root/drivers/usb/host/fotg210-hcd.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. dbg_hcs_params
  2. dbg_hcc_params
  3. dbg_qtd
  4. dbg_qh
  5. dbg_itd
  6. dbg_status_buf
  7. dbg_intr_buf
  8. dbg_command_buf
  9. dbg_port_buf
  10. speed_char
  11. token_mark
  12. qh_lines
  13. fill_async_buffer
  14. output_buf_tds_dir
  15. fill_periodic_buffer
  16. rh_state_string
  17. fill_registers_buffer
  18. alloc_buffer
  19. fill_buffer
  20. debug_output
  21. debug_close
  22. debug_async_open
  23. debug_periodic_open
  24. debug_registers_open
  25. create_debug_files
  26. remove_debug_files
  27. handshake
  28. fotg210_halt
  29. fotg210_reset
  30. fotg210_quiesce
  31. fotg210_set_command_bit
  32. fotg210_clear_command_bit
  33. fotg210_enable_event
  34. fotg210_poll_ASS
  35. fotg210_disable_ASE
  36. fotg210_poll_PSS
  37. fotg210_disable_PSE
  38. fotg210_handle_controller_death
  39. fotg210_handle_intr_unlinks
  40. start_free_itds
  41. end_free_itds
  42. fotg210_iaa_watchdog
  43. turn_on_io_watchdog
  44. fotg210_hrtimer_func
  45. check_reset_complete
  46. fotg210_hub_status_data
  47. fotg210_hub_descriptor
  48. fotg210_hub_control
  49. fotg210_relinquish_port
  50. fotg210_port_handed_over
  51. fotg210_qtd_init
  52. fotg210_qtd_alloc
  53. fotg210_qtd_free
  54. qh_destroy
  55. fotg210_qh_alloc
  56. fotg210_mem_cleanup
  57. fotg210_mem_init
  58. qtd_fill
  59. qh_update
  60. qh_refresh
  61. fotg210_clear_tt_buffer_complete
  62. fotg210_clear_tt_buffer
  63. qtd_copy_status
  64. fotg210_urb_done
  65. qh_completions
  66. qtd_list_free
  67. qh_urb_transaction
  68. qh_make
  69. enable_async
  70. disable_async
  71. qh_link_async
  72. qh_append_tds
  73. submit_async
  74. single_unlink_async
  75. start_iaa_cycle
  76. end_unlink_async
  77. unlink_empty_async
  78. start_unlink_async
  79. scan_async
  80. periodic_next_shadow
  81. shadow_next_periodic
  82. periodic_unlink
  83. periodic_usecs
  84. same_tt
  85. tt_no_collision
  86. enable_periodic
  87. disable_periodic
  88. qh_link_periodic
  89. qh_unlink_periodic
  90. start_unlink_intr
  91. end_unlink_intr
  92. check_period
  93. check_intr_schedule
  94. qh_schedule
  95. intr_submit
  96. scan_intr
  97. iso_stream_alloc
  98. iso_stream_init
  99. iso_stream_find
  100. iso_sched_alloc
  101. itd_sched_init
  102. iso_sched_free
  103. itd_urb_transaction
  104. itd_slot_ok
  105. iso_stream_schedule
  106. itd_init
  107. itd_patch
  108. itd_link
  109. itd_link_urb
  110. itd_complete
  111. itd_submit
  112. scan_frame_queue
  113. scan_isoc
  114. uframe_periodic_max_show
  115. uframe_periodic_max_store
  116. create_sysfs_files
  117. remove_sysfs_files
  118. fotg210_turn_off_all_ports
  119. fotg210_silence_controller
  120. fotg210_shutdown
  121. fotg210_work
  122. fotg210_stop
  123. hcd_fotg210_init
  124. fotg210_run
  125. fotg210_setup
  126. fotg210_irq
  127. fotg210_urb_enqueue
  128. fotg210_urb_dequeue
  129. fotg210_endpoint_disable
  130. fotg210_endpoint_reset
  131. fotg210_get_frame
  132. fotg210_init
  133. fotg210_hcd_probe
  134. fotg210_hcd_remove
  135. fotg210_hcd_init
  136. fotg210_hcd_cleanup

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /* Faraday FOTG210 EHCI-like driver
   3  *
   4  * Copyright (c) 2013 Faraday Technology Corporation
   5  *
   6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
   8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
   9  *
  10  * Most of code borrowed from the Linux-3.7 EHCI driver
  11  */
  12 #include <linux/module.h>
  13 #include <linux/of.h>
  14 #include <linux/device.h>
  15 #include <linux/dmapool.h>
  16 #include <linux/kernel.h>
  17 #include <linux/delay.h>
  18 #include <linux/ioport.h>
  19 #include <linux/sched.h>
  20 #include <linux/vmalloc.h>
  21 #include <linux/errno.h>
  22 #include <linux/init.h>
  23 #include <linux/hrtimer.h>
  24 #include <linux/list.h>
  25 #include <linux/interrupt.h>
  26 #include <linux/usb.h>
  27 #include <linux/usb/hcd.h>
  28 #include <linux/moduleparam.h>
  29 #include <linux/dma-mapping.h>
  30 #include <linux/debugfs.h>
  31 #include <linux/slab.h>
  32 #include <linux/uaccess.h>
  33 #include <linux/platform_device.h>
  34 #include <linux/io.h>
  35 #include <linux/clk.h>
  36 
  37 #include <asm/byteorder.h>
  38 #include <asm/irq.h>
  39 #include <asm/unaligned.h>
  40 
  41 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
  42 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  43 static const char hcd_name[] = "fotg210_hcd";
  44 
  45 #undef FOTG210_URB_TRACE
  46 #define FOTG210_STATS
  47 
  48 /* magic numbers that can affect system performance */
  49 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
  50 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
  51 #define FOTG210_TUNE_RL_TT      0
  52 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
  53 #define FOTG210_TUNE_MULT_TT    1
  54 
  55 /* Some drivers think it's safe to schedule isochronous transfers more than 256
  56  * ms into the future (partly as a result of an old bug in the scheduling
  57  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  58  * length of 512 frames instead of 256.
  59  */
  60 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  61 
  62 /* Initial IRQ latency:  faster than hw default */
  63 static int log2_irq_thresh; /* 0 to 6 */
  64 module_param(log2_irq_thresh, int, S_IRUGO);
  65 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  66 
  67 /* initial park setting:  slower than hw default */
  68 static unsigned park;
  69 module_param(park, uint, S_IRUGO);
  70 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  71 
  72 /* for link power management(LPM) feature */
  73 static unsigned int hird;
  74 module_param(hird, int, S_IRUGO);
  75 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  76 
  77 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  78 
  79 #include "fotg210.h"
  80 
  81 #define fotg210_dbg(fotg210, fmt, args...) \
  82         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  83 #define fotg210_err(fotg210, fmt, args...) \
  84         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  85 #define fotg210_info(fotg210, fmt, args...) \
  86         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  87 #define fotg210_warn(fotg210, fmt, args...) \
  88         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  89 
  90 /* check the values in the HCSPARAMS register (host controller _Structural_
  91  * parameters) see EHCI spec, Table 2-4 for each value
  92  */
  93 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
  94 {
  95         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
  96 
  97         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
  98                         HCS_N_PORTS(params));
  99 }
 100 
 101 /* check the values in the HCCPARAMS register (host controller _Capability_
 102  * parameters) see EHCI Spec, Table 2-5 for each value
 103  */
 104 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 105 {
 106         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 107 
 108         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 109                         params,
 110                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 111                         HCC_CANPARK(params) ? " park" : "");
 112 }
 113 
 114 static void __maybe_unused
 115 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 116 {
 117         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 118                         hc32_to_cpup(fotg210, &qtd->hw_next),
 119                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 120                         hc32_to_cpup(fotg210, &qtd->hw_token),
 121                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 122         if (qtd->hw_buf[1])
 123                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 124                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 125                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 126                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 127                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 128 }
 129 
 130 static void __maybe_unused
 131 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 132 {
 133         struct fotg210_qh_hw *hw = qh->hw;
 134 
 135         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 136                         hw->hw_next, hw->hw_info1, hw->hw_info2,
 137                         hw->hw_current);
 138 
 139         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 140 }
 141 
 142 static void __maybe_unused
 143 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 144 {
 145         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 146                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 147                         itd->urb);
 148 
 149         fotg210_dbg(fotg210,
 150                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 151                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 152                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 153                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 154                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 155                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 156                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 157                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 158                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 159 
 160         fotg210_dbg(fotg210,
 161                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 162                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 163                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 164                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 165                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 166                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 167                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 168                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 169 
 170         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 171                         itd->index[0], itd->index[1], itd->index[2],
 172                         itd->index[3], itd->index[4], itd->index[5],
 173                         itd->index[6], itd->index[7]);
 174 }
 175 
 176 static int __maybe_unused
 177 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 178 {
 179         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 180                         label, label[0] ? " " : "", status,
 181                         (status & STS_ASS) ? " Async" : "",
 182                         (status & STS_PSS) ? " Periodic" : "",
 183                         (status & STS_RECL) ? " Recl" : "",
 184                         (status & STS_HALT) ? " Halt" : "",
 185                         (status & STS_IAA) ? " IAA" : "",
 186                         (status & STS_FATAL) ? " FATAL" : "",
 187                         (status & STS_FLR) ? " FLR" : "",
 188                         (status & STS_PCD) ? " PCD" : "",
 189                         (status & STS_ERR) ? " ERR" : "",
 190                         (status & STS_INT) ? " INT" : "");
 191 }
 192 
 193 static int __maybe_unused
 194 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 195 {
 196         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 197                         label, label[0] ? " " : "", enable,
 198                         (enable & STS_IAA) ? " IAA" : "",
 199                         (enable & STS_FATAL) ? " FATAL" : "",
 200                         (enable & STS_FLR) ? " FLR" : "",
 201                         (enable & STS_PCD) ? " PCD" : "",
 202                         (enable & STS_ERR) ? " ERR" : "",
 203                         (enable & STS_INT) ? " INT" : "");
 204 }
 205 
 206 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 207 
 208 static int dbg_command_buf(char *buf, unsigned len, const char *label,
 209                 u32 command)
 210 {
 211         return scnprintf(buf, len,
 212                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 213                         label, label[0] ? " " : "", command,
 214                         (command & CMD_PARK) ? " park" : "(park)",
 215                         CMD_PARK_CNT(command),
 216                         (command >> 16) & 0x3f,
 217                         (command & CMD_IAAD) ? " IAAD" : "",
 218                         (command & CMD_ASE) ? " Async" : "",
 219                         (command & CMD_PSE) ? " Periodic" : "",
 220                         fls_strings[(command >> 2) & 0x3],
 221                         (command & CMD_RESET) ? " Reset" : "",
 222                         (command & CMD_RUN) ? "RUN" : "HALT");
 223 }
 224 
 225 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 226                 u32 status)
 227 {
 228         char *sig;
 229 
 230         /* signaling state */
 231         switch (status & (3 << 10)) {
 232         case 0 << 10:
 233                 sig = "se0";
 234                 break;
 235         case 1 << 10:
 236                 sig = "k";
 237                 break; /* low speed */
 238         case 2 << 10:
 239                 sig = "j";
 240                 break;
 241         default:
 242                 sig = "?";
 243                 break;
 244         }
 245 
 246         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 247                         label, label[0] ? " " : "", port, status,
 248                         status >> 25, /*device address */
 249                         sig,
 250                         (status & PORT_RESET) ? " RESET" : "",
 251                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
 252                         (status & PORT_RESUME) ? " RESUME" : "",
 253                         (status & PORT_PEC) ? " PEC" : "",
 254                         (status & PORT_PE) ? " PE" : "",
 255                         (status & PORT_CSC) ? " CSC" : "",
 256                         (status & PORT_CONNECT) ? " CONNECT" : "");
 257 
 258         return buf;
 259 }
 260 
 261 /* functions have the "wrong" filename when they're output... */
 262 #define dbg_status(fotg210, label, status) {                    \
 263         char _buf[80];                                          \
 264         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
 265         fotg210_dbg(fotg210, "%s\n", _buf);                     \
 266 }
 267 
 268 #define dbg_cmd(fotg210, label, command) {                      \
 269         char _buf[80];                                          \
 270         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
 271         fotg210_dbg(fotg210, "%s\n", _buf);                     \
 272 }
 273 
 274 #define dbg_port(fotg210, label, port, status) {                               \
 275         char _buf[80];                                                         \
 276         fotg210_dbg(fotg210, "%s\n",                                           \
 277                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 278 }
 279 
 280 /* troubleshooting help: expose state in debugfs */
 281 static int debug_async_open(struct inode *, struct file *);
 282 static int debug_periodic_open(struct inode *, struct file *);
 283 static int debug_registers_open(struct inode *, struct file *);
 284 static int debug_async_open(struct inode *, struct file *);
 285 
 286 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 287 static int debug_close(struct inode *, struct file *);
 288 
 289 static const struct file_operations debug_async_fops = {
 290         .owner          = THIS_MODULE,
 291         .open           = debug_async_open,
 292         .read           = debug_output,
 293         .release        = debug_close,
 294         .llseek         = default_llseek,
 295 };
 296 static const struct file_operations debug_periodic_fops = {
 297         .owner          = THIS_MODULE,
 298         .open           = debug_periodic_open,
 299         .read           = debug_output,
 300         .release        = debug_close,
 301         .llseek         = default_llseek,
 302 };
 303 static const struct file_operations debug_registers_fops = {
 304         .owner          = THIS_MODULE,
 305         .open           = debug_registers_open,
 306         .read           = debug_output,
 307         .release        = debug_close,
 308         .llseek         = default_llseek,
 309 };
 310 
 311 static struct dentry *fotg210_debug_root;
 312 
 313 struct debug_buffer {
 314         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
 315         struct usb_bus *bus;
 316         struct mutex mutex;     /* protect filling of buffer */
 317         size_t count;           /* number of characters filled into buffer */
 318         char *output_buf;
 319         size_t alloc_size;
 320 };
 321 
 322 static inline char speed_char(u32 scratch)
 323 {
 324         switch (scratch & (3 << 12)) {
 325         case QH_FULL_SPEED:
 326                 return 'f';
 327 
 328         case QH_LOW_SPEED:
 329                 return 'l';
 330 
 331         case QH_HIGH_SPEED:
 332                 return 'h';
 333 
 334         default:
 335                 return '?';
 336         }
 337 }
 338 
 339 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 340 {
 341         __u32 v = hc32_to_cpu(fotg210, token);
 342 
 343         if (v & QTD_STS_ACTIVE)
 344                 return '*';
 345         if (v & QTD_STS_HALT)
 346                 return '-';
 347         if (!IS_SHORT_READ(v))
 348                 return ' ';
 349         /* tries to advance through hw_alt_next */
 350         return '/';
 351 }
 352 
 353 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 354                 char **nextp, unsigned *sizep)
 355 {
 356         u32 scratch;
 357         u32 hw_curr;
 358         struct fotg210_qtd *td;
 359         unsigned temp;
 360         unsigned size = *sizep;
 361         char *next = *nextp;
 362         char mark;
 363         __le32 list_end = FOTG210_LIST_END(fotg210);
 364         struct fotg210_qh_hw *hw = qh->hw;
 365 
 366         if (hw->hw_qtd_next == list_end) /* NEC does this */
 367                 mark = '@';
 368         else
 369                 mark = token_mark(fotg210, hw->hw_token);
 370         if (mark == '/') { /* qh_alt_next controls qh advance? */
 371                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 372                     fotg210->async->hw->hw_alt_next)
 373                         mark = '#'; /* blocked */
 374                 else if (hw->hw_alt_next == list_end)
 375                         mark = '.'; /* use hw_qtd_next */
 376                 /* else alt_next points to some other qtd */
 377         }
 378         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 379         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 380         temp = scnprintf(next, size,
 381                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 382                         qh, scratch & 0x007f,
 383                         speed_char(scratch),
 384                         (scratch >> 8) & 0x000f,
 385                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 386                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
 387                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 388                                 ? "data1" : "data0",
 389                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 390         size -= temp;
 391         next += temp;
 392 
 393         /* hc may be modifying the list as we read it ... */
 394         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 395                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
 396                 mark = ' ';
 397                 if (hw_curr == td->qtd_dma)
 398                         mark = '*';
 399                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 400                         mark = '+';
 401                 else if (QTD_LENGTH(scratch)) {
 402                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 403                                 mark = '#';
 404                         else if (td->hw_alt_next != list_end)
 405                                 mark = '/';
 406                 }
 407                 temp = snprintf(next, size,
 408                                 "\n\t%p%c%s len=%d %08x urb %p",
 409                                 td, mark, ({ char *tmp;
 410                                  switch ((scratch>>8)&0x03) {
 411                                  case 0:
 412                                         tmp = "out";
 413                                         break;
 414                                  case 1:
 415                                         tmp = "in";
 416                                         break;
 417                                  case 2:
 418                                         tmp = "setup";
 419                                         break;
 420                                  default:
 421                                         tmp = "?";
 422                                         break;
 423                                  } tmp; }),
 424                                 (scratch >> 16) & 0x7fff,
 425                                 scratch,
 426                                 td->urb);
 427                 if (size < temp)
 428                         temp = size;
 429                 size -= temp;
 430                 next += temp;
 431                 if (temp == size)
 432                         goto done;
 433         }
 434 
 435         temp = snprintf(next, size, "\n");
 436         if (size < temp)
 437                 temp = size;
 438 
 439         size -= temp;
 440         next += temp;
 441 
 442 done:
 443         *sizep = size;
 444         *nextp = next;
 445 }
 446 
 447 static ssize_t fill_async_buffer(struct debug_buffer *buf)
 448 {
 449         struct usb_hcd *hcd;
 450         struct fotg210_hcd *fotg210;
 451         unsigned long flags;
 452         unsigned temp, size;
 453         char *next;
 454         struct fotg210_qh *qh;
 455 
 456         hcd = bus_to_hcd(buf->bus);
 457         fotg210 = hcd_to_fotg210(hcd);
 458         next = buf->output_buf;
 459         size = buf->alloc_size;
 460 
 461         *next = 0;
 462 
 463         /* dumps a snapshot of the async schedule.
 464          * usually empty except for long-term bulk reads, or head.
 465          * one QH per line, and TDs we know about
 466          */
 467         spin_lock_irqsave(&fotg210->lock, flags);
 468         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 469                         qh = qh->qh_next.qh)
 470                 qh_lines(fotg210, qh, &next, &size);
 471         if (fotg210->async_unlink && size > 0) {
 472                 temp = scnprintf(next, size, "\nunlink =\n");
 473                 size -= temp;
 474                 next += temp;
 475 
 476                 for (qh = fotg210->async_unlink; size > 0 && qh;
 477                                 qh = qh->unlink_next)
 478                         qh_lines(fotg210, qh, &next, &size);
 479         }
 480         spin_unlock_irqrestore(&fotg210->lock, flags);
 481 
 482         return strlen(buf->output_buf);
 483 }
 484 
 485 /* count tds, get ep direction */
 486 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 487                 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 488 {
 489         u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 490         struct fotg210_qtd *qtd;
 491         char *type = "";
 492         unsigned temp = 0;
 493 
 494         /* count tds, get ep direction */
 495         list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 496                 temp++;
 497                 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 498                 case 0:
 499                         type = "out";
 500                         continue;
 501                 case 1:
 502                         type = "in";
 503                         continue;
 504                 }
 505         }
 506 
 507         return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 508                         speed_char(scratch), scratch & 0x007f,
 509                         (scratch >> 8) & 0x000f, type, qh->usecs,
 510                         qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 511 }
 512 
 513 #define DBG_SCHED_LIMIT 64
 514 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 515 {
 516         struct usb_hcd *hcd;
 517         struct fotg210_hcd *fotg210;
 518         unsigned long flags;
 519         union fotg210_shadow p, *seen;
 520         unsigned temp, size, seen_count;
 521         char *next;
 522         unsigned i;
 523         __hc32 tag;
 524 
 525         seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 526         if (!seen)
 527                 return 0;
 528 
 529         seen_count = 0;
 530 
 531         hcd = bus_to_hcd(buf->bus);
 532         fotg210 = hcd_to_fotg210(hcd);
 533         next = buf->output_buf;
 534         size = buf->alloc_size;
 535 
 536         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 537         size -= temp;
 538         next += temp;
 539 
 540         /* dump a snapshot of the periodic schedule.
 541          * iso changes, interrupt usually doesn't.
 542          */
 543         spin_lock_irqsave(&fotg210->lock, flags);
 544         for (i = 0; i < fotg210->periodic_size; i++) {
 545                 p = fotg210->pshadow[i];
 546                 if (likely(!p.ptr))
 547                         continue;
 548 
 549                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 550 
 551                 temp = scnprintf(next, size, "%4d: ", i);
 552                 size -= temp;
 553                 next += temp;
 554 
 555                 do {
 556                         struct fotg210_qh_hw *hw;
 557 
 558                         switch (hc32_to_cpu(fotg210, tag)) {
 559                         case Q_TYPE_QH:
 560                                 hw = p.qh->hw;
 561                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
 562                                                 p.qh->period,
 563                                                 hc32_to_cpup(fotg210,
 564                                                         &hw->hw_info2)
 565                                                         /* uframe masks */
 566                                                         & (QH_CMASK | QH_SMASK),
 567                                                 p.qh);
 568                                 size -= temp;
 569                                 next += temp;
 570                                 /* don't repeat what follows this qh */
 571                                 for (temp = 0; temp < seen_count; temp++) {
 572                                         if (seen[temp].ptr != p.ptr)
 573                                                 continue;
 574                                         if (p.qh->qh_next.ptr) {
 575                                                 temp = scnprintf(next, size,
 576                                                                 " ...");
 577                                                 size -= temp;
 578                                                 next += temp;
 579                                         }
 580                                         break;
 581                                 }
 582                                 /* show more info the first time around */
 583                                 if (temp == seen_count) {
 584                                         temp = output_buf_tds_dir(next,
 585                                                         fotg210, hw,
 586                                                         p.qh, size);
 587 
 588                                         if (seen_count < DBG_SCHED_LIMIT)
 589                                                 seen[seen_count++].qh = p.qh;
 590                                 } else
 591                                         temp = 0;
 592                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 593                                 p = p.qh->qh_next;
 594                                 break;
 595                         case Q_TYPE_FSTN:
 596                                 temp = scnprintf(next, size,
 597                                                 " fstn-%8x/%p",
 598                                                 p.fstn->hw_prev, p.fstn);
 599                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 600                                 p = p.fstn->fstn_next;
 601                                 break;
 602                         case Q_TYPE_ITD:
 603                                 temp = scnprintf(next, size,
 604                                                 " itd/%p", p.itd);
 605                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 606                                 p = p.itd->itd_next;
 607                                 break;
 608                         }
 609                         size -= temp;
 610                         next += temp;
 611                 } while (p.ptr);
 612 
 613                 temp = scnprintf(next, size, "\n");
 614                 size -= temp;
 615                 next += temp;
 616         }
 617         spin_unlock_irqrestore(&fotg210->lock, flags);
 618         kfree(seen);
 619 
 620         return buf->alloc_size - size;
 621 }
 622 #undef DBG_SCHED_LIMIT
 623 
 624 static const char *rh_state_string(struct fotg210_hcd *fotg210)
 625 {
 626         switch (fotg210->rh_state) {
 627         case FOTG210_RH_HALTED:
 628                 return "halted";
 629         case FOTG210_RH_SUSPENDED:
 630                 return "suspended";
 631         case FOTG210_RH_RUNNING:
 632                 return "running";
 633         case FOTG210_RH_STOPPING:
 634                 return "stopping";
 635         }
 636         return "?";
 637 }
 638 
 639 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 640 {
 641         struct usb_hcd *hcd;
 642         struct fotg210_hcd *fotg210;
 643         unsigned long flags;
 644         unsigned temp, size, i;
 645         char *next, scratch[80];
 646         static const char fmt[] = "%*s\n";
 647         static const char label[] = "";
 648 
 649         hcd = bus_to_hcd(buf->bus);
 650         fotg210 = hcd_to_fotg210(hcd);
 651         next = buf->output_buf;
 652         size = buf->alloc_size;
 653 
 654         spin_lock_irqsave(&fotg210->lock, flags);
 655 
 656         if (!HCD_HW_ACCESSIBLE(hcd)) {
 657                 size = scnprintf(next, size,
 658                                 "bus %s, device %s\n"
 659                                 "%s\n"
 660                                 "SUSPENDED(no register access)\n",
 661                                 hcd->self.controller->bus->name,
 662                                 dev_name(hcd->self.controller),
 663                                 hcd->product_desc);
 664                 goto done;
 665         }
 666 
 667         /* Capability Registers */
 668         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 669                         &fotg210->caps->hc_capbase));
 670         temp = scnprintf(next, size,
 671                         "bus %s, device %s\n"
 672                         "%s\n"
 673                         "EHCI %x.%02x, rh state %s\n",
 674                         hcd->self.controller->bus->name,
 675                         dev_name(hcd->self.controller),
 676                         hcd->product_desc,
 677                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
 678         size -= temp;
 679         next += temp;
 680 
 681         /* FIXME interpret both types of params */
 682         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 683         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 684         size -= temp;
 685         next += temp;
 686 
 687         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 688         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 689         size -= temp;
 690         next += temp;
 691 
 692         /* Operational Registers */
 693         temp = dbg_status_buf(scratch, sizeof(scratch), label,
 694                         fotg210_readl(fotg210, &fotg210->regs->status));
 695         temp = scnprintf(next, size, fmt, temp, scratch);
 696         size -= temp;
 697         next += temp;
 698 
 699         temp = dbg_command_buf(scratch, sizeof(scratch), label,
 700                         fotg210_readl(fotg210, &fotg210->regs->command));
 701         temp = scnprintf(next, size, fmt, temp, scratch);
 702         size -= temp;
 703         next += temp;
 704 
 705         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 706                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 707         temp = scnprintf(next, size, fmt, temp, scratch);
 708         size -= temp;
 709         next += temp;
 710 
 711         temp = scnprintf(next, size, "uframe %04x\n",
 712                         fotg210_read_frame_index(fotg210));
 713         size -= temp;
 714         next += temp;
 715 
 716         if (fotg210->async_unlink) {
 717                 temp = scnprintf(next, size, "async unlink qh %p\n",
 718                                 fotg210->async_unlink);
 719                 size -= temp;
 720                 next += temp;
 721         }
 722 
 723 #ifdef FOTG210_STATS
 724         temp = scnprintf(next, size,
 725                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
 726                         fotg210->stats.normal, fotg210->stats.error,
 727                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
 728         size -= temp;
 729         next += temp;
 730 
 731         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 732                         fotg210->stats.complete, fotg210->stats.unlink);
 733         size -= temp;
 734         next += temp;
 735 #endif
 736 
 737 done:
 738         spin_unlock_irqrestore(&fotg210->lock, flags);
 739 
 740         return buf->alloc_size - size;
 741 }
 742 
 743 static struct debug_buffer
 744 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 745 {
 746         struct debug_buffer *buf;
 747 
 748         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 749 
 750         if (buf) {
 751                 buf->bus = bus;
 752                 buf->fill_func = fill_func;
 753                 mutex_init(&buf->mutex);
 754                 buf->alloc_size = PAGE_SIZE;
 755         }
 756 
 757         return buf;
 758 }
 759 
 760 static int fill_buffer(struct debug_buffer *buf)
 761 {
 762         int ret = 0;
 763 
 764         if (!buf->output_buf)
 765                 buf->output_buf = vmalloc(buf->alloc_size);
 766 
 767         if (!buf->output_buf) {
 768                 ret = -ENOMEM;
 769                 goto out;
 770         }
 771 
 772         ret = buf->fill_func(buf);
 773 
 774         if (ret >= 0) {
 775                 buf->count = ret;
 776                 ret = 0;
 777         }
 778 
 779 out:
 780         return ret;
 781 }
 782 
 783 static ssize_t debug_output(struct file *file, char __user *user_buf,
 784                 size_t len, loff_t *offset)
 785 {
 786         struct debug_buffer *buf = file->private_data;
 787         int ret = 0;
 788 
 789         mutex_lock(&buf->mutex);
 790         if (buf->count == 0) {
 791                 ret = fill_buffer(buf);
 792                 if (ret != 0) {
 793                         mutex_unlock(&buf->mutex);
 794                         goto out;
 795                 }
 796         }
 797         mutex_unlock(&buf->mutex);
 798 
 799         ret = simple_read_from_buffer(user_buf, len, offset,
 800                         buf->output_buf, buf->count);
 801 
 802 out:
 803         return ret;
 804 
 805 }
 806 
 807 static int debug_close(struct inode *inode, struct file *file)
 808 {
 809         struct debug_buffer *buf = file->private_data;
 810 
 811         if (buf) {
 812                 vfree(buf->output_buf);
 813                 kfree(buf);
 814         }
 815 
 816         return 0;
 817 }
 818 static int debug_async_open(struct inode *inode, struct file *file)
 819 {
 820         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 821 
 822         return file->private_data ? 0 : -ENOMEM;
 823 }
 824 
 825 static int debug_periodic_open(struct inode *inode, struct file *file)
 826 {
 827         struct debug_buffer *buf;
 828 
 829         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 830         if (!buf)
 831                 return -ENOMEM;
 832 
 833         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 834         file->private_data = buf;
 835         return 0;
 836 }
 837 
 838 static int debug_registers_open(struct inode *inode, struct file *file)
 839 {
 840         file->private_data = alloc_buffer(inode->i_private,
 841                         fill_registers_buffer);
 842 
 843         return file->private_data ? 0 : -ENOMEM;
 844 }
 845 
 846 static inline void create_debug_files(struct fotg210_hcd *fotg210)
 847 {
 848         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 849         struct dentry *root;
 850 
 851         root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
 852         fotg210->debug_dir = root;
 853 
 854         debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
 855         debugfs_create_file("periodic", S_IRUGO, root, bus,
 856                             &debug_periodic_fops);
 857         debugfs_create_file("registers", S_IRUGO, root, bus,
 858                             &debug_registers_fops);
 859 }
 860 
 861 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 862 {
 863         debugfs_remove_recursive(fotg210->debug_dir);
 864 }
 865 
 866 /* handshake - spin reading hc until handshake completes or fails
 867  * @ptr: address of hc register to be read
 868  * @mask: bits to look at in result of read
 869  * @done: value of those bits when handshake succeeds
 870  * @usec: timeout in microseconds
 871  *
 872  * Returns negative errno, or zero on success
 873  *
 874  * Success happens when the "mask" bits have the specified value (hardware
 875  * handshake done).  There are two failure modes:  "usec" have passed (major
 876  * hardware flakeout), or the register reads as all-ones (hardware removed).
 877  *
 878  * That last failure should_only happen in cases like physical cardbus eject
 879  * before driver shutdown. But it also seems to be caused by bugs in cardbus
 880  * bridge shutdown:  shutting down the bridge before the devices using it.
 881  */
 882 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 883                 u32 mask, u32 done, int usec)
 884 {
 885         u32 result;
 886 
 887         do {
 888                 result = fotg210_readl(fotg210, ptr);
 889                 if (result == ~(u32)0)          /* card removed */
 890                         return -ENODEV;
 891                 result &= mask;
 892                 if (result == done)
 893                         return 0;
 894                 udelay(1);
 895                 usec--;
 896         } while (usec > 0);
 897         return -ETIMEDOUT;
 898 }
 899 
 900 /* Force HC to halt state from unknown (EHCI spec section 2.3).
 901  * Must be called with interrupts enabled and the lock not held.
 902  */
 903 static int fotg210_halt(struct fotg210_hcd *fotg210)
 904 {
 905         u32 temp;
 906 
 907         spin_lock_irq(&fotg210->lock);
 908 
 909         /* disable any irqs left enabled by previous code */
 910         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 911 
 912         /*
 913          * This routine gets called during probe before fotg210->command
 914          * has been initialized, so we can't rely on its value.
 915          */
 916         fotg210->command &= ~CMD_RUN;
 917         temp = fotg210_readl(fotg210, &fotg210->regs->command);
 918         temp &= ~(CMD_RUN | CMD_IAAD);
 919         fotg210_writel(fotg210, temp, &fotg210->regs->command);
 920 
 921         spin_unlock_irq(&fotg210->lock);
 922         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 923 
 924         return handshake(fotg210, &fotg210->regs->status,
 925                         STS_HALT, STS_HALT, 16 * 125);
 926 }
 927 
 928 /* Reset a non-running (STS_HALT == 1) controller.
 929  * Must be called with interrupts enabled and the lock not held.
 930  */
 931 static int fotg210_reset(struct fotg210_hcd *fotg210)
 932 {
 933         int retval;
 934         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 935 
 936         /* If the EHCI debug controller is active, special care must be
 937          * taken before and after a host controller reset
 938          */
 939         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 940                 fotg210->debug = NULL;
 941 
 942         command |= CMD_RESET;
 943         dbg_cmd(fotg210, "reset", command);
 944         fotg210_writel(fotg210, command, &fotg210->regs->command);
 945         fotg210->rh_state = FOTG210_RH_HALTED;
 946         fotg210->next_statechange = jiffies;
 947         retval = handshake(fotg210, &fotg210->regs->command,
 948                         CMD_RESET, 0, 250 * 1000);
 949 
 950         if (retval)
 951                 return retval;
 952 
 953         if (fotg210->debug)
 954                 dbgp_external_startup(fotg210_to_hcd(fotg210));
 955 
 956         fotg210->port_c_suspend = fotg210->suspended_ports =
 957                         fotg210->resuming_ports = 0;
 958         return retval;
 959 }
 960 
 961 /* Idle the controller (turn off the schedules).
 962  * Must be called with interrupts enabled and the lock not held.
 963  */
 964 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 965 {
 966         u32 temp;
 967 
 968         if (fotg210->rh_state != FOTG210_RH_RUNNING)
 969                 return;
 970 
 971         /* wait for any schedule enables/disables to take effect */
 972         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 973         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 974                         16 * 125);
 975 
 976         /* then disable anything that's still active */
 977         spin_lock_irq(&fotg210->lock);
 978         fotg210->command &= ~(CMD_ASE | CMD_PSE);
 979         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 980         spin_unlock_irq(&fotg210->lock);
 981 
 982         /* hardware can take 16 microframes to turn off ... */
 983         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
 984                         16 * 125);
 985 }
 986 
 987 static void end_unlink_async(struct fotg210_hcd *fotg210);
 988 static void unlink_empty_async(struct fotg210_hcd *fotg210);
 989 static void fotg210_work(struct fotg210_hcd *fotg210);
 990 static void start_unlink_intr(struct fotg210_hcd *fotg210,
 991                               struct fotg210_qh *qh);
 992 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
 993 
 994 /* Set a bit in the USBCMD register */
 995 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
 996 {
 997         fotg210->command |= bit;
 998         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
 999 
1000         /* unblock posted write */
1001         fotg210_readl(fotg210, &fotg210->regs->command);
1002 }
1003 
1004 /* Clear a bit in the USBCMD register */
1005 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1006 {
1007         fotg210->command &= ~bit;
1008         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1009 
1010         /* unblock posted write */
1011         fotg210_readl(fotg210, &fotg210->regs->command);
1012 }
1013 
1014 /* EHCI timer support...  Now using hrtimers.
1015  *
1016  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1017  * the timer routine runs, it checks each possible event; events that are
1018  * currently enabled and whose expiration time has passed get handled.
1019  * The set of enabled events is stored as a collection of bitflags in
1020  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1021  * increasing delay values (ranging between 1 ms and 100 ms).
1022  *
1023  * Rather than implementing a sorted list or tree of all pending events,
1024  * we keep track only of the lowest-numbered pending event, in
1025  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1026  * expiration time is set to the timeout value for this event.
1027  *
1028  * As a result, events might not get handled right away; the actual delay
1029  * could be anywhere up to twice the requested delay.  This doesn't
1030  * matter, because none of the events are especially time-critical.  The
1031  * ones that matter most all have a delay of 1 ms, so they will be
1032  * handled after 2 ms at most, which is okay.  In addition to this, we
1033  * allow for an expiration range of 1 ms.
1034  */
1035 
1036 /* Delay lengths for the hrtimer event types.
1037  * Keep this list sorted by delay length, in the same order as
1038  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1039  */
1040 static unsigned event_delays_ns[] = {
1041         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1042         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1043         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1044         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1045         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1046         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1047         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1048         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1049         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1050         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1051 };
1052 
1053 /* Enable a pending hrtimer event */
1054 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1055                 bool resched)
1056 {
1057         ktime_t *timeout = &fotg210->hr_timeouts[event];
1058 
1059         if (resched)
1060                 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1061         fotg210->enabled_hrtimer_events |= (1 << event);
1062 
1063         /* Track only the lowest-numbered pending event */
1064         if (event < fotg210->next_hrtimer_event) {
1065                 fotg210->next_hrtimer_event = event;
1066                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1067                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1068         }
1069 }
1070 
1071 
1072 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1073 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1074 {
1075         unsigned actual, want;
1076 
1077         /* Don't enable anything if the controller isn't running (e.g., died) */
1078         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1079                 return;
1080 
1081         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1082         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1083 
1084         if (want != actual) {
1085 
1086                 /* Poll again later, but give up after about 20 ms */
1087                 if (fotg210->ASS_poll_count++ < 20) {
1088                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1089                                         true);
1090                         return;
1091                 }
1092                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1093                                 want, actual);
1094         }
1095         fotg210->ASS_poll_count = 0;
1096 
1097         /* The status is up-to-date; restart or stop the schedule as needed */
1098         if (want == 0) {        /* Stopped */
1099                 if (fotg210->async_count > 0)
1100                         fotg210_set_command_bit(fotg210, CMD_ASE);
1101 
1102         } else {                /* Running */
1103                 if (fotg210->async_count == 0) {
1104 
1105                         /* Turn off the schedule after a while */
1106                         fotg210_enable_event(fotg210,
1107                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1108                                         true);
1109                 }
1110         }
1111 }
1112 
1113 /* Turn off the async schedule after a brief delay */
1114 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1115 {
1116         fotg210_clear_command_bit(fotg210, CMD_ASE);
1117 }
1118 
1119 
1120 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1121 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1122 {
1123         unsigned actual, want;
1124 
1125         /* Don't do anything if the controller isn't running (e.g., died) */
1126         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1127                 return;
1128 
1129         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1130         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1131 
1132         if (want != actual) {
1133 
1134                 /* Poll again later, but give up after about 20 ms */
1135                 if (fotg210->PSS_poll_count++ < 20) {
1136                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1137                                         true);
1138                         return;
1139                 }
1140                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1141                                 want, actual);
1142         }
1143         fotg210->PSS_poll_count = 0;
1144 
1145         /* The status is up-to-date; restart or stop the schedule as needed */
1146         if (want == 0) {        /* Stopped */
1147                 if (fotg210->periodic_count > 0)
1148                         fotg210_set_command_bit(fotg210, CMD_PSE);
1149 
1150         } else {                /* Running */
1151                 if (fotg210->periodic_count == 0) {
1152 
1153                         /* Turn off the schedule after a while */
1154                         fotg210_enable_event(fotg210,
1155                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1156                                         true);
1157                 }
1158         }
1159 }
1160 
1161 /* Turn off the periodic schedule after a brief delay */
1162 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1163 {
1164         fotg210_clear_command_bit(fotg210, CMD_PSE);
1165 }
1166 
1167 
1168 /* Poll the STS_HALT status bit; see when a dead controller stops */
1169 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1170 {
1171         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1172 
1173                 /* Give up after a few milliseconds */
1174                 if (fotg210->died_poll_count++ < 5) {
1175                         /* Try again later */
1176                         fotg210_enable_event(fotg210,
1177                                         FOTG210_HRTIMER_POLL_DEAD, true);
1178                         return;
1179                 }
1180                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1181         }
1182 
1183         /* Clean up the mess */
1184         fotg210->rh_state = FOTG210_RH_HALTED;
1185         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1186         fotg210_work(fotg210);
1187         end_unlink_async(fotg210);
1188 
1189         /* Not in process context, so don't try to reset the controller */
1190 }
1191 
1192 
1193 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1194 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1195 {
1196         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1197 
1198         /*
1199          * Process all the QHs on the intr_unlink list that were added
1200          * before the current unlink cycle began.  The list is in
1201          * temporal order, so stop when we reach the first entry in the
1202          * current cycle.  But if the root hub isn't running then
1203          * process all the QHs on the list.
1204          */
1205         fotg210->intr_unlinking = true;
1206         while (fotg210->intr_unlink) {
1207                 struct fotg210_qh *qh = fotg210->intr_unlink;
1208 
1209                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1210                         break;
1211                 fotg210->intr_unlink = qh->unlink_next;
1212                 qh->unlink_next = NULL;
1213                 end_unlink_intr(fotg210, qh);
1214         }
1215 
1216         /* Handle remaining entries later */
1217         if (fotg210->intr_unlink) {
1218                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1219                                 true);
1220                 ++fotg210->intr_unlink_cycle;
1221         }
1222         fotg210->intr_unlinking = false;
1223 }
1224 
1225 
1226 /* Start another free-iTDs/siTDs cycle */
1227 static void start_free_itds(struct fotg210_hcd *fotg210)
1228 {
1229         if (!(fotg210->enabled_hrtimer_events &
1230                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1231                 fotg210->last_itd_to_free = list_entry(
1232                                 fotg210->cached_itd_list.prev,
1233                                 struct fotg210_itd, itd_list);
1234                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1235         }
1236 }
1237 
1238 /* Wait for controller to stop using old iTDs and siTDs */
1239 static void end_free_itds(struct fotg210_hcd *fotg210)
1240 {
1241         struct fotg210_itd *itd, *n;
1242 
1243         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1244                 fotg210->last_itd_to_free = NULL;
1245 
1246         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1247                 list_del(&itd->itd_list);
1248                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1249                 if (itd == fotg210->last_itd_to_free)
1250                         break;
1251         }
1252 
1253         if (!list_empty(&fotg210->cached_itd_list))
1254                 start_free_itds(fotg210);
1255 }
1256 
1257 
1258 /* Handle lost (or very late) IAA interrupts */
1259 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1260 {
1261         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1262                 return;
1263 
1264         /*
1265          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1266          * So we need this watchdog, but must protect it against both
1267          * (a) SMP races against real IAA firing and retriggering, and
1268          * (b) clean HC shutdown, when IAA watchdog was pending.
1269          */
1270         if (fotg210->async_iaa) {
1271                 u32 cmd, status;
1272 
1273                 /* If we get here, IAA is *REALLY* late.  It's barely
1274                  * conceivable that the system is so busy that CMD_IAAD
1275                  * is still legitimately set, so let's be sure it's
1276                  * clear before we read STS_IAA.  (The HC should clear
1277                  * CMD_IAAD when it sets STS_IAA.)
1278                  */
1279                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1280 
1281                 /*
1282                  * If IAA is set here it either legitimately triggered
1283                  * after the watchdog timer expired (_way_ late, so we'll
1284                  * still count it as lost) ... or a silicon erratum:
1285                  * - VIA seems to set IAA without triggering the IRQ;
1286                  * - IAAD potentially cleared without setting IAA.
1287                  */
1288                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1289                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1290                         INCR(fotg210->stats.lost_iaa);
1291                         fotg210_writel(fotg210, STS_IAA,
1292                                         &fotg210->regs->status);
1293                 }
1294 
1295                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1296                                 status, cmd);
1297                 end_unlink_async(fotg210);
1298         }
1299 }
1300 
1301 
1302 /* Enable the I/O watchdog, if appropriate */
1303 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1304 {
1305         /* Not needed if the controller isn't running or it's already enabled */
1306         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1307                         (fotg210->enabled_hrtimer_events &
1308                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1309                 return;
1310 
1311         /*
1312          * Isochronous transfers always need the watchdog.
1313          * For other sorts we use it only if the flag is set.
1314          */
1315         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1316                         fotg210->async_count + fotg210->intr_count > 0))
1317                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1318                                 true);
1319 }
1320 
1321 
1322 /* Handler functions for the hrtimer event types.
1323  * Keep this array in the same order as the event types indexed by
1324  * enum fotg210_hrtimer_event in fotg210.h.
1325  */
1326 static void (*event_handlers[])(struct fotg210_hcd *) = {
1327         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1328         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1329         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1330         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1331         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1332         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1333         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1334         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1335         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1336         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1337 };
1338 
1339 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1340 {
1341         struct fotg210_hcd *fotg210 =
1342                         container_of(t, struct fotg210_hcd, hrtimer);
1343         ktime_t now;
1344         unsigned long events;
1345         unsigned long flags;
1346         unsigned e;
1347 
1348         spin_lock_irqsave(&fotg210->lock, flags);
1349 
1350         events = fotg210->enabled_hrtimer_events;
1351         fotg210->enabled_hrtimer_events = 0;
1352         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1353 
1354         /*
1355          * Check each pending event.  If its time has expired, handle
1356          * the event; otherwise re-enable it.
1357          */
1358         now = ktime_get();
1359         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1360                 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1361                         event_handlers[e](fotg210);
1362                 else
1363                         fotg210_enable_event(fotg210, e, false);
1364         }
1365 
1366         spin_unlock_irqrestore(&fotg210->lock, flags);
1367         return HRTIMER_NORESTART;
1368 }
1369 
1370 #define fotg210_bus_suspend NULL
1371 #define fotg210_bus_resume NULL
1372 
1373 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1374                 u32 __iomem *status_reg, int port_status)
1375 {
1376         if (!(port_status & PORT_CONNECT))
1377                 return port_status;
1378 
1379         /* if reset finished and it's still not enabled -- handoff */
1380         if (!(port_status & PORT_PE))
1381                 /* with integrated TT, there's nobody to hand it to! */
1382                 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1383                                 index + 1);
1384         else
1385                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1386                                 index + 1);
1387 
1388         return port_status;
1389 }
1390 
1391 
1392 /* build "status change" packet (one or two bytes) from HC registers */
1393 
1394 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1395 {
1396         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1397         u32 temp, status;
1398         u32 mask;
1399         int retval = 1;
1400         unsigned long flags;
1401 
1402         /* init status to no-changes */
1403         buf[0] = 0;
1404 
1405         /* Inform the core about resumes-in-progress by returning
1406          * a non-zero value even if there are no status changes.
1407          */
1408         status = fotg210->resuming_ports;
1409 
1410         mask = PORT_CSC | PORT_PEC;
1411         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1412 
1413         /* no hub change reports (bit 0) for now (power, ...) */
1414 
1415         /* port N changes (bit N)? */
1416         spin_lock_irqsave(&fotg210->lock, flags);
1417 
1418         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1419 
1420         /*
1421          * Return status information even for ports with OWNER set.
1422          * Otherwise hub_wq wouldn't see the disconnect event when a
1423          * high-speed device is switched over to the companion
1424          * controller by the user.
1425          */
1426 
1427         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1428                         (fotg210->reset_done[0] &&
1429                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1430                 buf[0] |= 1 << 1;
1431                 status = STS_PCD;
1432         }
1433         /* FIXME autosuspend idle root hubs */
1434         spin_unlock_irqrestore(&fotg210->lock, flags);
1435         return status ? retval : 0;
1436 }
1437 
1438 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1439                 struct usb_hub_descriptor *desc)
1440 {
1441         int ports = HCS_N_PORTS(fotg210->hcs_params);
1442         u16 temp;
1443 
1444         desc->bDescriptorType = USB_DT_HUB;
1445         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1446         desc->bHubContrCurrent = 0;
1447 
1448         desc->bNbrPorts = ports;
1449         temp = 1 + (ports / 8);
1450         desc->bDescLength = 7 + 2 * temp;
1451 
1452         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1453         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1454         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1455 
1456         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1457         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1458         desc->wHubCharacteristics = cpu_to_le16(temp);
1459 }
1460 
1461 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1462                 u16 wIndex, char *buf, u16 wLength)
1463 {
1464         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1465         int ports = HCS_N_PORTS(fotg210->hcs_params);
1466         u32 __iomem *status_reg = &fotg210->regs->port_status;
1467         u32 temp, temp1, status;
1468         unsigned long flags;
1469         int retval = 0;
1470         unsigned selector;
1471 
1472         /*
1473          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1474          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1475          * (track current state ourselves) ... blink for diagnostics,
1476          * power, "this is the one", etc.  EHCI spec supports this.
1477          */
1478 
1479         spin_lock_irqsave(&fotg210->lock, flags);
1480         switch (typeReq) {
1481         case ClearHubFeature:
1482                 switch (wValue) {
1483                 case C_HUB_LOCAL_POWER:
1484                 case C_HUB_OVER_CURRENT:
1485                         /* no hub-wide feature/status flags */
1486                         break;
1487                 default:
1488                         goto error;
1489                 }
1490                 break;
1491         case ClearPortFeature:
1492                 if (!wIndex || wIndex > ports)
1493                         goto error;
1494                 wIndex--;
1495                 temp = fotg210_readl(fotg210, status_reg);
1496                 temp &= ~PORT_RWC_BITS;
1497 
1498                 /*
1499                  * Even if OWNER is set, so the port is owned by the
1500                  * companion controller, hub_wq needs to be able to clear
1501                  * the port-change status bits (especially
1502                  * USB_PORT_STAT_C_CONNECTION).
1503                  */
1504 
1505                 switch (wValue) {
1506                 case USB_PORT_FEAT_ENABLE:
1507                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1508                         break;
1509                 case USB_PORT_FEAT_C_ENABLE:
1510                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1511                         break;
1512                 case USB_PORT_FEAT_SUSPEND:
1513                         if (temp & PORT_RESET)
1514                                 goto error;
1515                         if (!(temp & PORT_SUSPEND))
1516                                 break;
1517                         if ((temp & PORT_PE) == 0)
1518                                 goto error;
1519 
1520                         /* resume signaling for 20 msec */
1521                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1522                         fotg210->reset_done[wIndex] = jiffies
1523                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1524                         break;
1525                 case USB_PORT_FEAT_C_SUSPEND:
1526                         clear_bit(wIndex, &fotg210->port_c_suspend);
1527                         break;
1528                 case USB_PORT_FEAT_C_CONNECTION:
1529                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1530                         break;
1531                 case USB_PORT_FEAT_C_OVER_CURRENT:
1532                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1533                                         &fotg210->regs->otgisr);
1534                         break;
1535                 case USB_PORT_FEAT_C_RESET:
1536                         /* GetPortStatus clears reset */
1537                         break;
1538                 default:
1539                         goto error;
1540                 }
1541                 fotg210_readl(fotg210, &fotg210->regs->command);
1542                 break;
1543         case GetHubDescriptor:
1544                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1545                                 buf);
1546                 break;
1547         case GetHubStatus:
1548                 /* no hub-wide feature/status flags */
1549                 memset(buf, 0, 4);
1550                 /*cpu_to_le32s ((u32 *) buf); */
1551                 break;
1552         case GetPortStatus:
1553                 if (!wIndex || wIndex > ports)
1554                         goto error;
1555                 wIndex--;
1556                 status = 0;
1557                 temp = fotg210_readl(fotg210, status_reg);
1558 
1559                 /* wPortChange bits */
1560                 if (temp & PORT_CSC)
1561                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1562                 if (temp & PORT_PEC)
1563                         status |= USB_PORT_STAT_C_ENABLE << 16;
1564 
1565                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1566                 if (temp1 & OTGISR_OVC)
1567                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1568 
1569                 /* whoever resumes must GetPortStatus to complete it!! */
1570                 if (temp & PORT_RESUME) {
1571 
1572                         /* Remote Wakeup received? */
1573                         if (!fotg210->reset_done[wIndex]) {
1574                                 /* resume signaling for 20 msec */
1575                                 fotg210->reset_done[wIndex] = jiffies
1576                                                 + msecs_to_jiffies(20);
1577                                 /* check the port again */
1578                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1579                                                 fotg210->reset_done[wIndex]);
1580                         }
1581 
1582                         /* resume completed? */
1583                         else if (time_after_eq(jiffies,
1584                                         fotg210->reset_done[wIndex])) {
1585                                 clear_bit(wIndex, &fotg210->suspended_ports);
1586                                 set_bit(wIndex, &fotg210->port_c_suspend);
1587                                 fotg210->reset_done[wIndex] = 0;
1588 
1589                                 /* stop resume signaling */
1590                                 temp = fotg210_readl(fotg210, status_reg);
1591                                 fotg210_writel(fotg210, temp &
1592                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1593                                                 status_reg);
1594                                 clear_bit(wIndex, &fotg210->resuming_ports);
1595                                 retval = handshake(fotg210, status_reg,
1596                                                 PORT_RESUME, 0, 2000);/* 2ms */
1597                                 if (retval != 0) {
1598                                         fotg210_err(fotg210,
1599                                                         "port %d resume error %d\n",
1600                                                         wIndex + 1, retval);
1601                                         goto error;
1602                                 }
1603                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1604                         }
1605                 }
1606 
1607                 /* whoever resets must GetPortStatus to complete it!! */
1608                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1609                                 fotg210->reset_done[wIndex])) {
1610                         status |= USB_PORT_STAT_C_RESET << 16;
1611                         fotg210->reset_done[wIndex] = 0;
1612                         clear_bit(wIndex, &fotg210->resuming_ports);
1613 
1614                         /* force reset to complete */
1615                         fotg210_writel(fotg210,
1616                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1617                                         status_reg);
1618                         /* REVISIT:  some hardware needs 550+ usec to clear
1619                          * this bit; seems too long to spin routinely...
1620                          */
1621                         retval = handshake(fotg210, status_reg,
1622                                         PORT_RESET, 0, 1000);
1623                         if (retval != 0) {
1624                                 fotg210_err(fotg210, "port %d reset error %d\n",
1625                                                 wIndex + 1, retval);
1626                                 goto error;
1627                         }
1628 
1629                         /* see what we found out */
1630                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1631                                         fotg210_readl(fotg210, status_reg));
1632 
1633                         /* restart schedule */
1634                         fotg210->command |= CMD_RUN;
1635                         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1636                 }
1637 
1638                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1639                         fotg210->reset_done[wIndex] = 0;
1640                         clear_bit(wIndex, &fotg210->resuming_ports);
1641                 }
1642 
1643                 /* transfer dedicated ports to the companion hc */
1644                 if ((temp & PORT_CONNECT) &&
1645                                 test_bit(wIndex, &fotg210->companion_ports)) {
1646                         temp &= ~PORT_RWC_BITS;
1647                         fotg210_writel(fotg210, temp, status_reg);
1648                         fotg210_dbg(fotg210, "port %d --> companion\n",
1649                                         wIndex + 1);
1650                         temp = fotg210_readl(fotg210, status_reg);
1651                 }
1652 
1653                 /*
1654                  * Even if OWNER is set, there's no harm letting hub_wq
1655                  * see the wPortStatus values (they should all be 0 except
1656                  * for PORT_POWER anyway).
1657                  */
1658 
1659                 if (temp & PORT_CONNECT) {
1660                         status |= USB_PORT_STAT_CONNECTION;
1661                         status |= fotg210_port_speed(fotg210, temp);
1662                 }
1663                 if (temp & PORT_PE)
1664                         status |= USB_PORT_STAT_ENABLE;
1665 
1666                 /* maybe the port was unsuspended without our knowledge */
1667                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1668                         status |= USB_PORT_STAT_SUSPEND;
1669                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1670                         clear_bit(wIndex, &fotg210->suspended_ports);
1671                         clear_bit(wIndex, &fotg210->resuming_ports);
1672                         fotg210->reset_done[wIndex] = 0;
1673                         if (temp & PORT_PE)
1674                                 set_bit(wIndex, &fotg210->port_c_suspend);
1675                 }
1676 
1677                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1678                 if (temp1 & OTGISR_OVC)
1679                         status |= USB_PORT_STAT_OVERCURRENT;
1680                 if (temp & PORT_RESET)
1681                         status |= USB_PORT_STAT_RESET;
1682                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1683                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1684 
1685                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1686                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1687                 put_unaligned_le32(status, buf);
1688                 break;
1689         case SetHubFeature:
1690                 switch (wValue) {
1691                 case C_HUB_LOCAL_POWER:
1692                 case C_HUB_OVER_CURRENT:
1693                         /* no hub-wide feature/status flags */
1694                         break;
1695                 default:
1696                         goto error;
1697                 }
1698                 break;
1699         case SetPortFeature:
1700                 selector = wIndex >> 8;
1701                 wIndex &= 0xff;
1702 
1703                 if (!wIndex || wIndex > ports)
1704                         goto error;
1705                 wIndex--;
1706                 temp = fotg210_readl(fotg210, status_reg);
1707                 temp &= ~PORT_RWC_BITS;
1708                 switch (wValue) {
1709                 case USB_PORT_FEAT_SUSPEND:
1710                         if ((temp & PORT_PE) == 0
1711                                         || (temp & PORT_RESET) != 0)
1712                                 goto error;
1713 
1714                         /* After above check the port must be connected.
1715                          * Set appropriate bit thus could put phy into low power
1716                          * mode if we have hostpc feature
1717                          */
1718                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1719                                         status_reg);
1720                         set_bit(wIndex, &fotg210->suspended_ports);
1721                         break;
1722                 case USB_PORT_FEAT_RESET:
1723                         if (temp & PORT_RESUME)
1724                                 goto error;
1725                         /* line status bits may report this as low speed,
1726                          * which can be fine if this root hub has a
1727                          * transaction translator built in.
1728                          */
1729                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1730                         temp |= PORT_RESET;
1731                         temp &= ~PORT_PE;
1732 
1733                         /*
1734                          * caller must wait, then call GetPortStatus
1735                          * usb 2.0 spec says 50 ms resets on root
1736                          */
1737                         fotg210->reset_done[wIndex] = jiffies
1738                                         + msecs_to_jiffies(50);
1739                         fotg210_writel(fotg210, temp, status_reg);
1740                         break;
1741 
1742                 /* For downstream facing ports (these):  one hub port is put
1743                  * into test mode according to USB2 11.24.2.13, then the hub
1744                  * must be reset (which for root hub now means rmmod+modprobe,
1745                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1746                  * about the EHCI-specific stuff.
1747                  */
1748                 case USB_PORT_FEAT_TEST:
1749                         if (!selector || selector > 5)
1750                                 goto error;
1751                         spin_unlock_irqrestore(&fotg210->lock, flags);
1752                         fotg210_quiesce(fotg210);
1753                         spin_lock_irqsave(&fotg210->lock, flags);
1754 
1755                         /* Put all enabled ports into suspend */
1756                         temp = fotg210_readl(fotg210, status_reg) &
1757                                 ~PORT_RWC_BITS;
1758                         if (temp & PORT_PE)
1759                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1760                                                 status_reg);
1761 
1762                         spin_unlock_irqrestore(&fotg210->lock, flags);
1763                         fotg210_halt(fotg210);
1764                         spin_lock_irqsave(&fotg210->lock, flags);
1765 
1766                         temp = fotg210_readl(fotg210, status_reg);
1767                         temp |= selector << 16;
1768                         fotg210_writel(fotg210, temp, status_reg);
1769                         break;
1770 
1771                 default:
1772                         goto error;
1773                 }
1774                 fotg210_readl(fotg210, &fotg210->regs->command);
1775                 break;
1776 
1777         default:
1778 error:
1779                 /* "stall" on error */
1780                 retval = -EPIPE;
1781         }
1782         spin_unlock_irqrestore(&fotg210->lock, flags);
1783         return retval;
1784 }
1785 
1786 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1787                 int portnum)
1788 {
1789         return;
1790 }
1791 
1792 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1793                 int portnum)
1794 {
1795         return 0;
1796 }
1797 
1798 /* There's basically three types of memory:
1799  *      - data used only by the HCD ... kmalloc is fine
1800  *      - async and periodic schedules, shared by HC and HCD ... these
1801  *        need to use dma_pool or dma_alloc_coherent
1802  *      - driver buffers, read/written by HC ... single shot DMA mapped
1803  *
1804  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1805  * No memory seen by this driver is pageable.
1806  */
1807 
1808 /* Allocate the key transfer structures from the previously allocated pool */
1809 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1810                 struct fotg210_qtd *qtd, dma_addr_t dma)
1811 {
1812         memset(qtd, 0, sizeof(*qtd));
1813         qtd->qtd_dma = dma;
1814         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1815         qtd->hw_next = FOTG210_LIST_END(fotg210);
1816         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1817         INIT_LIST_HEAD(&qtd->qtd_list);
1818 }
1819 
1820 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1821                 gfp_t flags)
1822 {
1823         struct fotg210_qtd *qtd;
1824         dma_addr_t dma;
1825 
1826         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1827         if (qtd != NULL)
1828                 fotg210_qtd_init(fotg210, qtd, dma);
1829 
1830         return qtd;
1831 }
1832 
1833 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1834                 struct fotg210_qtd *qtd)
1835 {
1836         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1837 }
1838 
1839 
1840 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1841 {
1842         /* clean qtds first, and know this is not linked */
1843         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1844                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1845                 BUG();
1846         }
1847         if (qh->dummy)
1848                 fotg210_qtd_free(fotg210, qh->dummy);
1849         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1850         kfree(qh);
1851 }
1852 
1853 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1854                 gfp_t flags)
1855 {
1856         struct fotg210_qh *qh;
1857         dma_addr_t dma;
1858 
1859         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1860         if (!qh)
1861                 goto done;
1862         qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1863         if (!qh->hw)
1864                 goto fail;
1865         qh->qh_dma = dma;
1866         INIT_LIST_HEAD(&qh->qtd_list);
1867 
1868         /* dummy td enables safe urb queuing */
1869         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1870         if (qh->dummy == NULL) {
1871                 fotg210_dbg(fotg210, "no dummy td\n");
1872                 goto fail1;
1873         }
1874 done:
1875         return qh;
1876 fail1:
1877         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1878 fail:
1879         kfree(qh);
1880         return NULL;
1881 }
1882 
1883 /* The queue heads and transfer descriptors are managed from pools tied
1884  * to each of the "per device" structures.
1885  * This is the initialisation and cleanup code.
1886  */
1887 
1888 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1889 {
1890         if (fotg210->async)
1891                 qh_destroy(fotg210, fotg210->async);
1892         fotg210->async = NULL;
1893 
1894         if (fotg210->dummy)
1895                 qh_destroy(fotg210, fotg210->dummy);
1896         fotg210->dummy = NULL;
1897 
1898         /* DMA consistent memory and pools */
1899         dma_pool_destroy(fotg210->qtd_pool);
1900         fotg210->qtd_pool = NULL;
1901 
1902         dma_pool_destroy(fotg210->qh_pool);
1903         fotg210->qh_pool = NULL;
1904 
1905         dma_pool_destroy(fotg210->itd_pool);
1906         fotg210->itd_pool = NULL;
1907 
1908         if (fotg210->periodic)
1909                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1910                                 fotg210->periodic_size * sizeof(u32),
1911                                 fotg210->periodic, fotg210->periodic_dma);
1912         fotg210->periodic = NULL;
1913 
1914         /* shadow periodic table */
1915         kfree(fotg210->pshadow);
1916         fotg210->pshadow = NULL;
1917 }
1918 
1919 /* remember to add cleanup code (above) if you add anything here */
1920 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1921 {
1922         int i;
1923 
1924         /* QTDs for control/bulk/intr transfers */
1925         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1926                         fotg210_to_hcd(fotg210)->self.controller,
1927                         sizeof(struct fotg210_qtd),
1928                         32 /* byte alignment (for hw parts) */,
1929                         4096 /* can't cross 4K */);
1930         if (!fotg210->qtd_pool)
1931                 goto fail;
1932 
1933         /* QHs for control/bulk/intr transfers */
1934         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1935                         fotg210_to_hcd(fotg210)->self.controller,
1936                         sizeof(struct fotg210_qh_hw),
1937                         32 /* byte alignment (for hw parts) */,
1938                         4096 /* can't cross 4K */);
1939         if (!fotg210->qh_pool)
1940                 goto fail;
1941 
1942         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1943         if (!fotg210->async)
1944                 goto fail;
1945 
1946         /* ITD for high speed ISO transfers */
1947         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1948                         fotg210_to_hcd(fotg210)->self.controller,
1949                         sizeof(struct fotg210_itd),
1950                         64 /* byte alignment (for hw parts) */,
1951                         4096 /* can't cross 4K */);
1952         if (!fotg210->itd_pool)
1953                 goto fail;
1954 
1955         /* Hardware periodic table */
1956         fotg210->periodic = (__le32 *)
1957                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1958                                 fotg210->periodic_size * sizeof(__le32),
1959                                 &fotg210->periodic_dma, 0);
1960         if (fotg210->periodic == NULL)
1961                 goto fail;
1962 
1963         for (i = 0; i < fotg210->periodic_size; i++)
1964                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1965 
1966         /* software shadow of hardware table */
1967         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1968                         flags);
1969         if (fotg210->pshadow != NULL)
1970                 return 0;
1971 
1972 fail:
1973         fotg210_dbg(fotg210, "couldn't init memory\n");
1974         fotg210_mem_cleanup(fotg210);
1975         return -ENOMEM;
1976 }
1977 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1978  *
1979  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1980  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1981  * buffers needed for the larger number).  We use one QH per endpoint, queue
1982  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1983  *
1984  * ISO traffic uses "ISO TD" (itd) records, and (along with
1985  * interrupts) needs careful scheduling.  Performance improvements can be
1986  * an ongoing challenge.  That's in "ehci-sched.c".
1987  *
1988  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1989  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1990  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1991  * buffer low/full speed data so the host collects it at high speed.
1992  */
1993 
1994 /* fill a qtd, returning how much of the buffer we were able to queue up */
1995 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1996                 dma_addr_t buf, size_t len, int token, int maxpacket)
1997 {
1998         int i, count;
1999         u64 addr = buf;
2000 
2001         /* one buffer entry per 4K ... first might be short or unaligned */
2002         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2003         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2004         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2005         if (likely(len < count))                /* ... iff needed */
2006                 count = len;
2007         else {
2008                 buf +=  0x1000;
2009                 buf &= ~0x0fff;
2010 
2011                 /* per-qtd limit: from 16K to 20K (best alignment) */
2012                 for (i = 1; count < len && i < 5; i++) {
2013                         addr = buf;
2014                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2015                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2016                                         (u32)(addr >> 32));
2017                         buf += 0x1000;
2018                         if ((count + 0x1000) < len)
2019                                 count += 0x1000;
2020                         else
2021                                 count = len;
2022                 }
2023 
2024                 /* short packets may only terminate transfers */
2025                 if (count != len)
2026                         count -= (count % maxpacket);
2027         }
2028         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2029         qtd->length = count;
2030 
2031         return count;
2032 }
2033 
2034 static inline void qh_update(struct fotg210_hcd *fotg210,
2035                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2036 {
2037         struct fotg210_qh_hw *hw = qh->hw;
2038 
2039         /* writes to an active overlay are unsafe */
2040         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2041 
2042         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2043         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2044 
2045         /* Except for control endpoints, we make hardware maintain data
2046          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2047          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2048          * ever clear it.
2049          */
2050         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2051                 unsigned is_out, epnum;
2052 
2053                 is_out = qh->is_out;
2054                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2055                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2056                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2057                         usb_settoggle(qh->dev, epnum, is_out, 1);
2058                 }
2059         }
2060 
2061         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2062 }
2063 
2064 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2065  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2066  * recovery (including urb dequeue) would need software changes to a QH...
2067  */
2068 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2069 {
2070         struct fotg210_qtd *qtd;
2071 
2072         if (list_empty(&qh->qtd_list))
2073                 qtd = qh->dummy;
2074         else {
2075                 qtd = list_entry(qh->qtd_list.next,
2076                                 struct fotg210_qtd, qtd_list);
2077                 /*
2078                  * first qtd may already be partially processed.
2079                  * If we come here during unlink, the QH overlay region
2080                  * might have reference to the just unlinked qtd. The
2081                  * qtd is updated in qh_completions(). Update the QH
2082                  * overlay here.
2083                  */
2084                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2085                         qh->hw->hw_qtd_next = qtd->hw_next;
2086                         qtd = NULL;
2087                 }
2088         }
2089 
2090         if (qtd)
2091                 qh_update(fotg210, qh, qtd);
2092 }
2093 
2094 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2095 
2096 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2097                 struct usb_host_endpoint *ep)
2098 {
2099         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2100         struct fotg210_qh *qh = ep->hcpriv;
2101         unsigned long flags;
2102 
2103         spin_lock_irqsave(&fotg210->lock, flags);
2104         qh->clearing_tt = 0;
2105         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2106                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2107                 qh_link_async(fotg210, qh);
2108         spin_unlock_irqrestore(&fotg210->lock, flags);
2109 }
2110 
2111 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2112                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2113 {
2114 
2115         /* If an async split transaction gets an error or is unlinked,
2116          * the TT buffer may be left in an indeterminate state.  We
2117          * have to clear the TT buffer.
2118          *
2119          * Note: this routine is never called for Isochronous transfers.
2120          */
2121         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2122                 struct usb_device *tt = urb->dev->tt->hub;
2123 
2124                 dev_dbg(&tt->dev,
2125                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2126                                 urb->dev->ttport, urb->dev->devnum,
2127                                 usb_pipeendpoint(urb->pipe), token);
2128 
2129                 if (urb->dev->tt->hub !=
2130                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2131                         if (usb_hub_clear_tt_buffer(urb) == 0)
2132                                 qh->clearing_tt = 1;
2133                 }
2134         }
2135 }
2136 
2137 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2138                 size_t length, u32 token)
2139 {
2140         int status = -EINPROGRESS;
2141 
2142         /* count IN/OUT bytes, not SETUP (even short packets) */
2143         if (likely(QTD_PID(token) != 2))
2144                 urb->actual_length += length - QTD_LENGTH(token);
2145 
2146         /* don't modify error codes */
2147         if (unlikely(urb->unlinked))
2148                 return status;
2149 
2150         /* force cleanup after short read; not always an error */
2151         if (unlikely(IS_SHORT_READ(token)))
2152                 status = -EREMOTEIO;
2153 
2154         /* serious "can't proceed" faults reported by the hardware */
2155         if (token & QTD_STS_HALT) {
2156                 if (token & QTD_STS_BABBLE) {
2157                         /* FIXME "must" disable babbling device's port too */
2158                         status = -EOVERFLOW;
2159                 /* CERR nonzero + halt --> stall */
2160                 } else if (QTD_CERR(token)) {
2161                         status = -EPIPE;
2162 
2163                 /* In theory, more than one of the following bits can be set
2164                  * since they are sticky and the transaction is retried.
2165                  * Which to test first is rather arbitrary.
2166                  */
2167                 } else if (token & QTD_STS_MMF) {
2168                         /* fs/ls interrupt xfer missed the complete-split */
2169                         status = -EPROTO;
2170                 } else if (token & QTD_STS_DBE) {
2171                         status = (QTD_PID(token) == 1) /* IN ? */
2172                                 ? -ENOSR  /* hc couldn't read data */
2173                                 : -ECOMM; /* hc couldn't write data */
2174                 } else if (token & QTD_STS_XACT) {
2175                         /* timeout, bad CRC, wrong PID, etc */
2176                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2177                                         urb->dev->devpath,
2178                                         usb_pipeendpoint(urb->pipe),
2179                                         usb_pipein(urb->pipe) ? "in" : "out");
2180                         status = -EPROTO;
2181                 } else {        /* unknown */
2182                         status = -EPROTO;
2183                 }
2184 
2185                 fotg210_dbg(fotg210,
2186                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2187                                 usb_pipedevice(urb->pipe),
2188                                 usb_pipeendpoint(urb->pipe),
2189                                 usb_pipein(urb->pipe) ? "in" : "out",
2190                                 token, status);
2191         }
2192 
2193         return status;
2194 }
2195 
2196 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2197                 int status)
2198 __releases(fotg210->lock)
2199 __acquires(fotg210->lock)
2200 {
2201         if (likely(urb->hcpriv != NULL)) {
2202                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2203 
2204                 /* S-mask in a QH means it's an interrupt urb */
2205                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2206 
2207                         /* ... update hc-wide periodic stats (for usbfs) */
2208                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2209                 }
2210         }
2211 
2212         if (unlikely(urb->unlinked)) {
2213                 INCR(fotg210->stats.unlink);
2214         } else {
2215                 /* report non-error and short read status as zero */
2216                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2217                         status = 0;
2218                 INCR(fotg210->stats.complete);
2219         }
2220 
2221 #ifdef FOTG210_URB_TRACE
2222         fotg210_dbg(fotg210,
2223                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2224                         __func__, urb->dev->devpath, urb,
2225                         usb_pipeendpoint(urb->pipe),
2226                         usb_pipein(urb->pipe) ? "in" : "out",
2227                         status,
2228                         urb->actual_length, urb->transfer_buffer_length);
2229 #endif
2230 
2231         /* complete() can reenter this HCD */
2232         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2233         spin_unlock(&fotg210->lock);
2234         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2235         spin_lock(&fotg210->lock);
2236 }
2237 
2238 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2239 
2240 /* Process and free completed qtds for a qh, returning URBs to drivers.
2241  * Chases up to qh->hw_current.  Returns number of completions called,
2242  * indicating how much "real" work we did.
2243  */
2244 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2245                 struct fotg210_qh *qh)
2246 {
2247         struct fotg210_qtd *last, *end = qh->dummy;
2248         struct fotg210_qtd *qtd, *tmp;
2249         int last_status;
2250         int stopped;
2251         unsigned count = 0;
2252         u8 state;
2253         struct fotg210_qh_hw *hw = qh->hw;
2254 
2255         if (unlikely(list_empty(&qh->qtd_list)))
2256                 return count;
2257 
2258         /* completions (or tasks on other cpus) must never clobber HALT
2259          * till we've gone through and cleaned everything up, even when
2260          * they add urbs to this qh's queue or mark them for unlinking.
2261          *
2262          * NOTE:  unlinking expects to be done in queue order.
2263          *
2264          * It's a bug for qh->qh_state to be anything other than
2265          * QH_STATE_IDLE, unless our caller is scan_async() or
2266          * scan_intr().
2267          */
2268         state = qh->qh_state;
2269         qh->qh_state = QH_STATE_COMPLETING;
2270         stopped = (state == QH_STATE_IDLE);
2271 
2272 rescan:
2273         last = NULL;
2274         last_status = -EINPROGRESS;
2275         qh->needs_rescan = 0;
2276 
2277         /* remove de-activated QTDs from front of queue.
2278          * after faults (including short reads), cleanup this urb
2279          * then let the queue advance.
2280          * if queue is stopped, handles unlinks.
2281          */
2282         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2283                 struct urb *urb;
2284                 u32 token = 0;
2285 
2286                 urb = qtd->urb;
2287 
2288                 /* clean up any state from previous QTD ...*/
2289                 if (last) {
2290                         if (likely(last->urb != urb)) {
2291                                 fotg210_urb_done(fotg210, last->urb,
2292                                                 last_status);
2293                                 count++;
2294                                 last_status = -EINPROGRESS;
2295                         }
2296                         fotg210_qtd_free(fotg210, last);
2297                         last = NULL;
2298                 }
2299 
2300                 /* ignore urbs submitted during completions we reported */
2301                 if (qtd == end)
2302                         break;
2303 
2304                 /* hardware copies qtd out of qh overlay */
2305                 rmb();
2306                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2307 
2308                 /* always clean up qtds the hc de-activated */
2309 retry_xacterr:
2310                 if ((token & QTD_STS_ACTIVE) == 0) {
2311 
2312                         /* Report Data Buffer Error: non-fatal but useful */
2313                         if (token & QTD_STS_DBE)
2314                                 fotg210_dbg(fotg210,
2315                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2316                                         urb, usb_endpoint_num(&urb->ep->desc),
2317                                         usb_endpoint_dir_in(&urb->ep->desc)
2318                                                 ? "in" : "out",
2319                                         urb->transfer_buffer_length, qtd, qh);
2320 
2321                         /* on STALL, error, and short reads this urb must
2322                          * complete and all its qtds must be recycled.
2323                          */
2324                         if ((token & QTD_STS_HALT) != 0) {
2325 
2326                                 /* retry transaction errors until we
2327                                  * reach the software xacterr limit
2328                                  */
2329                                 if ((token & QTD_STS_XACT) &&
2330                                                 QTD_CERR(token) == 0 &&
2331                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2332                                                 !urb->unlinked) {
2333                                         fotg210_dbg(fotg210,
2334                                                 "detected XactErr len %zu/%zu retry %d\n",
2335                                                 qtd->length - QTD_LENGTH(token),
2336                                                 qtd->length,
2337                                                 qh->xacterrs);
2338 
2339                                         /* reset the token in the qtd and the
2340                                          * qh overlay (which still contains
2341                                          * the qtd) so that we pick up from
2342                                          * where we left off
2343                                          */
2344                                         token &= ~QTD_STS_HALT;
2345                                         token |= QTD_STS_ACTIVE |
2346                                                  (FOTG210_TUNE_CERR << 10);
2347                                         qtd->hw_token = cpu_to_hc32(fotg210,
2348                                                         token);
2349                                         wmb();
2350                                         hw->hw_token = cpu_to_hc32(fotg210,
2351                                                         token);
2352                                         goto retry_xacterr;
2353                                 }
2354                                 stopped = 1;
2355 
2356                         /* magic dummy for some short reads; qh won't advance.
2357                          * that silicon quirk can kick in with this dummy too.
2358                          *
2359                          * other short reads won't stop the queue, including
2360                          * control transfers (status stage handles that) or
2361                          * most other single-qtd reads ... the queue stops if
2362                          * URB_SHORT_NOT_OK was set so the driver submitting
2363                          * the urbs could clean it up.
2364                          */
2365                         } else if (IS_SHORT_READ(token) &&
2366                                         !(qtd->hw_alt_next &
2367                                         FOTG210_LIST_END(fotg210))) {
2368                                 stopped = 1;
2369                         }
2370 
2371                 /* stop scanning when we reach qtds the hc is using */
2372                 } else if (likely(!stopped
2373                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2374                         break;
2375 
2376                 /* scan the whole queue for unlinks whenever it stops */
2377                 } else {
2378                         stopped = 1;
2379 
2380                         /* cancel everything if we halt, suspend, etc */
2381                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2382                                 last_status = -ESHUTDOWN;
2383 
2384                         /* this qtd is active; skip it unless a previous qtd
2385                          * for its urb faulted, or its urb was canceled.
2386                          */
2387                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2388                                 continue;
2389 
2390                         /* qh unlinked; token in overlay may be most current */
2391                         if (state == QH_STATE_IDLE &&
2392                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2393                                         == hw->hw_current) {
2394                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2395 
2396                                 /* An unlink may leave an incomplete
2397                                  * async transaction in the TT buffer.
2398                                  * We have to clear it.
2399                                  */
2400                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2401                                                 token);
2402                         }
2403                 }
2404 
2405                 /* unless we already know the urb's status, collect qtd status
2406                  * and update count of bytes transferred.  in common short read
2407                  * cases with only one data qtd (including control transfers),
2408                  * queue processing won't halt.  but with two or more qtds (for
2409                  * example, with a 32 KB transfer), when the first qtd gets a
2410                  * short read the second must be removed by hand.
2411                  */
2412                 if (last_status == -EINPROGRESS) {
2413                         last_status = qtd_copy_status(fotg210, urb,
2414                                         qtd->length, token);
2415                         if (last_status == -EREMOTEIO &&
2416                                         (qtd->hw_alt_next &
2417                                         FOTG210_LIST_END(fotg210)))
2418                                 last_status = -EINPROGRESS;
2419 
2420                         /* As part of low/full-speed endpoint-halt processing
2421                          * we must clear the TT buffer (11.17.5).
2422                          */
2423                         if (unlikely(last_status != -EINPROGRESS &&
2424                                         last_status != -EREMOTEIO)) {
2425                                 /* The TT's in some hubs malfunction when they
2426                                  * receive this request following a STALL (they
2427                                  * stop sending isochronous packets).  Since a
2428                                  * STALL can't leave the TT buffer in a busy
2429                                  * state (if you believe Figures 11-48 - 11-51
2430                                  * in the USB 2.0 spec), we won't clear the TT
2431                                  * buffer in this case.  Strictly speaking this
2432                                  * is a violation of the spec.
2433                                  */
2434                                 if (last_status != -EPIPE)
2435                                         fotg210_clear_tt_buffer(fotg210, qh,
2436                                                         urb, token);
2437                         }
2438                 }
2439 
2440                 /* if we're removing something not at the queue head,
2441                  * patch the hardware queue pointer.
2442                  */
2443                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2444                         last = list_entry(qtd->qtd_list.prev,
2445                                         struct fotg210_qtd, qtd_list);
2446                         last->hw_next = qtd->hw_next;
2447                 }
2448 
2449                 /* remove qtd; it's recycled after possible urb completion */
2450                 list_del(&qtd->qtd_list);
2451                 last = qtd;
2452 
2453                 /* reinit the xacterr counter for the next qtd */
2454                 qh->xacterrs = 0;
2455         }
2456 
2457         /* last urb's completion might still need calling */
2458         if (likely(last != NULL)) {
2459                 fotg210_urb_done(fotg210, last->urb, last_status);
2460                 count++;
2461                 fotg210_qtd_free(fotg210, last);
2462         }
2463 
2464         /* Do we need to rescan for URBs dequeued during a giveback? */
2465         if (unlikely(qh->needs_rescan)) {
2466                 /* If the QH is already unlinked, do the rescan now. */
2467                 if (state == QH_STATE_IDLE)
2468                         goto rescan;
2469 
2470                 /* Otherwise we have to wait until the QH is fully unlinked.
2471                  * Our caller will start an unlink if qh->needs_rescan is
2472                  * set.  But if an unlink has already started, nothing needs
2473                  * to be done.
2474                  */
2475                 if (state != QH_STATE_LINKED)
2476                         qh->needs_rescan = 0;
2477         }
2478 
2479         /* restore original state; caller must unlink or relink */
2480         qh->qh_state = state;
2481 
2482         /* be sure the hardware's done with the qh before refreshing
2483          * it after fault cleanup, or recovering from silicon wrongly
2484          * overlaying the dummy qtd (which reduces DMA chatter).
2485          */
2486         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2487                 switch (state) {
2488                 case QH_STATE_IDLE:
2489                         qh_refresh(fotg210, qh);
2490                         break;
2491                 case QH_STATE_LINKED:
2492                         /* We won't refresh a QH that's linked (after the HC
2493                          * stopped the queue).  That avoids a race:
2494                          *  - HC reads first part of QH;
2495                          *  - CPU updates that first part and the token;
2496                          *  - HC reads rest of that QH, including token
2497                          * Result:  HC gets an inconsistent image, and then
2498                          * DMAs to/from the wrong memory (corrupting it).
2499                          *
2500                          * That should be rare for interrupt transfers,
2501                          * except maybe high bandwidth ...
2502                          */
2503 
2504                         /* Tell the caller to start an unlink */
2505                         qh->needs_rescan = 1;
2506                         break;
2507                 /* otherwise, unlink already started */
2508                 }
2509         }
2510 
2511         return count;
2512 }
2513 
2514 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2515 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2516 /* ... and packet size, for any kind of endpoint descriptor */
2517 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2518 
2519 /* reverse of qh_urb_transaction:  free a list of TDs.
2520  * used for cleanup after errors, before HC sees an URB's TDs.
2521  */
2522 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2523                 struct list_head *head)
2524 {
2525         struct fotg210_qtd *qtd, *temp;
2526 
2527         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2528                 list_del(&qtd->qtd_list);
2529                 fotg210_qtd_free(fotg210, qtd);
2530         }
2531 }
2532 
2533 /* create a list of filled qtds for this URB; won't link into qh.
2534  */
2535 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2536                 struct urb *urb, struct list_head *head, gfp_t flags)
2537 {
2538         struct fotg210_qtd *qtd, *qtd_prev;
2539         dma_addr_t buf;
2540         int len, this_sg_len, maxpacket;
2541         int is_input;
2542         u32 token;
2543         int i;
2544         struct scatterlist *sg;
2545 
2546         /*
2547          * URBs map to sequences of QTDs:  one logical transaction
2548          */
2549         qtd = fotg210_qtd_alloc(fotg210, flags);
2550         if (unlikely(!qtd))
2551                 return NULL;
2552         list_add_tail(&qtd->qtd_list, head);
2553         qtd->urb = urb;
2554 
2555         token = QTD_STS_ACTIVE;
2556         token |= (FOTG210_TUNE_CERR << 10);
2557         /* for split transactions, SplitXState initialized to zero */
2558 
2559         len = urb->transfer_buffer_length;
2560         is_input = usb_pipein(urb->pipe);
2561         if (usb_pipecontrol(urb->pipe)) {
2562                 /* SETUP pid */
2563                 qtd_fill(fotg210, qtd, urb->setup_dma,
2564                                 sizeof(struct usb_ctrlrequest),
2565                                 token | (2 /* "setup" */ << 8), 8);
2566 
2567                 /* ... and always at least one more pid */
2568                 token ^= QTD_TOGGLE;
2569                 qtd_prev = qtd;
2570                 qtd = fotg210_qtd_alloc(fotg210, flags);
2571                 if (unlikely(!qtd))
2572                         goto cleanup;
2573                 qtd->urb = urb;
2574                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2575                 list_add_tail(&qtd->qtd_list, head);
2576 
2577                 /* for zero length DATA stages, STATUS is always IN */
2578                 if (len == 0)
2579                         token |= (1 /* "in" */ << 8);
2580         }
2581 
2582         /*
2583          * data transfer stage:  buffer setup
2584          */
2585         i = urb->num_mapped_sgs;
2586         if (len > 0 && i > 0) {
2587                 sg = urb->sg;
2588                 buf = sg_dma_address(sg);
2589 
2590                 /* urb->transfer_buffer_length may be smaller than the
2591                  * size of the scatterlist (or vice versa)
2592                  */
2593                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2594         } else {
2595                 sg = NULL;
2596                 buf = urb->transfer_dma;
2597                 this_sg_len = len;
2598         }
2599 
2600         if (is_input)
2601                 token |= (1 /* "in" */ << 8);
2602         /* else it's already initted to "out" pid (0 << 8) */
2603 
2604         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2605 
2606         /*
2607          * buffer gets wrapped in one or more qtds;
2608          * last one may be "short" (including zero len)
2609          * and may serve as a control status ack
2610          */
2611         for (;;) {
2612                 int this_qtd_len;
2613 
2614                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2615                                 maxpacket);
2616                 this_sg_len -= this_qtd_len;
2617                 len -= this_qtd_len;
2618                 buf += this_qtd_len;
2619 
2620                 /*
2621                  * short reads advance to a "magic" dummy instead of the next
2622                  * qtd ... that forces the queue to stop, for manual cleanup.
2623                  * (this will usually be overridden later.)
2624                  */
2625                 if (is_input)
2626                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2627 
2628                 /* qh makes control packets use qtd toggle; maybe switch it */
2629                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2630                         token ^= QTD_TOGGLE;
2631 
2632                 if (likely(this_sg_len <= 0)) {
2633                         if (--i <= 0 || len <= 0)
2634                                 break;
2635                         sg = sg_next(sg);
2636                         buf = sg_dma_address(sg);
2637                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2638                 }
2639 
2640                 qtd_prev = qtd;
2641                 qtd = fotg210_qtd_alloc(fotg210, flags);
2642                 if (unlikely(!qtd))
2643                         goto cleanup;
2644                 qtd->urb = urb;
2645                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2646                 list_add_tail(&qtd->qtd_list, head);
2647         }
2648 
2649         /*
2650          * unless the caller requires manual cleanup after short reads,
2651          * have the alt_next mechanism keep the queue running after the
2652          * last data qtd (the only one, for control and most other cases).
2653          */
2654         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2655                         usb_pipecontrol(urb->pipe)))
2656                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2657 
2658         /*
2659          * control requests may need a terminating data "status" ack;
2660          * other OUT ones may need a terminating short packet
2661          * (zero length).
2662          */
2663         if (likely(urb->transfer_buffer_length != 0)) {
2664                 int one_more = 0;
2665 
2666                 if (usb_pipecontrol(urb->pipe)) {
2667                         one_more = 1;
2668                         token ^= 0x0100;        /* "in" <--> "out"  */
2669                         token |= QTD_TOGGLE;    /* force DATA1 */
2670                 } else if (usb_pipeout(urb->pipe)
2671                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2672                                 && !(urb->transfer_buffer_length % maxpacket)) {
2673                         one_more = 1;
2674                 }
2675                 if (one_more) {
2676                         qtd_prev = qtd;
2677                         qtd = fotg210_qtd_alloc(fotg210, flags);
2678                         if (unlikely(!qtd))
2679                                 goto cleanup;
2680                         qtd->urb = urb;
2681                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2682                         list_add_tail(&qtd->qtd_list, head);
2683 
2684                         /* never any data in such packets */
2685                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2686                 }
2687         }
2688 
2689         /* by default, enable interrupt on urb completion */
2690         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2691                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2692         return head;
2693 
2694 cleanup:
2695         qtd_list_free(fotg210, urb, head);
2696         return NULL;
2697 }
2698 
2699 /* Would be best to create all qh's from config descriptors,
2700  * when each interface/altsetting is established.  Unlink
2701  * any previous qh and cancel its urbs first; endpoints are
2702  * implicitly reset then (data toggle too).
2703  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2704 */
2705 
2706 
2707 /* Each QH holds a qtd list; a QH is used for everything except iso.
2708  *
2709  * For interrupt urbs, the scheduler must set the microframe scheduling
2710  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2711  * just one microframe in the s-mask.  For split interrupt transactions
2712  * there are additional complications: c-mask, maybe FSTNs.
2713  */
2714 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2715                 gfp_t flags)
2716 {
2717         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2718         u32 info1 = 0, info2 = 0;
2719         int is_input, type;
2720         int maxp = 0;
2721         struct usb_tt *tt = urb->dev->tt;
2722         struct fotg210_qh_hw *hw;
2723 
2724         if (!qh)
2725                 return qh;
2726 
2727         /*
2728          * init endpoint/device data for this QH
2729          */
2730         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2731         info1 |= usb_pipedevice(urb->pipe) << 0;
2732 
2733         is_input = usb_pipein(urb->pipe);
2734         type = usb_pipetype(urb->pipe);
2735         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2736 
2737         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2738          * acts like up to 3KB, but is built from smaller packets.
2739          */
2740         if (max_packet(maxp) > 1024) {
2741                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2742                                 max_packet(maxp));
2743                 goto done;
2744         }
2745 
2746         /* Compute interrupt scheduling parameters just once, and save.
2747          * - allowing for high bandwidth, how many nsec/uframe are used?
2748          * - split transactions need a second CSPLIT uframe; same question
2749          * - splits also need a schedule gap (for full/low speed I/O)
2750          * - qh has a polling interval
2751          *
2752          * For control/bulk requests, the HC or TT handles these.
2753          */
2754         if (type == PIPE_INTERRUPT) {
2755                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2756                                 is_input, 0,
2757                                 hb_mult(maxp) * max_packet(maxp)));
2758                 qh->start = NO_FRAME;
2759 
2760                 if (urb->dev->speed == USB_SPEED_HIGH) {
2761                         qh->c_usecs = 0;
2762                         qh->gap_uf = 0;
2763 
2764                         qh->period = urb->interval >> 3;
2765                         if (qh->period == 0 && urb->interval != 1) {
2766                                 /* NOTE interval 2 or 4 uframes could work.
2767                                  * But interval 1 scheduling is simpler, and
2768                                  * includes high bandwidth.
2769                                  */
2770                                 urb->interval = 1;
2771                         } else if (qh->period > fotg210->periodic_size) {
2772                                 qh->period = fotg210->periodic_size;
2773                                 urb->interval = qh->period << 3;
2774                         }
2775                 } else {
2776                         int think_time;
2777 
2778                         /* gap is f(FS/LS transfer times) */
2779                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2780                                         is_input, 0, maxp) / (125 * 1000);
2781 
2782                         /* FIXME this just approximates SPLIT/CSPLIT times */
2783                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2784                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2785                                 qh->usecs = HS_USECS(1);
2786                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2787                                 qh->usecs += HS_USECS(1);
2788                                 qh->c_usecs = HS_USECS(0);
2789                         }
2790 
2791                         think_time = tt ? tt->think_time : 0;
2792                         qh->tt_usecs = NS_TO_US(think_time +
2793                                         usb_calc_bus_time(urb->dev->speed,
2794                                         is_input, 0, max_packet(maxp)));
2795                         qh->period = urb->interval;
2796                         if (qh->period > fotg210->periodic_size) {
2797                                 qh->period = fotg210->periodic_size;
2798                                 urb->interval = qh->period;
2799                         }
2800                 }
2801         }
2802 
2803         /* support for tt scheduling, and access to toggles */
2804         qh->dev = urb->dev;
2805 
2806         /* using TT? */
2807         switch (urb->dev->speed) {
2808         case USB_SPEED_LOW:
2809                 info1 |= QH_LOW_SPEED;
2810                 /* FALL THROUGH */
2811 
2812         case USB_SPEED_FULL:
2813                 /* EPS 0 means "full" */
2814                 if (type != PIPE_INTERRUPT)
2815                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2816                 if (type == PIPE_CONTROL) {
2817                         info1 |= QH_CONTROL_EP;         /* for TT */
2818                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2819                 }
2820                 info1 |= maxp << 16;
2821 
2822                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2823 
2824                 /* Some Freescale processors have an erratum in which the
2825                  * port number in the queue head was 0..N-1 instead of 1..N.
2826                  */
2827                 if (fotg210_has_fsl_portno_bug(fotg210))
2828                         info2 |= (urb->dev->ttport-1) << 23;
2829                 else
2830                         info2 |= urb->dev->ttport << 23;
2831 
2832                 /* set the address of the TT; for TDI's integrated
2833                  * root hub tt, leave it zeroed.
2834                  */
2835                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2836                         info2 |= tt->hub->devnum << 16;
2837 
2838                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2839 
2840                 break;
2841 
2842         case USB_SPEED_HIGH:            /* no TT involved */
2843                 info1 |= QH_HIGH_SPEED;
2844                 if (type == PIPE_CONTROL) {
2845                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2846                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2847                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2848                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2849                 } else if (type == PIPE_BULK) {
2850                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2851                         /* The USB spec says that high speed bulk endpoints
2852                          * always use 512 byte maxpacket.  But some device
2853                          * vendors decided to ignore that, and MSFT is happy
2854                          * to help them do so.  So now people expect to use
2855                          * such nonconformant devices with Linux too; sigh.
2856                          */
2857                         info1 |= max_packet(maxp) << 16;
2858                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2859                 } else {                /* PIPE_INTERRUPT */
2860                         info1 |= max_packet(maxp) << 16;
2861                         info2 |= hb_mult(maxp) << 30;
2862                 }
2863                 break;
2864         default:
2865                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2866                                 urb->dev->speed);
2867 done:
2868                 qh_destroy(fotg210, qh);
2869                 return NULL;
2870         }
2871 
2872         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2873 
2874         /* init as live, toggle clear, advance to dummy */
2875         qh->qh_state = QH_STATE_IDLE;
2876         hw = qh->hw;
2877         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2878         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2879         qh->is_out = !is_input;
2880         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2881         qh_refresh(fotg210, qh);
2882         return qh;
2883 }
2884 
2885 static void enable_async(struct fotg210_hcd *fotg210)
2886 {
2887         if (fotg210->async_count++)
2888                 return;
2889 
2890         /* Stop waiting to turn off the async schedule */
2891         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2892 
2893         /* Don't start the schedule until ASS is 0 */
2894         fotg210_poll_ASS(fotg210);
2895         turn_on_io_watchdog(fotg210);
2896 }
2897 
2898 static void disable_async(struct fotg210_hcd *fotg210)
2899 {
2900         if (--fotg210->async_count)
2901                 return;
2902 
2903         /* The async schedule and async_unlink list are supposed to be empty */
2904         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2905 
2906         /* Don't turn off the schedule until ASS is 1 */
2907         fotg210_poll_ASS(fotg210);
2908 }
2909 
2910 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2911 
2912 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2913 {
2914         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2915         struct fotg210_qh *head;
2916 
2917         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2918         if (unlikely(qh->clearing_tt))
2919                 return;
2920 
2921         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2922 
2923         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2924         qh_refresh(fotg210, qh);
2925 
2926         /* splice right after start */
2927         head = fotg210->async;
2928         qh->qh_next = head->qh_next;
2929         qh->hw->hw_next = head->hw->hw_next;
2930         wmb();
2931 
2932         head->qh_next.qh = qh;
2933         head->hw->hw_next = dma;
2934 
2935         qh->xacterrs = 0;
2936         qh->qh_state = QH_STATE_LINKED;
2937         /* qtd completions reported later by interrupt */
2938 
2939         enable_async(fotg210);
2940 }
2941 
2942 /* For control/bulk/interrupt, return QH with these TDs appended.
2943  * Allocates and initializes the QH if necessary.
2944  * Returns null if it can't allocate a QH it needs to.
2945  * If the QH has TDs (urbs) already, that's great.
2946  */
2947 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2948                 struct urb *urb, struct list_head *qtd_list,
2949                 int epnum, void **ptr)
2950 {
2951         struct fotg210_qh *qh = NULL;
2952         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2953 
2954         qh = (struct fotg210_qh *) *ptr;
2955         if (unlikely(qh == NULL)) {
2956                 /* can't sleep here, we have fotg210->lock... */
2957                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2958                 *ptr = qh;
2959         }
2960         if (likely(qh != NULL)) {
2961                 struct fotg210_qtd *qtd;
2962 
2963                 if (unlikely(list_empty(qtd_list)))
2964                         qtd = NULL;
2965                 else
2966                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2967                                         qtd_list);
2968 
2969                 /* control qh may need patching ... */
2970                 if (unlikely(epnum == 0)) {
2971                         /* usb_reset_device() briefly reverts to address 0 */
2972                         if (usb_pipedevice(urb->pipe) == 0)
2973                                 qh->hw->hw_info1 &= ~qh_addr_mask;
2974                 }
2975 
2976                 /* just one way to queue requests: swap with the dummy qtd.
2977                  * only hc or qh_refresh() ever modify the overlay.
2978                  */
2979                 if (likely(qtd != NULL)) {
2980                         struct fotg210_qtd *dummy;
2981                         dma_addr_t dma;
2982                         __hc32 token;
2983 
2984                         /* to avoid racing the HC, use the dummy td instead of
2985                          * the first td of our list (becomes new dummy).  both
2986                          * tds stay deactivated until we're done, when the
2987                          * HC is allowed to fetch the old dummy (4.10.2).
2988                          */
2989                         token = qtd->hw_token;
2990                         qtd->hw_token = HALT_BIT(fotg210);
2991 
2992                         dummy = qh->dummy;
2993 
2994                         dma = dummy->qtd_dma;
2995                         *dummy = *qtd;
2996                         dummy->qtd_dma = dma;
2997 
2998                         list_del(&qtd->qtd_list);
2999                         list_add(&dummy->qtd_list, qtd_list);
3000                         list_splice_tail(qtd_list, &qh->qtd_list);
3001 
3002                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3003                         qh->dummy = qtd;
3004 
3005                         /* hc must see the new dummy at list end */
3006                         dma = qtd->qtd_dma;
3007                         qtd = list_entry(qh->qtd_list.prev,
3008                                         struct fotg210_qtd, qtd_list);
3009                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3010 
3011                         /* let the hc process these next qtds */
3012                         wmb();
3013                         dummy->hw_token = token;
3014 
3015                         urb->hcpriv = qh;
3016                 }
3017         }
3018         return qh;
3019 }
3020 
3021 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3022                 struct list_head *qtd_list, gfp_t mem_flags)
3023 {
3024         int epnum;
3025         unsigned long flags;
3026         struct fotg210_qh *qh = NULL;
3027         int rc;
3028 
3029         epnum = urb->ep->desc.bEndpointAddress;
3030 
3031 #ifdef FOTG210_URB_TRACE
3032         {
3033                 struct fotg210_qtd *qtd;
3034 
3035                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3036                 fotg210_dbg(fotg210,
3037                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3038                                 __func__, urb->dev->devpath, urb,
3039                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3040                                         ? "in" : "out",
3041                                 urb->transfer_buffer_length,
3042                                 qtd, urb->ep->hcpriv);
3043         }
3044 #endif
3045 
3046         spin_lock_irqsave(&fotg210->lock, flags);
3047         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3048                 rc = -ESHUTDOWN;
3049                 goto done;
3050         }
3051         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3052         if (unlikely(rc))
3053                 goto done;
3054 
3055         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3056         if (unlikely(qh == NULL)) {
3057                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3058                 rc = -ENOMEM;
3059                 goto done;
3060         }
3061 
3062         /* Control/bulk operations through TTs don't need scheduling,
3063          * the HC and TT handle it when the TT has a buffer ready.
3064          */
3065         if (likely(qh->qh_state == QH_STATE_IDLE))
3066                 qh_link_async(fotg210, qh);
3067 done:
3068         spin_unlock_irqrestore(&fotg210->lock, flags);
3069         if (unlikely(qh == NULL))
3070                 qtd_list_free(fotg210, urb, qtd_list);
3071         return rc;
3072 }
3073 
3074 static void single_unlink_async(struct fotg210_hcd *fotg210,
3075                 struct fotg210_qh *qh)
3076 {
3077         struct fotg210_qh *prev;
3078 
3079         /* Add to the end of the list of QHs waiting for the next IAAD */
3080         qh->qh_state = QH_STATE_UNLINK;
3081         if (fotg210->async_unlink)
3082                 fotg210->async_unlink_last->unlink_next = qh;
3083         else
3084                 fotg210->async_unlink = qh;
3085         fotg210->async_unlink_last = qh;
3086 
3087         /* Unlink it from the schedule */
3088         prev = fotg210->async;
3089         while (prev->qh_next.qh != qh)
3090                 prev = prev->qh_next.qh;
3091 
3092         prev->hw->hw_next = qh->hw->hw_next;
3093         prev->qh_next = qh->qh_next;
3094         if (fotg210->qh_scan_next == qh)
3095                 fotg210->qh_scan_next = qh->qh_next.qh;
3096 }
3097 
3098 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3099 {
3100         /*
3101          * Do nothing if an IAA cycle is already running or
3102          * if one will be started shortly.
3103          */
3104         if (fotg210->async_iaa || fotg210->async_unlinking)
3105                 return;
3106 
3107         /* Do all the waiting QHs at once */
3108         fotg210->async_iaa = fotg210->async_unlink;
3109         fotg210->async_unlink = NULL;
3110 
3111         /* If the controller isn't running, we don't have to wait for it */
3112         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3113                 if (!nested)            /* Avoid recursion */
3114                         end_unlink_async(fotg210);
3115 
3116         /* Otherwise start a new IAA cycle */
3117         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3118                 /* Make sure the unlinks are all visible to the hardware */
3119                 wmb();
3120 
3121                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3122                                 &fotg210->regs->command);
3123                 fotg210_readl(fotg210, &fotg210->regs->command);
3124                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3125                                 true);
3126         }
3127 }
3128 
3129 /* the async qh for the qtds being unlinked are now gone from the HC */
3130 
3131 static void end_unlink_async(struct fotg210_hcd *fotg210)
3132 {
3133         struct fotg210_qh *qh;
3134 
3135         /* Process the idle QHs */
3136 restart:
3137         fotg210->async_unlinking = true;
3138         while (fotg210->async_iaa) {
3139                 qh = fotg210->async_iaa;
3140                 fotg210->async_iaa = qh->unlink_next;
3141                 qh->unlink_next = NULL;
3142 
3143                 qh->qh_state = QH_STATE_IDLE;
3144                 qh->qh_next.qh = NULL;
3145 
3146                 qh_completions(fotg210, qh);
3147                 if (!list_empty(&qh->qtd_list) &&
3148                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3149                         qh_link_async(fotg210, qh);
3150                 disable_async(fotg210);
3151         }
3152         fotg210->async_unlinking = false;
3153 
3154         /* Start a new IAA cycle if any QHs are waiting for it */
3155         if (fotg210->async_unlink) {
3156                 start_iaa_cycle(fotg210, true);
3157                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3158                         goto restart;
3159         }
3160 }
3161 
3162 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3163 {
3164         struct fotg210_qh *qh, *next;
3165         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3166         bool check_unlinks_later = false;
3167 
3168         /* Unlink all the async QHs that have been empty for a timer cycle */
3169         next = fotg210->async->qh_next.qh;
3170         while (next) {
3171                 qh = next;
3172                 next = qh->qh_next.qh;
3173 
3174                 if (list_empty(&qh->qtd_list) &&
3175                                 qh->qh_state == QH_STATE_LINKED) {
3176                         if (!stopped && qh->unlink_cycle ==
3177                                         fotg210->async_unlink_cycle)
3178                                 check_unlinks_later = true;
3179                         else
3180                                 single_unlink_async(fotg210, qh);
3181                 }
3182         }
3183 
3184         /* Start a new IAA cycle if any QHs are waiting for it */
3185         if (fotg210->async_unlink)
3186                 start_iaa_cycle(fotg210, false);
3187 
3188         /* QHs that haven't been empty for long enough will be handled later */
3189         if (check_unlinks_later) {
3190                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3191                                 true);
3192                 ++fotg210->async_unlink_cycle;
3193         }
3194 }
3195 
3196 /* makes sure the async qh will become idle */
3197 /* caller must own fotg210->lock */
3198 
3199 static void start_unlink_async(struct fotg210_hcd *fotg210,
3200                 struct fotg210_qh *qh)
3201 {
3202         /*
3203          * If the QH isn't linked then there's nothing we can do
3204          * unless we were called during a giveback, in which case
3205          * qh_completions() has to deal with it.
3206          */
3207         if (qh->qh_state != QH_STATE_LINKED) {
3208                 if (qh->qh_state == QH_STATE_COMPLETING)
3209                         qh->needs_rescan = 1;
3210                 return;
3211         }
3212 
3213         single_unlink_async(fotg210, qh);
3214         start_iaa_cycle(fotg210, false);
3215 }
3216 
3217 static void scan_async(struct fotg210_hcd *fotg210)
3218 {
3219         struct fotg210_qh *qh;
3220         bool check_unlinks_later = false;
3221 
3222         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3223         while (fotg210->qh_scan_next) {
3224                 qh = fotg210->qh_scan_next;
3225                 fotg210->qh_scan_next = qh->qh_next.qh;
3226 rescan:
3227                 /* clean any finished work for this qh */
3228                 if (!list_empty(&qh->qtd_list)) {
3229                         int temp;
3230 
3231                         /*
3232                          * Unlinks could happen here; completion reporting
3233                          * drops the lock.  That's why fotg210->qh_scan_next
3234                          * always holds the next qh to scan; if the next qh
3235                          * gets unlinked then fotg210->qh_scan_next is adjusted
3236                          * in single_unlink_async().
3237                          */
3238                         temp = qh_completions(fotg210, qh);
3239                         if (qh->needs_rescan) {
3240                                 start_unlink_async(fotg210, qh);
3241                         } else if (list_empty(&qh->qtd_list)
3242                                         && qh->qh_state == QH_STATE_LINKED) {
3243                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3244                                 check_unlinks_later = true;
3245                         } else if (temp != 0)
3246                                 goto rescan;
3247                 }
3248         }
3249 
3250         /*
3251          * Unlink empty entries, reducing DMA usage as well
3252          * as HCD schedule-scanning costs.  Delay for any qh
3253          * we just scanned, there's a not-unusual case that it
3254          * doesn't stay idle for long.
3255          */
3256         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3257                         !(fotg210->enabled_hrtimer_events &
3258                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3259                 fotg210_enable_event(fotg210,
3260                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3261                 ++fotg210->async_unlink_cycle;
3262         }
3263 }
3264 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3265  * These are called "periodic" transactions in the EHCI spec.
3266  *
3267  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3268  * with the "asynchronous" transaction support (control/bulk transfers).
3269  * The only real difference is in how interrupt transfers are scheduled.
3270  *
3271  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3272  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3273  * pre-calculated schedule data to make appending to the queue be quick.
3274  */
3275 static int fotg210_get_frame(struct usb_hcd *hcd);
3276 
3277 /* periodic_next_shadow - return "next" pointer on shadow list
3278  * @periodic: host pointer to qh/itd
3279  * @tag: hardware tag for type of this record
3280  */
3281 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3282                 union fotg210_shadow *periodic, __hc32 tag)
3283 {
3284         switch (hc32_to_cpu(fotg210, tag)) {
3285         case Q_TYPE_QH:
3286                 return &periodic->qh->qh_next;
3287         case Q_TYPE_FSTN:
3288                 return &periodic->fstn->fstn_next;
3289         default:
3290                 return &periodic->itd->itd_next;
3291         }
3292 }
3293 
3294 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3295                 union fotg210_shadow *periodic, __hc32 tag)
3296 {
3297         switch (hc32_to_cpu(fotg210, tag)) {
3298         /* our fotg210_shadow.qh is actually software part */
3299         case Q_TYPE_QH:
3300                 return &periodic->qh->hw->hw_next;
3301         /* others are hw parts */
3302         default:
3303                 return periodic->hw_next;
3304         }
3305 }
3306 
3307 /* caller must hold fotg210->lock */
3308 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3309                 void *ptr)
3310 {
3311         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3312         __hc32 *hw_p = &fotg210->periodic[frame];
3313         union fotg210_shadow here = *prev_p;
3314 
3315         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3316         while (here.ptr && here.ptr != ptr) {
3317                 prev_p = periodic_next_shadow(fotg210, prev_p,
3318                                 Q_NEXT_TYPE(fotg210, *hw_p));
3319                 hw_p = shadow_next_periodic(fotg210, &here,
3320                                 Q_NEXT_TYPE(fotg210, *hw_p));
3321                 here = *prev_p;
3322         }
3323         /* an interrupt entry (at list end) could have been shared */
3324         if (!here.ptr)
3325                 return;
3326 
3327         /* update shadow and hardware lists ... the old "next" pointers
3328          * from ptr may still be in use, the caller updates them.
3329          */
3330         *prev_p = *periodic_next_shadow(fotg210, &here,
3331                         Q_NEXT_TYPE(fotg210, *hw_p));
3332 
3333         *hw_p = *shadow_next_periodic(fotg210, &here,
3334                         Q_NEXT_TYPE(fotg210, *hw_p));
3335 }
3336 
3337 /* how many of the uframe's 125 usecs are allocated? */
3338 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3339                 unsigned frame, unsigned uframe)
3340 {
3341         __hc32 *hw_p = &fotg210->periodic[frame];
3342         union fotg210_shadow *q = &fotg210->pshadow[frame];
3343         unsigned usecs = 0;
3344         struct fotg210_qh_hw *hw;
3345 
3346         while (q->ptr) {
3347                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3348                 case Q_TYPE_QH:
3349                         hw = q->qh->hw;
3350                         /* is it in the S-mask? */
3351                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3352                                 usecs += q->qh->usecs;
3353                         /* ... or C-mask? */
3354                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3355                                         1 << (8 + uframe)))
3356                                 usecs += q->qh->c_usecs;
3357                         hw_p = &hw->hw_next;
3358                         q = &q->qh->qh_next;
3359                         break;
3360                 /* case Q_TYPE_FSTN: */
3361                 default:
3362                         /* for "save place" FSTNs, count the relevant INTR
3363                          * bandwidth from the previous frame
3364                          */
3365                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3366                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3367 
3368                         hw_p = &q->fstn->hw_next;
3369                         q = &q->fstn->fstn_next;
3370                         break;
3371                 case Q_TYPE_ITD:
3372                         if (q->itd->hw_transaction[uframe])
3373                                 usecs += q->itd->stream->usecs;
3374                         hw_p = &q->itd->hw_next;
3375                         q = &q->itd->itd_next;
3376                         break;
3377                 }
3378         }
3379         if (usecs > fotg210->uframe_periodic_max)
3380                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3381                                 frame * 8 + uframe, usecs);
3382         return usecs;
3383 }
3384 
3385 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3386 {
3387         if (!dev1->tt || !dev2->tt)
3388                 return 0;
3389         if (dev1->tt != dev2->tt)
3390                 return 0;
3391         if (dev1->tt->multi)
3392                 return dev1->ttport == dev2->ttport;
3393         else
3394                 return 1;
3395 }
3396 
3397 /* return true iff the device's transaction translator is available
3398  * for a periodic transfer starting at the specified frame, using
3399  * all the uframes in the mask.
3400  */
3401 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3402                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3403 {
3404         if (period == 0)        /* error */
3405                 return 0;
3406 
3407         /* note bandwidth wastage:  split never follows csplit
3408          * (different dev or endpoint) until the next uframe.
3409          * calling convention doesn't make that distinction.
3410          */
3411         for (; frame < fotg210->periodic_size; frame += period) {
3412                 union fotg210_shadow here;
3413                 __hc32 type;
3414                 struct fotg210_qh_hw *hw;
3415 
3416                 here = fotg210->pshadow[frame];
3417                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3418                 while (here.ptr) {
3419                         switch (hc32_to_cpu(fotg210, type)) {
3420                         case Q_TYPE_ITD:
3421                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3422                                 here = here.itd->itd_next;
3423                                 continue;
3424                         case Q_TYPE_QH:
3425                                 hw = here.qh->hw;
3426                                 if (same_tt(dev, here.qh->dev)) {
3427                                         u32 mask;
3428 
3429                                         mask = hc32_to_cpu(fotg210,
3430                                                         hw->hw_info2);
3431                                         /* "knows" no gap is needed */
3432                                         mask |= mask >> 8;
3433                                         if (mask & uf_mask)
3434                                                 break;
3435                                 }
3436                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3437                                 here = here.qh->qh_next;
3438                                 continue;
3439                         /* case Q_TYPE_FSTN: */
3440                         default:
3441                                 fotg210_dbg(fotg210,
3442                                                 "periodic frame %d bogus type %d\n",
3443                                                 frame, type);
3444                         }
3445 
3446                         /* collision or error */
3447                         return 0;
3448                 }
3449         }
3450 
3451         /* no collision */
3452         return 1;
3453 }
3454 
3455 static void enable_periodic(struct fotg210_hcd *fotg210)
3456 {
3457         if (fotg210->periodic_count++)
3458                 return;
3459 
3460         /* Stop waiting to turn off the periodic schedule */
3461         fotg210->enabled_hrtimer_events &=
3462                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3463 
3464         /* Don't start the schedule until PSS is 0 */
3465         fotg210_poll_PSS(fotg210);
3466         turn_on_io_watchdog(fotg210);
3467 }
3468 
3469 static void disable_periodic(struct fotg210_hcd *fotg210)
3470 {
3471         if (--fotg210->periodic_count)
3472                 return;
3473 
3474         /* Don't turn off the schedule until PSS is 1 */
3475         fotg210_poll_PSS(fotg210);
3476 }
3477 
3478 /* periodic schedule slots have iso tds (normal or split) first, then a
3479  * sparse tree for active interrupt transfers.
3480  *
3481  * this just links in a qh; caller guarantees uframe masks are set right.
3482  * no FSTN support (yet; fotg210 0.96+)
3483  */
3484 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3485 {
3486         unsigned i;
3487         unsigned period = qh->period;
3488 
3489         dev_dbg(&qh->dev->dev,
3490                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3491                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3492                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3493                         qh->c_usecs);
3494 
3495         /* high bandwidth, or otherwise every microframe */
3496         if (period == 0)
3497                 period = 1;
3498 
3499         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3500                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3501                 __hc32 *hw_p = &fotg210->periodic[i];
3502                 union fotg210_shadow here = *prev;
3503                 __hc32 type = 0;
3504 
3505                 /* skip the iso nodes at list head */
3506                 while (here.ptr) {
3507                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3508                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3509                                 break;
3510                         prev = periodic_next_shadow(fotg210, prev, type);
3511                         hw_p = shadow_next_periodic(fotg210, &here, type);
3512                         here = *prev;
3513                 }
3514 
3515                 /* sorting each branch by period (slow-->fast)
3516                  * enables sharing interior tree nodes
3517                  */
3518                 while (here.ptr && qh != here.qh) {
3519                         if (qh->period > here.qh->period)
3520                                 break;
3521                         prev = &here.qh->qh_next;
3522                         hw_p = &here.qh->hw->hw_next;
3523                         here = *prev;
3524                 }
3525                 /* link in this qh, unless some earlier pass did that */
3526                 if (qh != here.qh) {
3527                         qh->qh_next = here;
3528                         if (here.qh)
3529                                 qh->hw->hw_next = *hw_p;
3530                         wmb();
3531                         prev->qh = qh;
3532                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3533                 }
3534         }
3535         qh->qh_state = QH_STATE_LINKED;
3536         qh->xacterrs = 0;
3537 
3538         /* update per-qh bandwidth for usbfs */
3539         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3540                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3541                 : (qh->usecs * 8);
3542 
3543         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3544 
3545         /* maybe enable periodic schedule processing */
3546         ++fotg210->intr_count;
3547         enable_periodic(fotg210);
3548 }
3549 
3550 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3551                 struct fotg210_qh *qh)
3552 {
3553         unsigned i;
3554         unsigned period;
3555 
3556         /*
3557          * If qh is for a low/full-speed device, simply unlinking it
3558          * could interfere with an ongoing split transaction.  To unlink
3559          * it safely would require setting the QH_INACTIVATE bit and
3560          * waiting at least one frame, as described in EHCI 4.12.2.5.
3561          *
3562          * We won't bother with any of this.  Instead, we assume that the
3563          * only reason for unlinking an interrupt QH while the current URB
3564          * is still active is to dequeue all the URBs (flush the whole
3565          * endpoint queue).
3566          *
3567          * If rebalancing the periodic schedule is ever implemented, this
3568          * approach will no longer be valid.
3569          */
3570 
3571         /* high bandwidth, or otherwise part of every microframe */
3572         period = qh->period;
3573         if (!period)
3574                 period = 1;
3575 
3576         for (i = qh->start; i < fotg210->periodic_size; i += period)
3577                 periodic_unlink(fotg210, i, qh);
3578 
3579         /* update per-qh bandwidth for usbfs */
3580         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3581                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3582                 : (qh->usecs * 8);
3583 
3584         dev_dbg(&qh->dev->dev,
3585                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3586                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3587                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3588                         qh->c_usecs);
3589 
3590         /* qh->qh_next still "live" to HC */
3591         qh->qh_state = QH_STATE_UNLINK;
3592         qh->qh_next.ptr = NULL;
3593 
3594         if (fotg210->qh_scan_next == qh)
3595                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3596                                 struct fotg210_qh, intr_node);
3597         list_del(&qh->intr_node);
3598 }
3599 
3600 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3601                 struct fotg210_qh *qh)
3602 {
3603         /* If the QH isn't linked then there's nothing we can do
3604          * unless we were called during a giveback, in which case
3605          * qh_completions() has to deal with it.
3606          */
3607         if (qh->qh_state != QH_STATE_LINKED) {
3608                 if (qh->qh_state == QH_STATE_COMPLETING)
3609                         qh->needs_rescan = 1;
3610                 return;
3611         }
3612 
3613         qh_unlink_periodic(fotg210, qh);
3614 
3615         /* Make sure the unlinks are visible before starting the timer */
3616         wmb();
3617 
3618         /*
3619          * The EHCI spec doesn't say how long it takes the controller to
3620          * stop accessing an unlinked interrupt QH.  The timer delay is
3621          * 9 uframes; presumably that will be long enough.
3622          */
3623         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3624 
3625         /* New entries go at the end of the intr_unlink list */
3626         if (fotg210->intr_unlink)
3627                 fotg210->intr_unlink_last->unlink_next = qh;
3628         else
3629                 fotg210->intr_unlink = qh;
3630         fotg210->intr_unlink_last = qh;
3631 
3632         if (fotg210->intr_unlinking)
3633                 ;       /* Avoid recursive calls */
3634         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3635                 fotg210_handle_intr_unlinks(fotg210);
3636         else if (fotg210->intr_unlink == qh) {
3637                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3638                                 true);
3639                 ++fotg210->intr_unlink_cycle;
3640         }
3641 }
3642 
3643 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644 {
3645         struct fotg210_qh_hw *hw = qh->hw;
3646         int rc;
3647 
3648         qh->qh_state = QH_STATE_IDLE;
3649         hw->hw_next = FOTG210_LIST_END(fotg210);
3650 
3651         qh_completions(fotg210, qh);
3652 
3653         /* reschedule QH iff another request is queued */
3654         if (!list_empty(&qh->qtd_list) &&
3655                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3656                 rc = qh_schedule(fotg210, qh);
3657 
3658                 /* An error here likely indicates handshake failure
3659                  * or no space left in the schedule.  Neither fault
3660                  * should happen often ...
3661                  *
3662                  * FIXME kill the now-dysfunctional queued urbs
3663                  */
3664                 if (rc != 0)
3665                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3666                                         qh, rc);
3667         }
3668 
3669         /* maybe turn off periodic schedule */
3670         --fotg210->intr_count;
3671         disable_periodic(fotg210);
3672 }
3673 
3674 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3675                 unsigned uframe, unsigned period, unsigned usecs)
3676 {
3677         int claimed;
3678 
3679         /* complete split running into next frame?
3680          * given FSTN support, we could sometimes check...
3681          */
3682         if (uframe >= 8)
3683                 return 0;
3684 
3685         /* convert "usecs we need" to "max already claimed" */
3686         usecs = fotg210->uframe_periodic_max - usecs;
3687 
3688         /* we "know" 2 and 4 uframe intervals were rejected; so
3689          * for period 0, check _every_ microframe in the schedule.
3690          */
3691         if (unlikely(period == 0)) {
3692                 do {
3693                         for (uframe = 0; uframe < 7; uframe++) {
3694                                 claimed = periodic_usecs(fotg210, frame,
3695                                                 uframe);
3696                                 if (claimed > usecs)
3697                                         return 0;
3698                         }
3699                 } while ((frame += 1) < fotg210->periodic_size);
3700 
3701         /* just check the specified uframe, at that period */
3702         } else {
3703                 do {
3704                         claimed = periodic_usecs(fotg210, frame, uframe);
3705                         if (claimed > usecs)
3706                                 return 0;
3707                 } while ((frame += period) < fotg210->periodic_size);
3708         }
3709 
3710         /* success! */
3711         return 1;
3712 }
3713 
3714 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3715                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3716 {
3717         int retval = -ENOSPC;
3718         u8 mask = 0;
3719 
3720         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3721                 goto done;
3722 
3723         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3724                 goto done;
3725         if (!qh->c_usecs) {
3726                 retval = 0;
3727                 *c_maskp = 0;
3728                 goto done;
3729         }
3730 
3731         /* Make sure this tt's buffer is also available for CSPLITs.
3732          * We pessimize a bit; probably the typical full speed case
3733          * doesn't need the second CSPLIT.
3734          *
3735          * NOTE:  both SPLIT and CSPLIT could be checked in just
3736          * one smart pass...
3737          */
3738         mask = 0x03 << (uframe + qh->gap_uf);
3739         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3740 
3741         mask |= 1 << uframe;
3742         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3743                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3744                                 qh->period, qh->c_usecs))
3745                         goto done;
3746                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3747                                 qh->period, qh->c_usecs))
3748                         goto done;
3749                 retval = 0;
3750         }
3751 done:
3752         return retval;
3753 }
3754 
3755 /* "first fit" scheduling policy used the first time through,
3756  * or when the previous schedule slot can't be re-used.
3757  */
3758 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3759 {
3760         int status;
3761         unsigned uframe;
3762         __hc32 c_mask;
3763         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3764         struct fotg210_qh_hw *hw = qh->hw;
3765 
3766         qh_refresh(fotg210, qh);
3767         hw->hw_next = FOTG210_LIST_END(fotg210);
3768         frame = qh->start;
3769 
3770         /* reuse the previous schedule slots, if we can */
3771         if (frame < qh->period) {
3772                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3773                 status = check_intr_schedule(fotg210, frame, --uframe,
3774                                 qh, &c_mask);
3775         } else {
3776                 uframe = 0;
3777                 c_mask = 0;
3778                 status = -ENOSPC;
3779         }
3780 
3781         /* else scan the schedule to find a group of slots such that all
3782          * uframes have enough periodic bandwidth available.
3783          */
3784         if (status) {
3785                 /* "normal" case, uframing flexible except with splits */
3786                 if (qh->period) {
3787                         int i;
3788 
3789                         for (i = qh->period; status && i > 0; --i) {
3790                                 frame = ++fotg210->random_frame % qh->period;
3791                                 for (uframe = 0; uframe < 8; uframe++) {
3792                                         status = check_intr_schedule(fotg210,
3793                                                         frame, uframe, qh,
3794                                                         &c_mask);
3795                                         if (status == 0)
3796                                                 break;
3797                                 }
3798                         }
3799 
3800                 /* qh->period == 0 means every uframe */
3801                 } else {
3802                         frame = 0;
3803                         status = check_intr_schedule(fotg210, 0, 0, qh,
3804                                         &c_mask);
3805                 }
3806                 if (status)
3807                         goto done;
3808                 qh->start = frame;
3809 
3810                 /* reset S-frame and (maybe) C-frame masks */
3811                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3812                 hw->hw_info2 |= qh->period
3813                         ? cpu_to_hc32(fotg210, 1 << uframe)
3814                         : cpu_to_hc32(fotg210, QH_SMASK);
3815                 hw->hw_info2 |= c_mask;
3816         } else
3817                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3818 
3819         /* stuff into the periodic schedule */
3820         qh_link_periodic(fotg210, qh);
3821 done:
3822         return status;
3823 }
3824 
3825 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3826                 struct list_head *qtd_list, gfp_t mem_flags)
3827 {
3828         unsigned epnum;
3829         unsigned long flags;
3830         struct fotg210_qh *qh;
3831         int status;
3832         struct list_head empty;
3833 
3834         /* get endpoint and transfer/schedule data */
3835         epnum = urb->ep->desc.bEndpointAddress;
3836 
3837         spin_lock_irqsave(&fotg210->lock, flags);
3838 
3839         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3840                 status = -ESHUTDOWN;
3841                 goto done_not_linked;
3842         }
3843         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3844         if (unlikely(status))
3845                 goto done_not_linked;
3846 
3847         /* get qh and force any scheduling errors */
3848         INIT_LIST_HEAD(&empty);
3849         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3850         if (qh == NULL) {
3851                 status = -ENOMEM;
3852                 goto done;
3853         }
3854         if (qh->qh_state == QH_STATE_IDLE) {
3855                 status = qh_schedule(fotg210, qh);
3856                 if (status)
3857                         goto done;
3858         }
3859 
3860         /* then queue the urb's tds to the qh */
3861         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3862         BUG_ON(qh == NULL);
3863 
3864         /* ... update usbfs periodic stats */
3865         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3866 
3867 done:
3868         if (unlikely(status))
3869                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3870 done_not_linked:
3871         spin_unlock_irqrestore(&fotg210->lock, flags);
3872         if (status)
3873                 qtd_list_free(fotg210, urb, qtd_list);
3874 
3875         return status;
3876 }
3877 
3878 static void scan_intr(struct fotg210_hcd *fotg210)
3879 {
3880         struct fotg210_qh *qh;
3881 
3882         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3883                         &fotg210->intr_qh_list, intr_node) {
3884 rescan:
3885                 /* clean any finished work for this qh */
3886                 if (!list_empty(&qh->qtd_list)) {
3887                         int temp;
3888 
3889                         /*
3890                          * Unlinks could happen here; completion reporting
3891                          * drops the lock.  That's why fotg210->qh_scan_next
3892                          * always holds the next qh to scan; if the next qh
3893                          * gets unlinked then fotg210->qh_scan_next is adjusted
3894                          * in qh_unlink_periodic().
3895                          */
3896                         temp = qh_completions(fotg210, qh);
3897                         if (unlikely(qh->needs_rescan ||
3898                                         (list_empty(&qh->qtd_list) &&
3899                                         qh->qh_state == QH_STATE_LINKED)))
3900                                 start_unlink_intr(fotg210, qh);
3901                         else if (temp != 0)
3902                                 goto rescan;
3903                 }
3904         }
3905 }
3906 
3907 /* fotg210_iso_stream ops work with both ITD and SITD */
3908 
3909 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3910 {
3911         struct fotg210_iso_stream *stream;
3912 
3913         stream = kzalloc(sizeof(*stream), mem_flags);
3914         if (likely(stream != NULL)) {
3915                 INIT_LIST_HEAD(&stream->td_list);
3916                 INIT_LIST_HEAD(&stream->free_list);
3917                 stream->next_uframe = -1;
3918         }
3919         return stream;
3920 }
3921 
3922 static void iso_stream_init(struct fotg210_hcd *fotg210,
3923                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3924                 int pipe, unsigned interval)
3925 {
3926         u32 buf1;
3927         unsigned epnum, maxp;
3928         int is_input;
3929         long bandwidth;
3930         unsigned multi;
3931 
3932         /*
3933          * this might be a "high bandwidth" highspeed endpoint,
3934          * as encoded in the ep descriptor's wMaxPacket field
3935          */
3936         epnum = usb_pipeendpoint(pipe);
3937         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3938         maxp = usb_maxpacket(dev, pipe, !is_input);
3939         if (is_input)
3940                 buf1 = (1 << 11);
3941         else
3942                 buf1 = 0;
3943 
3944         maxp = max_packet(maxp);
3945         multi = hb_mult(maxp);
3946         buf1 |= maxp;
3947         maxp *= multi;
3948 
3949         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3950         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3951         stream->buf2 = cpu_to_hc32(fotg210, multi);
3952 
3953         /* usbfs wants to report the average usecs per frame tied up
3954          * when transfers on this endpoint are scheduled ...
3955          */
3956         if (dev->speed == USB_SPEED_FULL) {
3957                 interval <<= 3;
3958                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3959                                 is_input, 1, maxp));
3960                 stream->usecs /= 8;
3961         } else {
3962                 stream->highspeed = 1;
3963                 stream->usecs = HS_USECS_ISO(maxp);
3964         }
3965         bandwidth = stream->usecs * 8;
3966         bandwidth /= interval;
3967 
3968         stream->bandwidth = bandwidth;
3969         stream->udev = dev;
3970         stream->bEndpointAddress = is_input | epnum;
3971         stream->interval = interval;
3972         stream->maxp = maxp;
3973 }
3974 
3975 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3976                 struct urb *urb)
3977 {
3978         unsigned epnum;
3979         struct fotg210_iso_stream *stream;
3980         struct usb_host_endpoint *ep;
3981         unsigned long flags;
3982 
3983         epnum = usb_pipeendpoint(urb->pipe);
3984         if (usb_pipein(urb->pipe))
3985                 ep = urb->dev->ep_in[epnum];
3986         else
3987                 ep = urb->dev->ep_out[epnum];
3988 
3989         spin_lock_irqsave(&fotg210->lock, flags);
3990         stream = ep->hcpriv;
3991 
3992         if (unlikely(stream == NULL)) {
3993                 stream = iso_stream_alloc(GFP_ATOMIC);
3994                 if (likely(stream != NULL)) {
3995                         ep->hcpriv = stream;
3996                         stream->ep = ep;
3997                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3998                                         urb->interval);
3999                 }
4000 
4001         /* if dev->ep[epnum] is a QH, hw is set */
4002         } else if (unlikely(stream->hw != NULL)) {
4003                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4004                                 urb->dev->devpath, epnum,
4005                                 usb_pipein(urb->pipe) ? "in" : "out");
4006                 stream = NULL;
4007         }
4008 
4009         spin_unlock_irqrestore(&fotg210->lock, flags);
4010         return stream;
4011 }
4012 
4013 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4014 
4015 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4016                 gfp_t mem_flags)
4017 {
4018         struct fotg210_iso_sched *iso_sched;
4019         int size = sizeof(*iso_sched);
4020 
4021         size += packets * sizeof(struct fotg210_iso_packet);
4022         iso_sched = kzalloc(size, mem_flags);
4023         if (likely(iso_sched != NULL))
4024                 INIT_LIST_HEAD(&iso_sched->td_list);
4025 
4026         return iso_sched;
4027 }
4028 
4029 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4030                 struct fotg210_iso_sched *iso_sched,
4031                 struct fotg210_iso_stream *stream, struct urb *urb)
4032 {
4033         unsigned i;
4034         dma_addr_t dma = urb->transfer_dma;
4035 
4036         /* how many uframes are needed for these transfers */
4037         iso_sched->span = urb->number_of_packets * stream->interval;
4038 
4039         /* figure out per-uframe itd fields that we'll need later
4040          * when we fit new itds into the schedule.
4041          */
4042         for (i = 0; i < urb->number_of_packets; i++) {
4043                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4044                 unsigned length;
4045                 dma_addr_t buf;
4046                 u32 trans;
4047 
4048                 length = urb->iso_frame_desc[i].length;
4049                 buf = dma + urb->iso_frame_desc[i].offset;
4050 
4051                 trans = FOTG210_ISOC_ACTIVE;
4052                 trans |= buf & 0x0fff;
4053                 if (unlikely(((i + 1) == urb->number_of_packets))
4054                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4055                         trans |= FOTG210_ITD_IOC;
4056                 trans |= length << 16;
4057                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4058 
4059                 /* might need to cross a buffer page within a uframe */
4060                 uframe->bufp = (buf & ~(u64)0x0fff);
4061                 buf += length;
4062                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4063                         uframe->cross = 1;
4064         }
4065 }
4066 
4067 static void iso_sched_free(struct fotg210_iso_stream *stream,
4068                 struct fotg210_iso_sched *iso_sched)
4069 {
4070         if (!iso_sched)
4071                 return;
4072         /* caller must hold fotg210->lock!*/
4073         list_splice(&iso_sched->td_list, &stream->free_list);
4074         kfree(iso_sched);
4075 }
4076 
4077 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4078                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4079 {
4080         struct fotg210_itd *itd;
4081         dma_addr_t itd_dma;
4082         int i;
4083         unsigned num_itds;
4084         struct fotg210_iso_sched *sched;
4085         unsigned long flags;
4086 
4087         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4088         if (unlikely(sched == NULL))
4089                 return -ENOMEM;
4090 
4091         itd_sched_init(fotg210, sched, stream, urb);
4092 
4093         if (urb->interval < 8)
4094                 num_itds = 1 + (sched->span + 7) / 8;
4095         else
4096                 num_itds = urb->number_of_packets;
4097 
4098         /* allocate/init ITDs */
4099         spin_lock_irqsave(&fotg210->lock, flags);
4100         for (i = 0; i < num_itds; i++) {
4101 
4102                 /*
4103                  * Use iTDs from the free list, but not iTDs that may
4104                  * still be in use by the hardware.
4105                  */
4106                 if (likely(!list_empty(&stream->free_list))) {
4107                         itd = list_first_entry(&stream->free_list,
4108                                         struct fotg210_itd, itd_list);
4109                         if (itd->frame == fotg210->now_frame)
4110                                 goto alloc_itd;
4111                         list_del(&itd->itd_list);
4112                         itd_dma = itd->itd_dma;
4113                 } else {
4114 alloc_itd:
4115                         spin_unlock_irqrestore(&fotg210->lock, flags);
4116                         itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4117                                         &itd_dma);
4118                         spin_lock_irqsave(&fotg210->lock, flags);
4119                         if (!itd) {
4120                                 iso_sched_free(stream, sched);
4121                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4122                                 return -ENOMEM;
4123                         }
4124                 }
4125 
4126                 itd->itd_dma = itd_dma;
4127                 list_add(&itd->itd_list, &sched->td_list);
4128         }
4129         spin_unlock_irqrestore(&fotg210->lock, flags);
4130 
4131         /* temporarily store schedule info in hcpriv */
4132         urb->hcpriv = sched;
4133         urb->error_count = 0;
4134         return 0;
4135 }
4136 
4137 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4138                 u8 usecs, u32 period)
4139 {
4140         uframe %= period;
4141         do {
4142                 /* can't commit more than uframe_periodic_max usec */
4143                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4144                                 > (fotg210->uframe_periodic_max - usecs))
4145                         return 0;
4146 
4147                 /* we know urb->interval is 2^N uframes */
4148                 uframe += period;
4149         } while (uframe < mod);
4150         return 1;
4151 }
4152 
4153 /* This scheduler plans almost as far into the future as it has actual
4154  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4155  * "as small as possible" to be cache-friendlier.)  That limits the size
4156  * transfers you can stream reliably; avoid more than 64 msec per urb.
4157  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4158  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4159  * and other factors); or more than about 230 msec total (for portability,
4160  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4161  */
4162 
4163 #define SCHEDULE_SLOP 80 /* microframes */
4164 
4165 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4166                 struct fotg210_iso_stream *stream)
4167 {
4168         u32 now, next, start, period, span;
4169         int status;
4170         unsigned mod = fotg210->periodic_size << 3;
4171         struct fotg210_iso_sched *sched = urb->hcpriv;
4172 
4173         period = urb->interval;
4174         span = sched->span;
4175 
4176         if (span > mod - SCHEDULE_SLOP) {
4177                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4178                 status = -EFBIG;
4179                 goto fail;
4180         }
4181 
4182         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4183 
4184         /* Typical case: reuse current schedule, stream is still active.
4185          * Hopefully there are no gaps from the host falling behind
4186          * (irq delays etc), but if there are we'll take the next
4187          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4188          */
4189         if (likely(!list_empty(&stream->td_list))) {
4190                 u32 excess;
4191 
4192                 /* For high speed devices, allow scheduling within the
4193                  * isochronous scheduling threshold.  For full speed devices
4194                  * and Intel PCI-based controllers, don't (work around for
4195                  * Intel ICH9 bug).
4196                  */
4197                 if (!stream->highspeed && fotg210->fs_i_thresh)
4198                         next = now + fotg210->i_thresh;
4199                 else
4200                         next = now;
4201 
4202                 /* Fell behind (by up to twice the slop amount)?
4203                  * We decide based on the time of the last currently-scheduled
4204                  * slot, not the time of the next available slot.
4205                  */
4206                 excess = (stream->next_uframe - period - next) & (mod - 1);
4207                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4208                         start = next + excess - mod + period *
4209                                         DIV_ROUND_UP(mod - excess, period);
4210                 else
4211                         start = next + excess + period;
4212                 if (start - now >= mod) {
4213                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4214                                         urb, start - now - period, period,
4215                                         mod);
4216                         status = -EFBIG;
4217                         goto fail;
4218                 }
4219         }
4220 
4221         /* need to schedule; when's the next (u)frame we could start?
4222          * this is bigger than fotg210->i_thresh allows; scheduling itself
4223          * isn't free, the slop should handle reasonably slow cpus.  it
4224          * can also help high bandwidth if the dma and irq loads don't
4225          * jump until after the queue is primed.
4226          */
4227         else {
4228                 int done = 0;
4229 
4230                 start = SCHEDULE_SLOP + (now & ~0x07);
4231 
4232                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4233 
4234                 /* find a uframe slot with enough bandwidth.
4235                  * Early uframes are more precious because full-speed
4236                  * iso IN transfers can't use late uframes,
4237                  * and therefore they should be allocated last.
4238                  */
4239                 next = start;
4240                 start += period;
4241                 do {
4242                         start--;
4243                         /* check schedule: enough space? */
4244                         if (itd_slot_ok(fotg210, mod, start,
4245                                         stream->usecs, period))
4246                                 done = 1;
4247                 } while (start > next && !done);
4248 
4249                 /* no room in the schedule */
4250                 if (!done) {
4251                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4252                                         urb, now, now + mod);
4253                         status = -ENOSPC;
4254                         goto fail;
4255                 }
4256         }
4257 
4258         /* Tried to schedule too far into the future? */
4259         if (unlikely(start - now + span - period >=
4260                         mod - 2 * SCHEDULE_SLOP)) {
4261                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4262                                 urb, start - now, span - period,
4263                                 mod - 2 * SCHEDULE_SLOP);
4264                 status = -EFBIG;
4265                 goto fail;
4266         }
4267 
4268         stream->next_uframe = start & (mod - 1);
4269 
4270         /* report high speed start in uframes; full speed, in frames */
4271         urb->start_frame = stream->next_uframe;
4272         if (!stream->highspeed)
4273                 urb->start_frame >>= 3;
4274 
4275         /* Make sure scan_isoc() sees these */
4276         if (fotg210->isoc_count == 0)
4277                 fotg210->next_frame = now >> 3;
4278         return 0;
4279 
4280 fail:
4281         iso_sched_free(stream, sched);
4282         urb->hcpriv = NULL;
4283         return status;
4284 }
4285 
4286 static inline void itd_init(struct fotg210_hcd *fotg210,
4287                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4288 {
4289         int i;
4290 
4291         /* it's been recently zeroed */
4292         itd->hw_next = FOTG210_LIST_END(fotg210);
4293         itd->hw_bufp[0] = stream->buf0;
4294         itd->hw_bufp[1] = stream->buf1;
4295         itd->hw_bufp[2] = stream->buf2;
4296 
4297         for (i = 0; i < 8; i++)
4298                 itd->index[i] = -1;
4299 
4300         /* All other fields are filled when scheduling */
4301 }
4302 
4303 static inline void itd_patch(struct fotg210_hcd *fotg210,
4304                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4305                 unsigned index, u16 uframe)
4306 {
4307         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4308         unsigned pg = itd->pg;
4309 
4310         uframe &= 0x07;
4311         itd->index[uframe] = index;
4312 
4313         itd->hw_transaction[uframe] = uf->transaction;
4314         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4315         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4316         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4317 
4318         /* iso_frame_desc[].offset must be strictly increasing */
4319         if (unlikely(uf->cross)) {
4320                 u64 bufp = uf->bufp + 4096;
4321 
4322                 itd->pg = ++pg;
4323                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4324                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4325         }
4326 }
4327 
4328 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4329                 struct fotg210_itd *itd)
4330 {
4331         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4332         __hc32 *hw_p = &fotg210->periodic[frame];
4333         union fotg210_shadow here = *prev;
4334         __hc32 type = 0;
4335 
4336         /* skip any iso nodes which might belong to previous microframes */
4337         while (here.ptr) {
4338                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4339                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4340                         break;
4341                 prev = periodic_next_shadow(fotg210, prev, type);
4342                 hw_p = shadow_next_periodic(fotg210, &here, type);
4343                 here = *prev;
4344         }
4345 
4346         itd->itd_next = here;
4347         itd->hw_next = *hw_p;
4348         prev->itd = itd;
4349         itd->frame = frame;
4350         wmb();
4351         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4352 }
4353 
4354 /* fit urb's itds into the selected schedule slot; activate as needed */
4355 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4356                 unsigned mod, struct fotg210_iso_stream *stream)
4357 {
4358         int packet;
4359         unsigned next_uframe, uframe, frame;
4360         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4361         struct fotg210_itd *itd;
4362 
4363         next_uframe = stream->next_uframe & (mod - 1);
4364 
4365         if (unlikely(list_empty(&stream->td_list))) {
4366                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4367                                 += stream->bandwidth;
4368                 fotg210_dbg(fotg210,
4369                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4370                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4371                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4372                         urb->interval,
4373                         next_uframe >> 3, next_uframe & 0x7);
4374         }
4375 
4376         /* fill iTDs uframe by uframe */
4377         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4378                 if (itd == NULL) {
4379                         /* ASSERT:  we have all necessary itds */
4380 
4381                         /* ASSERT:  no itds for this endpoint in this uframe */
4382 
4383                         itd = list_entry(iso_sched->td_list.next,
4384                                         struct fotg210_itd, itd_list);
4385                         list_move_tail(&itd->itd_list, &stream->td_list);
4386                         itd->stream = stream;
4387                         itd->urb = urb;
4388                         itd_init(fotg210, stream, itd);
4389                 }
4390 
4391                 uframe = next_uframe & 0x07;
4392                 frame = next_uframe >> 3;
4393 
4394                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4395 
4396                 next_uframe += stream->interval;
4397                 next_uframe &= mod - 1;
4398                 packet++;
4399 
4400                 /* link completed itds into the schedule */
4401                 if (((next_uframe >> 3) != frame)
4402                                 || packet == urb->number_of_packets) {
4403                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4404                                         itd);
4405                         itd = NULL;
4406                 }
4407         }
4408         stream->next_uframe = next_uframe;
4409 
4410         /* don't need that schedule data any more */
4411         iso_sched_free(stream, iso_sched);
4412         urb->hcpriv = NULL;
4413 
4414         ++fotg210->isoc_count;
4415         enable_periodic(fotg210);
4416 }
4417 
4418 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4419                 FOTG210_ISOC_XACTERR)
4420 
4421 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4422  * and hence its completion callback probably added things to the hardware
4423  * schedule.
4424  *
4425  * Note that we carefully avoid recycling this descriptor until after any
4426  * completion callback runs, so that it won't be reused quickly.  That is,
4427  * assuming (a) no more than two urbs per frame on this endpoint, and also
4428  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4429  * corrupts things if you reuse completed descriptors very quickly...
4430  */
4431 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4432 {
4433         struct urb *urb = itd->urb;
4434         struct usb_iso_packet_descriptor *desc;
4435         u32 t;
4436         unsigned uframe;
4437         int urb_index = -1;
4438         struct fotg210_iso_stream *stream = itd->stream;
4439         struct usb_device *dev;
4440         bool retval = false;
4441 
4442         /* for each uframe with a packet */
4443         for (uframe = 0; uframe < 8; uframe++) {
4444                 if (likely(itd->index[uframe] == -1))
4445                         continue;
4446                 urb_index = itd->index[uframe];
4447                 desc = &urb->iso_frame_desc[urb_index];
4448 
4449                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4450                 itd->hw_transaction[uframe] = 0;
4451 
4452                 /* report transfer status */
4453                 if (unlikely(t & ISO_ERRS)) {
4454                         urb->error_count++;
4455                         if (t & FOTG210_ISOC_BUF_ERR)
4456                                 desc->status = usb_pipein(urb->pipe)
4457                                         ? -ENOSR  /* hc couldn't read */
4458                                         : -ECOMM; /* hc couldn't write */
4459                         else if (t & FOTG210_ISOC_BABBLE)
4460                                 desc->status = -EOVERFLOW;
4461                         else /* (t & FOTG210_ISOC_XACTERR) */
4462                                 desc->status = -EPROTO;
4463 
4464                         /* HC need not update length with this error */
4465                         if (!(t & FOTG210_ISOC_BABBLE)) {
4466                                 desc->actual_length =
4467                                         fotg210_itdlen(urb, desc, t);
4468                                 urb->actual_length += desc->actual_length;
4469                         }
4470                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4471                         desc->status = 0;
4472                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4473                         urb->actual_length += desc->actual_length;
4474                 } else {
4475                         /* URB was too late */
4476                         desc->status = -EXDEV;
4477                 }
4478         }
4479 
4480         /* handle completion now? */
4481         if (likely((urb_index + 1) != urb->number_of_packets))
4482                 goto done;
4483 
4484         /* ASSERT: it's really the last itd for this urb
4485          * list_for_each_entry (itd, &stream->td_list, itd_list)
4486          *      BUG_ON (itd->urb == urb);
4487          */
4488 
4489         /* give urb back to the driver; completion often (re)submits */
4490         dev = urb->dev;
4491         fotg210_urb_done(fotg210, urb, 0);
4492         retval = true;
4493         urb = NULL;
4494 
4495         --fotg210->isoc_count;
4496         disable_periodic(fotg210);
4497 
4498         if (unlikely(list_is_singular(&stream->td_list))) {
4499                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4500                                 -= stream->bandwidth;
4501                 fotg210_dbg(fotg210,
4502                         "deschedule devp %s ep%d%s-iso\n",
4503                         dev->devpath, stream->bEndpointAddress & 0x0f,
4504                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4505         }
4506 
4507 done:
4508         itd->urb = NULL;
4509 
4510         /* Add to the end of the free list for later reuse */
4511         list_move_tail(&itd->itd_list, &stream->free_list);
4512 
4513         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4514         if (list_empty(&stream->td_list)) {
4515                 list_splice_tail_init(&stream->free_list,
4516                                 &fotg210->cached_itd_list);
4517                 start_free_itds(fotg210);
4518         }
4519 
4520         return retval;
4521 }
4522 
4523 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4524                 gfp_t mem_flags)
4525 {
4526         int status = -EINVAL;
4527         unsigned long flags;
4528         struct fotg210_iso_stream *stream;
4529 
4530         /* Get iso_stream head */
4531         stream = iso_stream_find(fotg210, urb);
4532         if (unlikely(stream == NULL)) {
4533                 fotg210_dbg(fotg210, "can't get iso stream\n");
4534                 return -ENOMEM;
4535         }
4536         if (unlikely(urb->interval != stream->interval &&
4537                         fotg210_port_speed(fotg210, 0) ==
4538                         USB_PORT_STAT_HIGH_SPEED)) {
4539                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4540                                 stream->interval, urb->interval);
4541                 goto done;
4542         }
4543 
4544 #ifdef FOTG210_URB_TRACE
4545         fotg210_dbg(fotg210,
4546                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4547                         __func__, urb->dev->devpath, urb,
4548                         usb_pipeendpoint(urb->pipe),
4549                         usb_pipein(urb->pipe) ? "in" : "out",
4550                         urb->transfer_buffer_length,
4551                         urb->number_of_packets, urb->interval,
4552                         stream);
4553 #endif
4554 
4555         /* allocate ITDs w/o locking anything */
4556         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4557         if (unlikely(status < 0)) {
4558                 fotg210_dbg(fotg210, "can't init itds\n");
4559                 goto done;
4560         }
4561 
4562         /* schedule ... need to lock */
4563         spin_lock_irqsave(&fotg210->lock, flags);
4564         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4565                 status = -ESHUTDOWN;
4566                 goto done_not_linked;
4567         }
4568         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4569         if (unlikely(status))
4570                 goto done_not_linked;
4571         status = iso_stream_schedule(fotg210, urb, stream);
4572         if (likely(status == 0))
4573                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4574         else
4575                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4576 done_not_linked:
4577         spin_unlock_irqrestore(&fotg210->lock, flags);
4578 done:
4579         return status;
4580 }
4581 
4582 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4583                 unsigned now_frame, bool live)
4584 {
4585         unsigned uf;
4586         bool modified;
4587         union fotg210_shadow q, *q_p;
4588         __hc32 type, *hw_p;
4589 
4590         /* scan each element in frame's queue for completions */
4591         q_p = &fotg210->pshadow[frame];
4592         hw_p = &fotg210->periodic[frame];
4593         q.ptr = q_p->ptr;
4594         type = Q_NEXT_TYPE(fotg210, *hw_p);
4595         modified = false;
4596 
4597         while (q.ptr) {
4598                 switch (hc32_to_cpu(fotg210, type)) {
4599                 case Q_TYPE_ITD:
4600                         /* If this ITD is still active, leave it for
4601                          * later processing ... check the next entry.
4602                          * No need to check for activity unless the
4603                          * frame is current.
4604                          */
4605                         if (frame == now_frame && live) {
4606                                 rmb();
4607                                 for (uf = 0; uf < 8; uf++) {
4608                                         if (q.itd->hw_transaction[uf] &
4609                                                         ITD_ACTIVE(fotg210))
4610                                                 break;
4611                                 }
4612                                 if (uf < 8) {
4613                                         q_p = &q.itd->itd_next;
4614                                         hw_p = &q.itd->hw_next;
4615                                         type = Q_NEXT_TYPE(fotg210,
4616                                                         q.itd->hw_next);
4617                                         q = *q_p;
4618                                         break;
4619                                 }
4620                         }
4621 
4622                         /* Take finished ITDs out of the schedule
4623                          * and process them:  recycle, maybe report
4624                          * URB completion.  HC won't cache the
4625                          * pointer for much longer, if at all.
4626                          */
4627                         *q_p = q.itd->itd_next;
4628                         *hw_p = q.itd->hw_next;
4629                         type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4630                         wmb();
4631                         modified = itd_complete(fotg210, q.itd);
4632                         q = *q_p;
4633                         break;
4634                 default:
4635                         fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4636                                         type, frame, q.ptr);
4637                         /* FALL THROUGH */
4638                 case Q_TYPE_QH:
4639                 case Q_TYPE_FSTN:
4640                         /* End of the iTDs and siTDs */
4641                         q.ptr = NULL;
4642                         break;
4643                 }
4644 
4645                 /* assume completion callbacks modify the queue */
4646                 if (unlikely(modified && fotg210->isoc_count > 0))
4647                         return -EINVAL;
4648         }
4649         return 0;
4650 }
4651 
4652 static void scan_isoc(struct fotg210_hcd *fotg210)
4653 {
4654         unsigned uf, now_frame, frame, ret;
4655         unsigned fmask = fotg210->periodic_size - 1;
4656         bool live;
4657 
4658         /*
4659          * When running, scan from last scan point up to "now"
4660          * else clean up by scanning everything that's left.
4661          * Touches as few pages as possible:  cache-friendly.
4662          */
4663         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4664                 uf = fotg210_read_frame_index(fotg210);
4665                 now_frame = (uf >> 3) & fmask;
4666                 live = true;
4667         } else  {
4668                 now_frame = (fotg210->next_frame - 1) & fmask;
4669                 live = false;
4670         }
4671         fotg210->now_frame = now_frame;
4672 
4673         frame = fotg210->next_frame;
4674         for (;;) {
4675                 ret = 1;
4676                 while (ret != 0)
4677                         ret = scan_frame_queue(fotg210, frame,
4678                                         now_frame, live);
4679 
4680                 /* Stop when we have reached the current frame */
4681                 if (frame == now_frame)
4682                         break;
4683                 frame = (frame + 1) & fmask;
4684         }
4685         fotg210->next_frame = now_frame;
4686 }
4687 
4688 /* Display / Set uframe_periodic_max
4689  */
4690 static ssize_t uframe_periodic_max_show(struct device *dev,
4691                 struct device_attribute *attr, char *buf)
4692 {
4693         struct fotg210_hcd *fotg210;
4694         int n;
4695 
4696         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4697         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4698         return n;
4699 }
4700 
4701 
4702 static ssize_t uframe_periodic_max_store(struct device *dev,
4703                 struct device_attribute *attr, const char *buf, size_t count)
4704 {
4705         struct fotg210_hcd *fotg210;
4706         unsigned uframe_periodic_max;
4707         unsigned frame, uframe;
4708         unsigned short allocated_max;
4709         unsigned long flags;
4710         ssize_t ret;
4711 
4712         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4713         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4714                 return -EINVAL;
4715 
4716         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4717                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4718                                 uframe_periodic_max);
4719                 return -EINVAL;
4720         }
4721 
4722         ret = -EINVAL;
4723 
4724         /*
4725          * lock, so that our checking does not race with possible periodic
4726          * bandwidth allocation through submitting new urbs.
4727          */
4728         spin_lock_irqsave(&fotg210->lock, flags);
4729 
4730         /*
4731          * for request to decrease max periodic bandwidth, we have to check
4732          * every microframe in the schedule to see whether the decrease is
4733          * possible.
4734          */
4735         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4736                 allocated_max = 0;
4737 
4738                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4739                         for (uframe = 0; uframe < 7; ++uframe)
4740                                 allocated_max = max(allocated_max,
4741                                                 periodic_usecs(fotg210, frame,
4742                                                 uframe));
4743 
4744                 if (allocated_max > uframe_periodic_max) {
4745                         fotg210_info(fotg210,
4746                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4747                                         allocated_max, uframe_periodic_max);
4748                         goto out_unlock;
4749                 }
4750         }
4751 
4752         /* increasing is always ok */
4753 
4754         fotg210_info(fotg210,
4755                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4756                         100 * uframe_periodic_max/125, uframe_periodic_max);
4757 
4758         if (uframe_periodic_max != 100)
4759                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4760 
4761         fotg210->uframe_periodic_max = uframe_periodic_max;
4762         ret = count;
4763 
4764 out_unlock:
4765         spin_unlock_irqrestore(&fotg210->lock, flags);
4766         return ret;
4767 }
4768 
4769 static DEVICE_ATTR_RW(uframe_periodic_max);
4770 
4771 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4772 {
4773         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4774 
4775         return device_create_file(controller, &dev_attr_uframe_periodic_max);
4776 }
4777 
4778 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4779 {
4780         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4781 
4782         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4783 }
4784 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4785  * The firmware seems to think that powering off is a wakeup event!
4786  * This routine turns off remote wakeup and everything else, on all ports.
4787  */
4788 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4789 {
4790         u32 __iomem *status_reg = &fotg210->regs->port_status;
4791 
4792         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4793 }
4794 
4795 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4796  * Must be called with interrupts enabled and the lock not held.
4797  */
4798 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4799 {
4800         fotg210_halt(fotg210);
4801 
4802         spin_lock_irq(&fotg210->lock);
4803         fotg210->rh_state = FOTG210_RH_HALTED;
4804         fotg210_turn_off_all_ports(fotg210);
4805         spin_unlock_irq(&fotg210->lock);
4806 }
4807 
4808 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4809  * This forcibly disables dma and IRQs, helping kexec and other cases
4810  * where the next system software may expect clean state.
4811  */
4812 static void fotg210_shutdown(struct usb_hcd *hcd)
4813 {
4814         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4815 
4816         spin_lock_irq(&fotg210->lock);
4817         fotg210->shutdown = true;
4818         fotg210->rh_state = FOTG210_RH_STOPPING;
4819         fotg210->enabled_hrtimer_events = 0;
4820         spin_unlock_irq(&fotg210->lock);
4821 
4822         fotg210_silence_controller(fotg210);
4823 
4824         hrtimer_cancel(&fotg210->hrtimer);
4825 }
4826 
4827 /* fotg210_work is called from some interrupts, timers, and so on.
4828  * it calls driver completion functions, after dropping fotg210->lock.
4829  */
4830 static void fotg210_work(struct fotg210_hcd *fotg210)
4831 {
4832         /* another CPU may drop fotg210->lock during a schedule scan while
4833          * it reports urb completions.  this flag guards against bogus
4834          * attempts at re-entrant schedule scanning.
4835          */
4836         if (fotg210->scanning) {
4837                 fotg210->need_rescan = true;
4838                 return;
4839         }
4840         fotg210->scanning = true;
4841 
4842 rescan:
4843         fotg210->need_rescan = false;
4844         if (fotg210->async_count)
4845                 scan_async(fotg210);
4846         if (fotg210->intr_count > 0)
4847                 scan_intr(fotg210);
4848         if (fotg210->isoc_count > 0)
4849                 scan_isoc(fotg210);
4850         if (fotg210->need_rescan)
4851                 goto rescan;
4852         fotg210->scanning = false;
4853 
4854         /* the IO watchdog guards against hardware or driver bugs that
4855          * misplace IRQs, and should let us run completely without IRQs.
4856          * such lossage has been observed on both VT6202 and VT8235.
4857          */
4858         turn_on_io_watchdog(fotg210);
4859 }
4860 
4861 /* Called when the fotg210_hcd module is removed.
4862  */
4863 static void fotg210_stop(struct usb_hcd *hcd)
4864 {
4865         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4866 
4867         fotg210_dbg(fotg210, "stop\n");
4868 
4869         /* no more interrupts ... */
4870 
4871         spin_lock_irq(&fotg210->lock);
4872         fotg210->enabled_hrtimer_events = 0;
4873         spin_unlock_irq(&fotg210->lock);
4874 
4875         fotg210_quiesce(fotg210);
4876         fotg210_silence_controller(fotg210);
4877         fotg210_reset(fotg210);
4878 
4879         hrtimer_cancel(&fotg210->hrtimer);
4880         remove_sysfs_files(fotg210);
4881         remove_debug_files(fotg210);
4882 
4883         /* root hub is shut down separately (first, when possible) */
4884         spin_lock_irq(&fotg210->lock);
4885         end_free_itds(fotg210);
4886         spin_unlock_irq(&fotg210->lock);
4887         fotg210_mem_cleanup(fotg210);
4888 
4889 #ifdef FOTG210_STATS
4890         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4891                         fotg210->stats.normal, fotg210->stats.error,
4892                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4893         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4894                         fotg210->stats.complete, fotg210->stats.unlink);
4895 #endif
4896 
4897         dbg_status(fotg210, "fotg210_stop completed",
4898                         fotg210_readl(fotg210, &fotg210->regs->status));
4899 }
4900 
4901 /* one-time init, only for memory state */
4902 static int hcd_fotg210_init(struct usb_hcd *hcd)
4903 {
4904         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4905         u32 temp;
4906         int retval;
4907         u32 hcc_params;
4908         struct fotg210_qh_hw *hw;
4909 
4910         spin_lock_init(&fotg210->lock);
4911 
4912         /*
4913          * keep io watchdog by default, those good HCDs could turn off it later
4914          */
4915         fotg210->need_io_watchdog = 1;
4916 
4917         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4918         fotg210->hrtimer.function = fotg210_hrtimer_func;
4919         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4920 
4921         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4922 
4923         /*
4924          * by default set standard 80% (== 100 usec/uframe) max periodic
4925          * bandwidth as required by USB 2.0
4926          */
4927         fotg210->uframe_periodic_max = 100;
4928 
4929         /*
4930          * hw default: 1K periodic list heads, one per frame.
4931          * periodic_size can shrink by USBCMD update if hcc_params allows.
4932          */
4933         fotg210->periodic_size = DEFAULT_I_TDPS;
4934         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4935         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4936 
4937         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4938                 /* periodic schedule size can be smaller than default */
4939                 switch (FOTG210_TUNE_FLS) {
4940                 case 0:
4941                         fotg210->periodic_size = 1024;
4942                         break;
4943                 case 1:
4944                         fotg210->periodic_size = 512;
4945                         break;
4946                 case 2:
4947                         fotg210->periodic_size = 256;
4948                         break;
4949                 default:
4950                         BUG();
4951                 }
4952         }
4953         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4954         if (retval < 0)
4955                 return retval;
4956 
4957         /* controllers may cache some of the periodic schedule ... */
4958         fotg210->i_thresh = 2;
4959 
4960         /*
4961          * dedicate a qh for the async ring head, since we couldn't unlink
4962          * a 'real' qh without stopping the async schedule [4.8].  use it
4963          * as the 'reclamation list head' too.
4964          * its dummy is used in hw_alt_next of many tds, to prevent the qh
4965          * from automatically advancing to the next td after short reads.
4966          */
4967         fotg210->async->qh_next.qh = NULL;
4968         hw = fotg210->async->hw;
4969         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4970         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4971         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4972         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4973         fotg210->async->qh_state = QH_STATE_LINKED;
4974         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4975 
4976         /* clear interrupt enables, set irq latency */
4977         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4978                 log2_irq_thresh = 0;
4979         temp = 1 << (16 + log2_irq_thresh);
4980         if (HCC_CANPARK(hcc_params)) {
4981                 /* HW default park == 3, on hardware that supports it (like
4982                  * NVidia and ALI silicon), maximizes throughput on the async
4983                  * schedule by avoiding QH fetches between transfers.
4984                  *
4985                  * With fast usb storage devices and NForce2, "park" seems to
4986                  * make problems:  throughput reduction (!), data errors...
4987                  */
4988                 if (park) {
4989                         park = min_t(unsigned, park, 3);
4990                         temp |= CMD_PARK;
4991                         temp |= park << 8;
4992                 }
4993                 fotg210_dbg(fotg210, "park %d\n", park);
4994         }
4995         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4996                 /* periodic schedule size can be smaller than default */
4997                 temp &= ~(3 << 2);
4998                 temp |= (FOTG210_TUNE_FLS << 2);
4999         }
5000         fotg210->command = temp;
5001 
5002         /* Accept arbitrarily long scatter-gather lists */
5003         if (!hcd->localmem_pool)
5004                 hcd->self.sg_tablesize = ~0;
5005         return 0;
5006 }
5007 
5008 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5009 static int fotg210_run(struct usb_hcd *hcd)
5010 {
5011         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5012         u32 temp;
5013         u32 hcc_params;
5014 
5015         hcd->uses_new_polling = 1;
5016 
5017         /* EHCI spec section 4.1 */
5018 
5019         fotg210_writel(fotg210, fotg210->periodic_dma,
5020                         &fotg210->regs->frame_list);
5021         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5022                         &fotg210->regs->async_next);
5023 
5024         /*
5025          * hcc_params controls whether fotg210->regs->segment must (!!!)
5026          * be used; it constrains QH/ITD/SITD and QTD locations.
5027          * dma_pool consistent memory always uses segment zero.
5028          * streaming mappings for I/O buffers, like pci_map_single(),
5029          * can return segments above 4GB, if the device allows.
5030          *
5031          * NOTE:  the dma mask is visible through dev->dma_mask, so
5032          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5033          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5034          * host side drivers though.
5035          */
5036         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5037 
5038         /*
5039          * Philips, Intel, and maybe others need CMD_RUN before the
5040          * root hub will detect new devices (why?); NEC doesn't
5041          */
5042         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5043         fotg210->command |= CMD_RUN;
5044         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5045         dbg_cmd(fotg210, "init", fotg210->command);
5046 
5047         /*
5048          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5049          * are explicitly handed to companion controller(s), so no TT is
5050          * involved with the root hub.  (Except where one is integrated,
5051          * and there's no companion controller unless maybe for USB OTG.)
5052          *
5053          * Turning on the CF flag will transfer ownership of all ports
5054          * from the companions to the EHCI controller.  If any of the
5055          * companions are in the middle of a port reset at the time, it
5056          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5057          * guarantees that no resets are in progress.  After we set CF,
5058          * a short delay lets the hardware catch up; new resets shouldn't
5059          * be started before the port switching actions could complete.
5060          */
5061         down_write(&ehci_cf_port_reset_rwsem);
5062         fotg210->rh_state = FOTG210_RH_RUNNING;
5063         /* unblock posted writes */
5064         fotg210_readl(fotg210, &fotg210->regs->command);
5065         usleep_range(5000, 10000);
5066         up_write(&ehci_cf_port_reset_rwsem);
5067         fotg210->last_periodic_enable = ktime_get_real();
5068 
5069         temp = HC_VERSION(fotg210,
5070                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5071         fotg210_info(fotg210,
5072                         "USB %x.%x started, EHCI %x.%02x\n",
5073                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5074                         temp >> 8, temp & 0xff);
5075 
5076         fotg210_writel(fotg210, INTR_MASK,
5077                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5078 
5079         /* GRR this is run-once init(), being done every time the HC starts.
5080          * So long as they're part of class devices, we can't do it init()
5081          * since the class device isn't created that early.
5082          */
5083         create_debug_files(fotg210);
5084         create_sysfs_files(fotg210);
5085 
5086         return 0;
5087 }
5088 
5089 static int fotg210_setup(struct usb_hcd *hcd)
5090 {
5091         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5092         int retval;
5093 
5094         fotg210->regs = (void __iomem *)fotg210->caps +
5095                         HC_LENGTH(fotg210,
5096                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5097         dbg_hcs_params(fotg210, "reset");
5098         dbg_hcc_params(fotg210, "reset");
5099 
5100         /* cache this readonly data; minimize chip reads */
5101         fotg210->hcs_params = fotg210_readl(fotg210,
5102                         &fotg210->caps->hcs_params);
5103 
5104         fotg210->sbrn = HCD_USB2;
5105 
5106         /* data structure init */
5107         retval = hcd_fotg210_init(hcd);
5108         if (retval)
5109                 return retval;
5110 
5111         retval = fotg210_halt(fotg210);
5112         if (retval)
5113                 return retval;
5114 
5115         fotg210_reset(fotg210);
5116 
5117         return 0;
5118 }
5119 
5120 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5121 {
5122         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5123         u32 status, masked_status, pcd_status = 0, cmd;
5124         int bh;
5125 
5126         spin_lock(&fotg210->lock);
5127 
5128         status = fotg210_readl(fotg210, &fotg210->regs->status);
5129 
5130         /* e.g. cardbus physical eject */
5131         if (status == ~(u32) 0) {
5132                 fotg210_dbg(fotg210, "device removed\n");
5133                 goto dead;
5134         }
5135 
5136         /*
5137          * We don't use STS_FLR, but some controllers don't like it to
5138          * remain on, so mask it out along with the other status bits.
5139          */
5140         masked_status = status & (INTR_MASK | STS_FLR);
5141 
5142         /* Shared IRQ? */
5143         if (!masked_status ||
5144                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5145                 spin_unlock(&fotg210->lock);
5146                 return IRQ_NONE;
5147         }
5148 
5149         /* clear (just) interrupts */
5150         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5151         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5152         bh = 0;
5153 
5154         /* unrequested/ignored: Frame List Rollover */
5155         dbg_status(fotg210, "irq", status);
5156 
5157         /* INT, ERR, and IAA interrupt rates can be throttled */
5158 
5159         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5160         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5161                 if (likely((status & STS_ERR) == 0))
5162                         INCR(fotg210->stats.normal);
5163                 else
5164                         INCR(fotg210->stats.error);
5165                 bh = 1;
5166         }
5167 
5168         /* complete the unlinking of some qh [4.15.2.3] */
5169         if (status & STS_IAA) {
5170 
5171                 /* Turn off the IAA watchdog */
5172                 fotg210->enabled_hrtimer_events &=
5173                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5174 
5175                 /*
5176                  * Mild optimization: Allow another IAAD to reset the
5177                  * hrtimer, if one occurs before the next expiration.
5178                  * In theory we could always cancel the hrtimer, but
5179                  * tests show that about half the time it will be reset
5180                  * for some other event anyway.
5181                  */
5182                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5183                         ++fotg210->next_hrtimer_event;
5184 
5185                 /* guard against (alleged) silicon errata */
5186                 if (cmd & CMD_IAAD)
5187                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5188                 if (fotg210->async_iaa) {
5189                         INCR(fotg210->stats.iaa);
5190                         end_unlink_async(fotg210);
5191                 } else
5192                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5193         }
5194 
5195         /* remote wakeup [4.3.1] */
5196         if (status & STS_PCD) {
5197                 int pstatus;
5198                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5199 
5200                 /* kick root hub later */
5201                 pcd_status = status;
5202 
5203                 /* resume root hub? */
5204                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5205                         usb_hcd_resume_root_hub(hcd);
5206 
5207                 pstatus = fotg210_readl(fotg210, status_reg);
5208 
5209                 if (test_bit(0, &fotg210->suspended_ports) &&
5210                                 ((pstatus & PORT_RESUME) ||
5211                                 !(pstatus & PORT_SUSPEND)) &&
5212                                 (pstatus & PORT_PE) &&
5213                                 fotg210->reset_done[0] == 0) {
5214 
5215                         /* start 20 msec resume signaling from this port,
5216                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5217                          * stop that signaling.  Use 5 ms extra for safety,
5218                          * like usb_port_resume() does.
5219                          */
5220                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5221                         set_bit(0, &fotg210->resuming_ports);
5222                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5223                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5224                 }
5225         }
5226 
5227         /* PCI errors [4.15.2.4] */
5228         if (unlikely((status & STS_FATAL) != 0)) {
5229                 fotg210_err(fotg210, "fatal error\n");
5230                 dbg_cmd(fotg210, "fatal", cmd);
5231                 dbg_status(fotg210, "fatal", status);
5232 dead:
5233                 usb_hc_died(hcd);
5234 
5235                 /* Don't let the controller do anything more */
5236                 fotg210->shutdown = true;
5237                 fotg210->rh_state = FOTG210_RH_STOPPING;
5238                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5239                 fotg210_writel(fotg210, fotg210->command,
5240                                 &fotg210->regs->command);
5241                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5242                 fotg210_handle_controller_death(fotg210);
5243 
5244                 /* Handle completions when the controller stops */
5245                 bh = 0;
5246         }
5247 
5248         if (bh)
5249                 fotg210_work(fotg210);
5250         spin_unlock(&fotg210->lock);
5251         if (pcd_status)
5252                 usb_hcd_poll_rh_status(hcd);
5253         return IRQ_HANDLED;
5254 }
5255 
5256 /* non-error returns are a promise to giveback() the urb later
5257  * we drop ownership so next owner (or urb unlink) can get it
5258  *
5259  * urb + dev is in hcd.self.controller.urb_list
5260  * we're queueing TDs onto software and hardware lists
5261  *
5262  * hcd-specific init for hcpriv hasn't been done yet
5263  *
5264  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5265  * to a (possibly active) QH, and the same QH scanning code.
5266  */
5267 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5268                 gfp_t mem_flags)
5269 {
5270         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5271         struct list_head qtd_list;
5272 
5273         INIT_LIST_HEAD(&qtd_list);
5274 
5275         switch (usb_pipetype(urb->pipe)) {
5276         case PIPE_CONTROL:
5277                 /* qh_completions() code doesn't handle all the fault cases
5278                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5279                  */
5280                 if (urb->transfer_buffer_length > (16 * 1024))
5281                         return -EMSGSIZE;
5282                 /* FALLTHROUGH */
5283         /* case PIPE_BULK: */
5284         default:
5285                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286                         return -ENOMEM;
5287                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5288 
5289         case PIPE_INTERRUPT:
5290                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5291                         return -ENOMEM;
5292                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5293 
5294         case PIPE_ISOCHRONOUS:
5295                 return itd_submit(fotg210, urb, mem_flags);
5296         }
5297 }
5298 
5299 /* remove from hardware lists
5300  * completions normally happen asynchronously
5301  */
5302 
5303 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5304 {
5305         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5306         struct fotg210_qh *qh;
5307         unsigned long flags;
5308         int rc;
5309 
5310         spin_lock_irqsave(&fotg210->lock, flags);
5311         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5312         if (rc)
5313                 goto done;
5314 
5315         switch (usb_pipetype(urb->pipe)) {
5316         /* case PIPE_CONTROL: */
5317         /* case PIPE_BULK:*/
5318         default:
5319                 qh = (struct fotg210_qh *) urb->hcpriv;
5320                 if (!qh)
5321                         break;
5322                 switch (qh->qh_state) {
5323                 case QH_STATE_LINKED:
5324                 case QH_STATE_COMPLETING:
5325                         start_unlink_async(fotg210, qh);
5326                         break;
5327                 case QH_STATE_UNLINK:
5328                 case QH_STATE_UNLINK_WAIT:
5329                         /* already started */
5330                         break;
5331                 case QH_STATE_IDLE:
5332                         /* QH might be waiting for a Clear-TT-Buffer */
5333                         qh_completions(fotg210, qh);
5334                         break;
5335                 }
5336                 break;
5337 
5338         case PIPE_INTERRUPT:
5339                 qh = (struct fotg210_qh *) urb->hcpriv;
5340                 if (!qh)
5341                         break;
5342                 switch (qh->qh_state) {
5343                 case QH_STATE_LINKED:
5344                 case QH_STATE_COMPLETING:
5345                         start_unlink_intr(fotg210, qh);
5346                         break;
5347                 case QH_STATE_IDLE:
5348                         qh_completions(fotg210, qh);
5349                         break;
5350                 default:
5351                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5352                                         qh, qh->qh_state);
5353                         goto done;
5354                 }
5355                 break;
5356 
5357         case PIPE_ISOCHRONOUS:
5358                 /* itd... */
5359 
5360                 /* wait till next completion, do it then. */
5361                 /* completion irqs can wait up to 1024 msec, */
5362                 break;
5363         }
5364 done:
5365         spin_unlock_irqrestore(&fotg210->lock, flags);
5366         return rc;
5367 }
5368 
5369 /* bulk qh holds the data toggle */
5370 
5371 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5372                 struct usb_host_endpoint *ep)
5373 {
5374         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5375         unsigned long flags;
5376         struct fotg210_qh *qh, *tmp;
5377 
5378         /* ASSERT:  any requests/urbs are being unlinked */
5379         /* ASSERT:  nobody can be submitting urbs for this any more */
5380 
5381 rescan:
5382         spin_lock_irqsave(&fotg210->lock, flags);
5383         qh = ep->hcpriv;
5384         if (!qh)
5385                 goto done;
5386 
5387         /* endpoints can be iso streams.  for now, we don't
5388          * accelerate iso completions ... so spin a while.
5389          */
5390         if (qh->hw == NULL) {
5391                 struct fotg210_iso_stream *stream = ep->hcpriv;
5392 
5393                 if (!list_empty(&stream->td_list))
5394                         goto idle_timeout;
5395 
5396                 /* BUG_ON(!list_empty(&stream->free_list)); */
5397                 kfree(stream);
5398                 goto done;
5399         }
5400 
5401         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5402                 qh->qh_state = QH_STATE_IDLE;
5403         switch (qh->qh_state) {
5404         case QH_STATE_LINKED:
5405         case QH_STATE_COMPLETING:
5406                 for (tmp = fotg210->async->qh_next.qh;
5407                                 tmp && tmp != qh;
5408                                 tmp = tmp->qh_next.qh)
5409                         continue;
5410                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5411                  * may already be unlinked.
5412                  */
5413                 if (tmp)
5414                         start_unlink_async(fotg210, qh);
5415                 /* FALL THROUGH */
5416         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5417         case QH_STATE_UNLINK_WAIT:
5418 idle_timeout:
5419                 spin_unlock_irqrestore(&fotg210->lock, flags);
5420                 schedule_timeout_uninterruptible(1);
5421                 goto rescan;
5422         case QH_STATE_IDLE:             /* fully unlinked */
5423                 if (qh->clearing_tt)
5424                         goto idle_timeout;
5425                 if (list_empty(&qh->qtd_list)) {
5426                         qh_destroy(fotg210, qh);
5427                         break;
5428                 }
5429                 /* fall through */
5430         default:
5431                 /* caller was supposed to have unlinked any requests;
5432                  * that's not our job.  just leak this memory.
5433                  */
5434                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5435                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5436                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5437                 break;
5438         }
5439 done:
5440         ep->hcpriv = NULL;
5441         spin_unlock_irqrestore(&fotg210->lock, flags);
5442 }
5443 
5444 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5445                 struct usb_host_endpoint *ep)
5446 {
5447         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5448         struct fotg210_qh *qh;
5449         int eptype = usb_endpoint_type(&ep->desc);
5450         int epnum = usb_endpoint_num(&ep->desc);
5451         int is_out = usb_endpoint_dir_out(&ep->desc);
5452         unsigned long flags;
5453 
5454         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5455                 return;
5456 
5457         spin_lock_irqsave(&fotg210->lock, flags);
5458         qh = ep->hcpriv;
5459 
5460         /* For Bulk and Interrupt endpoints we maintain the toggle state
5461          * in the hardware; the toggle bits in udev aren't used at all.
5462          * When an endpoint is reset by usb_clear_halt() we must reset
5463          * the toggle bit in the QH.
5464          */
5465         if (qh) {
5466                 usb_settoggle(qh->dev, epnum, is_out, 0);
5467                 if (!list_empty(&qh->qtd_list)) {
5468                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5469                 } else if (qh->qh_state == QH_STATE_LINKED ||
5470                                 qh->qh_state == QH_STATE_COMPLETING) {
5471 
5472                         /* The toggle value in the QH can't be updated
5473                          * while the QH is active.  Unlink it now;
5474                          * re-linking will call qh_refresh().
5475                          */
5476                         if (eptype == USB_ENDPOINT_XFER_BULK)
5477                                 start_unlink_async(fotg210, qh);
5478                         else
5479                                 start_unlink_intr(fotg210, qh);
5480                 }
5481         }
5482         spin_unlock_irqrestore(&fotg210->lock, flags);
5483 }
5484 
5485 static int fotg210_get_frame(struct usb_hcd *hcd)
5486 {
5487         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5488 
5489         return (fotg210_read_frame_index(fotg210) >> 3) %
5490                 fotg210->periodic_size;
5491 }
5492 
5493 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5494  * because its registers (and irq) are shared between host/gadget/otg
5495  * functions  and in order to facilitate role switching we cannot
5496  * give the fotg210 driver exclusive access to those.
5497  */
5498 MODULE_DESCRIPTION(DRIVER_DESC);
5499 MODULE_AUTHOR(DRIVER_AUTHOR);
5500 MODULE_LICENSE("GPL");
5501 
5502 static const struct hc_driver fotg210_fotg210_hc_driver = {
5503         .description            = hcd_name,
5504         .product_desc           = "Faraday USB2.0 Host Controller",
5505         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5506 
5507         /*
5508          * generic hardware linkage
5509          */
5510         .irq                    = fotg210_irq,
5511         .flags                  = HCD_MEMORY | HCD_DMA | HCD_USB2,
5512 
5513         /*
5514          * basic lifecycle operations
5515          */
5516         .reset                  = hcd_fotg210_init,
5517         .start                  = fotg210_run,
5518         .stop                   = fotg210_stop,
5519         .shutdown               = fotg210_shutdown,
5520 
5521         /*
5522          * managing i/o requests and associated device resources
5523          */
5524         .urb_enqueue            = fotg210_urb_enqueue,
5525         .urb_dequeue            = fotg210_urb_dequeue,
5526         .endpoint_disable       = fotg210_endpoint_disable,
5527         .endpoint_reset         = fotg210_endpoint_reset,
5528 
5529         /*
5530          * scheduling support
5531          */
5532         .get_frame_number       = fotg210_get_frame,
5533 
5534         /*
5535          * root hub support
5536          */
5537         .hub_status_data        = fotg210_hub_status_data,
5538         .hub_control            = fotg210_hub_control,
5539         .bus_suspend            = fotg210_bus_suspend,
5540         .bus_resume             = fotg210_bus_resume,
5541 
5542         .relinquish_port        = fotg210_relinquish_port,
5543         .port_handed_over       = fotg210_port_handed_over,
5544 
5545         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5546 };
5547 
5548 static void fotg210_init(struct fotg210_hcd *fotg210)
5549 {
5550         u32 value;
5551 
5552         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5553                         &fotg210->regs->gmir);
5554 
5555         value = ioread32(&fotg210->regs->otgcsr);
5556         value &= ~OTGCSR_A_BUS_DROP;
5557         value |= OTGCSR_A_BUS_REQ;
5558         iowrite32(value, &fotg210->regs->otgcsr);
5559 }
5560 
5561 /**
5562  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5563  *
5564  * Allocates basic resources for this USB host controller, and
5565  * then invokes the start() method for the HCD associated with it
5566  * through the hotplug entry's driver_data.
5567  */
5568 static int fotg210_hcd_probe(struct platform_device *pdev)
5569 {
5570         struct device *dev = &pdev->dev;
5571         struct usb_hcd *hcd;
5572         struct resource *res;
5573         int irq;
5574         int retval = -ENODEV;
5575         struct fotg210_hcd *fotg210;
5576 
5577         if (usb_disabled())
5578                 return -ENODEV;
5579 
5580         pdev->dev.power.power_state = PMSG_ON;
5581 
5582         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5583         if (!res) {
5584                 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5585                                 dev_name(dev));
5586                 return -ENODEV;
5587         }
5588 
5589         irq = res->start;
5590 
5591         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5592                         dev_name(dev));
5593         if (!hcd) {
5594                 dev_err(dev, "failed to create hcd with err %d\n", retval);
5595                 retval = -ENOMEM;
5596                 goto fail_create_hcd;
5597         }
5598 
5599         hcd->has_tt = 1;
5600 
5601         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5602         hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5603         if (IS_ERR(hcd->regs)) {
5604                 retval = PTR_ERR(hcd->regs);
5605                 goto failed_put_hcd;
5606         }
5607 
5608         hcd->rsrc_start = res->start;
5609         hcd->rsrc_len = resource_size(res);
5610 
5611         fotg210 = hcd_to_fotg210(hcd);
5612 
5613         fotg210->caps = hcd->regs;
5614 
5615         /* It's OK not to supply this clock */
5616         fotg210->pclk = clk_get(dev, "PCLK");
5617         if (!IS_ERR(fotg210->pclk)) {
5618                 retval = clk_prepare_enable(fotg210->pclk);
5619                 if (retval) {
5620                         dev_err(dev, "failed to enable PCLK\n");
5621                         goto failed_put_hcd;
5622                 }
5623         } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5624                 /*
5625                  * Percolate deferrals, for anything else,
5626                  * just live without the clocking.
5627                  */
5628                 retval = PTR_ERR(fotg210->pclk);
5629                 goto failed_dis_clk;
5630         }
5631 
5632         retval = fotg210_setup(hcd);
5633         if (retval)
5634                 goto failed_dis_clk;
5635 
5636         fotg210_init(fotg210);
5637 
5638         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5639         if (retval) {
5640                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5641                 goto failed_dis_clk;
5642         }
5643         device_wakeup_enable(hcd->self.controller);
5644         platform_set_drvdata(pdev, hcd);
5645 
5646         return retval;
5647 
5648 failed_dis_clk:
5649         if (!IS_ERR(fotg210->pclk))
5650                 clk_disable_unprepare(fotg210->pclk);
5651 failed_put_hcd:
5652         usb_put_hcd(hcd);
5653 fail_create_hcd:
5654         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5655         return retval;
5656 }
5657 
5658 /**
5659  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5660  * @dev: USB Host Controller being removed
5661  *
5662  */
5663 static int fotg210_hcd_remove(struct platform_device *pdev)
5664 {
5665         struct usb_hcd *hcd = platform_get_drvdata(pdev);
5666         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5667 
5668         if (!IS_ERR(fotg210->pclk))
5669                 clk_disable_unprepare(fotg210->pclk);
5670 
5671         usb_remove_hcd(hcd);
5672         usb_put_hcd(hcd);
5673 
5674         return 0;
5675 }
5676 
5677 #ifdef CONFIG_OF
5678 static const struct of_device_id fotg210_of_match[] = {
5679         { .compatible = "faraday,fotg210" },
5680         {},
5681 };
5682 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5683 #endif
5684 
5685 static struct platform_driver fotg210_hcd_driver = {
5686         .driver = {
5687                 .name   = "fotg210-hcd",
5688                 .of_match_table = of_match_ptr(fotg210_of_match),
5689         },
5690         .probe  = fotg210_hcd_probe,
5691         .remove = fotg210_hcd_remove,
5692 };
5693 
5694 static int __init fotg210_hcd_init(void)
5695 {
5696         int retval = 0;
5697 
5698         if (usb_disabled())
5699                 return -ENODEV;
5700 
5701         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5702         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5703         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5704                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5705                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5706 
5707         pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5708                         hcd_name, sizeof(struct fotg210_qh),
5709                         sizeof(struct fotg210_qtd),
5710                         sizeof(struct fotg210_itd));
5711 
5712         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5713 
5714         retval = platform_driver_register(&fotg210_hcd_driver);
5715         if (retval < 0)
5716                 goto clean;
5717         return retval;
5718 
5719 clean:
5720         debugfs_remove(fotg210_debug_root);
5721         fotg210_debug_root = NULL;
5722 
5723         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5724         return retval;
5725 }
5726 module_init(fotg210_hcd_init);
5727 
5728 static void __exit fotg210_hcd_cleanup(void)
5729 {
5730         platform_driver_unregister(&fotg210_hcd_driver);
5731         debugfs_remove(fotg210_debug_root);
5732         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5733 }
5734 module_exit(fotg210_hcd_cleanup);

/* [<][>][^][v][top][bottom][index][help] */