root/drivers/usb/host/xhci-mem.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xhci_segment_alloc
  2. xhci_segment_free
  3. xhci_free_segments_for_ring
  4. xhci_link_segments
  5. xhci_link_rings
  6. xhci_insert_segment_mapping
  7. xhci_remove_segment_mapping
  8. xhci_update_stream_segment_mapping
  9. xhci_remove_stream_mapping
  10. xhci_update_stream_mapping
  11. xhci_ring_free
  12. xhci_initialize_ring_info
  13. xhci_alloc_segments_for_ring
  14. xhci_ring_alloc
  15. xhci_free_endpoint_ring
  16. xhci_ring_expansion
  17. xhci_alloc_container_ctx
  18. xhci_free_container_ctx
  19. xhci_get_input_control_ctx
  20. xhci_get_slot_ctx
  21. xhci_get_ep_ctx
  22. xhci_free_stream_ctx
  23. xhci_alloc_stream_ctx
  24. xhci_dma_to_transfer_ring
  25. xhci_stream_id_to_ring
  26. xhci_alloc_stream_info
  27. xhci_setup_streams_ep_input_ctx
  28. xhci_setup_no_streams_ep_input_ctx
  29. xhci_free_stream_info
  30. xhci_init_endpoint_timer
  31. xhci_free_tt_info
  32. xhci_alloc_tt_info
  33. xhci_free_virt_device
  34. xhci_free_virt_devices_depth_first
  35. xhci_alloc_virt_device
  36. xhci_copy_ep0_dequeue_into_input_ctx
  37. xhci_find_real_port_number
  38. xhci_setup_addressable_virt_dev
  39. xhci_parse_exponent_interval
  40. xhci_microframes_to_exponent
  41. xhci_parse_microframe_interval
  42. xhci_parse_frame_interval
  43. xhci_get_endpoint_interval
  44. xhci_get_endpoint_mult
  45. xhci_get_endpoint_max_burst
  46. xhci_get_endpoint_type
  47. xhci_get_max_esit_payload
  48. xhci_endpoint_init
  49. xhci_endpoint_zero
  50. xhci_clear_endpoint_bw_info
  51. xhci_update_bw_info
  52. xhci_endpoint_copy
  53. xhci_slot_copy
  54. scratchpad_alloc
  55. scratchpad_free
  56. xhci_alloc_command
  57. xhci_alloc_command_with_ctx
  58. xhci_urb_free_priv
  59. xhci_free_command
  60. xhci_alloc_erst
  61. xhci_free_erst
  62. xhci_mem_cleanup
  63. xhci_test_trb_in_td
  64. xhci_check_trb_in_td_math
  65. xhci_set_hc_event_deq
  66. xhci_add_in_port
  67. xhci_create_rhub_port_array
  68. xhci_setup_port_arrays
  69. xhci_mem_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * xHCI host controller driver
   4  *
   5  * Copyright (C) 2008 Intel Corp.
   6  *
   7  * Author: Sarah Sharp
   8  * Some code borrowed from the Linux EHCI driver.
   9  */
  10 
  11 #include <linux/usb.h>
  12 #include <linux/pci.h>
  13 #include <linux/slab.h>
  14 #include <linux/dmapool.h>
  15 #include <linux/dma-mapping.h>
  16 
  17 #include "xhci.h"
  18 #include "xhci-trace.h"
  19 #include "xhci-debugfs.h"
  20 
  21 /*
  22  * Allocates a generic ring segment from the ring pool, sets the dma address,
  23  * initializes the segment to zero, and sets the private next pointer to NULL.
  24  *
  25  * Section 4.11.1.1:
  26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27  */
  28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29                                                unsigned int cycle_state,
  30                                                unsigned int max_packet,
  31                                                gfp_t flags)
  32 {
  33         struct xhci_segment *seg;
  34         dma_addr_t      dma;
  35         int             i;
  36         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37 
  38         seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39         if (!seg)
  40                 return NULL;
  41 
  42         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43         if (!seg->trbs) {
  44                 kfree(seg);
  45                 return NULL;
  46         }
  47 
  48         if (max_packet) {
  49                 seg->bounce_buf = kzalloc_node(max_packet, flags,
  50                                         dev_to_node(dev));
  51                 if (!seg->bounce_buf) {
  52                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53                         kfree(seg);
  54                         return NULL;
  55                 }
  56         }
  57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  58         if (cycle_state == 0) {
  59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
  60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  61         }
  62         seg->dma = dma;
  63         seg->next = NULL;
  64 
  65         return seg;
  66 }
  67 
  68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  69 {
  70         if (seg->trbs) {
  71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  72                 seg->trbs = NULL;
  73         }
  74         kfree(seg->bounce_buf);
  75         kfree(seg);
  76 }
  77 
  78 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  79                                 struct xhci_segment *first)
  80 {
  81         struct xhci_segment *seg;
  82 
  83         seg = first->next;
  84         while (seg != first) {
  85                 struct xhci_segment *next = seg->next;
  86                 xhci_segment_free(xhci, seg);
  87                 seg = next;
  88         }
  89         xhci_segment_free(xhci, first);
  90 }
  91 
  92 /*
  93  * Make the prev segment point to the next segment.
  94  *
  95  * Change the last TRB in the prev segment to be a Link TRB which points to the
  96  * DMA address of the next segment.  The caller needs to set any Link TRB
  97  * related flags, such as End TRB, Toggle Cycle, and no snoop.
  98  */
  99 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
 100                 struct xhci_segment *next, enum xhci_ring_type type)
 101 {
 102         u32 val;
 103 
 104         if (!prev || !next)
 105                 return;
 106         prev->next = next;
 107         if (type != TYPE_EVENT) {
 108                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 109                         cpu_to_le64(next->dma);
 110 
 111                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 112                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 113                 val &= ~TRB_TYPE_BITMASK;
 114                 val |= TRB_TYPE(TRB_LINK);
 115                 /* Always set the chain bit with 0.95 hardware */
 116                 /* Set chain bit for isoc rings on AMD 0.96 host */
 117                 if (xhci_link_trb_quirk(xhci) ||
 118                                 (type == TYPE_ISOC &&
 119                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
 120                         val |= TRB_CHAIN;
 121                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 122         }
 123 }
 124 
 125 /*
 126  * Link the ring to the new segments.
 127  * Set Toggle Cycle for the new ring if needed.
 128  */
 129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 130                 struct xhci_segment *first, struct xhci_segment *last,
 131                 unsigned int num_segs)
 132 {
 133         struct xhci_segment *next;
 134 
 135         if (!ring || !first || !last)
 136                 return;
 137 
 138         next = ring->enq_seg->next;
 139         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 140         xhci_link_segments(xhci, last, next, ring->type);
 141         ring->num_segs += num_segs;
 142         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 143 
 144         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 145                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 146                         &= ~cpu_to_le32(LINK_TOGGLE);
 147                 last->trbs[TRBS_PER_SEGMENT-1].link.control
 148                         |= cpu_to_le32(LINK_TOGGLE);
 149                 ring->last_seg = last;
 150         }
 151 }
 152 
 153 /*
 154  * We need a radix tree for mapping physical addresses of TRBs to which stream
 155  * ID they belong to.  We need to do this because the host controller won't tell
 156  * us which stream ring the TRB came from.  We could store the stream ID in an
 157  * event data TRB, but that doesn't help us for the cancellation case, since the
 158  * endpoint may stop before it reaches that event data TRB.
 159  *
 160  * The radix tree maps the upper portion of the TRB DMA address to a ring
 161  * segment that has the same upper portion of DMA addresses.  For example, say I
 162  * have segments of size 1KB, that are always 1KB aligned.  A segment may
 163  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 164  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 165  * pass the radix tree a key to get the right stream ID:
 166  *
 167  *      0x10c90fff >> 10 = 0x43243
 168  *      0x10c912c0 >> 10 = 0x43244
 169  *      0x10c91400 >> 10 = 0x43245
 170  *
 171  * Obviously, only those TRBs with DMA addresses that are within the segment
 172  * will make the radix tree return the stream ID for that ring.
 173  *
 174  * Caveats for the radix tree:
 175  *
 176  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 177  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 178  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 179  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 180  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 181  * extended systems (where the DMA address can be bigger than 32-bits),
 182  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 183  */
 184 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 185                 struct xhci_ring *ring,
 186                 struct xhci_segment *seg,
 187                 gfp_t mem_flags)
 188 {
 189         unsigned long key;
 190         int ret;
 191 
 192         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 193         /* Skip any segments that were already added. */
 194         if (radix_tree_lookup(trb_address_map, key))
 195                 return 0;
 196 
 197         ret = radix_tree_maybe_preload(mem_flags);
 198         if (ret)
 199                 return ret;
 200         ret = radix_tree_insert(trb_address_map,
 201                         key, ring);
 202         radix_tree_preload_end();
 203         return ret;
 204 }
 205 
 206 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 207                 struct xhci_segment *seg)
 208 {
 209         unsigned long key;
 210 
 211         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 212         if (radix_tree_lookup(trb_address_map, key))
 213                 radix_tree_delete(trb_address_map, key);
 214 }
 215 
 216 static int xhci_update_stream_segment_mapping(
 217                 struct radix_tree_root *trb_address_map,
 218                 struct xhci_ring *ring,
 219                 struct xhci_segment *first_seg,
 220                 struct xhci_segment *last_seg,
 221                 gfp_t mem_flags)
 222 {
 223         struct xhci_segment *seg;
 224         struct xhci_segment *failed_seg;
 225         int ret;
 226 
 227         if (WARN_ON_ONCE(trb_address_map == NULL))
 228                 return 0;
 229 
 230         seg = first_seg;
 231         do {
 232                 ret = xhci_insert_segment_mapping(trb_address_map,
 233                                 ring, seg, mem_flags);
 234                 if (ret)
 235                         goto remove_streams;
 236                 if (seg == last_seg)
 237                         return 0;
 238                 seg = seg->next;
 239         } while (seg != first_seg);
 240 
 241         return 0;
 242 
 243 remove_streams:
 244         failed_seg = seg;
 245         seg = first_seg;
 246         do {
 247                 xhci_remove_segment_mapping(trb_address_map, seg);
 248                 if (seg == failed_seg)
 249                         return ret;
 250                 seg = seg->next;
 251         } while (seg != first_seg);
 252 
 253         return ret;
 254 }
 255 
 256 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 257 {
 258         struct xhci_segment *seg;
 259 
 260         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 261                 return;
 262 
 263         seg = ring->first_seg;
 264         do {
 265                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
 266                 seg = seg->next;
 267         } while (seg != ring->first_seg);
 268 }
 269 
 270 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 271 {
 272         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 273                         ring->first_seg, ring->last_seg, mem_flags);
 274 }
 275 
 276 /* XXX: Do we need the hcd structure in all these functions? */
 277 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 278 {
 279         if (!ring)
 280                 return;
 281 
 282         trace_xhci_ring_free(ring);
 283 
 284         if (ring->first_seg) {
 285                 if (ring->type == TYPE_STREAM)
 286                         xhci_remove_stream_mapping(ring);
 287                 xhci_free_segments_for_ring(xhci, ring->first_seg);
 288         }
 289 
 290         kfree(ring);
 291 }
 292 
 293 static void xhci_initialize_ring_info(struct xhci_ring *ring,
 294                                         unsigned int cycle_state)
 295 {
 296         /* The ring is empty, so the enqueue pointer == dequeue pointer */
 297         ring->enqueue = ring->first_seg->trbs;
 298         ring->enq_seg = ring->first_seg;
 299         ring->dequeue = ring->enqueue;
 300         ring->deq_seg = ring->first_seg;
 301         /* The ring is initialized to 0. The producer must write 1 to the cycle
 302          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 303          * compare CCS to the cycle bit to check ownership, so CCS = 1.
 304          *
 305          * New rings are initialized with cycle state equal to 1; if we are
 306          * handling ring expansion, set the cycle state equal to the old ring.
 307          */
 308         ring->cycle_state = cycle_state;
 309 
 310         /*
 311          * Each segment has a link TRB, and leave an extra TRB for SW
 312          * accounting purpose
 313          */
 314         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 315 }
 316 
 317 /* Allocate segments and link them for a ring */
 318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 319                 struct xhci_segment **first, struct xhci_segment **last,
 320                 unsigned int num_segs, unsigned int cycle_state,
 321                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 322 {
 323         struct xhci_segment *prev;
 324 
 325         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 326         if (!prev)
 327                 return -ENOMEM;
 328         num_segs--;
 329 
 330         *first = prev;
 331         while (num_segs > 0) {
 332                 struct xhci_segment     *next;
 333 
 334                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 335                 if (!next) {
 336                         prev = *first;
 337                         while (prev) {
 338                                 next = prev->next;
 339                                 xhci_segment_free(xhci, prev);
 340                                 prev = next;
 341                         }
 342                         return -ENOMEM;
 343                 }
 344                 xhci_link_segments(xhci, prev, next, type);
 345 
 346                 prev = next;
 347                 num_segs--;
 348         }
 349         xhci_link_segments(xhci, prev, *first, type);
 350         *last = prev;
 351 
 352         return 0;
 353 }
 354 
 355 /**
 356  * Create a new ring with zero or more segments.
 357  *
 358  * Link each segment together into a ring.
 359  * Set the end flag and the cycle toggle bit on the last segment.
 360  * See section 4.9.1 and figures 15 and 16.
 361  */
 362 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 363                 unsigned int num_segs, unsigned int cycle_state,
 364                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 365 {
 366         struct xhci_ring        *ring;
 367         int ret;
 368         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 369 
 370         ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 371         if (!ring)
 372                 return NULL;
 373 
 374         ring->num_segs = num_segs;
 375         ring->bounce_buf_len = max_packet;
 376         INIT_LIST_HEAD(&ring->td_list);
 377         ring->type = type;
 378         if (num_segs == 0)
 379                 return ring;
 380 
 381         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 382                         &ring->last_seg, num_segs, cycle_state, type,
 383                         max_packet, flags);
 384         if (ret)
 385                 goto fail;
 386 
 387         /* Only event ring does not use link TRB */
 388         if (type != TYPE_EVENT) {
 389                 /* See section 4.9.2.1 and 6.4.4.1 */
 390                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 391                         cpu_to_le32(LINK_TOGGLE);
 392         }
 393         xhci_initialize_ring_info(ring, cycle_state);
 394         trace_xhci_ring_alloc(ring);
 395         return ring;
 396 
 397 fail:
 398         kfree(ring);
 399         return NULL;
 400 }
 401 
 402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 403                 struct xhci_virt_device *virt_dev,
 404                 unsigned int ep_index)
 405 {
 406         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 407         virt_dev->eps[ep_index].ring = NULL;
 408 }
 409 
 410 /*
 411  * Expand an existing ring.
 412  * Allocate a new ring which has same segment numbers and link the two rings.
 413  */
 414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 415                                 unsigned int num_trbs, gfp_t flags)
 416 {
 417         struct xhci_segment     *first;
 418         struct xhci_segment     *last;
 419         unsigned int            num_segs;
 420         unsigned int            num_segs_needed;
 421         int                     ret;
 422 
 423         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 424                                 (TRBS_PER_SEGMENT - 1);
 425 
 426         /* Allocate number of segments we needed, or double the ring size */
 427         num_segs = ring->num_segs > num_segs_needed ?
 428                         ring->num_segs : num_segs_needed;
 429 
 430         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 431                         num_segs, ring->cycle_state, ring->type,
 432                         ring->bounce_buf_len, flags);
 433         if (ret)
 434                 return -ENOMEM;
 435 
 436         if (ring->type == TYPE_STREAM)
 437                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 438                                                 ring, first, last, flags);
 439         if (ret) {
 440                 struct xhci_segment *next;
 441                 do {
 442                         next = first->next;
 443                         xhci_segment_free(xhci, first);
 444                         if (first == last)
 445                                 break;
 446                         first = next;
 447                 } while (true);
 448                 return ret;
 449         }
 450 
 451         xhci_link_rings(xhci, ring, first, last, num_segs);
 452         trace_xhci_ring_expansion(ring);
 453         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 454                         "ring expansion succeed, now has %d segments",
 455                         ring->num_segs);
 456 
 457         return 0;
 458 }
 459 
 460 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 461                                                     int type, gfp_t flags)
 462 {
 463         struct xhci_container_ctx *ctx;
 464         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 465 
 466         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 467                 return NULL;
 468 
 469         ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 470         if (!ctx)
 471                 return NULL;
 472 
 473         ctx->type = type;
 474         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 475         if (type == XHCI_CTX_TYPE_INPUT)
 476                 ctx->size += CTX_SIZE(xhci->hcc_params);
 477 
 478         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 479         if (!ctx->bytes) {
 480                 kfree(ctx);
 481                 return NULL;
 482         }
 483         return ctx;
 484 }
 485 
 486 void xhci_free_container_ctx(struct xhci_hcd *xhci,
 487                              struct xhci_container_ctx *ctx)
 488 {
 489         if (!ctx)
 490                 return;
 491         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 492         kfree(ctx);
 493 }
 494 
 495 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 496                                               struct xhci_container_ctx *ctx)
 497 {
 498         if (ctx->type != XHCI_CTX_TYPE_INPUT)
 499                 return NULL;
 500 
 501         return (struct xhci_input_control_ctx *)ctx->bytes;
 502 }
 503 
 504 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 505                                         struct xhci_container_ctx *ctx)
 506 {
 507         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 508                 return (struct xhci_slot_ctx *)ctx->bytes;
 509 
 510         return (struct xhci_slot_ctx *)
 511                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
 512 }
 513 
 514 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 515                                     struct xhci_container_ctx *ctx,
 516                                     unsigned int ep_index)
 517 {
 518         /* increment ep index by offset of start of ep ctx array */
 519         ep_index++;
 520         if (ctx->type == XHCI_CTX_TYPE_INPUT)
 521                 ep_index++;
 522 
 523         return (struct xhci_ep_ctx *)
 524                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 525 }
 526 
 527 
 528 /***************** Streams structures manipulation *************************/
 529 
 530 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 531                 unsigned int num_stream_ctxs,
 532                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 533 {
 534         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 535         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 536 
 537         if (size > MEDIUM_STREAM_ARRAY_SIZE)
 538                 dma_free_coherent(dev, size,
 539                                 stream_ctx, dma);
 540         else if (size <= SMALL_STREAM_ARRAY_SIZE)
 541                 return dma_pool_free(xhci->small_streams_pool,
 542                                 stream_ctx, dma);
 543         else
 544                 return dma_pool_free(xhci->medium_streams_pool,
 545                                 stream_ctx, dma);
 546 }
 547 
 548 /*
 549  * The stream context array for each endpoint with bulk streams enabled can
 550  * vary in size, based on:
 551  *  - how many streams the endpoint supports,
 552  *  - the maximum primary stream array size the host controller supports,
 553  *  - and how many streams the device driver asks for.
 554  *
 555  * The stream context array must be a power of 2, and can be as small as
 556  * 64 bytes or as large as 1MB.
 557  */
 558 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 559                 unsigned int num_stream_ctxs, dma_addr_t *dma,
 560                 gfp_t mem_flags)
 561 {
 562         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 563         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 564 
 565         if (size > MEDIUM_STREAM_ARRAY_SIZE)
 566                 return dma_alloc_coherent(dev, size,
 567                                 dma, mem_flags);
 568         else if (size <= SMALL_STREAM_ARRAY_SIZE)
 569                 return dma_pool_alloc(xhci->small_streams_pool,
 570                                 mem_flags, dma);
 571         else
 572                 return dma_pool_alloc(xhci->medium_streams_pool,
 573                                 mem_flags, dma);
 574 }
 575 
 576 struct xhci_ring *xhci_dma_to_transfer_ring(
 577                 struct xhci_virt_ep *ep,
 578                 u64 address)
 579 {
 580         if (ep->ep_state & EP_HAS_STREAMS)
 581                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
 582                                 address >> TRB_SEGMENT_SHIFT);
 583         return ep->ring;
 584 }
 585 
 586 struct xhci_ring *xhci_stream_id_to_ring(
 587                 struct xhci_virt_device *dev,
 588                 unsigned int ep_index,
 589                 unsigned int stream_id)
 590 {
 591         struct xhci_virt_ep *ep = &dev->eps[ep_index];
 592 
 593         if (stream_id == 0)
 594                 return ep->ring;
 595         if (!ep->stream_info)
 596                 return NULL;
 597 
 598         if (stream_id >= ep->stream_info->num_streams)
 599                 return NULL;
 600         return ep->stream_info->stream_rings[stream_id];
 601 }
 602 
 603 /*
 604  * Change an endpoint's internal structure so it supports stream IDs.  The
 605  * number of requested streams includes stream 0, which cannot be used by device
 606  * drivers.
 607  *
 608  * The number of stream contexts in the stream context array may be bigger than
 609  * the number of streams the driver wants to use.  This is because the number of
 610  * stream context array entries must be a power of two.
 611  */
 612 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 613                 unsigned int num_stream_ctxs,
 614                 unsigned int num_streams,
 615                 unsigned int max_packet, gfp_t mem_flags)
 616 {
 617         struct xhci_stream_info *stream_info;
 618         u32 cur_stream;
 619         struct xhci_ring *cur_ring;
 620         u64 addr;
 621         int ret;
 622         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 623 
 624         xhci_dbg(xhci, "Allocating %u streams and %u "
 625                         "stream context array entries.\n",
 626                         num_streams, num_stream_ctxs);
 627         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 628                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 629                 return NULL;
 630         }
 631         xhci->cmd_ring_reserved_trbs++;
 632 
 633         stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 634                         dev_to_node(dev));
 635         if (!stream_info)
 636                 goto cleanup_trbs;
 637 
 638         stream_info->num_streams = num_streams;
 639         stream_info->num_stream_ctxs = num_stream_ctxs;
 640 
 641         /* Initialize the array of virtual pointers to stream rings. */
 642         stream_info->stream_rings = kcalloc_node(
 643                         num_streams, sizeof(struct xhci_ring *), mem_flags,
 644                         dev_to_node(dev));
 645         if (!stream_info->stream_rings)
 646                 goto cleanup_info;
 647 
 648         /* Initialize the array of DMA addresses for stream rings for the HW. */
 649         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 650                         num_stream_ctxs, &stream_info->ctx_array_dma,
 651                         mem_flags);
 652         if (!stream_info->stream_ctx_array)
 653                 goto cleanup_ctx;
 654         memset(stream_info->stream_ctx_array, 0,
 655                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 656 
 657         /* Allocate everything needed to free the stream rings later */
 658         stream_info->free_streams_command =
 659                 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 660         if (!stream_info->free_streams_command)
 661                 goto cleanup_ctx;
 662 
 663         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 664 
 665         /* Allocate rings for all the streams that the driver will use,
 666          * and add their segment DMA addresses to the radix tree.
 667          * Stream 0 is reserved.
 668          */
 669 
 670         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 671                 stream_info->stream_rings[cur_stream] =
 672                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 673                                         mem_flags);
 674                 cur_ring = stream_info->stream_rings[cur_stream];
 675                 if (!cur_ring)
 676                         goto cleanup_rings;
 677                 cur_ring->stream_id = cur_stream;
 678                 cur_ring->trb_address_map = &stream_info->trb_address_map;
 679                 /* Set deq ptr, cycle bit, and stream context type */
 680                 addr = cur_ring->first_seg->dma |
 681                         SCT_FOR_CTX(SCT_PRI_TR) |
 682                         cur_ring->cycle_state;
 683                 stream_info->stream_ctx_array[cur_stream].stream_ring =
 684                         cpu_to_le64(addr);
 685                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 686                                 cur_stream, (unsigned long long) addr);
 687 
 688                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 689                 if (ret) {
 690                         xhci_ring_free(xhci, cur_ring);
 691                         stream_info->stream_rings[cur_stream] = NULL;
 692                         goto cleanup_rings;
 693                 }
 694         }
 695         /* Leave the other unused stream ring pointers in the stream context
 696          * array initialized to zero.  This will cause the xHC to give us an
 697          * error if the device asks for a stream ID we don't have setup (if it
 698          * was any other way, the host controller would assume the ring is
 699          * "empty" and wait forever for data to be queued to that stream ID).
 700          */
 701 
 702         return stream_info;
 703 
 704 cleanup_rings:
 705         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 706                 cur_ring = stream_info->stream_rings[cur_stream];
 707                 if (cur_ring) {
 708                         xhci_ring_free(xhci, cur_ring);
 709                         stream_info->stream_rings[cur_stream] = NULL;
 710                 }
 711         }
 712         xhci_free_command(xhci, stream_info->free_streams_command);
 713 cleanup_ctx:
 714         kfree(stream_info->stream_rings);
 715 cleanup_info:
 716         kfree(stream_info);
 717 cleanup_trbs:
 718         xhci->cmd_ring_reserved_trbs--;
 719         return NULL;
 720 }
 721 /*
 722  * Sets the MaxPStreams field and the Linear Stream Array field.
 723  * Sets the dequeue pointer to the stream context array.
 724  */
 725 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 726                 struct xhci_ep_ctx *ep_ctx,
 727                 struct xhci_stream_info *stream_info)
 728 {
 729         u32 max_primary_streams;
 730         /* MaxPStreams is the number of stream context array entries, not the
 731          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 732          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 733          */
 734         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 735         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 736                         "Setting number of stream ctx array entries to %u",
 737                         1 << (max_primary_streams + 1));
 738         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 739         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 740                                        | EP_HAS_LSA);
 741         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 742 }
 743 
 744 /*
 745  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 746  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 747  * not at the beginning of the ring).
 748  */
 749 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 750                 struct xhci_virt_ep *ep)
 751 {
 752         dma_addr_t addr;
 753         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 754         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 755         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 756 }
 757 
 758 /* Frees all stream contexts associated with the endpoint,
 759  *
 760  * Caller should fix the endpoint context streams fields.
 761  */
 762 void xhci_free_stream_info(struct xhci_hcd *xhci,
 763                 struct xhci_stream_info *stream_info)
 764 {
 765         int cur_stream;
 766         struct xhci_ring *cur_ring;
 767 
 768         if (!stream_info)
 769                 return;
 770 
 771         for (cur_stream = 1; cur_stream < stream_info->num_streams;
 772                         cur_stream++) {
 773                 cur_ring = stream_info->stream_rings[cur_stream];
 774                 if (cur_ring) {
 775                         xhci_ring_free(xhci, cur_ring);
 776                         stream_info->stream_rings[cur_stream] = NULL;
 777                 }
 778         }
 779         xhci_free_command(xhci, stream_info->free_streams_command);
 780         xhci->cmd_ring_reserved_trbs--;
 781         if (stream_info->stream_ctx_array)
 782                 xhci_free_stream_ctx(xhci,
 783                                 stream_info->num_stream_ctxs,
 784                                 stream_info->stream_ctx_array,
 785                                 stream_info->ctx_array_dma);
 786 
 787         kfree(stream_info->stream_rings);
 788         kfree(stream_info);
 789 }
 790 
 791 
 792 /***************** Device context manipulation *************************/
 793 
 794 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 795                 struct xhci_virt_ep *ep)
 796 {
 797         timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 798                     0);
 799         ep->xhci = xhci;
 800 }
 801 
 802 static void xhci_free_tt_info(struct xhci_hcd *xhci,
 803                 struct xhci_virt_device *virt_dev,
 804                 int slot_id)
 805 {
 806         struct list_head *tt_list_head;
 807         struct xhci_tt_bw_info *tt_info, *next;
 808         bool slot_found = false;
 809 
 810         /* If the device never made it past the Set Address stage,
 811          * it may not have the real_port set correctly.
 812          */
 813         if (virt_dev->real_port == 0 ||
 814                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 815                 xhci_dbg(xhci, "Bad real port.\n");
 816                 return;
 817         }
 818 
 819         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 820         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 821                 /* Multi-TT hubs will have more than one entry */
 822                 if (tt_info->slot_id == slot_id) {
 823                         slot_found = true;
 824                         list_del(&tt_info->tt_list);
 825                         kfree(tt_info);
 826                 } else if (slot_found) {
 827                         break;
 828                 }
 829         }
 830 }
 831 
 832 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 833                 struct xhci_virt_device *virt_dev,
 834                 struct usb_device *hdev,
 835                 struct usb_tt *tt, gfp_t mem_flags)
 836 {
 837         struct xhci_tt_bw_info          *tt_info;
 838         unsigned int                    num_ports;
 839         int                             i, j;
 840         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 841 
 842         if (!tt->multi)
 843                 num_ports = 1;
 844         else
 845                 num_ports = hdev->maxchild;
 846 
 847         for (i = 0; i < num_ports; i++, tt_info++) {
 848                 struct xhci_interval_bw_table *bw_table;
 849 
 850                 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 851                                 dev_to_node(dev));
 852                 if (!tt_info)
 853                         goto free_tts;
 854                 INIT_LIST_HEAD(&tt_info->tt_list);
 855                 list_add(&tt_info->tt_list,
 856                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
 857                 tt_info->slot_id = virt_dev->udev->slot_id;
 858                 if (tt->multi)
 859                         tt_info->ttport = i+1;
 860                 bw_table = &tt_info->bw_table;
 861                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 862                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 863         }
 864         return 0;
 865 
 866 free_tts:
 867         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 868         return -ENOMEM;
 869 }
 870 
 871 
 872 /* All the xhci_tds in the ring's TD list should be freed at this point.
 873  * Should be called with xhci->lock held if there is any chance the TT lists
 874  * will be manipulated by the configure endpoint, allocate device, or update
 875  * hub functions while this function is removing the TT entries from the list.
 876  */
 877 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 878 {
 879         struct xhci_virt_device *dev;
 880         int i;
 881         int old_active_eps = 0;
 882 
 883         /* Slot ID 0 is reserved */
 884         if (slot_id == 0 || !xhci->devs[slot_id])
 885                 return;
 886 
 887         dev = xhci->devs[slot_id];
 888 
 889         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 890         if (!dev)
 891                 return;
 892 
 893         trace_xhci_free_virt_device(dev);
 894 
 895         if (dev->tt_info)
 896                 old_active_eps = dev->tt_info->active_eps;
 897 
 898         for (i = 0; i < 31; i++) {
 899                 if (dev->eps[i].ring)
 900                         xhci_ring_free(xhci, dev->eps[i].ring);
 901                 if (dev->eps[i].stream_info)
 902                         xhci_free_stream_info(xhci,
 903                                         dev->eps[i].stream_info);
 904                 /* Endpoints on the TT/root port lists should have been removed
 905                  * when usb_disable_device() was called for the device.
 906                  * We can't drop them anyway, because the udev might have gone
 907                  * away by this point, and we can't tell what speed it was.
 908                  */
 909                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
 910                         xhci_warn(xhci, "Slot %u endpoint %u "
 911                                         "not removed from BW list!\n",
 912                                         slot_id, i);
 913         }
 914         /* If this is a hub, free the TT(s) from the TT list */
 915         xhci_free_tt_info(xhci, dev, slot_id);
 916         /* If necessary, update the number of active TTs on this root port */
 917         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 918 
 919         if (dev->in_ctx)
 920                 xhci_free_container_ctx(xhci, dev->in_ctx);
 921         if (dev->out_ctx)
 922                 xhci_free_container_ctx(xhci, dev->out_ctx);
 923 
 924         if (dev->udev && dev->udev->slot_id)
 925                 dev->udev->slot_id = 0;
 926         kfree(xhci->devs[slot_id]);
 927         xhci->devs[slot_id] = NULL;
 928 }
 929 
 930 /*
 931  * Free a virt_device structure.
 932  * If the virt_device added a tt_info (a hub) and has children pointing to
 933  * that tt_info, then free the child first. Recursive.
 934  * We can't rely on udev at this point to find child-parent relationships.
 935  */
 936 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 937 {
 938         struct xhci_virt_device *vdev;
 939         struct list_head *tt_list_head;
 940         struct xhci_tt_bw_info *tt_info, *next;
 941         int i;
 942 
 943         vdev = xhci->devs[slot_id];
 944         if (!vdev)
 945                 return;
 946 
 947         if (vdev->real_port == 0 ||
 948                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 949                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
 950                 goto out;
 951         }
 952 
 953         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 954         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 955                 /* is this a hub device that added a tt_info to the tts list */
 956                 if (tt_info->slot_id == slot_id) {
 957                         /* are any devices using this tt_info? */
 958                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 959                                 vdev = xhci->devs[i];
 960                                 if (vdev && (vdev->tt_info == tt_info))
 961                                         xhci_free_virt_devices_depth_first(
 962                                                 xhci, i);
 963                         }
 964                 }
 965         }
 966 out:
 967         /* we are now at a leaf device */
 968         xhci_debugfs_remove_slot(xhci, slot_id);
 969         xhci_free_virt_device(xhci, slot_id);
 970 }
 971 
 972 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 973                 struct usb_device *udev, gfp_t flags)
 974 {
 975         struct xhci_virt_device *dev;
 976         int i;
 977 
 978         /* Slot ID 0 is reserved */
 979         if (slot_id == 0 || xhci->devs[slot_id]) {
 980                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 981                 return 0;
 982         }
 983 
 984         dev = kzalloc(sizeof(*dev), flags);
 985         if (!dev)
 986                 return 0;
 987 
 988         /* Allocate the (output) device context that will be used in the HC. */
 989         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 990         if (!dev->out_ctx)
 991                 goto fail;
 992 
 993         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 994                         (unsigned long long)dev->out_ctx->dma);
 995 
 996         /* Allocate the (input) device context for address device command */
 997         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 998         if (!dev->in_ctx)
 999                 goto fail;
1000 
1001         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1002                         (unsigned long long)dev->in_ctx->dma);
1003 
1004         /* Initialize the cancellation list and watchdog timers for each ep */
1005         for (i = 0; i < 31; i++) {
1006                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1007                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1008                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1009         }
1010 
1011         /* Allocate endpoint 0 ring */
1012         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1013         if (!dev->eps[0].ring)
1014                 goto fail;
1015 
1016         dev->udev = udev;
1017 
1018         /* Point to output device context in dcbaa. */
1019         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1020         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1021                  slot_id,
1022                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1023                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1024 
1025         trace_xhci_alloc_virt_device(dev);
1026 
1027         xhci->devs[slot_id] = dev;
1028 
1029         return 1;
1030 fail:
1031 
1032         if (dev->in_ctx)
1033                 xhci_free_container_ctx(xhci, dev->in_ctx);
1034         if (dev->out_ctx)
1035                 xhci_free_container_ctx(xhci, dev->out_ctx);
1036         kfree(dev);
1037 
1038         return 0;
1039 }
1040 
1041 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1042                 struct usb_device *udev)
1043 {
1044         struct xhci_virt_device *virt_dev;
1045         struct xhci_ep_ctx      *ep0_ctx;
1046         struct xhci_ring        *ep_ring;
1047 
1048         virt_dev = xhci->devs[udev->slot_id];
1049         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1050         ep_ring = virt_dev->eps[0].ring;
1051         /*
1052          * FIXME we don't keep track of the dequeue pointer very well after a
1053          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1054          * host to our enqueue pointer.  This should only be called after a
1055          * configured device has reset, so all control transfers should have
1056          * been completed or cancelled before the reset.
1057          */
1058         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1059                                                         ep_ring->enqueue)
1060                                    | ep_ring->cycle_state);
1061 }
1062 
1063 /*
1064  * The xHCI roothub may have ports of differing speeds in any order in the port
1065  * status registers.
1066  *
1067  * The xHCI hardware wants to know the roothub port number that the USB device
1068  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1069  * know is the index of that port under either the USB 2.0 or the USB 3.0
1070  * roothub, but that doesn't give us the real index into the HW port status
1071  * registers. Call xhci_find_raw_port_number() to get real index.
1072  */
1073 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1074                 struct usb_device *udev)
1075 {
1076         struct usb_device *top_dev;
1077         struct usb_hcd *hcd;
1078 
1079         if (udev->speed >= USB_SPEED_SUPER)
1080                 hcd = xhci->shared_hcd;
1081         else
1082                 hcd = xhci->main_hcd;
1083 
1084         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1085                         top_dev = top_dev->parent)
1086                 /* Found device below root hub */;
1087 
1088         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1089 }
1090 
1091 /* Setup an xHCI virtual device for a Set Address command */
1092 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1093 {
1094         struct xhci_virt_device *dev;
1095         struct xhci_ep_ctx      *ep0_ctx;
1096         struct xhci_slot_ctx    *slot_ctx;
1097         u32                     port_num;
1098         u32                     max_packets;
1099         struct usb_device *top_dev;
1100 
1101         dev = xhci->devs[udev->slot_id];
1102         /* Slot ID 0 is reserved */
1103         if (udev->slot_id == 0 || !dev) {
1104                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1105                                 udev->slot_id);
1106                 return -EINVAL;
1107         }
1108         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1109         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1110 
1111         /* 3) Only the control endpoint is valid - one endpoint context */
1112         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1113         switch (udev->speed) {
1114         case USB_SPEED_SUPER_PLUS:
1115                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1116                 max_packets = MAX_PACKET(512);
1117                 break;
1118         case USB_SPEED_SUPER:
1119                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1120                 max_packets = MAX_PACKET(512);
1121                 break;
1122         case USB_SPEED_HIGH:
1123                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1124                 max_packets = MAX_PACKET(64);
1125                 break;
1126         /* USB core guesses at a 64-byte max packet first for FS devices */
1127         case USB_SPEED_FULL:
1128                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1129                 max_packets = MAX_PACKET(64);
1130                 break;
1131         case USB_SPEED_LOW:
1132                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1133                 max_packets = MAX_PACKET(8);
1134                 break;
1135         case USB_SPEED_WIRELESS:
1136                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1137                 return -EINVAL;
1138                 break;
1139         default:
1140                 /* Speed was set earlier, this shouldn't happen. */
1141                 return -EINVAL;
1142         }
1143         /* Find the root hub port this device is under */
1144         port_num = xhci_find_real_port_number(xhci, udev);
1145         if (!port_num)
1146                 return -EINVAL;
1147         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1148         /* Set the port number in the virtual_device to the faked port number */
1149         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1150                         top_dev = top_dev->parent)
1151                 /* Found device below root hub */;
1152         dev->fake_port = top_dev->portnum;
1153         dev->real_port = port_num;
1154         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1155         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1156 
1157         /* Find the right bandwidth table that this device will be a part of.
1158          * If this is a full speed device attached directly to a root port (or a
1159          * decendent of one), it counts as a primary bandwidth domain, not a
1160          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1161          * will never be created for the HS root hub.
1162          */
1163         if (!udev->tt || !udev->tt->hub->parent) {
1164                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1165         } else {
1166                 struct xhci_root_port_bw_info *rh_bw;
1167                 struct xhci_tt_bw_info *tt_bw;
1168 
1169                 rh_bw = &xhci->rh_bw[port_num - 1];
1170                 /* Find the right TT. */
1171                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1172                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1173                                 continue;
1174 
1175                         if (!dev->udev->tt->multi ||
1176                                         (udev->tt->multi &&
1177                                          tt_bw->ttport == dev->udev->ttport)) {
1178                                 dev->bw_table = &tt_bw->bw_table;
1179                                 dev->tt_info = tt_bw;
1180                                 break;
1181                         }
1182                 }
1183                 if (!dev->tt_info)
1184                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1185         }
1186 
1187         /* Is this a LS/FS device under an external HS hub? */
1188         if (udev->tt && udev->tt->hub->parent) {
1189                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1190                                                 (udev->ttport << 8));
1191                 if (udev->tt->multi)
1192                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1193         }
1194         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1195         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1196 
1197         /* Step 4 - ring already allocated */
1198         /* Step 5 */
1199         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1200 
1201         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1202         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1203                                          max_packets);
1204 
1205         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1206                                    dev->eps[0].ring->cycle_state);
1207 
1208         trace_xhci_setup_addressable_virt_device(dev);
1209 
1210         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1211 
1212         return 0;
1213 }
1214 
1215 /*
1216  * Convert interval expressed as 2^(bInterval - 1) == interval into
1217  * straight exponent value 2^n == interval.
1218  *
1219  */
1220 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1221                 struct usb_host_endpoint *ep)
1222 {
1223         unsigned int interval;
1224 
1225         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1226         if (interval != ep->desc.bInterval - 1)
1227                 dev_warn(&udev->dev,
1228                          "ep %#x - rounding interval to %d %sframes\n",
1229                          ep->desc.bEndpointAddress,
1230                          1 << interval,
1231                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1232 
1233         if (udev->speed == USB_SPEED_FULL) {
1234                 /*
1235                  * Full speed isoc endpoints specify interval in frames,
1236                  * not microframes. We are using microframes everywhere,
1237                  * so adjust accordingly.
1238                  */
1239                 interval += 3;  /* 1 frame = 2^3 uframes */
1240         }
1241 
1242         return interval;
1243 }
1244 
1245 /*
1246  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1247  * microframes, rounded down to nearest power of 2.
1248  */
1249 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1250                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1251                 unsigned int min_exponent, unsigned int max_exponent)
1252 {
1253         unsigned int interval;
1254 
1255         interval = fls(desc_interval) - 1;
1256         interval = clamp_val(interval, min_exponent, max_exponent);
1257         if ((1 << interval) != desc_interval)
1258                 dev_dbg(&udev->dev,
1259                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1260                          ep->desc.bEndpointAddress,
1261                          1 << interval,
1262                          desc_interval);
1263 
1264         return interval;
1265 }
1266 
1267 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1268                 struct usb_host_endpoint *ep)
1269 {
1270         if (ep->desc.bInterval == 0)
1271                 return 0;
1272         return xhci_microframes_to_exponent(udev, ep,
1273                         ep->desc.bInterval, 0, 15);
1274 }
1275 
1276 
1277 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1278                 struct usb_host_endpoint *ep)
1279 {
1280         return xhci_microframes_to_exponent(udev, ep,
1281                         ep->desc.bInterval * 8, 3, 10);
1282 }
1283 
1284 /* Return the polling or NAK interval.
1285  *
1286  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1287  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1288  *
1289  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1290  * is set to 0.
1291  */
1292 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1293                 struct usb_host_endpoint *ep)
1294 {
1295         unsigned int interval = 0;
1296 
1297         switch (udev->speed) {
1298         case USB_SPEED_HIGH:
1299                 /* Max NAK rate */
1300                 if (usb_endpoint_xfer_control(&ep->desc) ||
1301                     usb_endpoint_xfer_bulk(&ep->desc)) {
1302                         interval = xhci_parse_microframe_interval(udev, ep);
1303                         break;
1304                 }
1305                 /* Fall through - SS and HS isoc/int have same decoding */
1306 
1307         case USB_SPEED_SUPER_PLUS:
1308         case USB_SPEED_SUPER:
1309                 if (usb_endpoint_xfer_int(&ep->desc) ||
1310                     usb_endpoint_xfer_isoc(&ep->desc)) {
1311                         interval = xhci_parse_exponent_interval(udev, ep);
1312                 }
1313                 break;
1314 
1315         case USB_SPEED_FULL:
1316                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1317                         interval = xhci_parse_exponent_interval(udev, ep);
1318                         break;
1319                 }
1320                 /*
1321                  * Fall through for interrupt endpoint interval decoding
1322                  * since it uses the same rules as low speed interrupt
1323                  * endpoints.
1324                  */
1325                 /* fall through */
1326 
1327         case USB_SPEED_LOW:
1328                 if (usb_endpoint_xfer_int(&ep->desc) ||
1329                     usb_endpoint_xfer_isoc(&ep->desc)) {
1330 
1331                         interval = xhci_parse_frame_interval(udev, ep);
1332                 }
1333                 break;
1334 
1335         default:
1336                 BUG();
1337         }
1338         return interval;
1339 }
1340 
1341 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1342  * High speed endpoint descriptors can define "the number of additional
1343  * transaction opportunities per microframe", but that goes in the Max Burst
1344  * endpoint context field.
1345  */
1346 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1347                 struct usb_host_endpoint *ep)
1348 {
1349         if (udev->speed < USB_SPEED_SUPER ||
1350                         !usb_endpoint_xfer_isoc(&ep->desc))
1351                 return 0;
1352         return ep->ss_ep_comp.bmAttributes;
1353 }
1354 
1355 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1356                                        struct usb_host_endpoint *ep)
1357 {
1358         /* Super speed and Plus have max burst in ep companion desc */
1359         if (udev->speed >= USB_SPEED_SUPER)
1360                 return ep->ss_ep_comp.bMaxBurst;
1361 
1362         if (udev->speed == USB_SPEED_HIGH &&
1363             (usb_endpoint_xfer_isoc(&ep->desc) ||
1364              usb_endpoint_xfer_int(&ep->desc)))
1365                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1366 
1367         return 0;
1368 }
1369 
1370 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1371 {
1372         int in;
1373 
1374         in = usb_endpoint_dir_in(&ep->desc);
1375 
1376         switch (usb_endpoint_type(&ep->desc)) {
1377         case USB_ENDPOINT_XFER_CONTROL:
1378                 return CTRL_EP;
1379         case USB_ENDPOINT_XFER_BULK:
1380                 return in ? BULK_IN_EP : BULK_OUT_EP;
1381         case USB_ENDPOINT_XFER_ISOC:
1382                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1383         case USB_ENDPOINT_XFER_INT:
1384                 return in ? INT_IN_EP : INT_OUT_EP;
1385         }
1386         return 0;
1387 }
1388 
1389 /* Return the maximum endpoint service interval time (ESIT) payload.
1390  * Basically, this is the maxpacket size, multiplied by the burst size
1391  * and mult size.
1392  */
1393 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1394                 struct usb_host_endpoint *ep)
1395 {
1396         int max_burst;
1397         int max_packet;
1398 
1399         /* Only applies for interrupt or isochronous endpoints */
1400         if (usb_endpoint_xfer_control(&ep->desc) ||
1401                         usb_endpoint_xfer_bulk(&ep->desc))
1402                 return 0;
1403 
1404         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1405         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1406             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1407                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1408         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1409         else if (udev->speed >= USB_SPEED_SUPER)
1410                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1411 
1412         max_packet = usb_endpoint_maxp(&ep->desc);
1413         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1414         /* A 0 in max burst means 1 transfer per ESIT */
1415         return max_packet * max_burst;
1416 }
1417 
1418 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1419  * Drivers will have to call usb_alloc_streams() to do that.
1420  */
1421 int xhci_endpoint_init(struct xhci_hcd *xhci,
1422                 struct xhci_virt_device *virt_dev,
1423                 struct usb_device *udev,
1424                 struct usb_host_endpoint *ep,
1425                 gfp_t mem_flags)
1426 {
1427         unsigned int ep_index;
1428         struct xhci_ep_ctx *ep_ctx;
1429         struct xhci_ring *ep_ring;
1430         unsigned int max_packet;
1431         enum xhci_ring_type ring_type;
1432         u32 max_esit_payload;
1433         u32 endpoint_type;
1434         unsigned int max_burst;
1435         unsigned int interval;
1436         unsigned int mult;
1437         unsigned int avg_trb_len;
1438         unsigned int err_count = 0;
1439 
1440         ep_index = xhci_get_endpoint_index(&ep->desc);
1441         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1442 
1443         endpoint_type = xhci_get_endpoint_type(ep);
1444         if (!endpoint_type)
1445                 return -EINVAL;
1446 
1447         ring_type = usb_endpoint_type(&ep->desc);
1448 
1449         /*
1450          * Get values to fill the endpoint context, mostly from ep descriptor.
1451          * The average TRB buffer lengt for bulk endpoints is unclear as we
1452          * have no clue on scatter gather list entry size. For Isoc and Int,
1453          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1454          */
1455         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1456         interval = xhci_get_endpoint_interval(udev, ep);
1457 
1458         /* Periodic endpoint bInterval limit quirk */
1459         if (usb_endpoint_xfer_int(&ep->desc) ||
1460             usb_endpoint_xfer_isoc(&ep->desc)) {
1461                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1462                     udev->speed >= USB_SPEED_HIGH &&
1463                     interval >= 7) {
1464                         interval = 6;
1465                 }
1466         }
1467 
1468         mult = xhci_get_endpoint_mult(udev, ep);
1469         max_packet = usb_endpoint_maxp(&ep->desc);
1470         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1471         avg_trb_len = max_esit_payload;
1472 
1473         /* FIXME dig Mult and streams info out of ep companion desc */
1474 
1475         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1476         if (!usb_endpoint_xfer_isoc(&ep->desc))
1477                 err_count = 3;
1478         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1479         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1480                 if (udev->speed == USB_SPEED_HIGH)
1481                         max_packet = 512;
1482                 if (udev->speed == USB_SPEED_FULL) {
1483                         max_packet = rounddown_pow_of_two(max_packet);
1484                         max_packet = clamp_val(max_packet, 8, 64);
1485                 }
1486         }
1487         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1488         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1489                 avg_trb_len = 8;
1490         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1491         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1492                 mult = 0;
1493 
1494         /* Set up the endpoint ring */
1495         virt_dev->eps[ep_index].new_ring =
1496                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1497         if (!virt_dev->eps[ep_index].new_ring)
1498                 return -ENOMEM;
1499 
1500         virt_dev->eps[ep_index].skip = false;
1501         ep_ring = virt_dev->eps[ep_index].new_ring;
1502 
1503         /* Fill the endpoint context */
1504         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1505                                       EP_INTERVAL(interval) |
1506                                       EP_MULT(mult));
1507         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1508                                        MAX_PACKET(max_packet) |
1509                                        MAX_BURST(max_burst) |
1510                                        ERROR_COUNT(err_count));
1511         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1512                                   ep_ring->cycle_state);
1513 
1514         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1515                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1516 
1517         return 0;
1518 }
1519 
1520 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1521                 struct xhci_virt_device *virt_dev,
1522                 struct usb_host_endpoint *ep)
1523 {
1524         unsigned int ep_index;
1525         struct xhci_ep_ctx *ep_ctx;
1526 
1527         ep_index = xhci_get_endpoint_index(&ep->desc);
1528         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1529 
1530         ep_ctx->ep_info = 0;
1531         ep_ctx->ep_info2 = 0;
1532         ep_ctx->deq = 0;
1533         ep_ctx->tx_info = 0;
1534         /* Don't free the endpoint ring until the set interface or configuration
1535          * request succeeds.
1536          */
1537 }
1538 
1539 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1540 {
1541         bw_info->ep_interval = 0;
1542         bw_info->mult = 0;
1543         bw_info->num_packets = 0;
1544         bw_info->max_packet_size = 0;
1545         bw_info->type = 0;
1546         bw_info->max_esit_payload = 0;
1547 }
1548 
1549 void xhci_update_bw_info(struct xhci_hcd *xhci,
1550                 struct xhci_container_ctx *in_ctx,
1551                 struct xhci_input_control_ctx *ctrl_ctx,
1552                 struct xhci_virt_device *virt_dev)
1553 {
1554         struct xhci_bw_info *bw_info;
1555         struct xhci_ep_ctx *ep_ctx;
1556         unsigned int ep_type;
1557         int i;
1558 
1559         for (i = 1; i < 31; i++) {
1560                 bw_info = &virt_dev->eps[i].bw_info;
1561 
1562                 /* We can't tell what endpoint type is being dropped, but
1563                  * unconditionally clearing the bandwidth info for non-periodic
1564                  * endpoints should be harmless because the info will never be
1565                  * set in the first place.
1566                  */
1567                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1568                         /* Dropped endpoint */
1569                         xhci_clear_endpoint_bw_info(bw_info);
1570                         continue;
1571                 }
1572 
1573                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1574                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1575                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1576 
1577                         /* Ignore non-periodic endpoints */
1578                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1579                                         ep_type != ISOC_IN_EP &&
1580                                         ep_type != INT_IN_EP)
1581                                 continue;
1582 
1583                         /* Added or changed endpoint */
1584                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1585                                         le32_to_cpu(ep_ctx->ep_info));
1586                         /* Number of packets and mult are zero-based in the
1587                          * input context, but we want one-based for the
1588                          * interval table.
1589                          */
1590                         bw_info->mult = CTX_TO_EP_MULT(
1591                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1592                         bw_info->num_packets = CTX_TO_MAX_BURST(
1593                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1594                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1595                                         le32_to_cpu(ep_ctx->ep_info2));
1596                         bw_info->type = ep_type;
1597                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1598                                         le32_to_cpu(ep_ctx->tx_info));
1599                 }
1600         }
1601 }
1602 
1603 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1604  * Useful when you want to change one particular aspect of the endpoint and then
1605  * issue a configure endpoint command.
1606  */
1607 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1608                 struct xhci_container_ctx *in_ctx,
1609                 struct xhci_container_ctx *out_ctx,
1610                 unsigned int ep_index)
1611 {
1612         struct xhci_ep_ctx *out_ep_ctx;
1613         struct xhci_ep_ctx *in_ep_ctx;
1614 
1615         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1616         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1617 
1618         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1619         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1620         in_ep_ctx->deq = out_ep_ctx->deq;
1621         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1622         if (xhci->quirks & XHCI_MTK_HOST) {
1623                 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1624                 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1625         }
1626 }
1627 
1628 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1629  * Useful when you want to change one particular aspect of the endpoint and then
1630  * issue a configure endpoint command.  Only the context entries field matters,
1631  * but we'll copy the whole thing anyway.
1632  */
1633 void xhci_slot_copy(struct xhci_hcd *xhci,
1634                 struct xhci_container_ctx *in_ctx,
1635                 struct xhci_container_ctx *out_ctx)
1636 {
1637         struct xhci_slot_ctx *in_slot_ctx;
1638         struct xhci_slot_ctx *out_slot_ctx;
1639 
1640         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1641         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1642 
1643         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1644         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1645         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1646         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1647 }
1648 
1649 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1650 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1651 {
1652         int i;
1653         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1654         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1655 
1656         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1657                         "Allocating %d scratchpad buffers", num_sp);
1658 
1659         if (!num_sp)
1660                 return 0;
1661 
1662         xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1663                                 dev_to_node(dev));
1664         if (!xhci->scratchpad)
1665                 goto fail_sp;
1666 
1667         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1668                                      num_sp * sizeof(u64),
1669                                      &xhci->scratchpad->sp_dma, flags);
1670         if (!xhci->scratchpad->sp_array)
1671                 goto fail_sp2;
1672 
1673         xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1674                                         flags, dev_to_node(dev));
1675         if (!xhci->scratchpad->sp_buffers)
1676                 goto fail_sp3;
1677 
1678         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1679         for (i = 0; i < num_sp; i++) {
1680                 dma_addr_t dma;
1681                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1682                                                flags);
1683                 if (!buf)
1684                         goto fail_sp4;
1685 
1686                 xhci->scratchpad->sp_array[i] = dma;
1687                 xhci->scratchpad->sp_buffers[i] = buf;
1688         }
1689 
1690         return 0;
1691 
1692  fail_sp4:
1693         for (i = i - 1; i >= 0; i--) {
1694                 dma_free_coherent(dev, xhci->page_size,
1695                                     xhci->scratchpad->sp_buffers[i],
1696                                     xhci->scratchpad->sp_array[i]);
1697         }
1698 
1699         kfree(xhci->scratchpad->sp_buffers);
1700 
1701  fail_sp3:
1702         dma_free_coherent(dev, num_sp * sizeof(u64),
1703                             xhci->scratchpad->sp_array,
1704                             xhci->scratchpad->sp_dma);
1705 
1706  fail_sp2:
1707         kfree(xhci->scratchpad);
1708         xhci->scratchpad = NULL;
1709 
1710  fail_sp:
1711         return -ENOMEM;
1712 }
1713 
1714 static void scratchpad_free(struct xhci_hcd *xhci)
1715 {
1716         int num_sp;
1717         int i;
1718         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1719 
1720         if (!xhci->scratchpad)
1721                 return;
1722 
1723         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1724 
1725         for (i = 0; i < num_sp; i++) {
1726                 dma_free_coherent(dev, xhci->page_size,
1727                                     xhci->scratchpad->sp_buffers[i],
1728                                     xhci->scratchpad->sp_array[i]);
1729         }
1730         kfree(xhci->scratchpad->sp_buffers);
1731         dma_free_coherent(dev, num_sp * sizeof(u64),
1732                             xhci->scratchpad->sp_array,
1733                             xhci->scratchpad->sp_dma);
1734         kfree(xhci->scratchpad);
1735         xhci->scratchpad = NULL;
1736 }
1737 
1738 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1739                 bool allocate_completion, gfp_t mem_flags)
1740 {
1741         struct xhci_command *command;
1742         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1743 
1744         command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1745         if (!command)
1746                 return NULL;
1747 
1748         if (allocate_completion) {
1749                 command->completion =
1750                         kzalloc_node(sizeof(struct completion), mem_flags,
1751                                 dev_to_node(dev));
1752                 if (!command->completion) {
1753                         kfree(command);
1754                         return NULL;
1755                 }
1756                 init_completion(command->completion);
1757         }
1758 
1759         command->status = 0;
1760         INIT_LIST_HEAD(&command->cmd_list);
1761         return command;
1762 }
1763 
1764 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1765                 bool allocate_completion, gfp_t mem_flags)
1766 {
1767         struct xhci_command *command;
1768 
1769         command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1770         if (!command)
1771                 return NULL;
1772 
1773         command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1774                                                    mem_flags);
1775         if (!command->in_ctx) {
1776                 kfree(command->completion);
1777                 kfree(command);
1778                 return NULL;
1779         }
1780         return command;
1781 }
1782 
1783 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1784 {
1785         kfree(urb_priv);
1786 }
1787 
1788 void xhci_free_command(struct xhci_hcd *xhci,
1789                 struct xhci_command *command)
1790 {
1791         xhci_free_container_ctx(xhci,
1792                         command->in_ctx);
1793         kfree(command->completion);
1794         kfree(command);
1795 }
1796 
1797 int xhci_alloc_erst(struct xhci_hcd *xhci,
1798                     struct xhci_ring *evt_ring,
1799                     struct xhci_erst *erst,
1800                     gfp_t flags)
1801 {
1802         size_t size;
1803         unsigned int val;
1804         struct xhci_segment *seg;
1805         struct xhci_erst_entry *entry;
1806 
1807         size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1808         erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1809                                            size, &erst->erst_dma_addr, flags);
1810         if (!erst->entries)
1811                 return -ENOMEM;
1812 
1813         erst->num_entries = evt_ring->num_segs;
1814 
1815         seg = evt_ring->first_seg;
1816         for (val = 0; val < evt_ring->num_segs; val++) {
1817                 entry = &erst->entries[val];
1818                 entry->seg_addr = cpu_to_le64(seg->dma);
1819                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1820                 entry->rsvd = 0;
1821                 seg = seg->next;
1822         }
1823 
1824         return 0;
1825 }
1826 
1827 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1828 {
1829         size_t size;
1830         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1831 
1832         size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1833         if (erst->entries)
1834                 dma_free_coherent(dev, size,
1835                                 erst->entries,
1836                                 erst->erst_dma_addr);
1837         erst->entries = NULL;
1838 }
1839 
1840 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1841 {
1842         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1843         int i, j, num_ports;
1844 
1845         cancel_delayed_work_sync(&xhci->cmd_timer);
1846 
1847         xhci_free_erst(xhci, &xhci->erst);
1848 
1849         if (xhci->event_ring)
1850                 xhci_ring_free(xhci, xhci->event_ring);
1851         xhci->event_ring = NULL;
1852         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1853 
1854         if (xhci->lpm_command)
1855                 xhci_free_command(xhci, xhci->lpm_command);
1856         xhci->lpm_command = NULL;
1857         if (xhci->cmd_ring)
1858                 xhci_ring_free(xhci, xhci->cmd_ring);
1859         xhci->cmd_ring = NULL;
1860         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1861         xhci_cleanup_command_queue(xhci);
1862 
1863         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1864         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1865                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1866                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1867                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1868                         while (!list_empty(ep))
1869                                 list_del_init(ep->next);
1870                 }
1871         }
1872 
1873         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1874                 xhci_free_virt_devices_depth_first(xhci, i);
1875 
1876         dma_pool_destroy(xhci->segment_pool);
1877         xhci->segment_pool = NULL;
1878         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1879 
1880         dma_pool_destroy(xhci->device_pool);
1881         xhci->device_pool = NULL;
1882         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1883 
1884         dma_pool_destroy(xhci->small_streams_pool);
1885         xhci->small_streams_pool = NULL;
1886         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1887                         "Freed small stream array pool");
1888 
1889         dma_pool_destroy(xhci->medium_streams_pool);
1890         xhci->medium_streams_pool = NULL;
1891         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1892                         "Freed medium stream array pool");
1893 
1894         if (xhci->dcbaa)
1895                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1896                                 xhci->dcbaa, xhci->dcbaa->dma);
1897         xhci->dcbaa = NULL;
1898 
1899         scratchpad_free(xhci);
1900 
1901         if (!xhci->rh_bw)
1902                 goto no_bw;
1903 
1904         for (i = 0; i < num_ports; i++) {
1905                 struct xhci_tt_bw_info *tt, *n;
1906                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1907                         list_del(&tt->tt_list);
1908                         kfree(tt);
1909                 }
1910         }
1911 
1912 no_bw:
1913         xhci->cmd_ring_reserved_trbs = 0;
1914         xhci->usb2_rhub.num_ports = 0;
1915         xhci->usb3_rhub.num_ports = 0;
1916         xhci->num_active_eps = 0;
1917         kfree(xhci->usb2_rhub.ports);
1918         kfree(xhci->usb3_rhub.ports);
1919         kfree(xhci->hw_ports);
1920         kfree(xhci->rh_bw);
1921         kfree(xhci->ext_caps);
1922         for (i = 0; i < xhci->num_port_caps; i++)
1923                 kfree(xhci->port_caps[i].psi);
1924         kfree(xhci->port_caps);
1925         xhci->num_port_caps = 0;
1926 
1927         xhci->usb2_rhub.ports = NULL;
1928         xhci->usb3_rhub.ports = NULL;
1929         xhci->hw_ports = NULL;
1930         xhci->rh_bw = NULL;
1931         xhci->ext_caps = NULL;
1932 
1933         xhci->page_size = 0;
1934         xhci->page_shift = 0;
1935         xhci->usb2_rhub.bus_state.bus_suspended = 0;
1936         xhci->usb3_rhub.bus_state.bus_suspended = 0;
1937 }
1938 
1939 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1940                 struct xhci_segment *input_seg,
1941                 union xhci_trb *start_trb,
1942                 union xhci_trb *end_trb,
1943                 dma_addr_t input_dma,
1944                 struct xhci_segment *result_seg,
1945                 char *test_name, int test_number)
1946 {
1947         unsigned long long start_dma;
1948         unsigned long long end_dma;
1949         struct xhci_segment *seg;
1950 
1951         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1952         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1953 
1954         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1955         if (seg != result_seg) {
1956                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1957                                 test_name, test_number);
1958                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1959                                 "input DMA 0x%llx\n",
1960                                 input_seg,
1961                                 (unsigned long long) input_dma);
1962                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1963                                 "ending TRB %p (0x%llx DMA)\n",
1964                                 start_trb, start_dma,
1965                                 end_trb, end_dma);
1966                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1967                                 result_seg, seg);
1968                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1969                           true);
1970                 return -1;
1971         }
1972         return 0;
1973 }
1974 
1975 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1976 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1977 {
1978         struct {
1979                 dma_addr_t              input_dma;
1980                 struct xhci_segment     *result_seg;
1981         } simple_test_vector [] = {
1982                 /* A zeroed DMA field should fail */
1983                 { 0, NULL },
1984                 /* One TRB before the ring start should fail */
1985                 { xhci->event_ring->first_seg->dma - 16, NULL },
1986                 /* One byte before the ring start should fail */
1987                 { xhci->event_ring->first_seg->dma - 1, NULL },
1988                 /* Starting TRB should succeed */
1989                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1990                 /* Ending TRB should succeed */
1991                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1992                         xhci->event_ring->first_seg },
1993                 /* One byte after the ring end should fail */
1994                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1995                 /* One TRB after the ring end should fail */
1996                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1997                 /* An address of all ones should fail */
1998                 { (dma_addr_t) (~0), NULL },
1999         };
2000         struct {
2001                 struct xhci_segment     *input_seg;
2002                 union xhci_trb          *start_trb;
2003                 union xhci_trb          *end_trb;
2004                 dma_addr_t              input_dma;
2005                 struct xhci_segment     *result_seg;
2006         } complex_test_vector [] = {
2007                 /* Test feeding a valid DMA address from a different ring */
2008                 {       .input_seg = xhci->event_ring->first_seg,
2009                         .start_trb = xhci->event_ring->first_seg->trbs,
2010                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011                         .input_dma = xhci->cmd_ring->first_seg->dma,
2012                         .result_seg = NULL,
2013                 },
2014                 /* Test feeding a valid end TRB from a different ring */
2015                 {       .input_seg = xhci->event_ring->first_seg,
2016                         .start_trb = xhci->event_ring->first_seg->trbs,
2017                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2018                         .input_dma = xhci->cmd_ring->first_seg->dma,
2019                         .result_seg = NULL,
2020                 },
2021                 /* Test feeding a valid start and end TRB from a different ring */
2022                 {       .input_seg = xhci->event_ring->first_seg,
2023                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2024                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2025                         .input_dma = xhci->cmd_ring->first_seg->dma,
2026                         .result_seg = NULL,
2027                 },
2028                 /* TRB in this ring, but after this TD */
2029                 {       .input_seg = xhci->event_ring->first_seg,
2030                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2031                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2032                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2033                         .result_seg = NULL,
2034                 },
2035                 /* TRB in this ring, but before this TD */
2036                 {       .input_seg = xhci->event_ring->first_seg,
2037                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2038                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2039                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2040                         .result_seg = NULL,
2041                 },
2042                 /* TRB in this ring, but after this wrapped TD */
2043                 {       .input_seg = xhci->event_ring->first_seg,
2044                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2045                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2046                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2047                         .result_seg = NULL,
2048                 },
2049                 /* TRB in this ring, but before this wrapped TD */
2050                 {       .input_seg = xhci->event_ring->first_seg,
2051                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2052                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2053                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2054                         .result_seg = NULL,
2055                 },
2056                 /* TRB not in this ring, and we have a wrapped TD */
2057                 {       .input_seg = xhci->event_ring->first_seg,
2058                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2059                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2060                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2061                         .result_seg = NULL,
2062                 },
2063         };
2064 
2065         unsigned int num_tests;
2066         int i, ret;
2067 
2068         num_tests = ARRAY_SIZE(simple_test_vector);
2069         for (i = 0; i < num_tests; i++) {
2070                 ret = xhci_test_trb_in_td(xhci,
2071                                 xhci->event_ring->first_seg,
2072                                 xhci->event_ring->first_seg->trbs,
2073                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2074                                 simple_test_vector[i].input_dma,
2075                                 simple_test_vector[i].result_seg,
2076                                 "Simple", i);
2077                 if (ret < 0)
2078                         return ret;
2079         }
2080 
2081         num_tests = ARRAY_SIZE(complex_test_vector);
2082         for (i = 0; i < num_tests; i++) {
2083                 ret = xhci_test_trb_in_td(xhci,
2084                                 complex_test_vector[i].input_seg,
2085                                 complex_test_vector[i].start_trb,
2086                                 complex_test_vector[i].end_trb,
2087                                 complex_test_vector[i].input_dma,
2088                                 complex_test_vector[i].result_seg,
2089                                 "Complex", i);
2090                 if (ret < 0)
2091                         return ret;
2092         }
2093         xhci_dbg(xhci, "TRB math tests passed.\n");
2094         return 0;
2095 }
2096 
2097 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2098 {
2099         u64 temp;
2100         dma_addr_t deq;
2101 
2102         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2103                         xhci->event_ring->dequeue);
2104         if (deq == 0 && !in_interrupt())
2105                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2106                                 "dequeue ptr.\n");
2107         /* Update HC event ring dequeue pointer */
2108         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2109         temp &= ERST_PTR_MASK;
2110         /* Don't clear the EHB bit (which is RW1C) because
2111          * there might be more events to service.
2112          */
2113         temp &= ~ERST_EHB;
2114         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2115                         "// Write event ring dequeue pointer, "
2116                         "preserving EHB bit");
2117         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2118                         &xhci->ir_set->erst_dequeue);
2119 }
2120 
2121 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2122                 __le32 __iomem *addr, int max_caps)
2123 {
2124         u32 temp, port_offset, port_count;
2125         int i;
2126         u8 major_revision, minor_revision;
2127         struct xhci_hub *rhub;
2128         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2129         struct xhci_port_cap *port_cap;
2130 
2131         temp = readl(addr);
2132         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2133         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2134 
2135         if (major_revision == 0x03) {
2136                 rhub = &xhci->usb3_rhub;
2137         } else if (major_revision <= 0x02) {
2138                 rhub = &xhci->usb2_rhub;
2139         } else {
2140                 xhci_warn(xhci, "Ignoring unknown port speed, "
2141                                 "Ext Cap %p, revision = 0x%x\n",
2142                                 addr, major_revision);
2143                 /* Ignoring port protocol we can't understand. FIXME */
2144                 return;
2145         }
2146         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2147 
2148         if (rhub->min_rev < minor_revision)
2149                 rhub->min_rev = minor_revision;
2150 
2151         /* Port offset and count in the third dword, see section 7.2 */
2152         temp = readl(addr + 2);
2153         port_offset = XHCI_EXT_PORT_OFF(temp);
2154         port_count = XHCI_EXT_PORT_COUNT(temp);
2155         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2156                         "Ext Cap %p, port offset = %u, "
2157                         "count = %u, revision = 0x%x",
2158                         addr, port_offset, port_count, major_revision);
2159         /* Port count includes the current port offset */
2160         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2161                 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2162                 return;
2163 
2164         port_cap = &xhci->port_caps[xhci->num_port_caps++];
2165         if (xhci->num_port_caps > max_caps)
2166                 return;
2167 
2168         port_cap->maj_rev = major_revision;
2169         port_cap->min_rev = minor_revision;
2170         port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2171 
2172         if (port_cap->psi_count) {
2173                 port_cap->psi = kcalloc_node(port_cap->psi_count,
2174                                              sizeof(*port_cap->psi),
2175                                              GFP_KERNEL, dev_to_node(dev));
2176                 if (!port_cap->psi)
2177                         port_cap->psi_count = 0;
2178 
2179                 port_cap->psi_uid_count++;
2180                 for (i = 0; i < port_cap->psi_count; i++) {
2181                         port_cap->psi[i] = readl(addr + 4 + i);
2182 
2183                         /* count unique ID values, two consecutive entries can
2184                          * have the same ID if link is assymetric
2185                          */
2186                         if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2187                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2188                                 port_cap->psi_uid_count++;
2189 
2190                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2191                                   XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2192                                   XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2193                                   XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2194                                   XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2195                                   XHCI_EXT_PORT_LP(port_cap->psi[i]),
2196                                   XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2197                 }
2198         }
2199         /* cache usb2 port capabilities */
2200         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2201                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2202 
2203         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2204                  (temp & XHCI_HLC)) {
2205                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2206                                "xHCI 1.0: support USB2 hardware lpm");
2207                 xhci->hw_lpm_support = 1;
2208         }
2209 
2210         port_offset--;
2211         for (i = port_offset; i < (port_offset + port_count); i++) {
2212                 struct xhci_port *hw_port = &xhci->hw_ports[i];
2213                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2214                 if (hw_port->rhub) {
2215                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2216                                         " port %u\n", addr, i);
2217                         xhci_warn(xhci, "Port was marked as USB %u, "
2218                                         "duplicated as USB %u\n",
2219                                         hw_port->rhub->maj_rev, major_revision);
2220                         /* Only adjust the roothub port counts if we haven't
2221                          * found a similar duplicate.
2222                          */
2223                         if (hw_port->rhub != rhub &&
2224                                  hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2225                                 hw_port->rhub->num_ports--;
2226                                 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2227                         }
2228                         continue;
2229                 }
2230                 hw_port->rhub = rhub;
2231                 hw_port->port_cap = port_cap;
2232                 rhub->num_ports++;
2233         }
2234         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2235 }
2236 
2237 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2238                                         struct xhci_hub *rhub, gfp_t flags)
2239 {
2240         int port_index = 0;
2241         int i;
2242         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2243 
2244         if (!rhub->num_ports)
2245                 return;
2246         rhub->ports = kcalloc_node(rhub->num_ports, sizeof(rhub->ports), flags,
2247                         dev_to_node(dev));
2248         for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2249                 if (xhci->hw_ports[i].rhub != rhub ||
2250                     xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2251                         continue;
2252                 xhci->hw_ports[i].hcd_portnum = port_index;
2253                 rhub->ports[port_index] = &xhci->hw_ports[i];
2254                 port_index++;
2255                 if (port_index == rhub->num_ports)
2256                         break;
2257         }
2258 }
2259 
2260 /*
2261  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2262  * specify what speeds each port is supposed to be.  We can't count on the port
2263  * speed bits in the PORTSC register being correct until a device is connected,
2264  * but we need to set up the two fake roothubs with the correct number of USB
2265  * 3.0 and USB 2.0 ports at host controller initialization time.
2266  */
2267 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2268 {
2269         void __iomem *base;
2270         u32 offset;
2271         unsigned int num_ports;
2272         int i, j;
2273         int cap_count = 0;
2274         u32 cap_start;
2275         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2276 
2277         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2278         xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2279                                 flags, dev_to_node(dev));
2280         if (!xhci->hw_ports)
2281                 return -ENOMEM;
2282 
2283         for (i = 0; i < num_ports; i++) {
2284                 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2285                         NUM_PORT_REGS * i;
2286                 xhci->hw_ports[i].hw_portnum = i;
2287         }
2288 
2289         xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2290                                    dev_to_node(dev));
2291         if (!xhci->rh_bw)
2292                 return -ENOMEM;
2293         for (i = 0; i < num_ports; i++) {
2294                 struct xhci_interval_bw_table *bw_table;
2295 
2296                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2297                 bw_table = &xhci->rh_bw[i].bw_table;
2298                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2299                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2300         }
2301         base = &xhci->cap_regs->hc_capbase;
2302 
2303         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2304         if (!cap_start) {
2305                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2306                 return -ENODEV;
2307         }
2308 
2309         offset = cap_start;
2310         /* count extended protocol capability entries for later caching */
2311         while (offset) {
2312                 cap_count++;
2313                 offset = xhci_find_next_ext_cap(base, offset,
2314                                                       XHCI_EXT_CAPS_PROTOCOL);
2315         }
2316 
2317         xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2318                                 flags, dev_to_node(dev));
2319         if (!xhci->ext_caps)
2320                 return -ENOMEM;
2321 
2322         xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2323                                 flags, dev_to_node(dev));
2324         if (!xhci->port_caps)
2325                 return -ENOMEM;
2326 
2327         offset = cap_start;
2328 
2329         while (offset) {
2330                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2331                 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2332                     num_ports)
2333                         break;
2334                 offset = xhci_find_next_ext_cap(base, offset,
2335                                                 XHCI_EXT_CAPS_PROTOCOL);
2336         }
2337         if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2338                 xhci_warn(xhci, "No ports on the roothubs?\n");
2339                 return -ENODEV;
2340         }
2341         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342                        "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2343                        xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2344 
2345         /* Place limits on the number of roothub ports so that the hub
2346          * descriptors aren't longer than the USB core will allocate.
2347          */
2348         if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2349                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2350                                 "Limiting USB 3.0 roothub ports to %u.",
2351                                 USB_SS_MAXPORTS);
2352                 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2353         }
2354         if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2355                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356                                 "Limiting USB 2.0 roothub ports to %u.",
2357                                 USB_MAXCHILDREN);
2358                 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2359         }
2360 
2361         /*
2362          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2363          * Not sure how the USB core will handle a hub with no ports...
2364          */
2365 
2366         xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2367         xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2368 
2369         return 0;
2370 }
2371 
2372 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2373 {
2374         dma_addr_t      dma;
2375         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2376         unsigned int    val, val2;
2377         u64             val_64;
2378         u32             page_size, temp;
2379         int             i, ret;
2380 
2381         INIT_LIST_HEAD(&xhci->cmd_list);
2382 
2383         /* init command timeout work */
2384         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2385         init_completion(&xhci->cmd_ring_stop_completion);
2386 
2387         page_size = readl(&xhci->op_regs->page_size);
2388         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2389                         "Supported page size register = 0x%x", page_size);
2390         for (i = 0; i < 16; i++) {
2391                 if ((0x1 & page_size) != 0)
2392                         break;
2393                 page_size = page_size >> 1;
2394         }
2395         if (i < 16)
2396                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2398         else
2399                 xhci_warn(xhci, "WARN: no supported page size\n");
2400         /* Use 4K pages, since that's common and the minimum the HC supports */
2401         xhci->page_shift = 12;
2402         xhci->page_size = 1 << xhci->page_shift;
2403         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404                         "HCD page size set to %iK", xhci->page_size / 1024);
2405 
2406         /*
2407          * Program the Number of Device Slots Enabled field in the CONFIG
2408          * register with the max value of slots the HC can handle.
2409          */
2410         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412                         "// xHC can handle at most %d device slots.", val);
2413         val2 = readl(&xhci->op_regs->config_reg);
2414         val |= (val2 & ~HCS_SLOTS_MASK);
2415         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416                         "// Setting Max device slots reg = 0x%x.", val);
2417         writel(val, &xhci->op_regs->config_reg);
2418 
2419         /*
2420          * xHCI section 5.4.6 - doorbell array must be
2421          * "physically contiguous and 64-byte (cache line) aligned".
2422          */
2423         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424                         flags);
2425         if (!xhci->dcbaa)
2426                 goto fail;
2427         xhci->dcbaa->dma = dma;
2428         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2430                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2431         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432 
2433         /*
2434          * Initialize the ring segment pool.  The ring must be a contiguous
2435          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436          * however, the command ring segment needs 64-byte aligned segments
2437          * and our use of dma addresses in the trb_address_map radix tree needs
2438          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439          */
2440         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2441                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2442 
2443         /* See Table 46 and Note on Figure 55 */
2444         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2445                         2112, 64, xhci->page_size);
2446         if (!xhci->segment_pool || !xhci->device_pool)
2447                 goto fail;
2448 
2449         /* Linear stream context arrays don't have any boundary restrictions,
2450          * and only need to be 16-byte aligned.
2451          */
2452         xhci->small_streams_pool =
2453                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2454                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2455         xhci->medium_streams_pool =
2456                 dma_pool_create("xHCI 1KB stream ctx arrays",
2457                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2458         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2459          * will be allocated with dma_alloc_coherent()
2460          */
2461 
2462         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2463                 goto fail;
2464 
2465         /* Set up the command ring to have one segments for now. */
2466         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2467         if (!xhci->cmd_ring)
2468                 goto fail;
2469         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470                         "Allocated command ring at %p", xhci->cmd_ring);
2471         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2472                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2473 
2474         /* Set the address in the Command Ring Control register */
2475         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2476         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2477                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2478                 xhci->cmd_ring->cycle_state;
2479         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2480                         "// Setting command ring address to 0x%016llx", val_64);
2481         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2482 
2483         xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2484         if (!xhci->lpm_command)
2485                 goto fail;
2486 
2487         /* Reserve one command ring TRB for disabling LPM.
2488          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2489          * disabling LPM, we only need to reserve one TRB for all devices.
2490          */
2491         xhci->cmd_ring_reserved_trbs++;
2492 
2493         val = readl(&xhci->cap_regs->db_off);
2494         val &= DBOFF_MASK;
2495         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496                         "// Doorbell array is located at offset 0x%x"
2497                         " from cap regs base addr", val);
2498         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2499         /* Set ir_set to interrupt register set 0 */
2500         xhci->ir_set = &xhci->run_regs->ir_set[0];
2501 
2502         /*
2503          * Event ring setup: Allocate a normal ring, but also setup
2504          * the event ring segment table (ERST).  Section 4.9.3.
2505          */
2506         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2507         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2508                                         0, flags);
2509         if (!xhci->event_ring)
2510                 goto fail;
2511         if (xhci_check_trb_in_td_math(xhci) < 0)
2512                 goto fail;
2513 
2514         ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2515         if (ret)
2516                 goto fail;
2517 
2518         /* set ERST count with the number of entries in the segment table */
2519         val = readl(&xhci->ir_set->erst_size);
2520         val &= ERST_SIZE_MASK;
2521         val |= ERST_NUM_SEGS;
2522         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2523                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2524                         val);
2525         writel(val, &xhci->ir_set->erst_size);
2526 
2527         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528                         "// Set ERST entries to point to event ring.");
2529         /* set the segment table base address */
2530         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531                         "// Set ERST base address for ir_set 0 = 0x%llx",
2532                         (unsigned long long)xhci->erst.erst_dma_addr);
2533         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2534         val_64 &= ERST_PTR_MASK;
2535         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2536         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2537 
2538         /* Set the event ring dequeue address */
2539         xhci_set_hc_event_deq(xhci);
2540         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2541                         "Wrote ERST address to ir_set 0.");
2542 
2543         /*
2544          * XXX: Might need to set the Interrupter Moderation Register to
2545          * something other than the default (~1ms minimum between interrupts).
2546          * See section 5.5.1.2.
2547          */
2548         for (i = 0; i < MAX_HC_SLOTS; i++)
2549                 xhci->devs[i] = NULL;
2550         for (i = 0; i < USB_MAXCHILDREN; i++) {
2551                 xhci->usb2_rhub.bus_state.resume_done[i] = 0;
2552                 xhci->usb3_rhub.bus_state.resume_done[i] = 0;
2553                 /* Only the USB 2.0 completions will ever be used. */
2554                 init_completion(&xhci->usb2_rhub.bus_state.rexit_done[i]);
2555                 init_completion(&xhci->usb3_rhub.bus_state.u3exit_done[i]);
2556         }
2557 
2558         if (scratchpad_alloc(xhci, flags))
2559                 goto fail;
2560         if (xhci_setup_port_arrays(xhci, flags))
2561                 goto fail;
2562 
2563         /* Enable USB 3.0 device notifications for function remote wake, which
2564          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565          * U3 (device suspend).
2566          */
2567         temp = readl(&xhci->op_regs->dev_notification);
2568         temp &= ~DEV_NOTE_MASK;
2569         temp |= DEV_NOTE_FWAKE;
2570         writel(temp, &xhci->op_regs->dev_notification);
2571 
2572         return 0;
2573 
2574 fail:
2575         xhci_halt(xhci);
2576         xhci_reset(xhci);
2577         xhci_mem_cleanup(xhci);
2578         return -ENOMEM;
2579 }

/* [<][>][^][v][top][bottom][index][help] */