root/drivers/usb/core/hcd.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ascii2desc
  2. rh_string
  3. rh_call_control
  4. usb_hcd_poll_rh_status
  5. rh_timer_func
  6. rh_queue_status
  7. rh_urb_enqueue
  8. usb_rh_urb_dequeue
  9. usb_bus_init
  10. usb_register_bus
  11. usb_deregister_bus
  12. register_root_hub
  13. usb_hcd_start_port_resume
  14. usb_hcd_end_port_resume
  15. usb_calc_bus_time
  16. usb_hcd_link_urb_to_ep
  17. usb_hcd_check_unlink_urb
  18. usb_hcd_unlink_urb_from_ep
  19. hcd_alloc_coherent
  20. hcd_free_coherent
  21. usb_hcd_unmap_urb_setup_for_dma
  22. unmap_urb_for_dma
  23. usb_hcd_unmap_urb_for_dma
  24. map_urb_for_dma
  25. usb_hcd_map_urb_for_dma
  26. usb_hcd_submit_urb
  27. unlink1
  28. usb_hcd_unlink_urb
  29. __usb_hcd_giveback_urb
  30. usb_giveback_urb_bh
  31. usb_hcd_giveback_urb
  32. usb_hcd_flush_endpoint
  33. usb_hcd_alloc_bandwidth
  34. usb_hcd_disable_endpoint
  35. usb_hcd_reset_endpoint
  36. usb_alloc_streams
  37. usb_free_streams
  38. usb_hcd_synchronize_unlinks
  39. usb_hcd_get_frame_number
  40. hcd_bus_suspend
  41. hcd_bus_resume
  42. hcd_resume_work
  43. usb_hcd_resume_root_hub
  44. usb_bus_start_enum
  45. usb_hcd_irq
  46. hcd_died_work
  47. usb_hc_died
  48. init_giveback_urb_bh
  49. __usb_create_hcd
  50. usb_create_shared_hcd
  51. usb_create_hcd
  52. hcd_release
  53. usb_get_hcd
  54. usb_put_hcd
  55. usb_hcd_is_primary_hcd
  56. usb_hcd_find_raw_port_number
  57. usb_hcd_request_irqs
  58. usb_put_invalidate_rhdev
  59. usb_add_hcd
  60. usb_remove_hcd
  61. usb_hcd_platform_shutdown
  62. usb_hcd_setup_local_mem
  63. usb_mon_register
  64. usb_mon_deregister

   1 // SPDX-License-Identifier: GPL-2.0+
   2 /*
   3  * (C) Copyright Linus Torvalds 1999
   4  * (C) Copyright Johannes Erdfelt 1999-2001
   5  * (C) Copyright Andreas Gal 1999
   6  * (C) Copyright Gregory P. Smith 1999
   7  * (C) Copyright Deti Fliegl 1999
   8  * (C) Copyright Randy Dunlap 2000
   9  * (C) Copyright David Brownell 2000-2002
  10  */
  11 
  12 #include <linux/bcd.h>
  13 #include <linux/module.h>
  14 #include <linux/version.h>
  15 #include <linux/kernel.h>
  16 #include <linux/sched/task_stack.h>
  17 #include <linux/slab.h>
  18 #include <linux/completion.h>
  19 #include <linux/utsname.h>
  20 #include <linux/mm.h>
  21 #include <asm/io.h>
  22 #include <linux/device.h>
  23 #include <linux/dma-mapping.h>
  24 #include <linux/mutex.h>
  25 #include <asm/irq.h>
  26 #include <asm/byteorder.h>
  27 #include <asm/unaligned.h>
  28 #include <linux/platform_device.h>
  29 #include <linux/workqueue.h>
  30 #include <linux/pm_runtime.h>
  31 #include <linux/types.h>
  32 #include <linux/genalloc.h>
  33 #include <linux/io.h>
  34 
  35 #include <linux/phy/phy.h>
  36 #include <linux/usb.h>
  37 #include <linux/usb/hcd.h>
  38 #include <linux/usb/otg.h>
  39 
  40 #include "usb.h"
  41 #include "phy.h"
  42 
  43 
  44 /*-------------------------------------------------------------------------*/
  45 
  46 /*
  47  * USB Host Controller Driver framework
  48  *
  49  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  50  * HCD-specific behaviors/bugs.
  51  *
  52  * This does error checks, tracks devices and urbs, and delegates to a
  53  * "hc_driver" only for code (and data) that really needs to know about
  54  * hardware differences.  That includes root hub registers, i/o queues,
  55  * and so on ... but as little else as possible.
  56  *
  57  * Shared code includes most of the "root hub" code (these are emulated,
  58  * though each HC's hardware works differently) and PCI glue, plus request
  59  * tracking overhead.  The HCD code should only block on spinlocks or on
  60  * hardware handshaking; blocking on software events (such as other kernel
  61  * threads releasing resources, or completing actions) is all generic.
  62  *
  63  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  64  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  65  * only by the hub driver ... and that neither should be seen or used by
  66  * usb client device drivers.
  67  *
  68  * Contributors of ideas or unattributed patches include: David Brownell,
  69  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  70  *
  71  * HISTORY:
  72  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
  73  *              associated cleanup.  "usb_hcd" still != "usb_bus".
  74  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
  75  */
  76 
  77 /*-------------------------------------------------------------------------*/
  78 
  79 /* Keep track of which host controller drivers are loaded */
  80 unsigned long usb_hcds_loaded;
  81 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  82 
  83 /* host controllers we manage */
  84 DEFINE_IDR (usb_bus_idr);
  85 EXPORT_SYMBOL_GPL (usb_bus_idr);
  86 
  87 /* used when allocating bus numbers */
  88 #define USB_MAXBUS              64
  89 
  90 /* used when updating list of hcds */
  91 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
  92 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  93 
  94 /* used for controlling access to virtual root hubs */
  95 static DEFINE_SPINLOCK(hcd_root_hub_lock);
  96 
  97 /* used when updating an endpoint's URB list */
  98 static DEFINE_SPINLOCK(hcd_urb_list_lock);
  99 
 100 /* used to protect against unlinking URBs after the device is gone */
 101 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 102 
 103 /* wait queue for synchronous unlinks */
 104 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 105 
 106 /*-------------------------------------------------------------------------*/
 107 
 108 /*
 109  * Sharable chunks of root hub code.
 110  */
 111 
 112 /*-------------------------------------------------------------------------*/
 113 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 114 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 115 
 116 /* usb 3.1 root hub device descriptor */
 117 static const u8 usb31_rh_dev_descriptor[18] = {
 118         0x12,       /*  __u8  bLength; */
 119         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 120         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 121 
 122         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 123         0x00,       /*  __u8  bDeviceSubClass; */
 124         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 125         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 126 
 127         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 128         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 129         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 130 
 131         0x03,       /*  __u8  iManufacturer; */
 132         0x02,       /*  __u8  iProduct; */
 133         0x01,       /*  __u8  iSerialNumber; */
 134         0x01        /*  __u8  bNumConfigurations; */
 135 };
 136 
 137 /* usb 3.0 root hub device descriptor */
 138 static const u8 usb3_rh_dev_descriptor[18] = {
 139         0x12,       /*  __u8  bLength; */
 140         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 141         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 142 
 143         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 144         0x00,       /*  __u8  bDeviceSubClass; */
 145         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 146         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 147 
 148         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 149         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 150         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 151 
 152         0x03,       /*  __u8  iManufacturer; */
 153         0x02,       /*  __u8  iProduct; */
 154         0x01,       /*  __u8  iSerialNumber; */
 155         0x01        /*  __u8  bNumConfigurations; */
 156 };
 157 
 158 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 159 static const u8 usb25_rh_dev_descriptor[18] = {
 160         0x12,       /*  __u8  bLength; */
 161         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 162         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 163 
 164         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 165         0x00,       /*  __u8  bDeviceSubClass; */
 166         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 167         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 168 
 169         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 170         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 171         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 172 
 173         0x03,       /*  __u8  iManufacturer; */
 174         0x02,       /*  __u8  iProduct; */
 175         0x01,       /*  __u8  iSerialNumber; */
 176         0x01        /*  __u8  bNumConfigurations; */
 177 };
 178 
 179 /* usb 2.0 root hub device descriptor */
 180 static const u8 usb2_rh_dev_descriptor[18] = {
 181         0x12,       /*  __u8  bLength; */
 182         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 183         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 184 
 185         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 186         0x00,       /*  __u8  bDeviceSubClass; */
 187         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 188         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 189 
 190         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 191         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 192         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 193 
 194         0x03,       /*  __u8  iManufacturer; */
 195         0x02,       /*  __u8  iProduct; */
 196         0x01,       /*  __u8  iSerialNumber; */
 197         0x01        /*  __u8  bNumConfigurations; */
 198 };
 199 
 200 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 201 
 202 /* usb 1.1 root hub device descriptor */
 203 static const u8 usb11_rh_dev_descriptor[18] = {
 204         0x12,       /*  __u8  bLength; */
 205         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 206         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 207 
 208         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
 209         0x00,       /*  __u8  bDeviceSubClass; */
 210         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 211         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 212 
 213         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 214         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 215         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 216 
 217         0x03,       /*  __u8  iManufacturer; */
 218         0x02,       /*  __u8  iProduct; */
 219         0x01,       /*  __u8  iSerialNumber; */
 220         0x01        /*  __u8  bNumConfigurations; */
 221 };
 222 
 223 
 224 /*-------------------------------------------------------------------------*/
 225 
 226 /* Configuration descriptors for our root hubs */
 227 
 228 static const u8 fs_rh_config_descriptor[] = {
 229 
 230         /* one configuration */
 231         0x09,       /*  __u8  bLength; */
 232         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 233         0x19, 0x00, /*  __le16 wTotalLength; */
 234         0x01,       /*  __u8  bNumInterfaces; (1) */
 235         0x01,       /*  __u8  bConfigurationValue; */
 236         0x00,       /*  __u8  iConfiguration; */
 237         0xc0,       /*  __u8  bmAttributes;
 238                                  Bit 7: must be set,
 239                                      6: Self-powered,
 240                                      5: Remote wakeup,
 241                                      4..0: resvd */
 242         0x00,       /*  __u8  MaxPower; */
 243 
 244         /* USB 1.1:
 245          * USB 2.0, single TT organization (mandatory):
 246          *      one interface, protocol 0
 247          *
 248          * USB 2.0, multiple TT organization (optional):
 249          *      two interfaces, protocols 1 (like single TT)
 250          *      and 2 (multiple TT mode) ... config is
 251          *      sometimes settable
 252          *      NOT IMPLEMENTED
 253          */
 254 
 255         /* one interface */
 256         0x09,       /*  __u8  if_bLength; */
 257         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 258         0x00,       /*  __u8  if_bInterfaceNumber; */
 259         0x00,       /*  __u8  if_bAlternateSetting; */
 260         0x01,       /*  __u8  if_bNumEndpoints; */
 261         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 262         0x00,       /*  __u8  if_bInterfaceSubClass; */
 263         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 264         0x00,       /*  __u8  if_iInterface; */
 265 
 266         /* one endpoint (status change endpoint) */
 267         0x07,       /*  __u8  ep_bLength; */
 268         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 269         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 270         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 271         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 272         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 273 };
 274 
 275 static const u8 hs_rh_config_descriptor[] = {
 276 
 277         /* one configuration */
 278         0x09,       /*  __u8  bLength; */
 279         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 280         0x19, 0x00, /*  __le16 wTotalLength; */
 281         0x01,       /*  __u8  bNumInterfaces; (1) */
 282         0x01,       /*  __u8  bConfigurationValue; */
 283         0x00,       /*  __u8  iConfiguration; */
 284         0xc0,       /*  __u8  bmAttributes;
 285                                  Bit 7: must be set,
 286                                      6: Self-powered,
 287                                      5: Remote wakeup,
 288                                      4..0: resvd */
 289         0x00,       /*  __u8  MaxPower; */
 290 
 291         /* USB 1.1:
 292          * USB 2.0, single TT organization (mandatory):
 293          *      one interface, protocol 0
 294          *
 295          * USB 2.0, multiple TT organization (optional):
 296          *      two interfaces, protocols 1 (like single TT)
 297          *      and 2 (multiple TT mode) ... config is
 298          *      sometimes settable
 299          *      NOT IMPLEMENTED
 300          */
 301 
 302         /* one interface */
 303         0x09,       /*  __u8  if_bLength; */
 304         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 305         0x00,       /*  __u8  if_bInterfaceNumber; */
 306         0x00,       /*  __u8  if_bAlternateSetting; */
 307         0x01,       /*  __u8  if_bNumEndpoints; */
 308         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 309         0x00,       /*  __u8  if_bInterfaceSubClass; */
 310         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 311         0x00,       /*  __u8  if_iInterface; */
 312 
 313         /* one endpoint (status change endpoint) */
 314         0x07,       /*  __u8  ep_bLength; */
 315         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 316         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 317         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 318                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 319                      * see hub.c:hub_configure() for details. */
 320         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 321         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 322 };
 323 
 324 static const u8 ss_rh_config_descriptor[] = {
 325         /* one configuration */
 326         0x09,       /*  __u8  bLength; */
 327         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 328         0x1f, 0x00, /*  __le16 wTotalLength; */
 329         0x01,       /*  __u8  bNumInterfaces; (1) */
 330         0x01,       /*  __u8  bConfigurationValue; */
 331         0x00,       /*  __u8  iConfiguration; */
 332         0xc0,       /*  __u8  bmAttributes;
 333                                  Bit 7: must be set,
 334                                      6: Self-powered,
 335                                      5: Remote wakeup,
 336                                      4..0: resvd */
 337         0x00,       /*  __u8  MaxPower; */
 338 
 339         /* one interface */
 340         0x09,       /*  __u8  if_bLength; */
 341         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 342         0x00,       /*  __u8  if_bInterfaceNumber; */
 343         0x00,       /*  __u8  if_bAlternateSetting; */
 344         0x01,       /*  __u8  if_bNumEndpoints; */
 345         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 346         0x00,       /*  __u8  if_bInterfaceSubClass; */
 347         0x00,       /*  __u8  if_bInterfaceProtocol; */
 348         0x00,       /*  __u8  if_iInterface; */
 349 
 350         /* one endpoint (status change endpoint) */
 351         0x07,       /*  __u8  ep_bLength; */
 352         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 353         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 354         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 355                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 356                      * see hub.c:hub_configure() for details. */
 357         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 358         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 359 
 360         /* one SuperSpeed endpoint companion descriptor */
 361         0x06,        /* __u8 ss_bLength */
 362         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 363                      /* Companion */
 364         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 365         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 366         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 367 };
 368 
 369 /* authorized_default behaviour:
 370  * -1 is authorized for all devices except wireless (old behaviour)
 371  * 0 is unauthorized for all devices
 372  * 1 is authorized for all devices
 373  * 2 is authorized for internal devices
 374  */
 375 #define USB_AUTHORIZE_WIRED     -1
 376 #define USB_AUTHORIZE_NONE      0
 377 #define USB_AUTHORIZE_ALL       1
 378 #define USB_AUTHORIZE_INTERNAL  2
 379 
 380 static int authorized_default = USB_AUTHORIZE_WIRED;
 381 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 382 MODULE_PARM_DESC(authorized_default,
 383                 "Default USB device authorization: 0 is not authorized, 1 is "
 384                 "authorized, 2 is authorized for internal devices, -1 is "
 385                 "authorized except for wireless USB (default, old behaviour)");
 386 /*-------------------------------------------------------------------------*/
 387 
 388 /**
 389  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 390  * @s: Null-terminated ASCII (actually ISO-8859-1) string
 391  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 392  * @len: Length (in bytes; may be odd) of descriptor buffer.
 393  *
 394  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 395  * whichever is less.
 396  *
 397  * Note:
 398  * USB String descriptors can contain at most 126 characters; input
 399  * strings longer than that are truncated.
 400  */
 401 static unsigned
 402 ascii2desc(char const *s, u8 *buf, unsigned len)
 403 {
 404         unsigned n, t = 2 + 2*strlen(s);
 405 
 406         if (t > 254)
 407                 t = 254;        /* Longest possible UTF string descriptor */
 408         if (len > t)
 409                 len = t;
 410 
 411         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
 412 
 413         n = len;
 414         while (n--) {
 415                 *buf++ = t;
 416                 if (!n--)
 417                         break;
 418                 *buf++ = t >> 8;
 419                 t = (unsigned char)*s++;
 420         }
 421         return len;
 422 }
 423 
 424 /**
 425  * rh_string() - provides string descriptors for root hub
 426  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 427  * @hcd: the host controller for this root hub
 428  * @data: buffer for output packet
 429  * @len: length of the provided buffer
 430  *
 431  * Produces either a manufacturer, product or serial number string for the
 432  * virtual root hub device.
 433  *
 434  * Return: The number of bytes filled in: the length of the descriptor or
 435  * of the provided buffer, whichever is less.
 436  */
 437 static unsigned
 438 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 439 {
 440         char buf[100];
 441         char const *s;
 442         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 443 
 444         /* language ids */
 445         switch (id) {
 446         case 0:
 447                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 448                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 449                 if (len > 4)
 450                         len = 4;
 451                 memcpy(data, langids, len);
 452                 return len;
 453         case 1:
 454                 /* Serial number */
 455                 s = hcd->self.bus_name;
 456                 break;
 457         case 2:
 458                 /* Product name */
 459                 s = hcd->product_desc;
 460                 break;
 461         case 3:
 462                 /* Manufacturer */
 463                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 464                         init_utsname()->release, hcd->driver->description);
 465                 s = buf;
 466                 break;
 467         default:
 468                 /* Can't happen; caller guarantees it */
 469                 return 0;
 470         }
 471 
 472         return ascii2desc(s, data, len);
 473 }
 474 
 475 
 476 /* Root hub control transfers execute synchronously */
 477 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 478 {
 479         struct usb_ctrlrequest *cmd;
 480         u16             typeReq, wValue, wIndex, wLength;
 481         u8              *ubuf = urb->transfer_buffer;
 482         unsigned        len = 0;
 483         int             status;
 484         u8              patch_wakeup = 0;
 485         u8              patch_protocol = 0;
 486         u16             tbuf_size;
 487         u8              *tbuf = NULL;
 488         const u8        *bufp;
 489 
 490         might_sleep();
 491 
 492         spin_lock_irq(&hcd_root_hub_lock);
 493         status = usb_hcd_link_urb_to_ep(hcd, urb);
 494         spin_unlock_irq(&hcd_root_hub_lock);
 495         if (status)
 496                 return status;
 497         urb->hcpriv = hcd;      /* Indicate it's queued */
 498 
 499         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 500         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 501         wValue   = le16_to_cpu (cmd->wValue);
 502         wIndex   = le16_to_cpu (cmd->wIndex);
 503         wLength  = le16_to_cpu (cmd->wLength);
 504 
 505         if (wLength > urb->transfer_buffer_length)
 506                 goto error;
 507 
 508         /*
 509          * tbuf should be at least as big as the
 510          * USB hub descriptor.
 511          */
 512         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 513         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 514         if (!tbuf) {
 515                 status = -ENOMEM;
 516                 goto err_alloc;
 517         }
 518 
 519         bufp = tbuf;
 520 
 521 
 522         urb->actual_length = 0;
 523         switch (typeReq) {
 524 
 525         /* DEVICE REQUESTS */
 526 
 527         /* The root hub's remote wakeup enable bit is implemented using
 528          * driver model wakeup flags.  If this system supports wakeup
 529          * through USB, userspace may change the default "allow wakeup"
 530          * policy through sysfs or these calls.
 531          *
 532          * Most root hubs support wakeup from downstream devices, for
 533          * runtime power management (disabling USB clocks and reducing
 534          * VBUS power usage).  However, not all of them do so; silicon,
 535          * board, and BIOS bugs here are not uncommon, so these can't
 536          * be treated quite like external hubs.
 537          *
 538          * Likewise, not all root hubs will pass wakeup events upstream,
 539          * to wake up the whole system.  So don't assume root hub and
 540          * controller capabilities are identical.
 541          */
 542 
 543         case DeviceRequest | USB_REQ_GET_STATUS:
 544                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 545                                         << USB_DEVICE_REMOTE_WAKEUP)
 546                                 | (1 << USB_DEVICE_SELF_POWERED);
 547                 tbuf[1] = 0;
 548                 len = 2;
 549                 break;
 550         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 551                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 552                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 553                 else
 554                         goto error;
 555                 break;
 556         case DeviceOutRequest | USB_REQ_SET_FEATURE:
 557                 if (device_can_wakeup(&hcd->self.root_hub->dev)
 558                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
 559                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 560                 else
 561                         goto error;
 562                 break;
 563         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 564                 tbuf[0] = 1;
 565                 len = 1;
 566                         /* FALLTHROUGH */
 567         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 568                 break;
 569         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 570                 switch (wValue & 0xff00) {
 571                 case USB_DT_DEVICE << 8:
 572                         switch (hcd->speed) {
 573                         case HCD_USB32:
 574                         case HCD_USB31:
 575                                 bufp = usb31_rh_dev_descriptor;
 576                                 break;
 577                         case HCD_USB3:
 578                                 bufp = usb3_rh_dev_descriptor;
 579                                 break;
 580                         case HCD_USB25:
 581                                 bufp = usb25_rh_dev_descriptor;
 582                                 break;
 583                         case HCD_USB2:
 584                                 bufp = usb2_rh_dev_descriptor;
 585                                 break;
 586                         case HCD_USB11:
 587                                 bufp = usb11_rh_dev_descriptor;
 588                                 break;
 589                         default:
 590                                 goto error;
 591                         }
 592                         len = 18;
 593                         if (hcd->has_tt)
 594                                 patch_protocol = 1;
 595                         break;
 596                 case USB_DT_CONFIG << 8:
 597                         switch (hcd->speed) {
 598                         case HCD_USB32:
 599                         case HCD_USB31:
 600                         case HCD_USB3:
 601                                 bufp = ss_rh_config_descriptor;
 602                                 len = sizeof ss_rh_config_descriptor;
 603                                 break;
 604                         case HCD_USB25:
 605                         case HCD_USB2:
 606                                 bufp = hs_rh_config_descriptor;
 607                                 len = sizeof hs_rh_config_descriptor;
 608                                 break;
 609                         case HCD_USB11:
 610                                 bufp = fs_rh_config_descriptor;
 611                                 len = sizeof fs_rh_config_descriptor;
 612                                 break;
 613                         default:
 614                                 goto error;
 615                         }
 616                         if (device_can_wakeup(&hcd->self.root_hub->dev))
 617                                 patch_wakeup = 1;
 618                         break;
 619                 case USB_DT_STRING << 8:
 620                         if ((wValue & 0xff) < 4)
 621                                 urb->actual_length = rh_string(wValue & 0xff,
 622                                                 hcd, ubuf, wLength);
 623                         else /* unsupported IDs --> "protocol stall" */
 624                                 goto error;
 625                         break;
 626                 case USB_DT_BOS << 8:
 627                         goto nongeneric;
 628                 default:
 629                         goto error;
 630                 }
 631                 break;
 632         case DeviceRequest | USB_REQ_GET_INTERFACE:
 633                 tbuf[0] = 0;
 634                 len = 1;
 635                         /* FALLTHROUGH */
 636         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 637                 break;
 638         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 639                 /* wValue == urb->dev->devaddr */
 640                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
 641                         wValue);
 642                 break;
 643 
 644         /* INTERFACE REQUESTS (no defined feature/status flags) */
 645 
 646         /* ENDPOINT REQUESTS */
 647 
 648         case EndpointRequest | USB_REQ_GET_STATUS:
 649                 /* ENDPOINT_HALT flag */
 650                 tbuf[0] = 0;
 651                 tbuf[1] = 0;
 652                 len = 2;
 653                         /* FALLTHROUGH */
 654         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 655         case EndpointOutRequest | USB_REQ_SET_FEATURE:
 656                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 657                 break;
 658 
 659         /* CLASS REQUESTS (and errors) */
 660 
 661         default:
 662 nongeneric:
 663                 /* non-generic request */
 664                 switch (typeReq) {
 665                 case GetHubStatus:
 666                         len = 4;
 667                         break;
 668                 case GetPortStatus:
 669                         if (wValue == HUB_PORT_STATUS)
 670                                 len = 4;
 671                         else
 672                                 /* other port status types return 8 bytes */
 673                                 len = 8;
 674                         break;
 675                 case GetHubDescriptor:
 676                         len = sizeof (struct usb_hub_descriptor);
 677                         break;
 678                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 679                         /* len is returned by hub_control */
 680                         break;
 681                 }
 682                 status = hcd->driver->hub_control (hcd,
 683                         typeReq, wValue, wIndex,
 684                         tbuf, wLength);
 685 
 686                 if (typeReq == GetHubDescriptor)
 687                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 688                                 (struct usb_hub_descriptor *)tbuf);
 689                 break;
 690 error:
 691                 /* "protocol stall" on error */
 692                 status = -EPIPE;
 693         }
 694 
 695         if (status < 0) {
 696                 len = 0;
 697                 if (status != -EPIPE) {
 698                         dev_dbg (hcd->self.controller,
 699                                 "CTRL: TypeReq=0x%x val=0x%x "
 700                                 "idx=0x%x len=%d ==> %d\n",
 701                                 typeReq, wValue, wIndex,
 702                                 wLength, status);
 703                 }
 704         } else if (status > 0) {
 705                 /* hub_control may return the length of data copied. */
 706                 len = status;
 707                 status = 0;
 708         }
 709         if (len) {
 710                 if (urb->transfer_buffer_length < len)
 711                         len = urb->transfer_buffer_length;
 712                 urb->actual_length = len;
 713                 /* always USB_DIR_IN, toward host */
 714                 memcpy (ubuf, bufp, len);
 715 
 716                 /* report whether RH hardware supports remote wakeup */
 717                 if (patch_wakeup &&
 718                                 len > offsetof (struct usb_config_descriptor,
 719                                                 bmAttributes))
 720                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
 721                                 |= USB_CONFIG_ATT_WAKEUP;
 722 
 723                 /* report whether RH hardware has an integrated TT */
 724                 if (patch_protocol &&
 725                                 len > offsetof(struct usb_device_descriptor,
 726                                                 bDeviceProtocol))
 727                         ((struct usb_device_descriptor *) ubuf)->
 728                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 729         }
 730 
 731         kfree(tbuf);
 732  err_alloc:
 733 
 734         /* any errors get returned through the urb completion */
 735         spin_lock_irq(&hcd_root_hub_lock);
 736         usb_hcd_unlink_urb_from_ep(hcd, urb);
 737         usb_hcd_giveback_urb(hcd, urb, status);
 738         spin_unlock_irq(&hcd_root_hub_lock);
 739         return 0;
 740 }
 741 
 742 /*-------------------------------------------------------------------------*/
 743 
 744 /*
 745  * Root Hub interrupt transfers are polled using a timer if the
 746  * driver requests it; otherwise the driver is responsible for
 747  * calling usb_hcd_poll_rh_status() when an event occurs.
 748  *
 749  * Completions are called in_interrupt(), but they may or may not
 750  * be in_irq().
 751  */
 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 753 {
 754         struct urb      *urb;
 755         int             length;
 756         unsigned long   flags;
 757         char            buffer[6];      /* Any root hubs with > 31 ports? */
 758 
 759         if (unlikely(!hcd->rh_pollable))
 760                 return;
 761         if (!hcd->uses_new_polling && !hcd->status_urb)
 762                 return;
 763 
 764         length = hcd->driver->hub_status_data(hcd, buffer);
 765         if (length > 0) {
 766 
 767                 /* try to complete the status urb */
 768                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
 769                 urb = hcd->status_urb;
 770                 if (urb) {
 771                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 772                         hcd->status_urb = NULL;
 773                         urb->actual_length = length;
 774                         memcpy(urb->transfer_buffer, buffer, length);
 775 
 776                         usb_hcd_unlink_urb_from_ep(hcd, urb);
 777                         usb_hcd_giveback_urb(hcd, urb, 0);
 778                 } else {
 779                         length = 0;
 780                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 781                 }
 782                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 783         }
 784 
 785         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
 786          * exceed that limit if HZ is 100. The math is more clunky than
 787          * maybe expected, this is to make sure that all timers for USB devices
 788          * fire at the same time to give the CPU a break in between */
 789         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 790                         (length == 0 && hcd->status_urb != NULL))
 791                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 792 }
 793 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 794 
 795 /* timer callback */
 796 static void rh_timer_func (struct timer_list *t)
 797 {
 798         struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 799 
 800         usb_hcd_poll_rh_status(_hcd);
 801 }
 802 
 803 /*-------------------------------------------------------------------------*/
 804 
 805 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 806 {
 807         int             retval;
 808         unsigned long   flags;
 809         unsigned        len = 1 + (urb->dev->maxchild / 8);
 810 
 811         spin_lock_irqsave (&hcd_root_hub_lock, flags);
 812         if (hcd->status_urb || urb->transfer_buffer_length < len) {
 813                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 814                 retval = -EINVAL;
 815                 goto done;
 816         }
 817 
 818         retval = usb_hcd_link_urb_to_ep(hcd, urb);
 819         if (retval)
 820                 goto done;
 821 
 822         hcd->status_urb = urb;
 823         urb->hcpriv = hcd;      /* indicate it's queued */
 824         if (!hcd->uses_new_polling)
 825                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 826 
 827         /* If a status change has already occurred, report it ASAP */
 828         else if (HCD_POLL_PENDING(hcd))
 829                 mod_timer(&hcd->rh_timer, jiffies);
 830         retval = 0;
 831  done:
 832         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 833         return retval;
 834 }
 835 
 836 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 837 {
 838         if (usb_endpoint_xfer_int(&urb->ep->desc))
 839                 return rh_queue_status (hcd, urb);
 840         if (usb_endpoint_xfer_control(&urb->ep->desc))
 841                 return rh_call_control (hcd, urb);
 842         return -EINVAL;
 843 }
 844 
 845 /*-------------------------------------------------------------------------*/
 846 
 847 /* Unlinks of root-hub control URBs are legal, but they don't do anything
 848  * since these URBs always execute synchronously.
 849  */
 850 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 851 {
 852         unsigned long   flags;
 853         int             rc;
 854 
 855         spin_lock_irqsave(&hcd_root_hub_lock, flags);
 856         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 857         if (rc)
 858                 goto done;
 859 
 860         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
 861                 ;       /* Do nothing */
 862 
 863         } else {                                /* Status URB */
 864                 if (!hcd->uses_new_polling)
 865                         del_timer (&hcd->rh_timer);
 866                 if (urb == hcd->status_urb) {
 867                         hcd->status_urb = NULL;
 868                         usb_hcd_unlink_urb_from_ep(hcd, urb);
 869                         usb_hcd_giveback_urb(hcd, urb, status);
 870                 }
 871         }
 872  done:
 873         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 874         return rc;
 875 }
 876 
 877 
 878 /*-------------------------------------------------------------------------*/
 879 
 880 /**
 881  * usb_bus_init - shared initialization code
 882  * @bus: the bus structure being initialized
 883  *
 884  * This code is used to initialize a usb_bus structure, memory for which is
 885  * separately managed.
 886  */
 887 static void usb_bus_init (struct usb_bus *bus)
 888 {
 889         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 890 
 891         bus->devnum_next = 1;
 892 
 893         bus->root_hub = NULL;
 894         bus->busnum = -1;
 895         bus->bandwidth_allocated = 0;
 896         bus->bandwidth_int_reqs  = 0;
 897         bus->bandwidth_isoc_reqs = 0;
 898         mutex_init(&bus->devnum_next_mutex);
 899 }
 900 
 901 /*-------------------------------------------------------------------------*/
 902 
 903 /**
 904  * usb_register_bus - registers the USB host controller with the usb core
 905  * @bus: pointer to the bus to register
 906  * Context: !in_interrupt()
 907  *
 908  * Assigns a bus number, and links the controller into usbcore data
 909  * structures so that it can be seen by scanning the bus list.
 910  *
 911  * Return: 0 if successful. A negative error code otherwise.
 912  */
 913 static int usb_register_bus(struct usb_bus *bus)
 914 {
 915         int result = -E2BIG;
 916         int busnum;
 917 
 918         mutex_lock(&usb_bus_idr_lock);
 919         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 920         if (busnum < 0) {
 921                 pr_err("%s: failed to get bus number\n", usbcore_name);
 922                 goto error_find_busnum;
 923         }
 924         bus->busnum = busnum;
 925         mutex_unlock(&usb_bus_idr_lock);
 926 
 927         usb_notify_add_bus(bus);
 928 
 929         dev_info (bus->controller, "new USB bus registered, assigned bus "
 930                   "number %d\n", bus->busnum);
 931         return 0;
 932 
 933 error_find_busnum:
 934         mutex_unlock(&usb_bus_idr_lock);
 935         return result;
 936 }
 937 
 938 /**
 939  * usb_deregister_bus - deregisters the USB host controller
 940  * @bus: pointer to the bus to deregister
 941  * Context: !in_interrupt()
 942  *
 943  * Recycles the bus number, and unlinks the controller from usbcore data
 944  * structures so that it won't be seen by scanning the bus list.
 945  */
 946 static void usb_deregister_bus (struct usb_bus *bus)
 947 {
 948         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 949 
 950         /*
 951          * NOTE: make sure that all the devices are removed by the
 952          * controller code, as well as having it call this when cleaning
 953          * itself up
 954          */
 955         mutex_lock(&usb_bus_idr_lock);
 956         idr_remove(&usb_bus_idr, bus->busnum);
 957         mutex_unlock(&usb_bus_idr_lock);
 958 
 959         usb_notify_remove_bus(bus);
 960 }
 961 
 962 /**
 963  * register_root_hub - called by usb_add_hcd() to register a root hub
 964  * @hcd: host controller for this root hub
 965  *
 966  * This function registers the root hub with the USB subsystem.  It sets up
 967  * the device properly in the device tree and then calls usb_new_device()
 968  * to register the usb device.  It also assigns the root hub's USB address
 969  * (always 1).
 970  *
 971  * Return: 0 if successful. A negative error code otherwise.
 972  */
 973 static int register_root_hub(struct usb_hcd *hcd)
 974 {
 975         struct device *parent_dev = hcd->self.controller;
 976         struct usb_device *usb_dev = hcd->self.root_hub;
 977         const int devnum = 1;
 978         int retval;
 979 
 980         usb_dev->devnum = devnum;
 981         usb_dev->bus->devnum_next = devnum + 1;
 982         set_bit (devnum, usb_dev->bus->devmap.devicemap);
 983         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 984 
 985         mutex_lock(&usb_bus_idr_lock);
 986 
 987         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 988         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 989         if (retval != sizeof usb_dev->descriptor) {
 990                 mutex_unlock(&usb_bus_idr_lock);
 991                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 992                                 dev_name(&usb_dev->dev), retval);
 993                 return (retval < 0) ? retval : -EMSGSIZE;
 994         }
 995 
 996         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 997                 retval = usb_get_bos_descriptor(usb_dev);
 998                 if (!retval) {
 999                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1000                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1001                         mutex_unlock(&usb_bus_idr_lock);
1002                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1003                                         dev_name(&usb_dev->dev), retval);
1004                         return retval;
1005                 }
1006         }
1007 
1008         retval = usb_new_device (usb_dev);
1009         if (retval) {
1010                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1011                                 dev_name(&usb_dev->dev), retval);
1012         } else {
1013                 spin_lock_irq (&hcd_root_hub_lock);
1014                 hcd->rh_registered = 1;
1015                 spin_unlock_irq (&hcd_root_hub_lock);
1016 
1017                 /* Did the HC die before the root hub was registered? */
1018                 if (HCD_DEAD(hcd))
1019                         usb_hc_died (hcd);      /* This time clean up */
1020         }
1021         mutex_unlock(&usb_bus_idr_lock);
1022 
1023         return retval;
1024 }
1025 
1026 /*
1027  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1028  * @bus: the bus which the root hub belongs to
1029  * @portnum: the port which is being resumed
1030  *
1031  * HCDs should call this function when they know that a resume signal is
1032  * being sent to a root-hub port.  The root hub will be prevented from
1033  * going into autosuspend until usb_hcd_end_port_resume() is called.
1034  *
1035  * The bus's private lock must be held by the caller.
1036  */
1037 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1038 {
1039         unsigned bit = 1 << portnum;
1040 
1041         if (!(bus->resuming_ports & bit)) {
1042                 bus->resuming_ports |= bit;
1043                 pm_runtime_get_noresume(&bus->root_hub->dev);
1044         }
1045 }
1046 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1047 
1048 /*
1049  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1050  * @bus: the bus which the root hub belongs to
1051  * @portnum: the port which is being resumed
1052  *
1053  * HCDs should call this function when they know that a resume signal has
1054  * stopped being sent to a root-hub port.  The root hub will be allowed to
1055  * autosuspend again.
1056  *
1057  * The bus's private lock must be held by the caller.
1058  */
1059 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1060 {
1061         unsigned bit = 1 << portnum;
1062 
1063         if (bus->resuming_ports & bit) {
1064                 bus->resuming_ports &= ~bit;
1065                 pm_runtime_put_noidle(&bus->root_hub->dev);
1066         }
1067 }
1068 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1069 
1070 /*-------------------------------------------------------------------------*/
1071 
1072 /**
1073  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1074  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1075  * @is_input: true iff the transaction sends data to the host
1076  * @isoc: true for isochronous transactions, false for interrupt ones
1077  * @bytecount: how many bytes in the transaction.
1078  *
1079  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1080  *
1081  * Note:
1082  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1083  * scheduled in software, this function is only used for such scheduling.
1084  */
1085 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1086 {
1087         unsigned long   tmp;
1088 
1089         switch (speed) {
1090         case USB_SPEED_LOW:     /* INTR only */
1091                 if (is_input) {
1092                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1093                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1094                 } else {
1095                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1096                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1097                 }
1098         case USB_SPEED_FULL:    /* ISOC or INTR */
1099                 if (isoc) {
1100                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1102                 } else {
1103                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104                         return 9107L + BW_HOST_DELAY + tmp;
1105                 }
1106         case USB_SPEED_HIGH:    /* ISOC or INTR */
1107                 /* FIXME adjust for input vs output */
1108                 if (isoc)
1109                         tmp = HS_NSECS_ISO (bytecount);
1110                 else
1111                         tmp = HS_NSECS (bytecount);
1112                 return tmp;
1113         default:
1114                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1115                 return -1;
1116         }
1117 }
1118 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1119 
1120 
1121 /*-------------------------------------------------------------------------*/
1122 
1123 /*
1124  * Generic HC operations.
1125  */
1126 
1127 /*-------------------------------------------------------------------------*/
1128 
1129 /**
1130  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1131  * @hcd: host controller to which @urb was submitted
1132  * @urb: URB being submitted
1133  *
1134  * Host controller drivers should call this routine in their enqueue()
1135  * method.  The HCD's private spinlock must be held and interrupts must
1136  * be disabled.  The actions carried out here are required for URB
1137  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1138  *
1139  * Return: 0 for no error, otherwise a negative error code (in which case
1140  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1141  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1142  * the private spinlock and returning.
1143  */
1144 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1145 {
1146         int             rc = 0;
1147 
1148         spin_lock(&hcd_urb_list_lock);
1149 
1150         /* Check that the URB isn't being killed */
1151         if (unlikely(atomic_read(&urb->reject))) {
1152                 rc = -EPERM;
1153                 goto done;
1154         }
1155 
1156         if (unlikely(!urb->ep->enabled)) {
1157                 rc = -ENOENT;
1158                 goto done;
1159         }
1160 
1161         if (unlikely(!urb->dev->can_submit)) {
1162                 rc = -EHOSTUNREACH;
1163                 goto done;
1164         }
1165 
1166         /*
1167          * Check the host controller's state and add the URB to the
1168          * endpoint's queue.
1169          */
1170         if (HCD_RH_RUNNING(hcd)) {
1171                 urb->unlinked = 0;
1172                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1173         } else {
1174                 rc = -ESHUTDOWN;
1175                 goto done;
1176         }
1177  done:
1178         spin_unlock(&hcd_urb_list_lock);
1179         return rc;
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1182 
1183 /**
1184  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1185  * @hcd: host controller to which @urb was submitted
1186  * @urb: URB being checked for unlinkability
1187  * @status: error code to store in @urb if the unlink succeeds
1188  *
1189  * Host controller drivers should call this routine in their dequeue()
1190  * method.  The HCD's private spinlock must be held and interrupts must
1191  * be disabled.  The actions carried out here are required for making
1192  * sure than an unlink is valid.
1193  *
1194  * Return: 0 for no error, otherwise a negative error code (in which case
1195  * the dequeue() method must fail).  The possible error codes are:
1196  *
1197  *      -EIDRM: @urb was not submitted or has already completed.
1198  *              The completion function may not have been called yet.
1199  *
1200  *      -EBUSY: @urb has already been unlinked.
1201  */
1202 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1203                 int status)
1204 {
1205         struct list_head        *tmp;
1206 
1207         /* insist the urb is still queued */
1208         list_for_each(tmp, &urb->ep->urb_list) {
1209                 if (tmp == &urb->urb_list)
1210                         break;
1211         }
1212         if (tmp != &urb->urb_list)
1213                 return -EIDRM;
1214 
1215         /* Any status except -EINPROGRESS means something already started to
1216          * unlink this URB from the hardware.  So there's no more work to do.
1217          */
1218         if (urb->unlinked)
1219                 return -EBUSY;
1220         urb->unlinked = status;
1221         return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1224 
1225 /**
1226  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1227  * @hcd: host controller to which @urb was submitted
1228  * @urb: URB being unlinked
1229  *
1230  * Host controller drivers should call this routine before calling
1231  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1232  * interrupts must be disabled.  The actions carried out here are required
1233  * for URB completion.
1234  */
1235 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1236 {
1237         /* clear all state linking urb to this dev (and hcd) */
1238         spin_lock(&hcd_urb_list_lock);
1239         list_del_init(&urb->urb_list);
1240         spin_unlock(&hcd_urb_list_lock);
1241 }
1242 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1243 
1244 /*
1245  * Some usb host controllers can only perform dma using a small SRAM area.
1246  * The usb core itself is however optimized for host controllers that can dma
1247  * using regular system memory - like pci devices doing bus mastering.
1248  *
1249  * To support host controllers with limited dma capabilities we provide dma
1250  * bounce buffers. This feature can be enabled by initializing
1251  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1252  *
1253  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1254  * data for dma using the genalloc API.
1255  *
1256  * So, to summarize...
1257  *
1258  * - We need "local" memory, canonical example being
1259  *   a small SRAM on a discrete controller being the
1260  *   only memory that the controller can read ...
1261  *   (a) "normal" kernel memory is no good, and
1262  *   (b) there's not enough to share
1263  *
1264  * - So we use that, even though the primary requirement
1265  *   is that the memory be "local" (hence addressable
1266  *   by that device), not "coherent".
1267  *
1268  */
1269 
1270 static int hcd_alloc_coherent(struct usb_bus *bus,
1271                               gfp_t mem_flags, dma_addr_t *dma_handle,
1272                               void **vaddr_handle, size_t size,
1273                               enum dma_data_direction dir)
1274 {
1275         unsigned char *vaddr;
1276 
1277         if (*vaddr_handle == NULL) {
1278                 WARN_ON_ONCE(1);
1279                 return -EFAULT;
1280         }
1281 
1282         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1283                                  mem_flags, dma_handle);
1284         if (!vaddr)
1285                 return -ENOMEM;
1286 
1287         /*
1288          * Store the virtual address of the buffer at the end
1289          * of the allocated dma buffer. The size of the buffer
1290          * may be uneven so use unaligned functions instead
1291          * of just rounding up. It makes sense to optimize for
1292          * memory footprint over access speed since the amount
1293          * of memory available for dma may be limited.
1294          */
1295         put_unaligned((unsigned long)*vaddr_handle,
1296                       (unsigned long *)(vaddr + size));
1297 
1298         if (dir == DMA_TO_DEVICE)
1299                 memcpy(vaddr, *vaddr_handle, size);
1300 
1301         *vaddr_handle = vaddr;
1302         return 0;
1303 }
1304 
1305 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1306                               void **vaddr_handle, size_t size,
1307                               enum dma_data_direction dir)
1308 {
1309         unsigned char *vaddr = *vaddr_handle;
1310 
1311         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1312 
1313         if (dir == DMA_FROM_DEVICE)
1314                 memcpy(vaddr, *vaddr_handle, size);
1315 
1316         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1317 
1318         *vaddr_handle = vaddr;
1319         *dma_handle = 0;
1320 }
1321 
1322 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1323 {
1324         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1325             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1326                 dma_unmap_single(hcd->self.sysdev,
1327                                 urb->setup_dma,
1328                                 sizeof(struct usb_ctrlrequest),
1329                                 DMA_TO_DEVICE);
1330         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1331                 hcd_free_coherent(urb->dev->bus,
1332                                 &urb->setup_dma,
1333                                 (void **) &urb->setup_packet,
1334                                 sizeof(struct usb_ctrlrequest),
1335                                 DMA_TO_DEVICE);
1336 
1337         /* Make it safe to call this routine more than once */
1338         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1339 }
1340 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1341 
1342 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344         if (hcd->driver->unmap_urb_for_dma)
1345                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1346         else
1347                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1348 }
1349 
1350 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351 {
1352         enum dma_data_direction dir;
1353 
1354         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1355 
1356         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358             (urb->transfer_flags & URB_DMA_MAP_SG))
1359                 dma_unmap_sg(hcd->self.sysdev,
1360                                 urb->sg,
1361                                 urb->num_sgs,
1362                                 dir);
1363         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1364                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1365                 dma_unmap_page(hcd->self.sysdev,
1366                                 urb->transfer_dma,
1367                                 urb->transfer_buffer_length,
1368                                 dir);
1369         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1371                 dma_unmap_single(hcd->self.sysdev,
1372                                 urb->transfer_dma,
1373                                 urb->transfer_buffer_length,
1374                                 dir);
1375         else if (urb->transfer_flags & URB_MAP_LOCAL)
1376                 hcd_free_coherent(urb->dev->bus,
1377                                 &urb->transfer_dma,
1378                                 &urb->transfer_buffer,
1379                                 urb->transfer_buffer_length,
1380                                 dir);
1381 
1382         /* Make it safe to call this routine more than once */
1383         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1384                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1385 }
1386 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1387 
1388 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389                            gfp_t mem_flags)
1390 {
1391         if (hcd->driver->map_urb_for_dma)
1392                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1393         else
1394                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395 }
1396 
1397 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398                             gfp_t mem_flags)
1399 {
1400         enum dma_data_direction dir;
1401         int ret = 0;
1402 
1403         /* Map the URB's buffers for DMA access.
1404          * Lower level HCD code should use *_dma exclusively,
1405          * unless it uses pio or talks to another transport,
1406          * or uses the provided scatter gather list for bulk.
1407          */
1408 
1409         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1410                 if (hcd->self.uses_pio_for_control)
1411                         return ret;
1412                 if (hcd->localmem_pool) {
1413                         ret = hcd_alloc_coherent(
1414                                         urb->dev->bus, mem_flags,
1415                                         &urb->setup_dma,
1416                                         (void **)&urb->setup_packet,
1417                                         sizeof(struct usb_ctrlrequest),
1418                                         DMA_TO_DEVICE);
1419                         if (ret)
1420                                 return ret;
1421                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1422                 } else if (hcd_uses_dma(hcd)) {
1423                         if (is_vmalloc_addr(urb->setup_packet)) {
1424                                 WARN_ONCE(1, "setup packet is not dma capable\n");
1425                                 return -EAGAIN;
1426                         } else if (object_is_on_stack(urb->setup_packet)) {
1427                                 WARN_ONCE(1, "setup packet is on stack\n");
1428                                 return -EAGAIN;
1429                         }
1430 
1431                         urb->setup_dma = dma_map_single(
1432                                         hcd->self.sysdev,
1433                                         urb->setup_packet,
1434                                         sizeof(struct usb_ctrlrequest),
1435                                         DMA_TO_DEVICE);
1436                         if (dma_mapping_error(hcd->self.sysdev,
1437                                                 urb->setup_dma))
1438                                 return -EAGAIN;
1439                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1440                 }
1441         }
1442 
1443         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444         if (urb->transfer_buffer_length != 0
1445             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446                 if (hcd->localmem_pool) {
1447                         ret = hcd_alloc_coherent(
1448                                         urb->dev->bus, mem_flags,
1449                                         &urb->transfer_dma,
1450                                         &urb->transfer_buffer,
1451                                         urb->transfer_buffer_length,
1452                                         dir);
1453                         if (ret == 0)
1454                                 urb->transfer_flags |= URB_MAP_LOCAL;
1455                 } else if (hcd_uses_dma(hcd)) {
1456                         if (urb->num_sgs) {
1457                                 int n;
1458 
1459                                 /* We don't support sg for isoc transfers ! */
1460                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1461                                         WARN_ON(1);
1462                                         return -EINVAL;
1463                                 }
1464 
1465                                 n = dma_map_sg(
1466                                                 hcd->self.sysdev,
1467                                                 urb->sg,
1468                                                 urb->num_sgs,
1469                                                 dir);
1470                                 if (n <= 0)
1471                                         ret = -EAGAIN;
1472                                 else
1473                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1474                                 urb->num_mapped_sgs = n;
1475                                 if (n != urb->num_sgs)
1476                                         urb->transfer_flags |=
1477                                                         URB_DMA_SG_COMBINED;
1478                         } else if (urb->sg) {
1479                                 struct scatterlist *sg = urb->sg;
1480                                 urb->transfer_dma = dma_map_page(
1481                                                 hcd->self.sysdev,
1482                                                 sg_page(sg),
1483                                                 sg->offset,
1484                                                 urb->transfer_buffer_length,
1485                                                 dir);
1486                                 if (dma_mapping_error(hcd->self.sysdev,
1487                                                 urb->transfer_dma))
1488                                         ret = -EAGAIN;
1489                                 else
1490                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1491                         } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1492                                 WARN_ONCE(1, "transfer buffer not dma capable\n");
1493                                 ret = -EAGAIN;
1494                         } else if (object_is_on_stack(urb->transfer_buffer)) {
1495                                 WARN_ONCE(1, "transfer buffer is on stack\n");
1496                                 ret = -EAGAIN;
1497                         } else {
1498                                 urb->transfer_dma = dma_map_single(
1499                                                 hcd->self.sysdev,
1500                                                 urb->transfer_buffer,
1501                                                 urb->transfer_buffer_length,
1502                                                 dir);
1503                                 if (dma_mapping_error(hcd->self.sysdev,
1504                                                 urb->transfer_dma))
1505                                         ret = -EAGAIN;
1506                                 else
1507                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1508                         }
1509                 }
1510                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1511                                 URB_SETUP_MAP_LOCAL)))
1512                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1513         }
1514         return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1517 
1518 /*-------------------------------------------------------------------------*/
1519 
1520 /* may be called in any context with a valid urb->dev usecount
1521  * caller surrenders "ownership" of urb
1522  * expects usb_submit_urb() to have sanity checked and conditioned all
1523  * inputs in the urb
1524  */
1525 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1526 {
1527         int                     status;
1528         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1529 
1530         /* increment urb's reference count as part of giving it to the HCD
1531          * (which will control it).  HCD guarantees that it either returns
1532          * an error or calls giveback(), but not both.
1533          */
1534         usb_get_urb(urb);
1535         atomic_inc(&urb->use_count);
1536         atomic_inc(&urb->dev->urbnum);
1537         usbmon_urb_submit(&hcd->self, urb);
1538 
1539         /* NOTE requirements on root-hub callers (usbfs and the hub
1540          * driver, for now):  URBs' urb->transfer_buffer must be
1541          * valid and usb_buffer_{sync,unmap}() not be needed, since
1542          * they could clobber root hub response data.  Also, control
1543          * URBs must be submitted in process context with interrupts
1544          * enabled.
1545          */
1546 
1547         if (is_root_hub(urb->dev)) {
1548                 status = rh_urb_enqueue(hcd, urb);
1549         } else {
1550                 status = map_urb_for_dma(hcd, urb, mem_flags);
1551                 if (likely(status == 0)) {
1552                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1553                         if (unlikely(status))
1554                                 unmap_urb_for_dma(hcd, urb);
1555                 }
1556         }
1557 
1558         if (unlikely(status)) {
1559                 usbmon_urb_submit_error(&hcd->self, urb, status);
1560                 urb->hcpriv = NULL;
1561                 INIT_LIST_HEAD(&urb->urb_list);
1562                 atomic_dec(&urb->use_count);
1563                 atomic_dec(&urb->dev->urbnum);
1564                 if (atomic_read(&urb->reject))
1565                         wake_up(&usb_kill_urb_queue);
1566                 usb_put_urb(urb);
1567         }
1568         return status;
1569 }
1570 
1571 /*-------------------------------------------------------------------------*/
1572 
1573 /* this makes the hcd giveback() the urb more quickly, by kicking it
1574  * off hardware queues (which may take a while) and returning it as
1575  * soon as practical.  we've already set up the urb's return status,
1576  * but we can't know if the callback completed already.
1577  */
1578 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1579 {
1580         int             value;
1581 
1582         if (is_root_hub(urb->dev))
1583                 value = usb_rh_urb_dequeue(hcd, urb, status);
1584         else {
1585 
1586                 /* The only reason an HCD might fail this call is if
1587                  * it has not yet fully queued the urb to begin with.
1588                  * Such failures should be harmless. */
1589                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1590         }
1591         return value;
1592 }
1593 
1594 /*
1595  * called in any context
1596  *
1597  * caller guarantees urb won't be recycled till both unlink()
1598  * and the urb's completion function return
1599  */
1600 int usb_hcd_unlink_urb (struct urb *urb, int status)
1601 {
1602         struct usb_hcd          *hcd;
1603         struct usb_device       *udev = urb->dev;
1604         int                     retval = -EIDRM;
1605         unsigned long           flags;
1606 
1607         /* Prevent the device and bus from going away while
1608          * the unlink is carried out.  If they are already gone
1609          * then urb->use_count must be 0, since disconnected
1610          * devices can't have any active URBs.
1611          */
1612         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1613         if (atomic_read(&urb->use_count) > 0) {
1614                 retval = 0;
1615                 usb_get_dev(udev);
1616         }
1617         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1618         if (retval == 0) {
1619                 hcd = bus_to_hcd(urb->dev->bus);
1620                 retval = unlink1(hcd, urb, status);
1621                 if (retval == 0)
1622                         retval = -EINPROGRESS;
1623                 else if (retval != -EIDRM && retval != -EBUSY)
1624                         dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1625                                         urb, retval);
1626                 usb_put_dev(udev);
1627         }
1628         return retval;
1629 }
1630 
1631 /*-------------------------------------------------------------------------*/
1632 
1633 static void __usb_hcd_giveback_urb(struct urb *urb)
1634 {
1635         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1636         struct usb_anchor *anchor = urb->anchor;
1637         int status = urb->unlinked;
1638 
1639         urb->hcpriv = NULL;
1640         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1641             urb->actual_length < urb->transfer_buffer_length &&
1642             !status))
1643                 status = -EREMOTEIO;
1644 
1645         unmap_urb_for_dma(hcd, urb);
1646         usbmon_urb_complete(&hcd->self, urb, status);
1647         usb_anchor_suspend_wakeups(anchor);
1648         usb_unanchor_urb(urb);
1649         if (likely(status == 0))
1650                 usb_led_activity(USB_LED_EVENT_HOST);
1651 
1652         /* pass ownership to the completion handler */
1653         urb->status = status;
1654         urb->complete(urb);
1655 
1656         usb_anchor_resume_wakeups(anchor);
1657         atomic_dec(&urb->use_count);
1658         if (unlikely(atomic_read(&urb->reject)))
1659                 wake_up(&usb_kill_urb_queue);
1660         usb_put_urb(urb);
1661 }
1662 
1663 static void usb_giveback_urb_bh(unsigned long param)
1664 {
1665         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1666         struct list_head local_list;
1667 
1668         spin_lock_irq(&bh->lock);
1669         bh->running = true;
1670  restart:
1671         list_replace_init(&bh->head, &local_list);
1672         spin_unlock_irq(&bh->lock);
1673 
1674         while (!list_empty(&local_list)) {
1675                 struct urb *urb;
1676 
1677                 urb = list_entry(local_list.next, struct urb, urb_list);
1678                 list_del_init(&urb->urb_list);
1679                 bh->completing_ep = urb->ep;
1680                 __usb_hcd_giveback_urb(urb);
1681                 bh->completing_ep = NULL;
1682         }
1683 
1684         /* check if there are new URBs to giveback */
1685         spin_lock_irq(&bh->lock);
1686         if (!list_empty(&bh->head))
1687                 goto restart;
1688         bh->running = false;
1689         spin_unlock_irq(&bh->lock);
1690 }
1691 
1692 /**
1693  * usb_hcd_giveback_urb - return URB from HCD to device driver
1694  * @hcd: host controller returning the URB
1695  * @urb: urb being returned to the USB device driver.
1696  * @status: completion status code for the URB.
1697  * Context: in_interrupt()
1698  *
1699  * This hands the URB from HCD to its USB device driver, using its
1700  * completion function.  The HCD has freed all per-urb resources
1701  * (and is done using urb->hcpriv).  It also released all HCD locks;
1702  * the device driver won't cause problems if it frees, modifies,
1703  * or resubmits this URB.
1704  *
1705  * If @urb was unlinked, the value of @status will be overridden by
1706  * @urb->unlinked.  Erroneous short transfers are detected in case
1707  * the HCD hasn't checked for them.
1708  */
1709 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1710 {
1711         struct giveback_urb_bh *bh;
1712         bool running, high_prio_bh;
1713 
1714         /* pass status to tasklet via unlinked */
1715         if (likely(!urb->unlinked))
1716                 urb->unlinked = status;
1717 
1718         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1719                 __usb_hcd_giveback_urb(urb);
1720                 return;
1721         }
1722 
1723         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1724                 bh = &hcd->high_prio_bh;
1725                 high_prio_bh = true;
1726         } else {
1727                 bh = &hcd->low_prio_bh;
1728                 high_prio_bh = false;
1729         }
1730 
1731         spin_lock(&bh->lock);
1732         list_add_tail(&urb->urb_list, &bh->head);
1733         running = bh->running;
1734         spin_unlock(&bh->lock);
1735 
1736         if (running)
1737                 ;
1738         else if (high_prio_bh)
1739                 tasklet_hi_schedule(&bh->bh);
1740         else
1741                 tasklet_schedule(&bh->bh);
1742 }
1743 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1744 
1745 /*-------------------------------------------------------------------------*/
1746 
1747 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1748  * queue to drain completely.  The caller must first insure that no more
1749  * URBs can be submitted for this endpoint.
1750  */
1751 void usb_hcd_flush_endpoint(struct usb_device *udev,
1752                 struct usb_host_endpoint *ep)
1753 {
1754         struct usb_hcd          *hcd;
1755         struct urb              *urb;
1756 
1757         if (!ep)
1758                 return;
1759         might_sleep();
1760         hcd = bus_to_hcd(udev->bus);
1761 
1762         /* No more submits can occur */
1763         spin_lock_irq(&hcd_urb_list_lock);
1764 rescan:
1765         list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1766                 int     is_in;
1767 
1768                 if (urb->unlinked)
1769                         continue;
1770                 usb_get_urb (urb);
1771                 is_in = usb_urb_dir_in(urb);
1772                 spin_unlock(&hcd_urb_list_lock);
1773 
1774                 /* kick hcd */
1775                 unlink1(hcd, urb, -ESHUTDOWN);
1776                 dev_dbg (hcd->self.controller,
1777                         "shutdown urb %pK ep%d%s-%s\n",
1778                         urb, usb_endpoint_num(&ep->desc),
1779                         is_in ? "in" : "out",
1780                         usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1781                 usb_put_urb (urb);
1782 
1783                 /* list contents may have changed */
1784                 spin_lock(&hcd_urb_list_lock);
1785                 goto rescan;
1786         }
1787         spin_unlock_irq(&hcd_urb_list_lock);
1788 
1789         /* Wait until the endpoint queue is completely empty */
1790         while (!list_empty (&ep->urb_list)) {
1791                 spin_lock_irq(&hcd_urb_list_lock);
1792 
1793                 /* The list may have changed while we acquired the spinlock */
1794                 urb = NULL;
1795                 if (!list_empty (&ep->urb_list)) {
1796                         urb = list_entry (ep->urb_list.prev, struct urb,
1797                                         urb_list);
1798                         usb_get_urb (urb);
1799                 }
1800                 spin_unlock_irq(&hcd_urb_list_lock);
1801 
1802                 if (urb) {
1803                         usb_kill_urb (urb);
1804                         usb_put_urb (urb);
1805                 }
1806         }
1807 }
1808 
1809 /**
1810  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1811  *                              the bus bandwidth
1812  * @udev: target &usb_device
1813  * @new_config: new configuration to install
1814  * @cur_alt: the current alternate interface setting
1815  * @new_alt: alternate interface setting that is being installed
1816  *
1817  * To change configurations, pass in the new configuration in new_config,
1818  * and pass NULL for cur_alt and new_alt.
1819  *
1820  * To reset a device's configuration (put the device in the ADDRESSED state),
1821  * pass in NULL for new_config, cur_alt, and new_alt.
1822  *
1823  * To change alternate interface settings, pass in NULL for new_config,
1824  * pass in the current alternate interface setting in cur_alt,
1825  * and pass in the new alternate interface setting in new_alt.
1826  *
1827  * Return: An error if the requested bandwidth change exceeds the
1828  * bus bandwidth or host controller internal resources.
1829  */
1830 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1831                 struct usb_host_config *new_config,
1832                 struct usb_host_interface *cur_alt,
1833                 struct usb_host_interface *new_alt)
1834 {
1835         int num_intfs, i, j;
1836         struct usb_host_interface *alt = NULL;
1837         int ret = 0;
1838         struct usb_hcd *hcd;
1839         struct usb_host_endpoint *ep;
1840 
1841         hcd = bus_to_hcd(udev->bus);
1842         if (!hcd->driver->check_bandwidth)
1843                 return 0;
1844 
1845         /* Configuration is being removed - set configuration 0 */
1846         if (!new_config && !cur_alt) {
1847                 for (i = 1; i < 16; ++i) {
1848                         ep = udev->ep_out[i];
1849                         if (ep)
1850                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1851                         ep = udev->ep_in[i];
1852                         if (ep)
1853                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1854                 }
1855                 hcd->driver->check_bandwidth(hcd, udev);
1856                 return 0;
1857         }
1858         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1859          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1860          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1861          * ok to exclude it.
1862          */
1863         if (new_config) {
1864                 num_intfs = new_config->desc.bNumInterfaces;
1865                 /* Remove endpoints (except endpoint 0, which is always on the
1866                  * schedule) from the old config from the schedule
1867                  */
1868                 for (i = 1; i < 16; ++i) {
1869                         ep = udev->ep_out[i];
1870                         if (ep) {
1871                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1872                                 if (ret < 0)
1873                                         goto reset;
1874                         }
1875                         ep = udev->ep_in[i];
1876                         if (ep) {
1877                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1878                                 if (ret < 0)
1879                                         goto reset;
1880                         }
1881                 }
1882                 for (i = 0; i < num_intfs; ++i) {
1883                         struct usb_host_interface *first_alt;
1884                         int iface_num;
1885 
1886                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1887                         iface_num = first_alt->desc.bInterfaceNumber;
1888                         /* Set up endpoints for alternate interface setting 0 */
1889                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1890                         if (!alt)
1891                                 /* No alt setting 0? Pick the first setting. */
1892                                 alt = first_alt;
1893 
1894                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1895                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1896                                 if (ret < 0)
1897                                         goto reset;
1898                         }
1899                 }
1900         }
1901         if (cur_alt && new_alt) {
1902                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1903                                 cur_alt->desc.bInterfaceNumber);
1904 
1905                 if (!iface)
1906                         return -EINVAL;
1907                 if (iface->resetting_device) {
1908                         /*
1909                          * The USB core just reset the device, so the xHCI host
1910                          * and the device will think alt setting 0 is installed.
1911                          * However, the USB core will pass in the alternate
1912                          * setting installed before the reset as cur_alt.  Dig
1913                          * out the alternate setting 0 structure, or the first
1914                          * alternate setting if a broken device doesn't have alt
1915                          * setting 0.
1916                          */
1917                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1918                         if (!cur_alt)
1919                                 cur_alt = &iface->altsetting[0];
1920                 }
1921 
1922                 /* Drop all the endpoints in the current alt setting */
1923                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1924                         ret = hcd->driver->drop_endpoint(hcd, udev,
1925                                         &cur_alt->endpoint[i]);
1926                         if (ret < 0)
1927                                 goto reset;
1928                 }
1929                 /* Add all the endpoints in the new alt setting */
1930                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1931                         ret = hcd->driver->add_endpoint(hcd, udev,
1932                                         &new_alt->endpoint[i]);
1933                         if (ret < 0)
1934                                 goto reset;
1935                 }
1936         }
1937         ret = hcd->driver->check_bandwidth(hcd, udev);
1938 reset:
1939         if (ret < 0)
1940                 hcd->driver->reset_bandwidth(hcd, udev);
1941         return ret;
1942 }
1943 
1944 /* Disables the endpoint: synchronizes with the hcd to make sure all
1945  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1946  * have been called previously.  Use for set_configuration, set_interface,
1947  * driver removal, physical disconnect.
1948  *
1949  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1950  * type, maxpacket size, toggle, halt status, and scheduling.
1951  */
1952 void usb_hcd_disable_endpoint(struct usb_device *udev,
1953                 struct usb_host_endpoint *ep)
1954 {
1955         struct usb_hcd          *hcd;
1956 
1957         might_sleep();
1958         hcd = bus_to_hcd(udev->bus);
1959         if (hcd->driver->endpoint_disable)
1960                 hcd->driver->endpoint_disable(hcd, ep);
1961 }
1962 
1963 /**
1964  * usb_hcd_reset_endpoint - reset host endpoint state
1965  * @udev: USB device.
1966  * @ep:   the endpoint to reset.
1967  *
1968  * Resets any host endpoint state such as the toggle bit, sequence
1969  * number and current window.
1970  */
1971 void usb_hcd_reset_endpoint(struct usb_device *udev,
1972                             struct usb_host_endpoint *ep)
1973 {
1974         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1975 
1976         if (hcd->driver->endpoint_reset)
1977                 hcd->driver->endpoint_reset(hcd, ep);
1978         else {
1979                 int epnum = usb_endpoint_num(&ep->desc);
1980                 int is_out = usb_endpoint_dir_out(&ep->desc);
1981                 int is_control = usb_endpoint_xfer_control(&ep->desc);
1982 
1983                 usb_settoggle(udev, epnum, is_out, 0);
1984                 if (is_control)
1985                         usb_settoggle(udev, epnum, !is_out, 0);
1986         }
1987 }
1988 
1989 /**
1990  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1991  * @interface:          alternate setting that includes all endpoints.
1992  * @eps:                array of endpoints that need streams.
1993  * @num_eps:            number of endpoints in the array.
1994  * @num_streams:        number of streams to allocate.
1995  * @mem_flags:          flags hcd should use to allocate memory.
1996  *
1997  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1998  * Drivers may queue multiple transfers to different stream IDs, which may
1999  * complete in a different order than they were queued.
2000  *
2001  * Return: On success, the number of allocated streams. On failure, a negative
2002  * error code.
2003  */
2004 int usb_alloc_streams(struct usb_interface *interface,
2005                 struct usb_host_endpoint **eps, unsigned int num_eps,
2006                 unsigned int num_streams, gfp_t mem_flags)
2007 {
2008         struct usb_hcd *hcd;
2009         struct usb_device *dev;
2010         int i, ret;
2011 
2012         dev = interface_to_usbdev(interface);
2013         hcd = bus_to_hcd(dev->bus);
2014         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2015                 return -EINVAL;
2016         if (dev->speed < USB_SPEED_SUPER)
2017                 return -EINVAL;
2018         if (dev->state < USB_STATE_CONFIGURED)
2019                 return -ENODEV;
2020 
2021         for (i = 0; i < num_eps; i++) {
2022                 /* Streams only apply to bulk endpoints. */
2023                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2024                         return -EINVAL;
2025                 /* Re-alloc is not allowed */
2026                 if (eps[i]->streams)
2027                         return -EINVAL;
2028         }
2029 
2030         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2031                         num_streams, mem_flags);
2032         if (ret < 0)
2033                 return ret;
2034 
2035         for (i = 0; i < num_eps; i++)
2036                 eps[i]->streams = ret;
2037 
2038         return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2041 
2042 /**
2043  * usb_free_streams - free bulk endpoint stream IDs.
2044  * @interface:  alternate setting that includes all endpoints.
2045  * @eps:        array of endpoints to remove streams from.
2046  * @num_eps:    number of endpoints in the array.
2047  * @mem_flags:  flags hcd should use to allocate memory.
2048  *
2049  * Reverts a group of bulk endpoints back to not using stream IDs.
2050  * Can fail if we are given bad arguments, or HCD is broken.
2051  *
2052  * Return: 0 on success. On failure, a negative error code.
2053  */
2054 int usb_free_streams(struct usb_interface *interface,
2055                 struct usb_host_endpoint **eps, unsigned int num_eps,
2056                 gfp_t mem_flags)
2057 {
2058         struct usb_hcd *hcd;
2059         struct usb_device *dev;
2060         int i, ret;
2061 
2062         dev = interface_to_usbdev(interface);
2063         hcd = bus_to_hcd(dev->bus);
2064         if (dev->speed < USB_SPEED_SUPER)
2065                 return -EINVAL;
2066 
2067         /* Double-free is not allowed */
2068         for (i = 0; i < num_eps; i++)
2069                 if (!eps[i] || !eps[i]->streams)
2070                         return -EINVAL;
2071 
2072         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2073         if (ret < 0)
2074                 return ret;
2075 
2076         for (i = 0; i < num_eps; i++)
2077                 eps[i]->streams = 0;
2078 
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(usb_free_streams);
2082 
2083 /* Protect against drivers that try to unlink URBs after the device
2084  * is gone, by waiting until all unlinks for @udev are finished.
2085  * Since we don't currently track URBs by device, simply wait until
2086  * nothing is running in the locked region of usb_hcd_unlink_urb().
2087  */
2088 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2089 {
2090         spin_lock_irq(&hcd_urb_unlink_lock);
2091         spin_unlock_irq(&hcd_urb_unlink_lock);
2092 }
2093 
2094 /*-------------------------------------------------------------------------*/
2095 
2096 /* called in any context */
2097 int usb_hcd_get_frame_number (struct usb_device *udev)
2098 {
2099         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2100 
2101         if (!HCD_RH_RUNNING(hcd))
2102                 return -ESHUTDOWN;
2103         return hcd->driver->get_frame_number (hcd);
2104 }
2105 
2106 /*-------------------------------------------------------------------------*/
2107 
2108 #ifdef  CONFIG_PM
2109 
2110 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2111 {
2112         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2113         int             status;
2114         int             old_state = hcd->state;
2115 
2116         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2117                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2118                         rhdev->do_remote_wakeup);
2119         if (HCD_DEAD(hcd)) {
2120                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2121                 return 0;
2122         }
2123 
2124         if (!hcd->driver->bus_suspend) {
2125                 status = -ENOENT;
2126         } else {
2127                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2128                 hcd->state = HC_STATE_QUIESCING;
2129                 status = hcd->driver->bus_suspend(hcd);
2130         }
2131         if (status == 0) {
2132                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2133                 hcd->state = HC_STATE_SUSPENDED;
2134 
2135                 if (!PMSG_IS_AUTO(msg))
2136                         usb_phy_roothub_suspend(hcd->self.sysdev,
2137                                                 hcd->phy_roothub);
2138 
2139                 /* Did we race with a root-hub wakeup event? */
2140                 if (rhdev->do_remote_wakeup) {
2141                         char    buffer[6];
2142 
2143                         status = hcd->driver->hub_status_data(hcd, buffer);
2144                         if (status != 0) {
2145                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2146                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2147                                 status = -EBUSY;
2148                         }
2149                 }
2150         } else {
2151                 spin_lock_irq(&hcd_root_hub_lock);
2152                 if (!HCD_DEAD(hcd)) {
2153                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2154                         hcd->state = old_state;
2155                 }
2156                 spin_unlock_irq(&hcd_root_hub_lock);
2157                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2158                                 "suspend", status);
2159         }
2160         return status;
2161 }
2162 
2163 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2164 {
2165         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2166         int             status;
2167         int             old_state = hcd->state;
2168 
2169         dev_dbg(&rhdev->dev, "usb %sresume\n",
2170                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2171         if (HCD_DEAD(hcd)) {
2172                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2173                 return 0;
2174         }
2175 
2176         if (!PMSG_IS_AUTO(msg)) {
2177                 status = usb_phy_roothub_resume(hcd->self.sysdev,
2178                                                 hcd->phy_roothub);
2179                 if (status)
2180                         return status;
2181         }
2182 
2183         if (!hcd->driver->bus_resume)
2184                 return -ENOENT;
2185         if (HCD_RH_RUNNING(hcd))
2186                 return 0;
2187 
2188         hcd->state = HC_STATE_RESUMING;
2189         status = hcd->driver->bus_resume(hcd);
2190         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2191         if (status == 0)
2192                 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2193 
2194         if (status == 0) {
2195                 struct usb_device *udev;
2196                 int port1;
2197 
2198                 spin_lock_irq(&hcd_root_hub_lock);
2199                 if (!HCD_DEAD(hcd)) {
2200                         usb_set_device_state(rhdev, rhdev->actconfig
2201                                         ? USB_STATE_CONFIGURED
2202                                         : USB_STATE_ADDRESS);
2203                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2204                         hcd->state = HC_STATE_RUNNING;
2205                 }
2206                 spin_unlock_irq(&hcd_root_hub_lock);
2207 
2208                 /*
2209                  * Check whether any of the enabled ports on the root hub are
2210                  * unsuspended.  If they are then a TRSMRCY delay is needed
2211                  * (this is what the USB-2 spec calls a "global resume").
2212                  * Otherwise we can skip the delay.
2213                  */
2214                 usb_hub_for_each_child(rhdev, port1, udev) {
2215                         if (udev->state != USB_STATE_NOTATTACHED &&
2216                                         !udev->port_is_suspended) {
2217                                 usleep_range(10000, 11000);     /* TRSMRCY */
2218                                 break;
2219                         }
2220                 }
2221         } else {
2222                 hcd->state = old_state;
2223                 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2224                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225                                 "resume", status);
2226                 if (status != -ESHUTDOWN)
2227                         usb_hc_died(hcd);
2228         }
2229         return status;
2230 }
2231 
2232 /* Workqueue routine for root-hub remote wakeup */
2233 static void hcd_resume_work(struct work_struct *work)
2234 {
2235         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2236         struct usb_device *udev = hcd->self.root_hub;
2237 
2238         usb_remote_wakeup(udev);
2239 }
2240 
2241 /**
2242  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2243  * @hcd: host controller for this root hub
2244  *
2245  * The USB host controller calls this function when its root hub is
2246  * suspended (with the remote wakeup feature enabled) and a remote
2247  * wakeup request is received.  The routine submits a workqueue request
2248  * to resume the root hub (that is, manage its downstream ports again).
2249  */
2250 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2251 {
2252         unsigned long flags;
2253 
2254         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2255         if (hcd->rh_registered) {
2256                 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2257                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2258                 queue_work(pm_wq, &hcd->wakeup_work);
2259         }
2260         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2261 }
2262 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2263 
2264 #endif  /* CONFIG_PM */
2265 
2266 /*-------------------------------------------------------------------------*/
2267 
2268 #ifdef  CONFIG_USB_OTG
2269 
2270 /**
2271  * usb_bus_start_enum - start immediate enumeration (for OTG)
2272  * @bus: the bus (must use hcd framework)
2273  * @port_num: 1-based number of port; usually bus->otg_port
2274  * Context: in_interrupt()
2275  *
2276  * Starts enumeration, with an immediate reset followed later by
2277  * hub_wq identifying and possibly configuring the device.
2278  * This is needed by OTG controller drivers, where it helps meet
2279  * HNP protocol timing requirements for starting a port reset.
2280  *
2281  * Return: 0 if successful.
2282  */
2283 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2284 {
2285         struct usb_hcd          *hcd;
2286         int                     status = -EOPNOTSUPP;
2287 
2288         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2289          * boards with root hubs hooked up to internal devices (instead of
2290          * just the OTG port) may need more attention to resetting...
2291          */
2292         hcd = bus_to_hcd(bus);
2293         if (port_num && hcd->driver->start_port_reset)
2294                 status = hcd->driver->start_port_reset(hcd, port_num);
2295 
2296         /* allocate hub_wq shortly after (first) root port reset finishes;
2297          * it may issue others, until at least 50 msecs have passed.
2298          */
2299         if (status == 0)
2300                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2301         return status;
2302 }
2303 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2304 
2305 #endif
2306 
2307 /*-------------------------------------------------------------------------*/
2308 
2309 /**
2310  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2311  * @irq: the IRQ being raised
2312  * @__hcd: pointer to the HCD whose IRQ is being signaled
2313  *
2314  * If the controller isn't HALTed, calls the driver's irq handler.
2315  * Checks whether the controller is now dead.
2316  *
2317  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2318  */
2319 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2320 {
2321         struct usb_hcd          *hcd = __hcd;
2322         irqreturn_t             rc;
2323 
2324         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2325                 rc = IRQ_NONE;
2326         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2327                 rc = IRQ_NONE;
2328         else
2329                 rc = IRQ_HANDLED;
2330 
2331         return rc;
2332 }
2333 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2334 
2335 /*-------------------------------------------------------------------------*/
2336 
2337 /* Workqueue routine for when the root-hub has died. */
2338 static void hcd_died_work(struct work_struct *work)
2339 {
2340         struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2341         static char *env[] = {
2342                 "ERROR=DEAD",
2343                 NULL
2344         };
2345 
2346         /* Notify user space that the host controller has died */
2347         kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2348 }
2349 
2350 /**
2351  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352  * @hcd: pointer to the HCD representing the controller
2353  *
2354  * This is called by bus glue to report a USB host controller that died
2355  * while operations may still have been pending.  It's called automatically
2356  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357  *
2358  * Only call this function with the primary HCD.
2359  */
2360 void usb_hc_died (struct usb_hcd *hcd)
2361 {
2362         unsigned long flags;
2363 
2364         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365 
2366         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369         if (hcd->rh_registered) {
2370                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371 
2372                 /* make hub_wq clean up old urbs and devices */
2373                 usb_set_device_state (hcd->self.root_hub,
2374                                 USB_STATE_NOTATTACHED);
2375                 usb_kick_hub_wq(hcd->self.root_hub);
2376         }
2377         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378                 hcd = hcd->shared_hcd;
2379                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2380                 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2381                 if (hcd->rh_registered) {
2382                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2383 
2384                         /* make hub_wq clean up old urbs and devices */
2385                         usb_set_device_state(hcd->self.root_hub,
2386                                         USB_STATE_NOTATTACHED);
2387                         usb_kick_hub_wq(hcd->self.root_hub);
2388                 }
2389         }
2390 
2391         /* Handle the case where this function gets called with a shared HCD */
2392         if (usb_hcd_is_primary_hcd(hcd))
2393                 schedule_work(&hcd->died_work);
2394         else
2395                 schedule_work(&hcd->primary_hcd->died_work);
2396 
2397         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398         /* Make sure that the other roothub is also deallocated. */
2399 }
2400 EXPORT_SYMBOL_GPL (usb_hc_died);
2401 
2402 /*-------------------------------------------------------------------------*/
2403 
2404 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2405 {
2406 
2407         spin_lock_init(&bh->lock);
2408         INIT_LIST_HEAD(&bh->head);
2409         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2410 }
2411 
2412 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2413                 struct device *sysdev, struct device *dev, const char *bus_name,
2414                 struct usb_hcd *primary_hcd)
2415 {
2416         struct usb_hcd *hcd;
2417 
2418         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2419         if (!hcd)
2420                 return NULL;
2421         if (primary_hcd == NULL) {
2422                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2423                                 GFP_KERNEL);
2424                 if (!hcd->address0_mutex) {
2425                         kfree(hcd);
2426                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2427                         return NULL;
2428                 }
2429                 mutex_init(hcd->address0_mutex);
2430                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431                                 GFP_KERNEL);
2432                 if (!hcd->bandwidth_mutex) {
2433                         kfree(hcd->address0_mutex);
2434                         kfree(hcd);
2435                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436                         return NULL;
2437                 }
2438                 mutex_init(hcd->bandwidth_mutex);
2439                 dev_set_drvdata(dev, hcd);
2440         } else {
2441                 mutex_lock(&usb_port_peer_mutex);
2442                 hcd->address0_mutex = primary_hcd->address0_mutex;
2443                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2444                 hcd->primary_hcd = primary_hcd;
2445                 primary_hcd->primary_hcd = primary_hcd;
2446                 hcd->shared_hcd = primary_hcd;
2447                 primary_hcd->shared_hcd = hcd;
2448                 mutex_unlock(&usb_port_peer_mutex);
2449         }
2450 
2451         kref_init(&hcd->kref);
2452 
2453         usb_bus_init(&hcd->self);
2454         hcd->self.controller = dev;
2455         hcd->self.sysdev = sysdev;
2456         hcd->self.bus_name = bus_name;
2457 
2458         timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2459 #ifdef CONFIG_PM
2460         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2461 #endif
2462 
2463         INIT_WORK(&hcd->died_work, hcd_died_work);
2464 
2465         hcd->driver = driver;
2466         hcd->speed = driver->flags & HCD_MASK;
2467         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2468                         "USB Host Controller";
2469         return hcd;
2470 }
2471 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2472 
2473 /**
2474  * usb_create_shared_hcd - create and initialize an HCD structure
2475  * @driver: HC driver that will use this hcd
2476  * @dev: device for this HC, stored in hcd->self.controller
2477  * @bus_name: value to store in hcd->self.bus_name
2478  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2479  *              PCI device.  Only allocate certain resources for the primary HCD
2480  * Context: !in_interrupt()
2481  *
2482  * Allocate a struct usb_hcd, with extra space at the end for the
2483  * HC driver's private data.  Initialize the generic members of the
2484  * hcd structure.
2485  *
2486  * Return: On success, a pointer to the created and initialized HCD structure.
2487  * On failure (e.g. if memory is unavailable), %NULL.
2488  */
2489 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2490                 struct device *dev, const char *bus_name,
2491                 struct usb_hcd *primary_hcd)
2492 {
2493         return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2494 }
2495 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2496 
2497 /**
2498  * usb_create_hcd - create and initialize an HCD structure
2499  * @driver: HC driver that will use this hcd
2500  * @dev: device for this HC, stored in hcd->self.controller
2501  * @bus_name: value to store in hcd->self.bus_name
2502  * Context: !in_interrupt()
2503  *
2504  * Allocate a struct usb_hcd, with extra space at the end for the
2505  * HC driver's private data.  Initialize the generic members of the
2506  * hcd structure.
2507  *
2508  * Return: On success, a pointer to the created and initialized HCD
2509  * structure. On failure (e.g. if memory is unavailable), %NULL.
2510  */
2511 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2512                 struct device *dev, const char *bus_name)
2513 {
2514         return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2515 }
2516 EXPORT_SYMBOL_GPL(usb_create_hcd);
2517 
2518 /*
2519  * Roothubs that share one PCI device must also share the bandwidth mutex.
2520  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2521  * deallocated.
2522  *
2523  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2524  * freed.  When hcd_release() is called for either hcd in a peer set,
2525  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2526  */
2527 static void hcd_release(struct kref *kref)
2528 {
2529         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2530 
2531         mutex_lock(&usb_port_peer_mutex);
2532         if (hcd->shared_hcd) {
2533                 struct usb_hcd *peer = hcd->shared_hcd;
2534 
2535                 peer->shared_hcd = NULL;
2536                 peer->primary_hcd = NULL;
2537         } else {
2538                 kfree(hcd->address0_mutex);
2539                 kfree(hcd->bandwidth_mutex);
2540         }
2541         mutex_unlock(&usb_port_peer_mutex);
2542         kfree(hcd);
2543 }
2544 
2545 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2546 {
2547         if (hcd)
2548                 kref_get (&hcd->kref);
2549         return hcd;
2550 }
2551 EXPORT_SYMBOL_GPL(usb_get_hcd);
2552 
2553 void usb_put_hcd (struct usb_hcd *hcd)
2554 {
2555         if (hcd)
2556                 kref_put (&hcd->kref, hcd_release);
2557 }
2558 EXPORT_SYMBOL_GPL(usb_put_hcd);
2559 
2560 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2561 {
2562         if (!hcd->primary_hcd)
2563                 return 1;
2564         return hcd == hcd->primary_hcd;
2565 }
2566 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2567 
2568 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2569 {
2570         if (!hcd->driver->find_raw_port_number)
2571                 return port1;
2572 
2573         return hcd->driver->find_raw_port_number(hcd, port1);
2574 }
2575 
2576 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2577                 unsigned int irqnum, unsigned long irqflags)
2578 {
2579         int retval;
2580 
2581         if (hcd->driver->irq) {
2582 
2583                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2584                                 hcd->driver->description, hcd->self.busnum);
2585                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2586                                 hcd->irq_descr, hcd);
2587                 if (retval != 0) {
2588                         dev_err(hcd->self.controller,
2589                                         "request interrupt %d failed\n",
2590                                         irqnum);
2591                         return retval;
2592                 }
2593                 hcd->irq = irqnum;
2594                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2595                                 (hcd->driver->flags & HCD_MEMORY) ?
2596                                         "io mem" : "io base",
2597                                         (unsigned long long)hcd->rsrc_start);
2598         } else {
2599                 hcd->irq = 0;
2600                 if (hcd->rsrc_start)
2601                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2602                                         (hcd->driver->flags & HCD_MEMORY) ?
2603                                         "io mem" : "io base",
2604                                         (unsigned long long)hcd->rsrc_start);
2605         }
2606         return 0;
2607 }
2608 
2609 /*
2610  * Before we free this root hub, flush in-flight peering attempts
2611  * and disable peer lookups
2612  */
2613 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2614 {
2615         struct usb_device *rhdev;
2616 
2617         mutex_lock(&usb_port_peer_mutex);
2618         rhdev = hcd->self.root_hub;
2619         hcd->self.root_hub = NULL;
2620         mutex_unlock(&usb_port_peer_mutex);
2621         usb_put_dev(rhdev);
2622 }
2623 
2624 /**
2625  * usb_add_hcd - finish generic HCD structure initialization and register
2626  * @hcd: the usb_hcd structure to initialize
2627  * @irqnum: Interrupt line to allocate
2628  * @irqflags: Interrupt type flags
2629  *
2630  * Finish the remaining parts of generic HCD initialization: allocate the
2631  * buffers of consistent memory, register the bus, request the IRQ line,
2632  * and call the driver's reset() and start() routines.
2633  */
2634 int usb_add_hcd(struct usb_hcd *hcd,
2635                 unsigned int irqnum, unsigned long irqflags)
2636 {
2637         int retval;
2638         struct usb_device *rhdev;
2639 
2640         if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2641                 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2642                 if (IS_ERR(hcd->phy_roothub))
2643                         return PTR_ERR(hcd->phy_roothub);
2644 
2645                 retval = usb_phy_roothub_init(hcd->phy_roothub);
2646                 if (retval)
2647                         return retval;
2648 
2649                 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650                                                   PHY_MODE_USB_HOST_SS);
2651                 if (retval)
2652                         retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2653                                                           PHY_MODE_USB_HOST);
2654                 if (retval)
2655                         goto err_usb_phy_roothub_power_on;
2656 
2657                 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2658                 if (retval)
2659                         goto err_usb_phy_roothub_power_on;
2660         }
2661 
2662         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2663 
2664         switch (authorized_default) {
2665         case USB_AUTHORIZE_NONE:
2666                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2667                 break;
2668 
2669         case USB_AUTHORIZE_ALL:
2670                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2671                 break;
2672 
2673         case USB_AUTHORIZE_INTERNAL:
2674                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2675                 break;
2676 
2677         case USB_AUTHORIZE_WIRED:
2678         default:
2679                 hcd->dev_policy = hcd->wireless ?
2680                         USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2681                 break;
2682         }
2683 
2684         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2685 
2686         /* per default all interfaces are authorized */
2687         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2688 
2689         /* HC is in reset state, but accessible.  Now do the one-time init,
2690          * bottom up so that hcds can customize the root hubs before hub_wq
2691          * starts talking to them.  (Note, bus id is assigned early too.)
2692          */
2693         retval = hcd_buffer_create(hcd);
2694         if (retval != 0) {
2695                 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2696                 goto err_create_buf;
2697         }
2698 
2699         retval = usb_register_bus(&hcd->self);
2700         if (retval < 0)
2701                 goto err_register_bus;
2702 
2703         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2704         if (rhdev == NULL) {
2705                 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2706                 retval = -ENOMEM;
2707                 goto err_allocate_root_hub;
2708         }
2709         mutex_lock(&usb_port_peer_mutex);
2710         hcd->self.root_hub = rhdev;
2711         mutex_unlock(&usb_port_peer_mutex);
2712 
2713         rhdev->rx_lanes = 1;
2714         rhdev->tx_lanes = 1;
2715 
2716         switch (hcd->speed) {
2717         case HCD_USB11:
2718                 rhdev->speed = USB_SPEED_FULL;
2719                 break;
2720         case HCD_USB2:
2721                 rhdev->speed = USB_SPEED_HIGH;
2722                 break;
2723         case HCD_USB25:
2724                 rhdev->speed = USB_SPEED_WIRELESS;
2725                 break;
2726         case HCD_USB3:
2727                 rhdev->speed = USB_SPEED_SUPER;
2728                 break;
2729         case HCD_USB32:
2730                 rhdev->rx_lanes = 2;
2731                 rhdev->tx_lanes = 2;
2732                 /* fall through */
2733         case HCD_USB31:
2734                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2735                 break;
2736         default:
2737                 retval = -EINVAL;
2738                 goto err_set_rh_speed;
2739         }
2740 
2741         /* wakeup flag init defaults to "everything works" for root hubs,
2742          * but drivers can override it in reset() if needed, along with
2743          * recording the overall controller's system wakeup capability.
2744          */
2745         device_set_wakeup_capable(&rhdev->dev, 1);
2746 
2747         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2748          * registered.  But since the controller can die at any time,
2749          * let's initialize the flag before touching the hardware.
2750          */
2751         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2752 
2753         /* "reset" is misnamed; its role is now one-time init. the controller
2754          * should already have been reset (and boot firmware kicked off etc).
2755          */
2756         if (hcd->driver->reset) {
2757                 retval = hcd->driver->reset(hcd);
2758                 if (retval < 0) {
2759                         dev_err(hcd->self.controller, "can't setup: %d\n",
2760                                         retval);
2761                         goto err_hcd_driver_setup;
2762                 }
2763         }
2764         hcd->rh_pollable = 1;
2765 
2766         retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2767         if (retval)
2768                 goto err_hcd_driver_setup;
2769 
2770         /* NOTE: root hub and controller capabilities may not be the same */
2771         if (device_can_wakeup(hcd->self.controller)
2772                         && device_can_wakeup(&hcd->self.root_hub->dev))
2773                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2774 
2775         /* initialize tasklets */
2776         init_giveback_urb_bh(&hcd->high_prio_bh);
2777         init_giveback_urb_bh(&hcd->low_prio_bh);
2778 
2779         /* enable irqs just before we start the controller,
2780          * if the BIOS provides legacy PCI irqs.
2781          */
2782         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2783                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2784                 if (retval)
2785                         goto err_request_irq;
2786         }
2787 
2788         hcd->state = HC_STATE_RUNNING;
2789         retval = hcd->driver->start(hcd);
2790         if (retval < 0) {
2791                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2792                 goto err_hcd_driver_start;
2793         }
2794 
2795         /* starting here, usbcore will pay attention to this root hub */
2796         retval = register_root_hub(hcd);
2797         if (retval != 0)
2798                 goto err_register_root_hub;
2799 
2800         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2801                 usb_hcd_poll_rh_status(hcd);
2802 
2803         return retval;
2804 
2805 err_register_root_hub:
2806         hcd->rh_pollable = 0;
2807         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808         del_timer_sync(&hcd->rh_timer);
2809         hcd->driver->stop(hcd);
2810         hcd->state = HC_STATE_HALT;
2811         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812         del_timer_sync(&hcd->rh_timer);
2813 err_hcd_driver_start:
2814         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2815                 free_irq(irqnum, hcd);
2816 err_request_irq:
2817 err_hcd_driver_setup:
2818 err_set_rh_speed:
2819         usb_put_invalidate_rhdev(hcd);
2820 err_allocate_root_hub:
2821         usb_deregister_bus(&hcd->self);
2822 err_register_bus:
2823         hcd_buffer_destroy(hcd);
2824 err_create_buf:
2825         usb_phy_roothub_power_off(hcd->phy_roothub);
2826 err_usb_phy_roothub_power_on:
2827         usb_phy_roothub_exit(hcd->phy_roothub);
2828 
2829         return retval;
2830 }
2831 EXPORT_SYMBOL_GPL(usb_add_hcd);
2832 
2833 /**
2834  * usb_remove_hcd - shutdown processing for generic HCDs
2835  * @hcd: the usb_hcd structure to remove
2836  * Context: !in_interrupt()
2837  *
2838  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839  * invoking the HCD's stop() method.
2840  */
2841 void usb_remove_hcd(struct usb_hcd *hcd)
2842 {
2843         struct usb_device *rhdev = hcd->self.root_hub;
2844 
2845         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846 
2847         usb_get_dev(rhdev);
2848         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2849         if (HC_IS_RUNNING (hcd->state))
2850                 hcd->state = HC_STATE_QUIESCING;
2851 
2852         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2853         spin_lock_irq (&hcd_root_hub_lock);
2854         hcd->rh_registered = 0;
2855         spin_unlock_irq (&hcd_root_hub_lock);
2856 
2857 #ifdef CONFIG_PM
2858         cancel_work_sync(&hcd->wakeup_work);
2859 #endif
2860         cancel_work_sync(&hcd->died_work);
2861 
2862         mutex_lock(&usb_bus_idr_lock);
2863         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2864         mutex_unlock(&usb_bus_idr_lock);
2865 
2866         /*
2867          * tasklet_kill() isn't needed here because:
2868          * - driver's disconnect() called from usb_disconnect() should
2869          *   make sure its URBs are completed during the disconnect()
2870          *   callback
2871          *
2872          * - it is too late to run complete() here since driver may have
2873          *   been removed already now
2874          */
2875 
2876         /* Prevent any more root-hub status calls from the timer.
2877          * The HCD might still restart the timer (if a port status change
2878          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879          * the hub_status_data() callback.
2880          */
2881         hcd->rh_pollable = 0;
2882         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883         del_timer_sync(&hcd->rh_timer);
2884 
2885         hcd->driver->stop(hcd);
2886         hcd->state = HC_STATE_HALT;
2887 
2888         /* In case the HCD restarted the timer, stop it again. */
2889         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2890         del_timer_sync(&hcd->rh_timer);
2891 
2892         if (usb_hcd_is_primary_hcd(hcd)) {
2893                 if (hcd->irq > 0)
2894                         free_irq(hcd->irq, hcd);
2895         }
2896 
2897         usb_deregister_bus(&hcd->self);
2898         hcd_buffer_destroy(hcd);
2899 
2900         usb_phy_roothub_power_off(hcd->phy_roothub);
2901         usb_phy_roothub_exit(hcd->phy_roothub);
2902 
2903         usb_put_invalidate_rhdev(hcd);
2904         hcd->flags = 0;
2905 }
2906 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2907 
2908 void
2909 usb_hcd_platform_shutdown(struct platform_device *dev)
2910 {
2911         struct usb_hcd *hcd = platform_get_drvdata(dev);
2912 
2913         /* No need for pm_runtime_put(), we're shutting down */
2914         pm_runtime_get_sync(&dev->dev);
2915 
2916         if (hcd->driver->shutdown)
2917                 hcd->driver->shutdown(hcd);
2918 }
2919 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2920 
2921 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2922                             dma_addr_t dma, size_t size)
2923 {
2924         int err;
2925         void *local_mem;
2926 
2927         hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2928                                                   dev_to_node(hcd->self.sysdev),
2929                                                   dev_name(hcd->self.sysdev));
2930         if (IS_ERR(hcd->localmem_pool))
2931                 return PTR_ERR(hcd->localmem_pool);
2932 
2933         local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2934                                   size, MEMREMAP_WC);
2935         if (IS_ERR(local_mem))
2936                 return PTR_ERR(local_mem);
2937 
2938         /*
2939          * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2940          * It's not backed by system memory and thus there's no kernel mapping
2941          * for it.
2942          */
2943         err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2944                                 dma, size, dev_to_node(hcd->self.sysdev));
2945         if (err < 0) {
2946                 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2947                         err);
2948                 return err;
2949         }
2950 
2951         return 0;
2952 }
2953 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2954 
2955 /*-------------------------------------------------------------------------*/
2956 
2957 #if IS_ENABLED(CONFIG_USB_MON)
2958 
2959 const struct usb_mon_operations *mon_ops;
2960 
2961 /*
2962  * The registration is unlocked.
2963  * We do it this way because we do not want to lock in hot paths.
2964  *
2965  * Notice that the code is minimally error-proof. Because usbmon needs
2966  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2967  */
2968 
2969 int usb_mon_register(const struct usb_mon_operations *ops)
2970 {
2971 
2972         if (mon_ops)
2973                 return -EBUSY;
2974 
2975         mon_ops = ops;
2976         mb();
2977         return 0;
2978 }
2979 EXPORT_SYMBOL_GPL (usb_mon_register);
2980 
2981 void usb_mon_deregister (void)
2982 {
2983 
2984         if (mon_ops == NULL) {
2985                 printk(KERN_ERR "USB: monitor was not registered\n");
2986                 return;
2987         }
2988         mon_ops = NULL;
2989         mb();
2990 }
2991 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2992 
2993 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */

/* [<][>][^][v][top][bottom][index][help] */