it's still not enabled -- handoff */
 857         if (!(port_status & PORT_PE)) {
 858                 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
 859                                 index+1);
 860                 return port_status;
 861         } else
 862                 oxu_dbg(oxu, "port %d high speed\n", index + 1);
 863 
 864         return port_status;
 865 }
 866 
 867 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
 868                                 struct usb_hub_descriptor *desc)
 869 {
 870         int ports = HCS_N_PORTS(oxu->hcs_params);
 871         u16 temp;
 872 
 873         desc->bDescriptorType = USB_DT_HUB;
 874         desc->bPwrOn2PwrGood = 10;      /* oxu 1.0, 2.3.9 says 20ms max */
 875         desc->bHubContrCurrent = 0;
 876 
 877         desc->bNbrPorts = ports;
 878         temp = 1 + (ports / 8);
 879         desc->bDescLength = 7 + 2 * temp;
 880 
 881         /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
 882         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
 883         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
 884 
 885         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
 886         if (HCS_PPC(oxu->hcs_params))
 887                 temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
 888         else
 889                 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
 890         desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
 891 }
 892 
 893 
 894 /* Allocate an OXU210HP on-chip memory data buffer
 895  *
 896  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
 897  * Each transfer descriptor has one or more on-chip memory data buffers.
 898  *
 899  * Data buffers are allocated from a fix sized pool of data blocks.
 900  * To minimise fragmentation and give reasonable memory utlisation,
 901  * data buffers are allocated with sizes the power of 2 multiples of
 902  * the block size, starting on an address a multiple of the allocated size.
 903  *
 904  * FIXME: callers of this function require a buffer to be allocated for
 905  * len=0. This is a waste of on-chip memory and should be fix. Then this
 906  * function should be changed to not allocate a buffer for len=0.
 907  */
 908 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
 909 {
 910         int n_blocks;   /* minium blocks needed to hold len */
 911         int a_blocks;   /* blocks allocated */
 912         int i, j;
 913 
 914         /* Don't allocte bigger than supported */
 915         if (len > BUFFER_SIZE * BUFFER_NUM) {
 916                 oxu_err(oxu, "buffer too big (%d)\n", len);
 917                 return -ENOMEM;
 918         }
 919 
 920         spin_lock(&oxu->mem_lock);
 921 
 922         /* Number of blocks needed to hold len */
 923         n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
 924 
 925         /* Round the number of blocks up to the power of 2 */
 926         for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
 927                 ;
 928 
 929         /* Find a suitable available data buffer */
 930         for (i = 0; i < BUFFER_NUM;
 931                         i += max(a_blocks, (int)oxu->db_used[i])) {
 932 
 933                 /* Check all the required blocks are available */
 934                 for (j = 0; j < a_blocks; j++)
 935                         if (oxu->db_used[i + j])
 936                                 break;
 937 
 938                 if (j != a_blocks)
 939                         continue;
 940 
 941                 /* Allocate blocks found! */
 942                 qtd->buffer = (void *) &oxu->mem->db_pool[i];
 943                 qtd->buffer_dma = virt_to_phys(qtd->buffer);
 944 
 945                 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
 946                 oxu->db_used[i] = a_blocks;
 947 
 948                 spin_unlock(&oxu->mem_lock);
 949 
 950                 return 0;
 951         }
 952 
 953         /* Failed */
 954 
 955         spin_unlock(&oxu->mem_lock);
 956 
 957         return -ENOMEM;
 958 }
 959 
 960 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 961 {
 962         int index;
 963 
 964         spin_lock(&oxu->mem_lock);
 965 
 966         index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
 967                                                          / BUFFER_SIZE;
 968         oxu->db_used[index] = 0;
 969         qtd->qtd_buffer_len = 0;
 970         qtd->buffer_dma = 0;
 971         qtd->buffer = NULL;
 972 
 973         spin_unlock(&oxu->mem_lock);
 974 }
 975 
 976 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
 977 {
 978         memset(qtd, 0, sizeof *qtd);
 979         qtd->qtd_dma = dma;
 980         qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 981         qtd->hw_next = EHCI_LIST_END;
 982         qtd->hw_alt_next = EHCI_LIST_END;
 983         INIT_LIST_HEAD(&qtd->qtd_list);
 984 }
 985 
 986 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 987 {
 988         int index;
 989 
 990         if (qtd->buffer)
 991                 oxu_buf_free(oxu, qtd);
 992 
 993         spin_lock(&oxu->mem_lock);
 994 
 995         index = qtd - &oxu->mem->qtd_pool[0];
 996         oxu->qtd_used[index] = 0;
 997 
 998         spin_unlock(&oxu->mem_lock);
 999 }
1000 
1001 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
1002 {
1003         int i;
1004         struct ehci_qtd *qtd = NULL;
1005 
1006         spin_lock(&oxu->mem_lock);
1007 
1008         for (i = 0; i < QTD_NUM; i++)
1009                 if (!oxu->qtd_used[i])
1010                         break;
1011 
1012         if (i < QTD_NUM) {
1013                 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
1014                 memset(qtd, 0, sizeof *qtd);
1015 
1016                 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
1017                 qtd->hw_next = EHCI_LIST_END;
1018                 qtd->hw_alt_next = EHCI_LIST_END;
1019                 INIT_LIST_HEAD(&qtd->qtd_list);
1020 
1021                 qtd->qtd_dma = virt_to_phys(qtd);
1022 
1023                 oxu->qtd_used[i] = 1;
1024         }
1025 
1026         spin_unlock(&oxu->mem_lock);
1027 
1028         return qtd;
1029 }
1030 
1031 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
1032 {
1033         int index;
1034 
1035         spin_lock(&oxu->mem_lock);
1036 
1037         index = qh - &oxu->mem->qh_pool[0];
1038         oxu->qh_used[index] = 0;
1039 
1040         spin_unlock(&oxu->mem_lock);
1041 }
1042 
1043 static void qh_destroy(struct kref *kref)
1044 {
1045         struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
1046         struct oxu_hcd *oxu = qh->oxu;
1047 
1048         /* clean qtds first, and know this is not linked */
1049         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1050                 oxu_dbg(oxu, "unused qh not empty!\n");
1051                 BUG();
1052         }
1053         if (qh->dummy)
1054                 oxu_qtd_free(oxu, qh->dummy);
1055         oxu_qh_free(oxu, qh);
1056 }
1057 
1058 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
1059 {
1060         int i;
1061         struct ehci_qh *qh = NULL;
1062 
1063         spin_lock(&oxu->mem_lock);
1064 
1065         for (i = 0; i < QHEAD_NUM; i++)
1066                 if (!oxu->qh_used[i])
1067                         break;
1068 
1069         if (i < QHEAD_NUM) {
1070                 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
1071                 memset(qh, 0, sizeof *qh);
1072 
1073                 kref_init(&qh->kref);
1074                 qh->oxu = oxu;
1075                 qh->qh_dma = virt_to_phys(qh);
1076                 INIT_LIST_HEAD(&qh->qtd_list);
1077 
1078                 /* dummy td enables safe urb queuing */
1079                 qh->dummy = ehci_qtd_alloc(oxu);
1080                 if (qh->dummy == NULL) {
1081                         oxu_dbg(oxu, "no dummy td\n");
1082                         oxu->qh_used[i] = 0;
1083                         qh = NULL;
1084                         goto unlock;
1085                 }
1086 
1087                 oxu->qh_used[i] = 1;
1088         }
1089 unlock:
1090         spin_unlock(&oxu->mem_lock);
1091 
1092         return qh;
1093 }
1094 
1095 /* to share a qh (cpu threads, or hc) */
1096 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
1097 {
1098         kref_get(&qh->kref);
1099         return qh;
1100 }
1101 
1102 static inline void qh_put(struct ehci_qh *qh)
1103 {
1104         kref_put(&qh->kref, qh_destroy);
1105 }
1106 
1107 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
1108 {
1109         int index;
1110 
1111         spin_lock(&oxu->mem_lock);
1112 
1113         index = murb - &oxu->murb_pool[0];
1114         oxu->murb_used[index] = 0;
1115 
1116         spin_unlock(&oxu->mem_lock);
1117 }
1118 
1119 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
1120 
1121 {
1122         int i;
1123         struct oxu_murb *murb = NULL;
1124 
1125         spin_lock(&oxu->mem_lock);
1126 
1127         for (i = 0; i < MURB_NUM; i++)
1128                 if (!oxu->murb_used[i])
1129                         break;
1130 
1131         if (i < MURB_NUM) {
1132                 murb = &(oxu->murb_pool)[i];
1133 
1134                 oxu->murb_used[i] = 1;
1135         }
1136 
1137         spin_unlock(&oxu->mem_lock);
1138 
1139         return murb;
1140 }
1141 
1142 /* The queue heads and transfer descriptors are managed from pools tied
1143  * to each of the "per device" structures.
1144  * This is the initialisation and cleanup code.
1145  */
1146 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
1147 {
1148         kfree(oxu->murb_pool);
1149         oxu->murb_pool = NULL;
1150 
1151         if (oxu->async)
1152                 qh_put(oxu->async);
1153         oxu->async = NULL;
1154 
1155         del_timer(&oxu->urb_timer);
1156 
1157         oxu->periodic = NULL;
1158 
1159         /* shadow periodic table */
1160         kfree(oxu->pshadow);
1161         oxu->pshadow = NULL;
1162 }
1163 
1164 /* Remember to add cleanup code (above) if you add anything here.
1165  */
1166 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
1167 {
1168         int i;
1169 
1170         for (i = 0; i < oxu->periodic_size; i++)
1171                 oxu->mem->frame_list[i] = EHCI_LIST_END;
1172         for (i = 0; i < QHEAD_NUM; i++)
1173                 oxu->qh_used[i] = 0;
1174         for (i = 0; i < QTD_NUM; i++)
1175                 oxu->qtd_used[i] = 0;
1176 
1177         oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
1178         if (!oxu->murb_pool)
1179                 goto fail;
1180 
1181         for (i = 0; i < MURB_NUM; i++)
1182                 oxu->murb_used[i] = 0;
1183 
1184         oxu->async = oxu_qh_alloc(oxu);
1185         if (!oxu->async)
1186                 goto fail;
1187 
1188         oxu->periodic = (__le32 *) &oxu->mem->frame_list;
1189         oxu->periodic_dma = virt_to_phys(oxu->periodic);
1190 
1191         for (i = 0; i < oxu->periodic_size; i++)
1192                 oxu->periodic[i] = EHCI_LIST_END;
1193 
1194         /* software shadow of hardware table */
1195         oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
1196         if (oxu->pshadow != NULL)
1197                 return 0;
1198 
1199 fail:
1200         oxu_dbg(oxu, "couldn't init memory\n");
1201         ehci_mem_cleanup(oxu);
1202         return -ENOMEM;
1203 }
1204 
1205 /* Fill a qtd, returning how much of the buffer we were able to queue up.
1206  */
1207 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
1208                                 int token, int maxpacket)
1209 {
1210         int i, count;
1211         u64 addr = buf;
1212 
1213         /* one buffer entry per 4K ... first might be short or unaligned */
1214         qtd->hw_buf[0] = cpu_to_le32((u32)addr);
1215         qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
1216         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
1217         if (likely(len < count))                /* ... iff needed */
1218                 count = len;
1219         else {
1220                 buf +=  0x1000;
1221                 buf &= ~0x0fff;
1222 
1223                 /* per-qtd limit: from 16K to 20K (best alignment) */
1224                 for (i = 1; count < len && i < 5; i++) {
1225                         addr = buf;
1226                         qtd->hw_buf[i] = cpu_to_le32((u32)addr);
1227                         qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
1228                         buf += 0x1000;
1229                         if ((count + 0x1000) < len)
1230                                 count += 0x1000;
1231                         else
1232                                 count = len;
1233                 }
1234 
1235                 /* short packets may only terminate transfers */
1236                 if (count != len)
1237                         count -= (count % maxpacket);
1238         }
1239         qtd->hw_token = cpu_to_le32((count << 16) | token);
1240         qtd->length = count;
1241 
1242         return count;
1243 }
1244 
1245 static inline void qh_update(struct oxu_hcd *oxu,
1246                                 struct ehci_qh *qh, struct ehci_qtd *qtd)
1247 {
1248         /* writes to an active overlay are unsafe */
1249         BUG_ON(qh->qh_state != QH_STATE_IDLE);
1250 
1251         qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
1252         qh->hw_alt_next = EHCI_LIST_END;
1253 
1254         /* Except for control endpoints, we make hardware maintain data
1255          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
1256          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
1257          * ever clear it.
1258          */
1259         if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
1260                 unsigned        is_out, epnum;
1261 
1262                 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
1263                 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
1264                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
1265                         qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
1266                         usb_settoggle(qh->dev, epnum, is_out, 1);
1267                 }
1268         }
1269 
1270         /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
1271         wmb();
1272         qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
1273 }
1274 
1275 /* If it weren't for a common silicon quirk (writing the dummy into the qh
1276  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
1277  * recovery (including urb dequeue) would need software changes to a QH...
1278  */
1279 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
1280 {
1281         struct ehci_qtd *qtd;
1282 
1283         if (list_empty(&qh->qtd_list))
1284                 qtd = qh->dummy;
1285         else {
1286                 qtd = list_entry(qh->qtd_list.next,
1287                                 struct ehci_qtd, qtd_list);
1288                 /* first qtd may already be partially processed */
1289                 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
1290                         qtd = NULL;
1291         }
1292 
1293         if (qtd)
1294                 qh_update(oxu, qh, qtd);
1295 }
1296 
1297 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
1298                                 size_t length, u32 token)
1299 {
1300         /* count IN/OUT bytes, not SETUP (even short packets) */
1301         if (likely(QTD_PID(token) != 2))
1302                 urb->actual_length += length - QTD_LENGTH(token);
1303 
1304         /* don't modify error codes */
1305         if (unlikely(urb->status != -EINPROGRESS))
1306                 return;
1307 
1308         /* force cleanup after short read; not always an error */
1309         if (unlikely(IS_SHORT_READ(token)))
1310                 urb->status = -EREMOTEIO;
1311 
1312         /* serious "can't proceed" faults reported by the hardware */
1313         if (token & QTD_STS_HALT) {
1314                 if (token & QTD_STS_BABBLE) {
1315                         /* FIXME "must" disable babbling device's port too */
1316                         urb->status = -EOVERFLOW;
1317                 } else if (token & QTD_STS_MMF) {
1318                         /* fs/ls interrupt xfer missed the complete-split */
1319                         urb->status = -EPROTO;
1320                 } else if (token & QTD_STS_DBE) {
1321                         urb->status = (QTD_PID(token) == 1) /* IN ? */
1322                                 ? -ENOSR  /* hc couldn't read data */
1323                                 : -ECOMM; /* hc couldn't write data */
1324                 } else if (token & QTD_STS_XACT) {
1325                         /* timeout, bad crc, wrong PID, etc; retried */
1326                         if (QTD_CERR(token))
1327                                 urb->status = -EPIPE;
1328                         else {
1329                                 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
1330                                         urb->dev->devpath,
1331                                         usb_pipeendpoint(urb->pipe),
1332                                         usb_pipein(urb->pipe) ? "in" : "out");
1333                                 urb->status = -EPROTO;
1334                         }
1335                 /* CERR nonzero + no errors + halt --> stall */
1336                 } else if (QTD_CERR(token))
1337                         urb->status = -EPIPE;
1338                 else    /* unknown */
1339                         urb->status = -EPROTO;
1340 
1341                 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
1342                         usb_pipedevice(urb->pipe),
1343                         usb_pipeendpoint(urb->pipe),
1344                         usb_pipein(urb->pipe) ? "in" : "out",
1345                         token, urb->status);
1346         }
1347 }
1348 
1349 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
1350 __releases(oxu->lock)
1351 __acquires(oxu->lock)
1352 {
1353         if (likely(urb->hcpriv != NULL)) {
1354                 struct ehci_qh  *qh = (struct ehci_qh *) urb->hcpriv;
1355 
1356                 /* S-mask in a QH means it's an interrupt urb */
1357                 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
1358 
1359                         /* ... update hc-wide periodic stats (for usbfs) */
1360                         oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
1361                 }
1362                 qh_put(qh);
1363         }
1364 
1365         urb->hcpriv = NULL;
1366         switch (urb->status) {
1367         case -EINPROGRESS:              /* success */
1368                 urb->status = 0;
1369         default:                        /* fault */
1370                 break;
1371         case -EREMOTEIO:                /* fault or normal */
1372                 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
1373                         urb->status = 0;
1374                 break;
1375         case -ECONNRESET:               /* canceled */
1376         case -ENOENT:
1377                 break;
1378         }
1379 
1380 #ifdef OXU_URB_TRACE
1381         oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
1382                 __func__, urb->dev->devpath, urb,
1383                 usb_pipeendpoint(urb->pipe),
1384                 usb_pipein(urb->pipe) ? "in" : "out",
1385                 urb->status,
1386                 urb->actual_length, urb->transfer_buffer_length);
1387 #endif
1388 
1389         /* complete() can reenter this HCD */
1390         spin_unlock(&oxu->lock);
1391         usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
1392         spin_lock(&oxu->lock);
1393 }
1394 
1395 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1396 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
1397 
1398 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1399 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
1400 
1401 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
1402 
1403 /* Process and free completed qtds for a qh, returning URBs to drivers.
1404  * Chases up to qh->hw_current.  Returns number of completions called,
1405  * indicating how much "real" work we did.
1406  */
1407 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
1408 {
1409         struct ehci_qtd *last = NULL, *end = qh->dummy;
1410         struct ehci_qtd *qtd, *tmp;
1411         int stopped;
1412         unsigned count = 0;
1413         int do_status = 0;
1414         u8 state;
1415         struct oxu_murb *murb = NULL;
1416 
1417         if (unlikely(list_empty(&qh->qtd_list)))
1418                 return count;
1419 
1420         /* completions (or tasks on other cpus) must never clobber HALT
1421          * till we've gone through and cleaned everything up, even when
1422          * they add urbs to this qh's queue or mark them for unlinking.
1423          *
1424          * NOTE:  unlinking expects to be done in queue order.
1425          */
1426         state = qh->qh_state;
1427         qh->qh_state = QH_STATE_COMPLETING;
1428         stopped = (state == QH_STATE_IDLE);
1429 
1430         /* remove de-activated QTDs from front of queue.
1431          * after faults (including short reads), cleanup this urb
1432          * then let the queue advance.
1433          * if queue is stopped, handles unlinks.
1434          */
1435         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
1436                 struct urb *urb;
1437                 u32 token = 0;
1438 
1439                 urb = qtd->urb;
1440 
1441                 /* Clean up any state from previous QTD ...*/
1442                 if (last) {
1443                         if (likely(last->urb != urb)) {
1444                                 if (last->urb->complete == NULL) {
1445                                         murb = (struct oxu_murb *) last->urb;
1446                                         last->urb = murb->main;
1447                                         if (murb->last) {
1448                                                 ehci_urb_done(oxu, last->urb);
1449                                                 count++;
1450                                         }
1451                                         oxu_murb_free(oxu, murb);
1452                                 } else {
1453                                         ehci_urb_done(oxu, last->urb);
1454                                         count++;
1455                                 }
1456                         }
1457                         oxu_qtd_free(oxu, last);
1458                         last = NULL;
1459                 }
1460 
1461                 /* ignore urbs submitted during completions we reported */
1462                 if (qtd == end)
1463                         break;
1464 
1465                 /* hardware copies qtd out of qh overlay */
1466                 rmb();
1467                 token = le32_to_cpu(qtd->hw_token);
1468 
1469                 /* always clean up qtds the hc de-activated */
1470                 if ((token & QTD_STS_ACTIVE) == 0) {
1471 
1472                         if ((token & QTD_STS_HALT) != 0) {
1473                                 stopped = 1;
1474 
1475                         /* magic dummy for some short reads; qh won't advance.
1476                          * that silicon quirk can kick in with this dummy too.
1477                          */
1478                         } else if (IS_SHORT_READ(token) &&
1479                                         !(qtd->hw_alt_next & EHCI_LIST_END)) {
1480                                 stopped = 1;
1481                                 goto halt;
1482                         }
1483 
1484                 /* stop scanning when we reach qtds the hc is using */
1485                 } else if (likely(!stopped &&
1486                                 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1487                         break;
1488 
1489                 } else {
1490                         stopped = 1;
1491 
1492                         if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1493                                 urb->status = -ESHUTDOWN;
1494 
1495                         /* ignore active urbs unless some previous qtd
1496                          * for the urb faulted (including short read) or
1497                          * its urb was canceled.  we may patch qh or qtds.
1498                          */
1499                         if (likely(urb->status == -EINPROGRESS))
1500                                 continue;
1501 
1502                         /* issue status after short control reads */
1503                         if (unlikely(do_status != 0)
1504                                         && QTD_PID(token) == 0 /* OUT */) {
1505                                 do_status = 0;
1506                                 continue;
1507                         }
1508 
1509                         /* token in overlay may be most current */
1510                         if (state == QH_STATE_IDLE
1511                                         && cpu_to_le32(qtd->qtd_dma)
1512                                                 == qh->hw_current)
1513                                 token = le32_to_cpu(qh->hw_token);
1514 
1515                         /* force halt for unlinked or blocked qh, so we'll
1516                          * patch the qh later and so that completions can't
1517                          * activate it while we "know" it's stopped.
1518                          */
1519                         if ((HALT_BIT & qh->hw_token) == 0) {
1520 halt:
1521                                 qh->hw_token |= HALT_BIT;
1522                                 wmb();
1523                         }
1524                 }
1525 
1526                 /* Remove it from the queue */
1527                 qtd_copy_status(oxu, urb->complete ?
1528                                         urb : ((struct oxu_murb *) urb)->main,
1529                                 qtd->length, token);
1530                 if ((usb_pipein(qtd->urb->pipe)) &&
1531                                 (NULL != qtd->transfer_buffer))
1532                         memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1533                 do_status = (urb->status == -EREMOTEIO)
1534                                 && usb_pipecontrol(urb->pipe);
1535 
1536                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1537                         last = list_entry(qtd->qtd_list.prev,
1538                                         struct ehci_qtd, qtd_list);
1539                         last->hw_next = qtd->hw_next;
1540                 }
1541                 list_del(&qtd->qtd_list);
1542                 last = qtd;
1543         }
1544 
1545         /* last urb's completion might still need calling */
1546         if (likely(last != NULL)) {
1547                 if (last->urb->complete == NULL) {
1548                         murb = (struct oxu_murb *) last->urb;
1549                         last->urb = murb->main;
1550                         if (murb->last) {
1551                                 ehci_urb_done(oxu, last->urb);
1552                                 count++;
1553                         }
1554                         oxu_murb_free(oxu, murb);
1555                 } else {
1556                         ehci_urb_done(oxu, last->urb);
1557                         count++;
1558                 }
1559                 oxu_qtd_free(oxu, last);
1560         }
1561 
1562         /* restore original state; caller must unlink or relink */
1563         qh->qh_state = state;
1564 
1565         /* be sure the hardware's done with the qh before refreshing
1566          * it after fault cleanup, or recovering from silicon wrongly
1567          * overlaying the dummy qtd (which reduces DMA chatter).
1568          */
1569         if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1570                 switch (state) {
1571                 case QH_STATE_IDLE:
1572                         qh_refresh(oxu, qh);
1573                         break;
1574                 case QH_STATE_LINKED:
1575                         /* should be rare for periodic transfers,
1576                          * except maybe high bandwidth ...
1577                          */
1578                         if ((cpu_to_le32(QH_SMASK)
1579                                         & qh->hw_info2) != 0) {
1580                                 intr_deschedule(oxu, qh);
1581                                 (void) qh_schedule(oxu, qh);
1582                         } else
1583                                 unlink_async(oxu, qh);
1584                         break;
1585                 /* otherwise, unlink already started */
1586                 }
1587         }
1588 
1589         return count;
1590 }
1591 
1592 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1593 #define hb_mult(wMaxPacketSize)         (1 + (((wMaxPacketSize) >> 11) & 0x03))
1594 /* ... and packet size, for any kind of endpoint descriptor */
1595 #define max_packet(wMaxPacketSize)      ((wMaxPacketSize) & 0x07ff)
1596 
1597 /* Reverse of qh_urb_transaction: free a list of TDs.
1598  * used for cleanup after errors, before HC sees an URB's TDs.
1599  */
1600 static void qtd_list_free(struct oxu_hcd *oxu,
1601                                 struct urb *urb, struct list_head *head)
1602 {
1603         struct ehci_qtd *qtd, *temp;
1604 
1605         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
1606                 list_del(&qtd->qtd_list);
1607                 oxu_qtd_free(oxu, qtd);
1608         }
1609 }
1610 
1611 /* Create a list of filled qtds for this URB; won't link into qh.
1612  */
1613 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1614                                                 struct urb *urb,
1615                                                 struct list_head *head,
1616                                                 gfp_t flags)
1617 {
1618         struct ehci_qtd *qtd, *qtd_prev;
1619         dma_addr_t buf;
1620         int len, maxpacket;
1621         int is_input;
1622         u32 token;
1623         void *transfer_buf = NULL;
1624         int ret;
1625 
1626         /*
1627          * URBs map to sequences of QTDs: one logical transaction
1628          */
1629         qtd = ehci_qtd_alloc(oxu);
1630         if (unlikely(!qtd))
1631                 return NULL;
1632         list_add_tail(&qtd->qtd_list, head);
1633         qtd->urb = urb;
1634 
1635         token = QTD_STS_ACTIVE;
1636         token |= (EHCI_TUNE_CERR << 10);
1637         /* for split transactions, SplitXState initialized to zero */
1638 
1639         len = urb->transfer_buffer_length;
1640         is_input = usb_pipein(urb->pipe);
1641         if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1642                 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1643 
1644         if (usb_pipecontrol(urb->pipe)) {
1645                 /* SETUP pid */
1646                 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1647                 if (ret)
1648                         goto cleanup;
1649 
1650                 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1651                                 token | (2 /* "setup" */ << 8), 8);
1652                 memcpy(qtd->buffer, qtd->urb->setup_packet,
1653                                 sizeof(struct usb_ctrlrequest));
1654 
1655                 /* ... and always at least one more pid */
1656                 token ^= QTD_TOGGLE;
1657                 qtd_prev = qtd;
1658                 qtd = ehci_qtd_alloc(oxu);
1659                 if (unlikely(!qtd))
1660                         goto cleanup;
1661                 qtd->urb = urb;
1662                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1663                 list_add_tail(&qtd->qtd_list, head);
1664 
1665                 /* for zero length DATA stages, STATUS is always IN */
1666                 if (len == 0)
1667                         token |= (1 /* "in" */ << 8);
1668         }
1669 
1670         /*
1671          * Data transfer stage: buffer setup
1672          */
1673 
1674         ret = oxu_buf_alloc(oxu, qtd, len);
1675         if (ret)
1676                 goto cleanup;
1677 
1678         buf = qtd->buffer_dma;
1679         transfer_buf = urb->transfer_buffer;
1680 
1681         if (!is_input)
1682                 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1683 
1684         if (is_input)
1685                 token |= (1 /* "in" */ << 8);
1686         /* else it's already initted to "out" pid (0 << 8) */
1687 
1688         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1689 
1690         /*
1691          * buffer gets wrapped in one or more qtds;
1692          * last one may be "short" (including zero len)
1693          * and may serve as a control status ack
1694          */
1695         for (;;) {
1696                 int this_qtd_len;
1697 
1698                 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1699                 qtd->transfer_buffer = transfer_buf;
1700                 len -= this_qtd_len;
1701                 buf += this_qtd_len;
1702                 transfer_buf += this_qtd_len;
1703                 if (is_input)
1704                         qtd->hw_alt_next = oxu->async->hw_alt_next;
1705 
1706                 /* qh makes control packets use qtd toggle; maybe switch it */
1707                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1708                         token ^= QTD_TOGGLE;
1709 
1710                 if (likely(len <= 0))
1711                         break;
1712 
1713                 qtd_prev = qtd;
1714                 qtd = ehci_qtd_alloc(oxu);
1715                 if (unlikely(!qtd))
1716                         goto cleanup;
1717                 if (likely(len > 0)) {
1718                         ret = oxu_buf_alloc(oxu, qtd, len);
1719                         if (ret)
1720                                 goto cleanup;
1721                 }
1722                 qtd->urb = urb;
1723                 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1724                 list_add_tail(&qtd->qtd_list, head);
1725         }
1726 
1727         /* unless the bulk/interrupt caller wants a chance to clean
1728          * up after short reads, hc should advance qh past this urb
1729          */
1730         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1731                                 || usb_pipecontrol(urb->pipe)))
1732                 qtd->hw_alt_next = EHCI_LIST_END;
1733 
1734         /*
1735          * control requests may need a terminating data "status" ack;
1736          * bulk ones may need a terminating short packet (zero length).
1737          */
1738         if (likely(urb->transfer_buffer_length != 0)) {
1739                 int     one_more = 0;
1740 
1741                 if (usb_pipecontrol(urb->pipe)) {
1742                         one_more = 1;
1743                         token ^= 0x0100;        /* "in" <--> "out"  */
1744                         token |= QTD_TOGGLE;    /* force DATA1 */
1745                 } else if (usb_pipebulk(urb->pipe)
1746                                 && (urb->transfer_flags & URB_ZERO_PACKET)
1747                                 && !(urb->transfer_buffer_length % maxpacket)) {
1748                         one_more = 1;
1749                 }
1750                 if (one_more) {
1751                         qtd_prev = qtd;
1752                         qtd = ehci_qtd_alloc(oxu);
1753                         if (unlikely(!qtd))
1754                                 goto cleanup;
1755                         qtd->urb = urb;
1756                         qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1757                         list_add_tail(&qtd->qtd_list, head);
1758 
1759                         /* never any data in such packets */
1760                         qtd_fill(qtd, 0, 0, token, 0);
1761                 }
1762         }
1763 
1764         /* by default, enable interrupt on urb completion */
1765         qtd->hw_token |= cpu_to_le32(QTD_IOC);
1766         return head;
1767 
1768 cleanup:
1769         qtd_list_free(oxu, urb, head);
1770         return NULL;
1771 }
1772 
1773 /* Each QH holds a qtd list; a QH is used for everything except iso.
1774  *
1775  * For interrupt urbs, the scheduler must set the microframe scheduling
1776  * mask(s) each time the QH gets scheduled.  For highspeed, that's
1777  * just one microframe in the s-mask.  For split interrupt transactions
1778  * there are additional complications: c-mask, maybe FSTNs.
1779  */
1780 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1781                                 struct urb *urb, gfp_t flags)
1782 {
1783         struct ehci_qh *qh = oxu_qh_alloc(oxu);
1784         u32 info1 = 0, info2 = 0;
1785         int is_input, type;
1786         int maxp = 0;
1787 
1788         if (!qh)
1789                 return qh;
1790 
1791         /*
1792          * init endpoint/device data for this QH
1793          */
1794         info1 |= usb_pipeendpoint(urb->pipe) << 8;
1795         info1 |= usb_pipedevice(urb->pipe) << 0;
1796 
1797         is_input = usb_pipein(urb->pipe);
1798         type = usb_pipetype(urb->pipe);
1799         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1800 
1801         /* Compute interrupt scheduling parameters just once, and save.
1802          * - allowing for high bandwidth, how many nsec/uframe are used?
1803          * - split transactions need a second CSPLIT uframe; same question
1804          * - splits also need a schedule gap (for full/low speed I/O)
1805          * - qh has a polling interval
1806          *
1807          * For control/bulk requests, the HC or TT handles these.
1808          */
1809         if (type == PIPE_INTERRUPT) {
1810                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1811                                                                 is_input, 0,
1812                                 hb_mult(maxp) * max_packet(maxp)));
1813                 qh->start = NO_FRAME;
1814 
1815                 if (urb->dev->speed == USB_SPEED_HIGH) {
1816                         qh->c_usecs = 0;
1817                         qh->gap_uf = 0;
1818 
1819                         qh->period = urb->interval >> 3;
1820                         if (qh->period == 0 && urb->interval != 1) {
1821                                 /* NOTE interval 2 or 4 uframes could work.
1822                                  * But interval 1 scheduling is simpler, and
1823                                  * includes high bandwidth.
1824                                  */
1825                                 oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
1826                                         urb->interval);
1827                                 goto done;
1828                         }
1829                 } else {
1830                         struct usb_tt   *tt = urb->dev->tt;
1831                         int             think_time;
1832 
1833                         /* gap is f(FS/LS transfer times) */
1834                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1835                                         is_input, 0, maxp) / (125 * 1000);
1836 
1837                         /* FIXME this just approximates SPLIT/CSPLIT times */
1838                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
1839                                 qh->c_usecs = qh->usecs + HS_USECS(0);
1840                                 qh->usecs = HS_USECS(1);
1841                         } else {                /* SPLIT+DATA, gap, CSPLIT */
1842                                 qh->usecs += HS_USECS(1);
1843                                 qh->c_usecs = HS_USECS(0);
1844                         }
1845 
1846                         think_time = tt ? tt->think_time : 0;
1847                         qh->tt_usecs = NS_TO_US(think_time +
1848                                         usb_calc_bus_time(urb->dev->speed,
1849                                         is_input, 0, max_packet(maxp)));
1850                         qh->period = urb->interval;
1851                 }
1852         }
1853 
1854         /* support for tt scheduling, and access to toggles */
1855         qh->dev = urb->dev;
1856 
1857         /* using TT? */
1858         switch (urb->dev->speed) {
1859         case USB_SPEED_LOW:
1860                 info1 |= (1 << 12);     /* EPS "low" */
1861                 /* FALL THROUGH */
1862 
1863         case USB_SPEED_FULL:
1864                 /* EPS 0 means "full" */
1865                 if (type != PIPE_INTERRUPT)
1866                         info1 |= (EHCI_TUNE_RL_TT << 28);
1867                 if (type == PIPE_CONTROL) {
1868                         info1 |= (1 << 27);     /* for TT */
1869                         info1 |= 1 << 14;       /* toggle from qtd */
1870                 }
1871                 info1 |= maxp << 16;
1872 
1873                 info2 |= (EHCI_TUNE_MULT_TT << 30);
1874                 info2 |= urb->dev->ttport << 23;
1875 
1876                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1877 
1878                 break;
1879 
1880         case USB_SPEED_HIGH:            /* no TT involved */
1881                 info1 |= (2 << 12);     /* EPS "high" */
1882                 if (type == PIPE_CONTROL) {
1883                         info1 |= (EHCI_TUNE_RL_HS << 28);
1884                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
1885                         info1 |= 1 << 14;       /* toggle from qtd */
1886                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1887                 } else if (type == PIPE_BULK) {
1888                         info1 |= (EHCI_TUNE_RL_HS << 28);
1889                         info1 |= 512 << 16;     /* usb2 fixed maxpacket */
1890                         info2 |= (EHCI_TUNE_MULT_HS << 30);
1891                 } else {                /* PIPE_INTERRUPT */
1892                         info1 |= max_packet(maxp) << 16;
1893                         info2 |= hb_mult(maxp) << 30;
1894                 }
1895                 break;
1896         default:
1897                 oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
1898 done:
1899                 qh_put(qh);
1900                 return NULL;
1901         }
1902 
1903         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1904 
1905         /* init as live, toggle clear, advance to dummy */
1906         qh->qh_state = QH_STATE_IDLE;
1907         qh->hw_info1 = cpu_to_le32(info1);
1908         qh->hw_info2 = cpu_to_le32(info2);
1909         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1910         qh_refresh(oxu, qh);
1911         return qh;
1912 }
1913 
1914 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1915  */
1916 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1917 {
1918         __le32 dma = QH_NEXT(qh->qh_dma);
1919         struct ehci_qh *head;
1920 
1921         /* (re)start the async schedule? */
1922         head = oxu->async;
1923         timer_action_done(oxu, TIMER_ASYNC_OFF);
1924         if (!head->qh_next.qh) {
1925                 u32     cmd = readl(&oxu->regs->command);
1926 
1927                 if (!(cmd & CMD_ASE)) {
1928                         /* in case a clear of CMD_ASE didn't take yet */
1929                         (void)handshake(oxu, &oxu->regs->status,
1930                                         STS_ASS, 0, 150);
1931                         cmd |= CMD_ASE | CMD_RUN;
1932                         writel(cmd, &oxu->regs->command);
1933                         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1934                         /* posted write need not be known to HC yet ... */
1935                 }
1936         }
1937 
1938         /* clear halt and/or toggle; and maybe recover from silicon quirk */
1939         if (qh->qh_state == QH_STATE_IDLE)
1940                 qh_refresh(oxu, qh);
1941 
1942         /* splice right after start */
1943         qh->qh_next = head->qh_next;
1944         qh->hw_next = head->hw_next;
1945         wmb();
1946 
1947         head->qh_next.qh = qh;
1948         head->hw_next = dma;
1949 
1950         qh->qh_state = QH_STATE_LINKED;
1951         /* qtd completions reported later by interrupt */
1952 }
1953 
1954 #define QH_ADDR_MASK    cpu_to_le32(0x7f)
1955 
1956 /*
1957  * For control/bulk/interrupt, return QH with these TDs appended.
1958  * Allocates and initializes the QH if necessary.
1959  * Returns null if it can't allocate a QH it needs to.
1960  * If the QH has TDs (urbs) already, that's great.
1961  */
1962 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1963                                 struct urb *urb, struct list_head *qtd_list,
1964                                 int epnum, void **ptr)
1965 {
1966         struct ehci_qh *qh = NULL;
1967 
1968         qh = (struct ehci_qh *) *ptr;
1969         if (unlikely(qh == NULL)) {
1970                 /* can't sleep here, we have oxu->lock... */
1971                 qh = qh_make(oxu, urb, GFP_ATOMIC);
1972                 *ptr = qh;
1973         }
1974         if (likely(qh != NULL)) {
1975                 struct ehci_qtd *qtd;
1976 
1977                 if (unlikely(list_empty(qtd_list)))
1978                         qtd = NULL;
1979                 else
1980                         qtd = list_entry(qtd_list->next, struct ehci_qtd,
1981                                         qtd_list);
1982 
1983                 /* control qh may need patching ... */
1984                 if (unlikely(epnum == 0)) {
1985 
1986                         /* usb_reset_device() briefly reverts to address 0 */
1987                         if (usb_pipedevice(urb->pipe) == 0)
1988                                 qh->hw_info1 &= ~QH_ADDR_MASK;
1989                 }
1990 
1991                 /* just one way to queue requests: swap with the dummy qtd.
1992                  * only hc or qh_refresh() ever modify the overlay.
1993                  */
1994                 if (likely(qtd != NULL)) {
1995                         struct ehci_qtd *dummy;
1996                         dma_addr_t dma;
1997                         __le32 token;
1998 
1999                         /* to avoid racing the HC, use the dummy td instead of
2000                          * the first td of our list (becomes new dummy).  both
2001                          * tds stay deactivated until we're done, when the
2002                          * HC is allowed to fetch the old dummy (4.10.2).
2003                          */
2004                         token = qtd->hw_token;
2005                         qtd->hw_token = HALT_BIT;
2006                         wmb();
2007                         dummy = qh->dummy;
2008 
2009                         dma = dummy->qtd_dma;
2010                         *dummy = *qtd;
2011                         dummy->qtd_dma = dma;
2012 
2013                         list_del(&qtd->qtd_list);
2014                         list_add(&dummy->qtd_list, qtd_list);
2015                         list_splice(qtd_list, qh->qtd_list.prev);
2016 
2017                         ehci_qtd_init(qtd, qtd->qtd_dma);
2018                         qh->dummy = qtd;
2019 
2020                         /* hc must see the new dummy at list end */
2021                         dma = qtd->qtd_dma;
2022                         qtd = list_entry(qh->qtd_list.prev,
2023                                         struct ehci_qtd, qtd_list);
2024                         qtd->hw_next = QTD_NEXT(dma);
2025 
2026                         /* let the hc process these next qtds */
2027                         dummy->hw_token = (token & ~(0x80));
2028                         wmb();
2029                         dummy->hw_token = token;
2030 
2031                         urb->hcpriv = qh_get(qh);
2032                 }
2033         }
2034         return qh;
2035 }
2036 
2037 static int submit_async(struct oxu_hcd  *oxu, struct urb *urb,
2038                         struct list_head *qtd_list, gfp_t mem_flags)
2039 {
2040         struct ehci_qtd *qtd;
2041         int epnum;
2042         unsigned long flags;
2043         struct ehci_qh *qh = NULL;
2044         int rc = 0;
2045 
2046         qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
2047         epnum = urb->ep->desc.bEndpointAddress;
2048 
2049 #ifdef OXU_URB_TRACE
2050         oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2051                 __func__, urb->dev->devpath, urb,
2052                 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
2053                 urb->transfer_buffer_length,
2054                 qtd, urb->ep->hcpriv);
2055 #endif
2056 
2057         spin_lock_irqsave(&oxu->lock, flags);
2058         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2059                 rc = -ESHUTDOWN;
2060                 goto done;
2061         }
2062 
2063         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2064         if (unlikely(qh == NULL)) {
2065                 rc = -ENOMEM;
2066                 goto done;
2067         }
2068 
2069         /* Control/bulk operations through TTs don't need scheduling,
2070          * the HC and TT handle it when the TT has a buffer ready.
2071          */
2072         if (likely(qh->qh_state == QH_STATE_IDLE))
2073                 qh_link_async(oxu, qh_get(qh));
2074 done:
2075         spin_unlock_irqrestore(&oxu->lock, flags);
2076         if (unlikely(qh == NULL))
2077                 qtd_list_free(oxu, urb, qtd_list);
2078         return rc;
2079 }
2080 
2081 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
2082 
2083 static void end_unlink_async(struct oxu_hcd *oxu)
2084 {
2085         struct ehci_qh *qh = oxu->reclaim;
2086         struct ehci_qh *next;
2087 
2088         timer_action_done(oxu, TIMER_IAA_WATCHDOG);
2089 
2090         qh->qh_state = QH_STATE_IDLE;
2091         qh->qh_next.qh = NULL;
2092         qh_put(qh);                     /* refcount from reclaim */
2093 
2094         /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
2095         next = qh->reclaim;
2096         oxu->reclaim = next;
2097         oxu->reclaim_ready = 0;
2098         qh->reclaim = NULL;
2099 
2100         qh_completions(oxu, qh);
2101 
2102         if (!list_empty(&qh->qtd_list)
2103                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2104                 qh_link_async(oxu, qh);
2105         else {
2106                 qh_put(qh);             /* refcount from async list */
2107 
2108                 /* it's not free to turn the async schedule on/off; leave it
2109                  * active but idle for a while once it empties.
2110                  */
2111                 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
2112                                 && oxu->async->qh_next.qh == NULL)
2113                         timer_action(oxu, TIMER_ASYNC_OFF);
2114         }
2115 
2116         if (next) {
2117                 oxu->reclaim = NULL;
2118                 start_unlink_async(oxu, next);
2119         }
2120 }
2121 
2122 /* makes sure the async qh will become idle */
2123 /* caller must own oxu->lock */
2124 
2125 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2126 {
2127         int cmd = readl(&oxu->regs->command);
2128         struct ehci_qh *prev;
2129 
2130 #ifdef DEBUG
2131         assert_spin_locked(&oxu->lock);
2132         BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
2133                                 && qh->qh_state != QH_STATE_UNLINK_WAIT));
2134 #endif
2135 
2136         /* stop async schedule right now? */
2137         if (unlikely(qh == oxu->async)) {
2138                 /* can't get here without STS_ASS set */
2139                 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
2140                                 && !oxu->reclaim) {
2141                         /* ... and CMD_IAAD clear */
2142                         writel(cmd & ~CMD_ASE, &oxu->regs->command);
2143                         wmb();
2144                         /* handshake later, if we need to */
2145                         timer_action_done(oxu, TIMER_ASYNC_OFF);
2146                 }
2147                 return;
2148         }
2149 
2150         qh->qh_state = QH_STATE_UNLINK;
2151         oxu->reclaim = qh = qh_get(qh);
2152 
2153         prev = oxu->async;
2154         while (prev->qh_next.qh != qh)
2155                 prev = prev->qh_next.qh;
2156 
2157         prev->hw_next = qh->hw_next;
2158         prev->qh_next = qh->qh_next;
2159         wmb();
2160 
2161         if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
2162                 /* if (unlikely(qh->reclaim != 0))
2163                  *      this will recurse, probably not much
2164                  */
2165                 end_unlink_async(oxu);
2166                 return;
2167         }
2168 
2169         oxu->reclaim_ready = 0;
2170         cmd |= CMD_IAAD;
2171         writel(cmd, &oxu->regs->command);
2172         (void) readl(&oxu->regs->command);
2173         timer_action(oxu, TIMER_IAA_WATCHDOG);
2174 }
2175 
2176 static void scan_async(struct oxu_hcd *oxu)
2177 {
2178         struct ehci_qh *qh;
2179         enum ehci_timer_action action = TIMER_IO_WATCHDOG;
2180 
2181         if (!++(oxu->stamp))
2182                 oxu->stamp++;
2183         timer_action_done(oxu, TIMER_ASYNC_SHRINK);
2184 rescan:
2185         qh = oxu->async->qh_next.qh;
2186         if (likely(qh != NULL)) {
2187                 do {
2188                         /* clean any finished work for this qh */
2189                         if (!list_empty(&qh->qtd_list)
2190                                         && qh->stamp != oxu->stamp) {
2191                                 int temp;
2192 
2193                                 /* unlinks could happen here; completion
2194                                  * reporting drops the lock.  rescan using
2195                                  * the latest schedule, but don't rescan
2196                                  * qhs we already finished (no looping).
2197                                  */
2198                                 qh = qh_get(qh);
2199                                 qh->stamp = oxu->stamp;
2200                                 temp = qh_completions(oxu, qh);
2201                                 qh_put(qh);
2202                                 if (temp != 0)
2203                                         goto rescan;
2204                         }
2205 
2206                         /* unlink idle entries, reducing HC PCI usage as well
2207                          * as HCD schedule-scanning costs.  delay for any qh
2208                          * we just scanned, there's a not-unusual case that it
2209                          * doesn't stay idle for long.
2210                          * (plus, avoids some kind of re-activation race.)
2211                          */
2212                         if (list_empty(&qh->qtd_list)) {
2213                                 if (qh->stamp == oxu->stamp)
2214                                         action = TIMER_ASYNC_SHRINK;
2215                                 else if (!oxu->reclaim
2216                                             && qh->qh_state == QH_STATE_LINKED)
2217                                         start_unlink_async(oxu, qh);
2218                         }
2219 
2220                         qh = qh->qh_next.qh;
2221                 } while (qh);
2222         }
2223         if (action == TIMER_ASYNC_SHRINK)
2224                 timer_action(oxu, TIMER_ASYNC_SHRINK);
2225 }
2226 
2227 /*
2228  * periodic_next_shadow - return "next" pointer on shadow list
2229  * @periodic: host pointer to qh/itd/sitd
2230  * @tag: hardware tag for type of this record
2231  */
2232 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
2233                                                 __le32 tag)
2234 {
2235         switch (tag) {
2236         default:
2237         case Q_TYPE_QH:
2238                 return &periodic->qh->qh_next;
2239         }
2240 }
2241 
2242 /* caller must hold oxu->lock */
2243 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
2244 {
2245         union ehci_shadow *prev_p = &oxu->pshadow[frame];
2246         __le32 *hw_p = &oxu->periodic[frame];
2247         union ehci_shadow here = *prev_p;
2248 
2249         /* find predecessor of "ptr"; hw and shadow lists are in sync */
2250         while (here.ptr && here.ptr != ptr) {
2251                 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
2252                 hw_p = here.hw_next;
2253                 here = *prev_p;
2254         }
2255         /* an interrupt entry (at list end) could have been shared */
2256         if (!here.ptr)
2257                 return;
2258 
2259         /* update shadow and hardware lists ... the old "next" pointers
2260          * from ptr may still be in use, the caller updates them.
2261          */
2262         *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
2263         *hw_p = *here.hw_next;
2264 }
2265 
2266 /* how many of the uframe's 125 usecs are allocated? */
2267 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
2268                                         unsigned frame, unsigned uframe)
2269 {
2270         __le32 *hw_p = &oxu->periodic[frame];
2271         union ehci_shadow *q = &oxu->pshadow[frame];
2272         unsigned usecs = 0;
2273 
2274         while (q->ptr) {
2275                 switch (Q_NEXT_TYPE(*hw_p)) {
2276                 case Q_TYPE_QH:
2277                 default:
2278                         /* is it in the S-mask? */
2279                         if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
2280                                 usecs += q->qh->usecs;
2281                         /* ... or C-mask? */
2282                         if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
2283                                 usecs += q->qh->c_usecs;
2284                         hw_p = &q->qh->hw_next;
2285                         q = &q->qh->qh_next;
2286                         break;
2287                 }
2288         }
2289 #ifdef DEBUG
2290         if (usecs > 100)
2291                 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
2292                                                 frame * 8 + uframe, usecs);
2293 #endif
2294         return usecs;
2295 }
2296 
2297 static int enable_periodic(struct oxu_hcd *oxu)
2298 {
2299         u32 cmd;
2300         int status;
2301 
2302         /* did clearing PSE did take effect yet?
2303          * takes effect only at frame boundaries...
2304          */
2305         status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
2306         if (status != 0) {
2307                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2308                 usb_hc_died(oxu_to_hcd(oxu));
2309                 return status;
2310         }
2311 
2312         cmd = readl(&oxu->regs->command) | CMD_PSE;
2313         writel(cmd, &oxu->regs->command);
2314         /* posted write ... PSS happens later */
2315         oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
2316 
2317         /* make sure ehci_work scans these */
2318         oxu->next_uframe = readl(&oxu->regs->frame_index)
2319                 % (oxu->periodic_size << 3);
2320         return 0;
2321 }
2322 
2323 static int disable_periodic(struct oxu_hcd *oxu)
2324 {
2325         u32 cmd;
2326         int status;
2327 
2328         /* did setting PSE not take effect yet?
2329          * takes effect only at frame boundaries...
2330          */
2331         status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
2332         if (status != 0) {
2333                 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
2334                 usb_hc_died(oxu_to_hcd(oxu));
2335                 return status;
2336         }
2337 
2338         cmd = readl(&oxu->regs->command) & ~CMD_PSE;
2339         writel(cmd, &oxu->regs->command);
2340         /* posted write ... */
2341 
2342         oxu->next_uframe = -1;
2343         return 0;
2344 }
2345 
2346 /* periodic schedule slots have iso tds (normal or split) first, then a
2347  * sparse tree for active interrupt transfers.
2348  *
2349  * this just links in a qh; caller guarantees uframe masks are set right.
2350  * no FSTN support (yet; oxu 0.96+)
2351  */
2352 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2353 {
2354         unsigned i;
2355         unsigned period = qh->period;
2356 
2357         dev_dbg(&qh->dev->dev,
2358                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
2359                 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2360                 qh, qh->start, qh->usecs, qh->c_usecs);
2361 
2362         /* high bandwidth, or otherwise every microframe */
2363         if (period == 0)
2364                 period = 1;
2365 
2366         for (i = qh->start; i < oxu->periodic_size; i += period) {
2367                 union ehci_shadow       *prev = &oxu->pshadow[i];
2368                 __le32                  *hw_p = &oxu->periodic[i];
2369                 union ehci_shadow       here = *prev;
2370                 __le32                  type = 0;
2371 
2372                 /* skip the iso nodes at list head */
2373                 while (here.ptr) {
2374                         type = Q_NEXT_TYPE(*hw_p);
2375                         if (type == Q_TYPE_QH)
2376                                 break;
2377                         prev = periodic_next_shadow(prev, type);
2378                         hw_p = &here.qh->hw_next;
2379                         here = *prev;
2380                 }
2381 
2382                 /* sorting each branch by period (slow-->fast)
2383                  * enables sharing interior tree nodes
2384                  */
2385                 while (here.ptr && qh != here.qh) {
2386                         if (qh->period > here.qh->period)
2387                                 break;
2388                         prev = &here.qh->qh_next;
2389                         hw_p = &here.qh->hw_next;
2390                         here = *prev;
2391                 }
2392                 /* link in this qh, unless some earlier pass did that */
2393                 if (qh != here.qh) {
2394                         qh->qh_next = here;
2395                         if (here.qh)
2396                                 qh->hw_next = *hw_p;
2397                         wmb();
2398                         prev->qh = qh;
2399                         *hw_p = QH_NEXT(qh->qh_dma);
2400                 }
2401         }
2402         qh->qh_state = QH_STATE_LINKED;
2403         qh_get(qh);
2404 
2405         /* update per-qh bandwidth for usbfs */
2406         oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
2407                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2408                 : (qh->usecs * 8);
2409 
2410         /* maybe enable periodic schedule processing */
2411         if (!oxu->periodic_sched++)
2412                 return enable_periodic(oxu);
2413 
2414         return 0;
2415 }
2416 
2417 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
2418 {
2419         unsigned i;
2420         unsigned period;
2421 
2422         /* FIXME:
2423          *   IF this isn't high speed
2424          *   and this qh is active in the current uframe
2425          *   (and overlay token SplitXstate is false?)
2426          * THEN
2427          *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2428          */
2429 
2430         /* high bandwidth, or otherwise part of every microframe */
2431         period = qh->period;
2432         if (period == 0)
2433                 period = 1;
2434 
2435         for (i = qh->start; i < oxu->periodic_size; i += period)
2436                 periodic_unlink(oxu, i, qh);
2437 
2438         /* update per-qh bandwidth for usbfs */
2439         oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2440                 ? ((qh->usecs + qh->c_usecs) / qh->period)
2441                 : (qh->usecs * 8);
2442 
2443         dev_dbg(&qh->dev->dev,
2444                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2445                 qh->period,
2446                 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2447                 qh, qh->start, qh->usecs, qh->c_usecs);
2448 
2449         /* qh->qh_next still "live" to HC */
2450         qh->qh_state = QH_STATE_UNLINK;
2451         qh->qh_next.ptr = NULL;
2452         qh_put(qh);
2453 
2454         /* maybe turn off periodic schedule */
2455         oxu->periodic_sched--;
2456         if (!oxu->periodic_sched)
2457                 (void) disable_periodic(oxu);
2458 }
2459 
2460 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2461 {
2462         unsigned wait;
2463 
2464         qh_unlink_periodic(oxu, qh);
2465 
2466         /* simple/paranoid:  always delay, expecting the HC needs to read
2467          * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2468          * expect hub_wq to clean up after any CSPLITs we won't issue.
2469          * active high speed queues may need bigger delays...
2470          */
2471         if (list_empty(&qh->qtd_list)
2472                 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2473                 wait = 2;
2474         else
2475                 wait = 55;      /* worst case: 3 * 1024 */
2476 
2477         udelay(wait);
2478         qh->qh_state = QH_STATE_IDLE;
2479         qh->hw_next = EHCI_LIST_END;
2480         wmb();
2481 }
2482 
2483 static int check_period(struct oxu_hcd *oxu,
2484                         unsigned frame, unsigned uframe,
2485                         unsigned period, unsigned usecs)
2486 {
2487         int claimed;
2488 
2489         /* complete split running into next frame?
2490          * given FSTN support, we could sometimes check...
2491          */
2492         if (uframe >= 8)
2493                 return 0;
2494 
2495         /*
2496          * 80% periodic == 100 usec/uframe available
2497          * convert "usecs we need" to "max already claimed"
2498          */
2499         usecs = 100 - usecs;
2500 
2501         /* we "know" 2 and 4 uframe intervals were rejected; so
2502          * for period 0, check _every_ microframe in the schedule.
2503          */
2504         if (unlikely(period == 0)) {
2505                 do {
2506                         for (uframe = 0; uframe < 7; uframe++) {
2507                                 claimed = periodic_usecs(oxu, frame, uframe);
2508                                 if (claimed > usecs)
2509                                         return 0;
2510                         }
2511                 } while ((frame += 1) < oxu->periodic_size);
2512 
2513         /* just check the specified uframe, at that period */
2514         } else {
2515                 do {
2516                         claimed = periodic_usecs(oxu, frame, uframe);
2517                         if (claimed > usecs)
2518                                 return 0;
2519                 } while ((frame += period) < oxu->periodic_size);
2520         }
2521 
2522         return 1;
2523 }
2524 
2525 static int check_intr_schedule(struct oxu_hcd   *oxu,
2526                                 unsigned frame, unsigned uframe,
2527                                 const struct ehci_qh *qh, __le32 *c_maskp)
2528 {
2529         int retval = -ENOSPC;
2530 
2531         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
2532                 goto done;
2533 
2534         if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2535                 goto done;
2536         if (!qh->c_usecs) {
2537                 retval = 0;
2538                 *c_maskp = 0;
2539                 goto done;
2540         }
2541 
2542 done:
2543         return retval;
2544 }
2545 
2546 /* "first fit" scheduling policy used the first time through,
2547  * or when the previous schedule slot can't be re-used.
2548  */
2549 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2550 {
2551         int             status;
2552         unsigned        uframe;
2553         __le32          c_mask;
2554         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
2555 
2556         qh_refresh(oxu, qh);
2557         qh->hw_next = EHCI_LIST_END;
2558         frame = qh->start;
2559 
2560         /* reuse the previous schedule slots, if we can */
2561         if (frame < qh->period) {
2562                 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2563                 status = check_intr_schedule(oxu, frame, --uframe,
2564                                 qh, &c_mask);
2565         } else {
2566                 uframe = 0;
2567                 c_mask = 0;
2568                 status = -ENOSPC;
2569         }
2570 
2571         /* else scan the schedule to find a group of slots such that all
2572          * uframes have enough periodic bandwidth available.
2573          */
2574         if (status) {
2575                 /* "normal" case, uframing flexible except with splits */
2576                 if (qh->period) {
2577                         frame = qh->period - 1;
2578                         do {
2579                                 for (uframe = 0; uframe < 8; uframe++) {
2580                                         status = check_intr_schedule(oxu,
2581                                                         frame, uframe, qh,
2582                                                         &c_mask);
2583                                         if (status == 0)
2584                                                 break;
2585                                 }
2586                         } while (status && frame--);
2587 
2588                 /* qh->period == 0 means every uframe */
2589                 } else {
2590                         frame = 0;
2591                         status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2592                 }
2593                 if (status)
2594                         goto done;
2595                 qh->start = frame;
2596 
2597                 /* reset S-frame and (maybe) C-frame masks */
2598                 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2599                 qh->hw_info2 |= qh->period
2600                         ? cpu_to_le32(1 << uframe)
2601                         : cpu_to_le32(QH_SMASK);
2602                 qh->hw_info2 |= c_mask;
2603         } else
2604                 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2605 
2606         /* stuff into the periodic schedule */
2607         status = qh_link_periodic(oxu, qh);
2608 done:
2609         return status;
2610 }
2611 
2612 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2613                         struct list_head *qtd_list, gfp_t mem_flags)
2614 {
2615         unsigned epnum;
2616         unsigned long flags;
2617         struct ehci_qh *qh;
2618         int status = 0;
2619         struct list_head        empty;
2620 
2621         /* get endpoint and transfer/schedule data */
2622         epnum = urb->ep->desc.bEndpointAddress;
2623 
2624         spin_lock_irqsave(&oxu->lock, flags);
2625 
2626         if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2627                 status = -ESHUTDOWN;
2628                 goto done;
2629         }
2630 
2631         /* get qh and force any scheduling errors */
2632         INIT_LIST_HEAD(&empty);
2633         qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2634         if (qh == NULL) {
2635                 status = -ENOMEM;
2636                 goto done;
2637         }
2638         if (qh->qh_state == QH_STATE_IDLE) {
2639                 status = qh_schedule(oxu, qh);
2640                 if (status != 0)
2641                         goto done;
2642         }
2643 
2644         /* then queue the urb's tds to the qh */
2645         qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2646         BUG_ON(qh == NULL);
2647 
2648         /* ... update usbfs periodic stats */
2649         oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2650 
2651 done:
2652         spin_unlock_irqrestore(&oxu->lock, flags);
2653         if (status)
2654                 qtd_list_free(oxu, urb, qtd_list);
2655 
2656         return status;
2657 }
2658 
2659 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2660                                                 gfp_t mem_flags)
2661 {
2662         oxu_dbg(oxu, "iso support is missing!\n");
2663         return -ENOSYS;
2664 }
2665 
2666 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2667                                                 gfp_t mem_flags)
2668 {
2669         oxu_dbg(oxu, "split iso support is missing!\n");
2670         return -ENOSYS;
2671 }
2672 
2673 static void scan_periodic(struct oxu_hcd *oxu)
2674 {
2675         unsigned frame, clock, now_uframe, mod;
2676         unsigned modified;
2677 
2678         mod = oxu->periodic_size << 3;
2679 
2680         /*
2681          * When running, scan from last scan point up to "now"
2682          * else clean up by scanning everything that's left.
2683          * Touches as few pages as possible:  cache-friendly.
2684          */
2685         now_uframe = oxu->next_uframe;
2686         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2687                 clock = readl(&oxu->regs->frame_index);
2688         else
2689                 clock = now_uframe + mod - 1;
2690         clock %= mod;
2691 
2692         for (;;) {
2693                 union ehci_shadow       q, *q_p;
2694                 __le32                  type, *hw_p;
2695 
2696                 /* don't scan past the live uframe */
2697                 frame = now_uframe >> 3;
2698                 if (frame != (clock >> 3)) {
2699                         /* safe to scan the whole frame at once */
2700                         now_uframe |= 0x07;
2701                 }
2702 
2703 restart:
2704                 /* scan each element in frame's queue for completions */
2705                 q_p = &oxu->pshadow[frame];
2706                 hw_p = &oxu->periodic[frame];
2707                 q.ptr = q_p->ptr;
2708                 type = Q_NEXT_TYPE(*hw_p);
2709                 modified = 0;
2710 
2711                 while (q.ptr != NULL) {
2712                         union ehci_shadow temp;
2713 
2714                         switch (type) {
2715                         case Q_TYPE_QH:
2716                                 /* handle any completions */
2717                                 temp.qh = qh_get(q.qh);
2718                                 type = Q_NEXT_TYPE(q.qh->hw_next);
2719                                 q = q.qh->qh_next;
2720                                 modified = qh_completions(oxu, temp.qh);
2721                                 if (unlikely(list_empty(&temp.qh->qtd_list)))
2722                                         intr_deschedule(oxu, temp.qh);
2723                                 qh_put(temp.qh);
2724                                 break;
2725                         default:
2726                                 oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
2727                                         type, frame, q.ptr);
2728                                 q.ptr = NULL;
2729                         }
2730 
2731                         /* assume completion callbacks modify the queue */
2732                         if (unlikely(modified))
2733                                 goto restart;
2734                 }
2735 
2736                 /* Stop when we catch up to the HC */
2737 
2738                 /* FIXME:  this assumes we won't get lapped when
2739                  * latencies climb; that should be rare, but...
2740                  * detect it, and just go all the way around.
2741                  * FLR might help detect this case, so long as latencies
2742                  * don't exceed periodic_size msec (default 1.024 sec).
2743                  */
2744 
2745                 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2746 
2747                 if (now_uframe == clock) {
2748                         unsigned        now;
2749 
2750                         if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2751                                 break;
2752                         oxu->next_uframe = now_uframe;
2753                         now = readl(&oxu->regs->frame_index) % mod;
2754                         if (now_uframe == now)
2755                                 break;
2756 
2757                         /* rescan the rest of this frame, then ... */
2758                         clock = now;
2759                 } else {
2760                         now_uframe++;
2761                         now_uframe %= mod;
2762                 }
2763         }
2764 }
2765 
2766 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2767  * The firmware seems to think that powering off is a wakeup event!
2768  * This routine turns off remote wakeup and everything else, on all ports.
2769  */
2770 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2771 {
2772         int port = HCS_N_PORTS(oxu->hcs_params);
2773 
2774         while (port--)
2775                 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2776 }
2777 
2778 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2779 {
2780         unsigned port;
2781 
2782         if (!HCS_PPC(oxu->hcs_params))
2783                 return;
2784 
2785         oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2786         for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2787                 (void) oxu_hub_control(oxu_to_hcd(oxu),
2788                                 is_on ? SetPortFeature : ClearPortFeature,
2789                                 USB_PORT_FEAT_POWER,
2790                                 port--, NULL, 0);
2791         msleep(20);
2792 }
2793 
2794 /* Called from some interrupts, timers, and so on.
2795  * It calls driver completion functions, after dropping oxu->lock.
2796  */
2797 static void ehci_work(struct oxu_hcd *oxu)
2798 {
2799         timer_action_done(oxu, TIMER_IO_WATCHDOG);
2800         if (oxu->reclaim_ready)
2801                 end_unlink_async(oxu);
2802 
2803         /* another CPU may drop oxu->lock during a schedule scan while
2804          * it reports urb completions.  this flag guards against bogus
2805          * attempts at re-entrant schedule scanning.
2806          */
2807         if (oxu->scanning)
2808                 return;
2809         oxu->scanning = 1;
2810         scan_async(oxu);
2811         if (oxu->next_uframe != -1)
2812                 scan_periodic(oxu);
2813         oxu->scanning = 0;
2814 
2815         /* the IO watchdog guards against hardware or driver bugs that
2816          * misplace IRQs, and should let us run completely without IRQs.
2817          * such lossage has been observed on both VT6202 and VT8235.
2818          */
2819         if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2820                         (oxu->async->qh_next.ptr != NULL ||
2821                          oxu->periodic_sched != 0))
2822                 timer_action(oxu, TIMER_IO_WATCHDOG);
2823 }
2824 
2825 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2826 {
2827         /* if we need to use IAA and it's busy, defer */
2828         if (qh->qh_state == QH_STATE_LINKED
2829                         && oxu->reclaim
2830                         && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2831                 struct ehci_qh          *last;
2832 
2833                 for (last = oxu->reclaim;
2834                                 last->reclaim;
2835                                 last = last->reclaim)
2836                         continue;
2837                 qh->qh_state = QH_STATE_UNLINK_WAIT;
2838                 last->reclaim = qh;
2839 
2840         /* bypass IAA if the hc can't care */
2841         } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2842                 end_unlink_async(oxu);
2843 
2844         /* something else might have unlinked the qh by now */
2845         if (qh->qh_state == QH_STATE_LINKED)
2846                 start_unlink_async(oxu, qh);
2847 }
2848 
2849 /*
2850  * USB host controller methods
2851  */
2852 
2853 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2854 {
2855         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2856         u32 status, pcd_status = 0;
2857         int bh;
2858 
2859         spin_lock(&oxu->lock);
2860 
2861         status = readl(&oxu->regs->status);
2862 
2863         /* e.g. cardbus physical eject */
2864         if (status == ~(u32) 0) {
2865                 oxu_dbg(oxu, "device removed\n");
2866                 goto dead;
2867         }
2868 
2869         /* Shared IRQ? */
2870         status &= INTR_MASK;
2871         if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2872                 spin_unlock(&oxu->lock);
2873                 return IRQ_NONE;
2874         }
2875 
2876         /* clear (just) interrupts */
2877         writel(status, &oxu->regs->status);
2878         readl(&oxu->regs->command);     /* unblock posted write */
2879         bh = 0;
2880 
2881 #ifdef OXU_VERBOSE_DEBUG
2882         /* unrequested/ignored: Frame List Rollover */
2883         dbg_status(oxu, "irq", status);
2884 #endif
2885 
2886         /* INT, ERR, and IAA interrupt rates can be throttled */
2887 
2888         /* normal [4.15.1.2] or error [4.15.1.1] completion */
2889         if (likely((status & (STS_INT|STS_ERR)) != 0))
2890                 bh = 1;
2891 
2892         /* complete the unlinking of some qh [4.15.2.3] */
2893         if (status & STS_IAA) {
2894                 oxu->reclaim_ready = 1;
2895                 bh = 1;
2896         }
2897 
2898         /* remote wakeup [4.3.1] */
2899         if (status & STS_PCD) {
2900                 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2901                 pcd_status = status;
2902 
2903                 /* resume root hub? */
2904                 if (!(readl(&oxu->regs->command) & CMD_RUN))
2905                         usb_hcd_resume_root_hub(hcd);
2906 
2907                 while (i--) {
2908                         int pstatus = readl(&oxu->regs->port_status[i]);
2909 
2910                         if (pstatus & PORT_OWNER)
2911                                 continue;
2912                         if (!(pstatus & PORT_RESUME)
2913                                         || oxu->reset_done[i] != 0)
2914                                 continue;
2915 
2916                         /* start USB_RESUME_TIMEOUT resume signaling from this
2917                          * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
2918                          * stop that signaling.
2919                          */
2920                         oxu->reset_done[i] = jiffies +
2921                                 msecs_to_jiffies(USB_RESUME_TIMEOUT);
2922                         oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2923                         mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2924                 }
2925         }
2926 
2927         /* PCI errors [4.15.2.4] */
2928         if (unlikely((status & STS_FATAL) != 0)) {
2929                 /* bogus "fatal" IRQs appear on some chips... why?  */
2930                 status = readl(&oxu->regs->status);
2931                 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2932                 dbg_status(oxu, "fatal", status);
2933                 if (status & STS_HALT) {
2934                         oxu_err(oxu, "fatal error\n");
2935 dead:
2936                         ehci_reset(oxu);
2937                         writel(0, &oxu->regs->configured_flag);
2938                         usb_hc_died(hcd);
2939                         /* generic layer kills/unlinks all urbs, then
2940                          * uses oxu_stop to clean up the rest
2941                          */
2942                         bh = 1;
2943                 }
2944         }
2945 
2946         if (bh)
2947                 ehci_work(oxu);
2948         spin_unlock(&oxu->lock);
2949         if (pcd_status & STS_PCD)
2950                 usb_hcd_poll_rh_status(hcd);
2951         return IRQ_HANDLED;
2952 }
2953 
2954 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2955 {
2956         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2957         int ret = IRQ_HANDLED;
2958 
2959         u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2960         u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2961 
2962         /* Disable all interrupt */
2963         oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2964 
2965         if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2966                 (!oxu->is_otg && (status & OXU_USBSPHI)))
2967                 oxu210_hcd_irq(hcd);
2968         else
2969                 ret = IRQ_NONE;
2970 
2971         /* Enable all interrupt back */
2972         oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2973 
2974         return ret;
2975 }
2976 
2977 static void oxu_watchdog(struct timer_list *t)
2978 {
2979         struct oxu_hcd  *oxu = from_timer(oxu, t, watchdog);
2980         unsigned long flags;
2981 
2982         spin_lock_irqsave(&oxu->lock, flags);
2983 
2984         /* lost IAA irqs wedge things badly; seen with a vt8235 */
2985         if (oxu->reclaim) {
2986                 u32 status = readl(&oxu->regs->status);
2987                 if (status & STS_IAA) {
2988                         oxu_vdbg(oxu, "lost IAA\n");
2989                         writel(STS_IAA, &oxu->regs->status);
2990                         oxu->reclaim_ready = 1;
2991                 }
2992         }
2993 
2994         /* stop async processing after it's idled a bit */
2995         if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2996                 start_unlink_async(oxu, oxu->async);
2997 
2998         /* oxu could run by timer, without IRQs ... */
2999         ehci_work(oxu);
3000 
3001         spin_unlock_irqrestore(&oxu->lock, flags);
3002 }
3003 
3004 /* One-time init, only for memory state.
3005  */
3006 static int oxu_hcd_init(struct usb_hcd *hcd)
3007 {
3008         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3009         u32 temp;
3010         int retval;
3011         u32 hcc_params;
3012 
3013         spin_lock_init(&oxu->lock);
3014 
3015         timer_setup(&oxu->watchdog, oxu_watchdog, 0);
3016 
3017         /*
3018          * hw default: 1K periodic list heads, one per frame.
3019          * periodic_size can shrink by USBCMD update if hcc_params allows.
3020          */
3021         oxu->periodic_size = DEFAULT_I_TDPS;
3022         retval = ehci_mem_init(oxu, GFP_KERNEL);
3023         if (retval < 0)
3024                 return retval;
3025 
3026         /* controllers may cache some of the periodic schedule ... */
3027         hcc_params = readl(&oxu->caps->hcc_params);
3028         if (HCC_ISOC_CACHE(hcc_params))         /* full frame cache */
3029                 oxu->i_thresh = 8;
3030         else                                    /* N microframes cached */
3031                 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
3032 
3033         oxu->reclaim = NULL;
3034         oxu->reclaim_ready = 0;
3035         oxu->next_uframe = -1;
3036 
3037         /*
3038          * dedicate a qh for the async ring head, since we couldn't unlink
3039          * a 'real' qh without stopping the async schedule [4.8].  use it
3040          * as the 'reclamation list head' too.
3041          * its dummy is used in hw_alt_next of many tds, to prevent the qh
3042          * from automatically advancing to the next td after short reads.
3043          */
3044         oxu->async->qh_next.qh = NULL;
3045         oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
3046         oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
3047         oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
3048         oxu->async->hw_qtd_next = EHCI_LIST_END;
3049         oxu->async->qh_state = QH_STATE_LINKED;
3050         oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
3051 
3052         /* clear interrupt enables, set irq latency */
3053         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
3054                 log2_irq_thresh = 0;
3055         temp = 1 << (16 + log2_irq_thresh);
3056         if (HCC_CANPARK(hcc_params)) {
3057                 /* HW default park == 3, on hardware that supports it (like
3058                  * NVidia and ALI silicon), maximizes throughput on the async
3059                  * schedule by avoiding QH fetches between transfers.
3060                  *
3061                  * With fast usb storage devices and NForce2, "park" seems to
3062                  * make problems:  throughput reduction (!), data errors...
3063                  */
3064                 if (park) {
3065                         park = min(park, (unsigned) 3);
3066                         temp |= CMD_PARK;
3067                         temp |= park << 8;
3068                 }
3069                 oxu_dbg(oxu, "park %d\n", park);
3070         }
3071         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
3072                 /* periodic schedule size can be smaller than default */
3073                 temp &= ~(3 << 2);
3074                 temp |= (EHCI_TUNE_FLS << 2);
3075         }
3076         oxu->command = temp;
3077 
3078         return 0;
3079 }
3080 
3081 /* Called during probe() after chip reset completes.
3082  */
3083 static int oxu_reset(struct usb_hcd *hcd)
3084 {
3085         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3086 
3087         spin_lock_init(&oxu->mem_lock);
3088         INIT_LIST_HEAD(&oxu->urb_list);
3089         oxu->urb_len = 0;
3090 
3091         if (oxu->is_otg) {
3092                 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
3093                 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
3094                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3095 
3096                 oxu->mem = hcd->regs + OXU_SPH_MEM;
3097         } else {
3098                 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
3099                 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
3100                         HC_LENGTH(readl(&oxu->caps->hc_capbase));
3101 
3102                 oxu->mem = hcd->regs + OXU_OTG_MEM;
3103         }
3104 
3105         oxu->hcs_params = readl(&oxu->caps->hcs_params);
3106         oxu->sbrn = 0x20;
3107 
3108         return oxu_hcd_init(hcd);
3109 }
3110 
3111 static int oxu_run(struct usb_hcd *hcd)
3112 {
3113         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3114         int retval;
3115         u32 temp, hcc_params;
3116 
3117         hcd->uses_new_polling = 1;
3118 
3119         /* EHCI spec section 4.1 */
3120         retval = ehci_reset(oxu);
3121         if (retval != 0) {
3122                 ehci_mem_cleanup(oxu);
3123                 return retval;
3124         }
3125         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3126         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3127 
3128         /* hcc_params controls whether oxu->regs->segment must (!!!)
3129          * be used; it constrains QH/ITD/SITD and QTD locations.
3130          * dma_pool consistent memory always uses segment zero.
3131          * streaming mappings for I/O buffers, like pci_map_single(),
3132          * can return segments above 4GB, if the device allows.
3133          *
3134          * NOTE:  the dma mask is visible through dev->dma_mask, so
3135          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
3136          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
3137          * host side drivers though.
3138          */
3139         hcc_params = readl(&oxu->caps->hcc_params);
3140         if (HCC_64BIT_ADDR(hcc_params))
3141                 writel(0, &oxu->regs->segment);
3142 
3143         oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
3144                                 CMD_ASE | CMD_RESET);
3145         oxu->command |= CMD_RUN;
3146         writel(oxu->command, &oxu->regs->command);
3147         dbg_cmd(oxu, "init", oxu->command);
3148 
3149         /*
3150          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
3151          * are explicitly handed to companion controller(s), so no TT is
3152          * involved with the root hub.  (Except where one is integrated,
3153          * and there's no companion controller unless maybe for USB OTG.)
3154          */
3155         hcd->state = HC_STATE_RUNNING;
3156         writel(FLAG_CF, &oxu->regs->configured_flag);
3157         readl(&oxu->regs->command);     /* unblock posted writes */
3158 
3159         temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
3160         oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
3161                 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
3162                 temp >> 8, temp & 0xff, DRIVER_VERSION,
3163                 ignore_oc ? ", overcurrent ignored" : "");
3164 
3165         writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
3166 
3167         return 0;
3168 }
3169 
3170 static void oxu_stop(struct usb_hcd *hcd)
3171 {
3172         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3173 
3174         /* Turn off port power on all root hub ports. */
3175         ehci_port_power(oxu, 0);
3176 
3177         /* no more interrupts ... */
3178         del_timer_sync(&oxu->watchdog);
3179 
3180         spin_lock_irq(&oxu->lock);
3181         if (HC_IS_RUNNING(hcd->state))
3182                 ehci_quiesce(oxu);
3183 
3184         ehci_reset(oxu);
3185         writel(0, &oxu->regs->intr_enable);
3186         spin_unlock_irq(&oxu->lock);
3187 
3188         /* let companion controllers work when we aren't */
3189         writel(0, &oxu->regs->configured_flag);
3190 
3191         /* root hub is shut down separately (first, when possible) */
3192         spin_lock_irq(&oxu->lock);
3193         if (oxu->async)
3194                 ehci_work(oxu);
3195         spin_unlock_irq(&oxu->lock);
3196         ehci_mem_cleanup(oxu);
3197 
3198         dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
3199 }
3200 
3201 /* Kick in for silicon on any bus (not just pci, etc).
3202  * This forcibly disables dma and IRQs, helping kexec and other cases
3203  * where the next system software may expect clean state.
3204  */
3205 static void oxu_shutdown(struct usb_hcd *hcd)
3206 {
3207         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3208 
3209         (void) ehci_halt(oxu);
3210         ehci_turn_off_all_ports(oxu);
3211 
3212         /* make BIOS/etc use companion controller during reboot */
3213         writel(0, &oxu->regs->configured_flag);
3214 
3215         /* unblock posted writes */
3216         readl(&oxu->regs->configured_flag);
3217 }
3218 
3219 /* Non-error returns are a promise to giveback() the urb later
3220  * we drop ownership so next owner (or urb unlink) can get it
3221  *
3222  * urb + dev is in hcd.self.controller.urb_list
3223  * we're queueing TDs onto software and hardware lists
3224  *
3225  * hcd-specific init for hcpriv hasn't been done yet
3226  *
3227  * NOTE:  control, bulk, and interrupt share the same code to append TDs
3228  * to a (possibly active) QH, and the same QH scanning code.
3229  */
3230 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3231                                 gfp_t mem_flags)
3232 {
3233         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3234         struct list_head qtd_list;
3235 
3236         INIT_LIST_HEAD(&qtd_list);
3237 
3238         switch (usb_pipetype(urb->pipe)) {
3239         case PIPE_CONTROL:
3240         case PIPE_BULK:
3241         default:
3242                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3243                         return -ENOMEM;
3244                 return submit_async(oxu, urb, &qtd_list, mem_flags);
3245 
3246         case PIPE_INTERRUPT:
3247                 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
3248                         return -ENOMEM;
3249                 return intr_submit(oxu, urb, &qtd_list, mem_flags);
3250 
3251         case PIPE_ISOCHRONOUS:
3252                 if (urb->dev->speed == USB_SPEED_HIGH)
3253                         return itd_submit(oxu, urb, mem_flags);
3254                 else
3255                         return sitd_submit(oxu, urb, mem_flags);
3256         }
3257 }
3258 
3259 /* This function is responsible for breaking URBs with big data size
3260  * into smaller size and processing small urbs in sequence.
3261  */
3262 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
3263                                 gfp_t mem_flags)
3264 {
3265         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3266         int num, rem;
3267         void *transfer_buffer;
3268         struct urb *murb;
3269         int i, ret;
3270 
3271         /* If not bulk pipe just enqueue the URB */
3272         if (!usb_pipebulk(urb->pipe))
3273                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3274 
3275         /* Otherwise we should verify the USB transfer buffer size! */
3276         transfer_buffer = urb->transfer_buffer;
3277 
3278         num = urb->transfer_buffer_length / 4096;
3279         rem = urb->transfer_buffer_length % 4096;
3280         if (rem != 0)
3281                 num++;
3282 
3283         /* If URB is smaller than 4096 bytes just enqueue it! */
3284         if (num == 1)
3285                 return __oxu_urb_enqueue(hcd, urb, mem_flags);
3286 
3287         /* Ok, we have more job to do! :) */
3288 
3289         for (i = 0; i < num - 1; i++) {
3290                 /* Get free micro URB poll till a free urb is received */
3291 
3292                 do {
3293                         murb = (struct urb *) oxu_murb_alloc(oxu);
3294                         if (!murb)
3295                                 schedule();
3296                 } while (!murb);
3297 
3298                 /* Coping the urb */
3299                 memcpy(murb, urb, sizeof(struct urb));
3300 
3301                 murb->transfer_buffer_length = 4096;
3302                 murb->transfer_buffer = transfer_buffer + i * 4096;
3303 
3304                 /* Null pointer for the encodes that this is a micro urb */
3305                 murb->complete = NULL;
3306 
3307                 ((struct oxu_murb *) murb)->main = urb;
3308                 ((struct oxu_murb *) murb)->last = 0;
3309 
3310                 /* This loop is to guarantee urb to be processed when there's
3311                  * not enough resources at a particular time by retrying.
3312                  */
3313                 do {
3314                         ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
3315                         if (ret)
3316                                 schedule();
3317                 } while (ret);
3318         }
3319 
3320         /* Last urb requires special handling  */
3321 
3322         /* Get free micro URB poll till a free urb is received */
3323         do {
3324                 murb = (struct urb *) oxu_murb_alloc(oxu);
3325                 if (!murb)
3326                         schedule();
3327         } while (!murb);
3328 
3329         /* Coping the urb */
3330         memcpy(murb, urb, sizeof(struct urb));
3331 
3332         murb->transfer_buffer_length = rem > 0 ? rem : 4096;
3333         murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
3334 
3335         /* Null pointer for the encodes that this is a micro urb */
3336         murb->complete = NULL;
3337 
3338         ((struct oxu_murb *) murb)->main = urb;
3339         ((struct oxu_murb *) murb)->last = 1;
3340 
3341         do {
3342                 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
3343                 if (ret)
3344                         schedule();
3345         } while (ret);
3346 
3347         return ret;
3348 }
3349 
3350 /* Remove from hardware lists.
3351  * Completions normally happen asynchronously
3352  */
3353 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
3354 {
3355         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3356         struct ehci_qh *qh;
3357         unsigned long flags;
3358 
3359         spin_lock_irqsave(&oxu->lock, flags);
3360         switch (usb_pipetype(urb->pipe)) {
3361         case PIPE_CONTROL:
3362         case PIPE_BULK:
3363         default:
3364                 qh = (struct ehci_qh *) urb->hcpriv;
3365                 if (!qh)
3366                         break;
3367                 unlink_async(oxu, qh);
3368                 break;
3369 
3370         case PIPE_INTERRUPT:
3371                 qh = (struct ehci_qh *) urb->hcpriv;
3372                 if (!qh)
3373                         break;
3374                 switch (qh->qh_state) {
3375                 case QH_STATE_LINKED:
3376                         intr_deschedule(oxu, qh);
3377                         /* FALL THROUGH */
3378                 case QH_STATE_IDLE:
3379                         qh_completions(oxu, qh);
3380                         break;
3381                 default:
3382                         oxu_dbg(oxu, "bogus qh %p state %d\n",
3383                                         qh, qh->qh_state);
3384                         goto done;
3385                 }
3386 
3387                 /* reschedule QH iff another request is queued */
3388                 if (!list_empty(&qh->qtd_list)
3389                                 && HC_IS_RUNNING(hcd->state)) {
3390                         int status;
3391 
3392                         status = qh_schedule(oxu, qh);
3393                         spin_unlock_irqrestore(&oxu->lock, flags);
3394 
3395                         if (status != 0) {
3396                                 /* shouldn't happen often, but ...
3397                                  * FIXME kill those tds' urbs
3398                                  */
3399                                 dev_err(hcd->self.controller,
3400                                         "can't reschedule qh %p, err %d\n", qh,
3401                                         status);
3402                         }
3403                         return status;
3404                 }
3405                 break;
3406         }
3407 done:
3408         spin_unlock_irqrestore(&oxu->lock, flags);
3409         return 0;
3410 }
3411 
3412 /* Bulk qh holds the data toggle */
3413 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3414                                         struct usb_host_endpoint *ep)
3415 {
3416         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3417         unsigned long           flags;
3418         struct ehci_qh          *qh, *tmp;
3419 
3420         /* ASSERT:  any requests/urbs are being unlinked */
3421         /* ASSERT:  nobody can be submitting urbs for this any more */
3422 
3423 rescan:
3424         spin_lock_irqsave(&oxu->lock, flags);
3425         qh = ep->hcpriv;
3426         if (!qh)
3427                 goto done;
3428 
3429         /* endpoints can be iso streams.  for now, we don't
3430          * accelerate iso completions ... so spin a while.
3431          */
3432         if (qh->hw_info1 == 0) {
3433                 oxu_vdbg(oxu, "iso delay\n");
3434                 goto idle_timeout;
3435         }
3436 
3437         if (!HC_IS_RUNNING(hcd->state))
3438                 qh->qh_state = QH_STATE_IDLE;
3439         switch (qh->qh_state) {
3440         case QH_STATE_LINKED:
3441                 for (tmp = oxu->async->qh_next.qh;
3442                                 tmp && tmp != qh;
3443                                 tmp = tmp->qh_next.qh)
3444                         continue;
3445                 /* periodic qh self-unlinks on empty */
3446                 if (!tmp)
3447                         goto nogood;
3448                 unlink_async(oxu, qh);
3449                 /* FALL THROUGH */
3450         case QH_STATE_UNLINK:           /* wait for hw to finish? */
3451 idle_timeout:
3452                 spin_unlock_irqrestore(&oxu->lock, flags);
3453                 schedule_timeout_uninterruptible(1);
3454                 goto rescan;
3455         case QH_STATE_IDLE:             /* fully unlinked */
3456                 if (list_empty(&qh->qtd_list)) {
3457                         qh_put(qh);
3458                         break;
3459                 }
3460                 /* fall through */
3461         default:
3462 nogood:
3463                 /* caller was supposed to have unlinked any requests;
3464                  * that's not our job.  just leak this memory.
3465                  */
3466                 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3467                         qh, ep->desc.bEndpointAddress, qh->qh_state,
3468                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
3469                 break;
3470         }
3471         ep->hcpriv = NULL;
3472 done:
3473         spin_unlock_irqrestore(&oxu->lock, flags);
3474 }
3475 
3476 static int oxu_get_frame(struct usb_hcd *hcd)
3477 {
3478         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3479 
3480         return (readl(&oxu->regs->frame_index) >> 3) %
3481                 oxu->periodic_size;
3482 }
3483 
3484 /* Build "status change" packet (one or two bytes) from HC registers */
3485 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3486 {
3487         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3488         u32 temp, mask, status = 0;
3489         int ports, i, retval = 1;
3490         unsigned long flags;
3491 
3492         /* if !PM, root hub timers won't get shut down ... */
3493         if (!HC_IS_RUNNING(hcd->state))
3494                 return 0;
3495 
3496         /* init status to no-changes */
3497         buf[0] = 0;
3498         ports = HCS_N_PORTS(oxu->hcs_params);
3499         if (ports > 7) {
3500                 buf[1] = 0;
3501                 retval++;
3502         }
3503 
3504         /* Some boards (mostly VIA?) report bogus overcurrent indications,
3505          * causing massive log spam unless we completely ignore them.  It
3506          * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3507          * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3508          * PORT_POWER; that's surprising, but maybe within-spec.
3509          */
3510         if (!ignore_oc)
3511                 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3512         else
3513                 mask = PORT_CSC | PORT_PEC;
3514 
3515         /* no hub change reports (bit 0) for now (power, ...) */
3516 
3517         /* port N changes (bit N)? */
3518         spin_lock_irqsave(&oxu->lock, flags);
3519         for (i = 0; i < ports; i++) {
3520                 temp = readl(&oxu->regs->port_status[i]);
3521 
3522                 /*
3523                  * Return status information even for ports with OWNER set.
3524                  * Otherwise hub_wq wouldn't see the disconnect event when a
3525                  * high-speed device is switched over to the companion
3526                  * controller by the user.
3527                  */
3528 
3529                 if (!(temp & PORT_CONNECT))
3530                         oxu->reset_done[i] = 0;
3531                 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3532                                 time_after_eq(jiffies, oxu->reset_done[i]))) {
3533                         if (i < 7)
3534                                 buf[0] |= 1 << (i + 1);
3535                         else
3536                                 buf[1] |= 1 << (i - 7);
3537                         status = STS_PCD;
3538                 }
3539         }
3540         /* FIXME autosuspend idle root hubs */
3541         spin_unlock_irqrestore(&oxu->lock, flags);
3542         return status ? retval : 0;
3543 }
3544 
3545 /* Returns the speed of a device attached to a port on the root hub. */
3546 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3547                                                 unsigned int portsc)
3548 {
3549         switch ((portsc >> 26) & 3) {
3550         case 0:
3551                 return 0;
3552         case 1:
3553                 return USB_PORT_STAT_LOW_SPEED;
3554         case 2:
3555         default:
3556                 return USB_PORT_STAT_HIGH_SPEED;
3557         }
3558 }
3559 
3560 #define PORT_WAKE_BITS  (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3561 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3562                                 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3563 {
3564         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3565         int ports = HCS_N_PORTS(oxu->hcs_params);
3566         u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3567         u32 temp, status;
3568         unsigned long   flags;
3569         int retval = 0;
3570         unsigned selector;
3571 
3572         /*
3573          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3574          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3575          * (track current state ourselves) ... blink for diagnostics,
3576          * power, "this is the one", etc.  EHCI spec supports this.
3577          */
3578 
3579         spin_lock_irqsave(&oxu->lock, flags);
3580         switch (typeReq) {
3581         case ClearHubFeature:
3582                 switch (wValue) {
3583                 case C_HUB_LOCAL_POWER:
3584                 case C_HUB_OVER_CURRENT:
3585                         /* no hub-wide feature/status flags */
3586                         break;
3587                 default:
3588                         goto error;
3589                 }
3590                 break;
3591         case ClearPortFeature:
3592                 if (!wIndex || wIndex > ports)
3593                         goto error;
3594                 wIndex--;
3595                 temp = readl(status_reg);
3596 
3597                 /*
3598                  * Even if OWNER is set, so the port is owned by the
3599                  * companion controller, hub_wq needs to be able to clear
3600                  * the port-change status bits (especially
3601                  * USB_PORT_STAT_C_CONNECTION).
3602                  */
3603 
3604                 switch (wValue) {
3605                 case USB_PORT_FEAT_ENABLE:
3606                         writel(temp & ~PORT_PE, status_reg);
3607                         break;
3608                 case USB_PORT_FEAT_C_ENABLE:
3609                         writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3610                         break;
3611                 case USB_PORT_FEAT_SUSPEND:
3612                         if (temp & PORT_RESET)
3613                                 goto error;
3614                         if (temp & PORT_SUSPEND) {
3615                                 if ((temp & PORT_PE) == 0)
3616                                         goto error;
3617                                 /* resume signaling for 20 msec */
3618                                 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3619                                 writel(temp | PORT_RESUME, status_reg);
3620                                 oxu->reset_done[wIndex] = jiffies
3621                                                 + msecs_to_jiffies(20);
3622                         }
3623                         break;
3624                 case USB_PORT_FEAT_C_SUSPEND:
3625                         /* we auto-clear this feature */
3626                         break;
3627                 case USB_PORT_FEAT_POWER:
3628                         if (HCS_PPC(oxu->hcs_params))
3629                                 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3630                                           status_reg);
3631                         break;
3632                 case USB_PORT_FEAT_C_CONNECTION:
3633                         writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3634                         break;
3635                 case USB_PORT_FEAT_C_OVER_CURRENT:
3636                         writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3637                         break;
3638                 case USB_PORT_FEAT_C_RESET:
3639                         /* GetPortStatus clears reset */
3640                         break;
3641                 default:
3642                         goto error;
3643                 }
3644                 readl(&oxu->regs->command);     /* unblock posted write */
3645                 break;
3646         case GetHubDescriptor:
3647                 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3648                         buf);
3649                 break;
3650         case GetHubStatus:
3651                 /* no hub-wide feature/status flags */
3652                 memset(buf, 0, 4);
3653                 break;
3654         case GetPortStatus:
3655                 if (!wIndex || wIndex > ports)
3656                         goto error;
3657                 wIndex--;
3658                 status = 0;
3659                 temp = readl(status_reg);
3660 
3661                 /* wPortChange bits */
3662                 if (temp & PORT_CSC)
3663                         status |= USB_PORT_STAT_C_CONNECTION << 16;
3664                 if (temp & PORT_PEC)
3665                         status |= USB_PORT_STAT_C_ENABLE << 16;
3666                 if ((temp & PORT_OCC) && !ignore_oc)
3667                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3668 
3669                 /* whoever resumes must GetPortStatus to complete it!! */
3670                 if (temp & PORT_RESUME) {
3671 
3672                         /* Remote Wakeup received? */
3673                         if (!oxu->reset_done[wIndex]) {
3674                                 /* resume signaling for 20 msec */
3675                                 oxu->reset_done[wIndex] = jiffies
3676                                                 + msecs_to_jiffies(20);
3677                                 /* check the port again */
3678                                 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3679                                                 oxu->reset_done[wIndex]);
3680                         }
3681 
3682                         /* resume completed? */
3683                         else if (time_after_eq(jiffies,
3684                                         oxu->reset_done[wIndex])) {
3685                                 status |= USB_PORT_STAT_C_SUSPEND << 16;
3686                                 oxu->reset_done[wIndex] = 0;
3687 
3688                                 /* stop resume signaling */
3689                                 temp = readl(status_reg);
3690                                 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3691                                         status_reg);
3692                                 retval = handshake(oxu, status_reg,
3693                                            PORT_RESUME, 0, 2000 /* 2msec */);
3694                                 if (retval != 0) {
3695                                         oxu_err(oxu,
3696                                                 "port %d resume error %d\n",
3697                                                 wIndex + 1, retval);
3698                                         goto error;
3699                                 }
3700                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3701                         }
3702                 }
3703 
3704                 /* whoever resets must GetPortStatus to complete it!! */
3705                 if ((temp & PORT_RESET)
3706                                 && time_after_eq(jiffies,
3707                                         oxu->reset_done[wIndex])) {
3708                         status |= USB_PORT_STAT_C_RESET << 16;
3709                         oxu->reset_done[wIndex] = 0;
3710 
3711                         /* force reset to complete */
3712                         writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3713                                         status_reg);
3714                         /* REVISIT:  some hardware needs 550+ usec to clear
3715                          * this bit; seems too long to spin routinely...
3716                          */
3717                         retval = handshake(oxu, status_reg,
3718                                         PORT_RESET, 0, 750);
3719                         if (retval != 0) {
3720                                 oxu_err(oxu, "port %d reset error %d\n",
3721                                         wIndex + 1, retval);
3722                                 goto error;
3723                         }
3724 
3725                         /* see what we found out */
3726                         temp = check_reset_complete(oxu, wIndex, status_reg,
3727                                         readl(status_reg));
3728                 }
3729 
3730                 /* transfer dedicated ports to the companion hc */
3731                 if ((temp & PORT_CONNECT) &&
3732                                 test_bit(wIndex, &oxu->companion_ports)) {
3733                         temp &= ~PORT_RWC_BITS;
3734                         temp |= PORT_OWNER;
3735                         writel(temp, status_reg);
3736                         oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3737                         temp = readl(status_reg);
3738                 }
3739 
3740                 /*
3741                  * Even if OWNER is set, there's no harm letting hub_wq
3742                  * see the wPortStatus values (they should all be 0 except
3743                  * for PORT_POWER anyway).
3744                  */
3745 
3746                 if (temp & PORT_CONNECT) {
3747                         status |= USB_PORT_STAT_CONNECTION;
3748                         /* status may be from integrated TT */
3749                         status |= oxu_port_speed(oxu, temp);
3750                 }
3751                 if (temp & PORT_PE)
3752                         status |= USB_PORT_STAT_ENABLE;
3753                 if (temp & (PORT_SUSPEND|PORT_RESUME))
3754                         status |= USB_PORT_STAT_SUSPEND;
3755                 if (temp & PORT_OC)
3756                         status |= USB_PORT_STAT_OVERCURRENT;
3757                 if (temp & PORT_RESET)
3758                         status |= USB_PORT_STAT_RESET;
3759                 if (temp & PORT_POWER)
3760                         status |= USB_PORT_STAT_POWER;
3761 
3762 #ifndef OXU_VERBOSE_DEBUG
3763         if (status & ~0xffff)   /* only if wPortChange is interesting */
3764 #endif
3765                 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3766                 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3767                 break;
3768         case SetHubFeature:
3769                 switch (wValue) {
3770                 case C_HUB_LOCAL_POWER:
3771                 case C_HUB_OVER_CURRENT:
3772                         /* no hub-wide feature/status flags */
3773                         break;
3774                 default:
3775                         goto error;
3776                 }
3777                 break;
3778         case SetPortFeature:
3779                 selector = wIndex >> 8;
3780                 wIndex &= 0xff;
3781                 if (!wIndex || wIndex > ports)
3782                         goto error;
3783                 wIndex--;
3784                 temp = readl(status_reg);
3785                 if (temp & PORT_OWNER)
3786                         break;
3787 
3788                 temp &= ~PORT_RWC_BITS;
3789                 switch (wValue) {
3790                 case USB_PORT_FEAT_SUSPEND:
3791                         if ((temp & PORT_PE) == 0
3792                                         || (temp & PORT_RESET) != 0)
3793                                 goto error;
3794                         if (device_may_wakeup(&hcd->self.root_hub->dev))
3795                                 temp |= PORT_WAKE_BITS;
3796                         writel(temp | PORT_SUSPEND, status_reg);
3797                         break;
3798                 case USB_PORT_FEAT_POWER:
3799                         if (HCS_PPC(oxu->hcs_params))
3800                                 writel(temp | PORT_POWER, status_reg);
3801                         break;
3802                 case USB_PORT_FEAT_RESET:
3803                         if (temp & PORT_RESUME)
3804                                 goto error;
3805                         /* line status bits may report this as low speed,
3806                          * which can be fine if this root hub has a
3807                          * transaction translator built in.
3808                          */
3809                         oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3810                         temp |= PORT_RESET;
3811                         temp &= ~PORT_PE;
3812 
3813                         /*
3814                          * caller must wait, then call GetPortStatus
3815                          * usb 2.0 spec says 50 ms resets on root
3816                          */
3817                         oxu->reset_done[wIndex] = jiffies
3818                                         + msecs_to_jiffies(50);
3819                         writel(temp, status_reg);
3820                         break;
3821 
3822                 /* For downstream facing ports (these):  one hub port is put
3823                  * into test mode according to USB2 11.24.2.13, then the hub
3824                  * must be reset (which for root hub now means rmmod+modprobe,
3825                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
3826                  * about the EHCI-specific stuff.
3827                  */
3828                 case USB_PORT_FEAT_TEST:
3829                         if (!selector || selector > 5)
3830                                 goto error;
3831                         ehci_quiesce(oxu);
3832                         ehci_halt(oxu);
3833                         temp |= selector << 16;
3834                         writel(temp, status_reg);
3835                         break;
3836 
3837                 default:
3838                         goto error;
3839                 }
3840                 readl(&oxu->regs->command);     /* unblock posted writes */
3841                 break;
3842 
3843         default:
3844 error:
3845                 /* "stall" on error */
3846                 retval = -EPIPE;
3847         }
3848         spin_unlock_irqrestore(&oxu->lock, flags);
3849         return retval;
3850 }
3851 
3852 #ifdef CONFIG_PM
3853 
3854 static int oxu_bus_suspend(struct usb_hcd *hcd)
3855 {
3856         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3857         int port;
3858         int mask;
3859 
3860         oxu_dbg(oxu, "suspend root hub\n");
3861 
3862         if (time_before(jiffies, oxu->next_statechange))
3863                 msleep(5);
3864 
3865         port = HCS_N_PORTS(oxu->hcs_params);
3866         spin_lock_irq(&oxu->lock);
3867 
3868         /* stop schedules, clean any completed work */
3869         if (HC_IS_RUNNING(hcd->state)) {
3870                 ehci_quiesce(oxu);
3871                 hcd->state = HC_STATE_QUIESCING;
3872         }
3873         oxu->command = readl(&oxu->regs->command);
3874         if (oxu->reclaim)
3875                 oxu->reclaim_ready = 1;
3876         ehci_work(oxu);
3877 
3878         /* Unlike other USB host controller types, EHCI doesn't have
3879          * any notion of "global" or bus-wide suspend.  The driver has
3880          * to manually suspend all the active unsuspended ports, and
3881          * then manually resume them in the bus_resume() routine.
3882          */
3883         oxu->bus_suspended = 0;
3884         while (port--) {
3885                 u32 __iomem *reg = &oxu->regs->port_status[port];
3886                 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3887                 u32 t2 = t1;
3888 
3889                 /* keep track of which ports we suspend */
3890                 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3891                                 !(t1 & PORT_SUSPEND)) {
3892                         t2 |= PORT_SUSPEND;
3893                         set_bit(port, &oxu->bus_suspended);
3894                 }
3895 
3896                 /* enable remote wakeup on all ports */
3897                 if (device_may_wakeup(&hcd->self.root_hub->dev))
3898                         t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3899                 else
3900                         t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3901 
3902                 if (t1 != t2) {
3903                         oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3904                                 port + 1, t1, t2);
3905                         writel(t2, reg);
3906                 }
3907         }
3908 
3909         /* turn off now-idle HC */
3910         del_timer_sync(&oxu->watchdog);
3911         ehci_halt(oxu);
3912         hcd->state = HC_STATE_SUSPENDED;
3913 
3914         /* allow remote wakeup */
3915         mask = INTR_MASK;
3916         if (!device_may_wakeup(&hcd->self.root_hub->dev))
3917                 mask &= ~STS_PCD;
3918         writel(mask, &oxu->regs->intr_enable);
3919         readl(&oxu->regs->intr_enable);
3920 
3921         oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3922         spin_unlock_irq(&oxu->lock);
3923         return 0;
3924 }
3925 
3926 /* Caller has locked the root hub, and should reset/reinit on error */
3927 static int oxu_bus_resume(struct usb_hcd *hcd)
3928 {
3929         struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3930         u32 temp;
3931         int i;
3932 
3933         if (time_before(jiffies, oxu->next_statechange))
3934                 msleep(5);
3935         spin_lock_irq(&oxu->lock);
3936 
3937         /* Ideally and we've got a real resume here, and no port's power
3938          * was lost.  (For PCI, that means Vaux was maintained.)  But we
3939          * could instead be restoring a swsusp snapshot -- so that BIOS was
3940          * the last user of the controller, not reset/pm hardware keeping
3941          * state we gave to it.
3942          */
3943         temp = readl(&oxu->regs->intr_enable);
3944         oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3945 
3946         /* at least some APM implementations will try to deliver
3947          * IRQs right away, so delay them until we're ready.
3948          */
3949         writel(0, &oxu->regs->intr_enable);
3950 
3951         /* re-init operational registers */
3952         writel(0, &oxu->regs->segment);
3953         writel(oxu->periodic_dma, &oxu->regs->frame_list);
3954         writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3955 
3956         /* restore CMD_RUN, framelist size, and irq threshold */
3957         writel(oxu->command, &oxu->regs->command);
3958 
3959         /* Some controller/firmware combinations need a delay during which
3960          * they set up the port statuses.  See Bugzilla #8190. */
3961         mdelay(8);
3962 
3963         /* manually resume the ports we suspended during bus_suspend() */
3964         i = HCS_N_PORTS(oxu->hcs_params);
3965         while (i--) {
3966                 temp = readl(&oxu->regs->port_status[i]);
3967                 temp &= ~(PORT_RWC_BITS
3968                         | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3969                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3970                         oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3971                         temp |= PORT_RESUME;
3972                 }
3973                 writel(temp, &oxu->regs->port_status[i]);
3974         }
3975         i = HCS_N_PORTS(oxu->hcs_params);
3976         mdelay(20);
3977         while (i--) {
3978                 temp = readl(&oxu->regs->port_status[i]);
3979                 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3980                         temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3981                         writel(temp, &oxu->regs->port_status[i]);
3982                         oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3983                 }
3984         }
3985         (void) readl(&oxu->regs->command);
3986 
3987         /* maybe re-activate the schedule(s) */
3988         temp = 0;
3989         if (oxu->async->qh_next.qh)
3990                 temp |= CMD_ASE;
3991         if (oxu->periodic_sched)
3992                 temp |= CMD_PSE;
3993         if (temp) {
3994                 oxu->command |= temp;
3995                 writel(oxu->command, &oxu->regs->command);
3996         }
3997 
3998         oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3999         hcd->state = HC_STATE_RUNNING;
4000 
4001         /* Now we can safely re-enable irqs */
4002         writel(INTR_MASK, &oxu->regs->intr_enable);
4003 
4004         spin_unlock_irq(&oxu->lock);
4005         return 0;
4006 }
4007 
4008 #else
4009 
4010 static int oxu_bus_suspend(struct usb_hcd *hcd)
4011 {
4012         return 0;
4013 }
4014 
4015 static int oxu_bus_resume(struct usb_hcd *hcd)
4016 {
4017         return 0;
4018 }
4019 
4020 #endif  /* CONFIG_PM */
4021 
4022 static const struct hc_driver oxu_hc_driver = {
4023         .description =          "oxu210hp_hcd",
4024         .product_desc =         "oxu210hp HCD",
4025         .hcd_priv_size =        sizeof(struct oxu_hcd),
4026 
4027         /*
4028          * Generic hardware linkage
4029          */
4030         .irq =                  oxu_irq,
4031         .flags =                HCD_MEMORY | HCD_USB2,
4032 
4033         /*
4034          * Basic lifecycle operations
4035          */
4036         .reset =                oxu_reset,
4037         .start =                oxu_run,
4038         .stop =                 oxu_stop,
4039         .shutdown =             oxu_shutdown,
4040 
4041         /*
4042          * Managing i/o requests and associated device resources
4043          */
4044         .urb_enqueue =          oxu_urb_enqueue,
4045         .urb_dequeue =          oxu_urb_dequeue,
4046         .endpoint_disable =     oxu_endpoint_disable,
4047 
4048         /*
4049          * Scheduling support
4050          */
4051         .get_frame_number =     oxu_get_frame,
4052 
4053         /*
4054          * Root hub support
4055          */
4056         .hub_status_data =      oxu_hub_status_data,
4057         .hub_control =          oxu_hub_control,
4058         .bus_suspend =          oxu_bus_suspend,
4059         .bus_resume =           oxu_bus_resume,
4060 };
4061 
4062 /*
4063  * Module stuff
4064  */
4065 
4066 static void oxu_configuration(struct platform_device *pdev, void *base)
4067 {
4068         u32 tmp;
4069 
4070         /* Initialize top level registers.
4071          * First write ever
4072          */
4073         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4074         oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
4075         oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
4076 
4077         tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
4078         oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
4079 
4080         oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
4081                                         OXU_COMPARATOR | OXU_ASO_OP);
4082 
4083         tmp = oxu_readl(base, OXU_CLKCTRL_SET);
4084         oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
4085 
4086         /* Clear all top interrupt enable */
4087         oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
4088 
4089         /* Clear all top interrupt status */
4090         oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
4091 
4092         /* Enable all needed top interrupt except OTG SPH core */
4093         oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
4094 }
4095 
4096 static int oxu_verify_id(struct platform_device *pdev, void *base)
4097 {
4098         u32 id;
4099         static const char * const bo[] = {
4100                 "reserved",
4101                 "128-pin LQFP",
4102                 "84-pin TFBGA",
4103                 "reserved",
4104         };
4105 
4106         /* Read controller signature register to find a match */
4107         id = oxu_readl(base, OXU_DEVICEID);
4108         dev_info(&pdev->dev, "device ID %x\n", id);
4109         if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
4110                 return -1;
4111 
4112         dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
4113                 id >> OXU_REV_SHIFT,
4114                 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
4115                 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
4116                 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
4117 
4118         return 0;
4119 }
4120 
4121 static const struct hc_driver oxu_hc_driver;
4122 static struct usb_hcd *oxu_create(struct platform_device *pdev,
4123                                 unsigned long memstart, unsigned long memlen,
4124                                 void *base, int irq, int otg)
4125 {
4126         struct device *dev = &pdev->dev;
4127 
4128         struct usb_hcd *hcd;
4129         struct oxu_hcd *oxu;
4130         int ret;
4131 
4132         /* Set endian mode and host mode */
4133         oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
4134                                 OXU_USBMODE,
4135                                 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
4136 
4137         hcd = usb_create_hcd(&oxu_hc_driver, dev,
4138                                 otg ? "oxu210hp_otg" : "oxu210hp_sph");
4139         if (!hcd)
4140                 return ERR_PTR(-ENOMEM);
4141 
4142         hcd->rsrc_start = memstart;
4143         hcd->rsrc_len = memlen;
4144         hcd->regs = base;
4145         hcd->irq = irq;
4146         hcd->state = HC_STATE_HALT;
4147 
4148         oxu = hcd_to_oxu(hcd);
4149         oxu->is_otg = otg;
4150 
4151         ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
4152         if (ret < 0)
4153                 return ERR_PTR(ret);
4154 
4155         device_wakeup_enable(hcd->self.controller);
4156         return hcd;
4157 }
4158 
4159 static int oxu_init(struct platform_device *pdev,
4160                                 unsigned long memstart, unsigned long memlen,
4161                                 void *base, int irq)
4162 {
4163         struct oxu_info *info = platform_get_drvdata(pdev);
4164         struct usb_hcd *hcd;
4165         int ret;
4166 
4167         /* First time configuration at start up */
4168         oxu_configuration(pdev, base);
4169 
4170         ret = oxu_verify_id(pdev, base);
4171         if (ret) {
4172                 dev_err(&pdev->dev, "no devices found!\n");
4173                 return -ENODEV;
4174         }
4175 
4176         /* Create the OTG controller */
4177         hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
4178         if (IS_ERR(hcd)) {
4179                 dev_err(&pdev->dev, "cannot create OTG controller!\n");
4180                 ret = PTR_ERR(hcd);
4181                 goto error_create_otg;
4182         }
4183         info->hcd[0] = hcd;
4184 
4185         /* Create the SPH host controller */
4186         hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
4187         if (IS_ERR(hcd)) {
4188                 dev_err(&pdev->dev, "cannot create SPH controller!\n");
4189                 ret = PTR_ERR(hcd);
4190                 goto error_create_sph;
4191         }
4192         info->hcd[1] = hcd;
4193 
4194         oxu_writel(base, OXU_CHIPIRQEN_SET,
4195                 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
4196 
4197         return 0;
4198 
4199 error_create_sph:
4200         usb_remove_hcd(info->hcd[0]);
4201         usb_put_hcd(info->hcd[0]);
4202 
4203 error_create_otg:
4204         return ret;
4205 }
4206 
4207 static int oxu_drv_probe(struct platform_device *pdev)
4208 {
4209         struct resource *res;
4210         void *base;
4211         unsigned long memstart, memlen;
4212         int irq, ret;
4213         struct oxu_info *info;
4214 
4215         if (usb_disabled())
4216                 return -ENODEV;
4217 
4218         /*
4219          * Get the platform resources
4220          */
4221         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
4222         if (!res) {
4223                 dev_err(&pdev->dev,
4224                         "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
4225                 return -ENODEV;
4226         }
4227         irq = res->start;
4228         dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
4229 
4230         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4231         base = devm_ioremap_resource(&pdev->dev, res);
4232         if (IS_ERR(base)) {
4233                 ret = PTR_ERR(base);
4234                 goto error;
4235         }
4236         memstart = res->start;
4237         memlen = resource_size(res);
4238 
4239         ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
4240         if (ret) {
4241                 dev_err(&pdev->dev, "error setting irq type\n");
4242                 ret = -EFAULT;
4243                 goto error;
4244         }
4245 
4246         /* Allocate a driver data struct to hold useful info for both
4247          * SPH & OTG devices
4248          */
4249         info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
4250         if (!info) {
4251                 ret = -EFAULT;
4252                 goto error;
4253         }
4254         platform_set_drvdata(pdev, info);
4255 
4256         ret = oxu_init(pdev, memstart, memlen, base, irq);
4257         if (ret < 0) {
4258                 dev_dbg(&pdev->dev, "cannot init USB devices\n");
4259                 goto error;
4260         }
4261 
4262         dev_info(&pdev->dev, "devices enabled and running\n");
4263         platform_set_drvdata(pdev, info);
4264 
4265         return 0;
4266 
4267 error:
4268         dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
4269         return ret;
4270 }
4271 
4272 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
4273 {
4274         usb_remove_hcd(hcd);
4275         usb_put_hcd(hcd);
4276 }
4277 
4278 static int oxu_drv_remove(struct platform_device *pdev)
4279 {
4280         struct oxu_info *info = platform_get_drvdata(pdev);
4281 
4282         oxu_remove(pdev, info->hcd[0]);
4283         oxu_remove(pdev, info->hcd[1]);
4284 
4285         return 0;
4286 }
4287 
4288 static void oxu_drv_shutdown(struct platform_device *pdev)
4289 {
4290         oxu_drv_remove(pdev);
4291 }
4292 
4293 #if 0
4294 /* FIXME: TODO */
4295 static int oxu_drv_suspend(struct device *dev)
4296 {
4297         struct platform_device *pdev = to_platform_device(dev);
4298         struct usb_hcd *hcd = dev_get_drvdata(dev);
4299 
4300         return 0;
4301 }
4302 
4303 static int oxu_drv_resume(struct device *dev)
4304 {
4305         struct platform_device *pdev = to_platform_device(dev);
4306         struct usb_hcd *hcd = dev_get_drvdata(dev);
4307 
4308         return 0;
4309 }
4310 #else
4311 #define oxu_drv_suspend NULL
4312 #define oxu_drv_resume  NULL
4313 #endif
4314 
4315 static struct platform_driver oxu_driver = {
4316         .probe          = oxu_drv_probe,
4317         .remove         = oxu_drv_remove,
4318         .shutdown       = oxu_drv_shutdown,
4319         .suspend        = oxu_drv_suspend,
4320         .resume         = oxu_drv_resume,
4321         .driver = {
4322                 .name = "oxu210hp-hcd",
4323                 .bus = &platform_bus_type
4324         }
4325 };
4326 
4327 module_platform_driver(oxu_driver);
4328 
4329 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
4330 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
4331 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */