root/drivers/usb/core/message.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. usb_api_blocking_completion
  2. usb_start_wait_urb
  3. usb_internal_control_msg
  4. usb_control_msg
  5. usb_interrupt_msg
  6. usb_bulk_msg
  7. sg_clean
  8. sg_complete
  9. usb_sg_init
  10. usb_sg_wait
  11. usb_sg_cancel
  12. usb_get_descriptor
  13. usb_get_string
  14. usb_try_string_workarounds
  15. usb_string_sub
  16. usb_get_langid
  17. usb_string
  18. usb_cache_string
  19. usb_get_device_descriptor
  20. usb_set_isoch_delay
  21. usb_get_status
  22. usb_clear_halt
  23. create_intf_ep_devs
  24. remove_intf_ep_devs
  25. usb_disable_endpoint
  26. usb_reset_endpoint
  27. usb_disable_interface
  28. usb_disable_device
  29. usb_enable_endpoint
  30. usb_enable_interface
  31. usb_set_interface
  32. usb_reset_configuration
  33. usb_release_interface
  34. usb_deauthorize_interface
  35. usb_authorize_interface
  36. usb_if_uevent
  37. find_iad
  38. __usb_queue_reset_device
  39. usb_set_configuration
  40. driver_set_config_work
  41. cancel_async_set_config
  42. usb_driver_set_configuration
  43. cdc_parse_cdc_header

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * message.c - synchronous message handling
   4  *
   5  * Released under the GPLv2 only.
   6  */
   7 
   8 #include <linux/pci.h>  /* for scatterlist macros */
   9 #include <linux/usb.h>
  10 #include <linux/module.h>
  11 #include <linux/slab.h>
  12 #include <linux/mm.h>
  13 #include <linux/timer.h>
  14 #include <linux/ctype.h>
  15 #include <linux/nls.h>
  16 #include <linux/device.h>
  17 #include <linux/scatterlist.h>
  18 #include <linux/usb/cdc.h>
  19 #include <linux/usb/quirks.h>
  20 #include <linux/usb/hcd.h>      /* for usbcore internals */
  21 #include <linux/usb/of.h>
  22 #include <asm/byteorder.h>
  23 
  24 #include "usb.h"
  25 
  26 static void cancel_async_set_config(struct usb_device *udev);
  27 
  28 struct api_context {
  29         struct completion       done;
  30         int                     status;
  31 };
  32 
  33 static void usb_api_blocking_completion(struct urb *urb)
  34 {
  35         struct api_context *ctx = urb->context;
  36 
  37         ctx->status = urb->status;
  38         complete(&ctx->done);
  39 }
  40 
  41 
  42 /*
  43  * Starts urb and waits for completion or timeout. Note that this call
  44  * is NOT interruptible. Many device driver i/o requests should be
  45  * interruptible and therefore these drivers should implement their
  46  * own interruptible routines.
  47  */
  48 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  49 {
  50         struct api_context ctx;
  51         unsigned long expire;
  52         int retval;
  53 
  54         init_completion(&ctx.done);
  55         urb->context = &ctx;
  56         urb->actual_length = 0;
  57         retval = usb_submit_urb(urb, GFP_NOIO);
  58         if (unlikely(retval))
  59                 goto out;
  60 
  61         expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  62         if (!wait_for_completion_timeout(&ctx.done, expire)) {
  63                 usb_kill_urb(urb);
  64                 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  65 
  66                 dev_dbg(&urb->dev->dev,
  67                         "%s timed out on ep%d%s len=%u/%u\n",
  68                         current->comm,
  69                         usb_endpoint_num(&urb->ep->desc),
  70                         usb_urb_dir_in(urb) ? "in" : "out",
  71                         urb->actual_length,
  72                         urb->transfer_buffer_length);
  73         } else
  74                 retval = ctx.status;
  75 out:
  76         if (actual_length)
  77                 *actual_length = urb->actual_length;
  78 
  79         usb_free_urb(urb);
  80         return retval;
  81 }
  82 
  83 /*-------------------------------------------------------------------*/
  84 /* returns status (negative) or length (positive) */
  85 static int usb_internal_control_msg(struct usb_device *usb_dev,
  86                                     unsigned int pipe,
  87                                     struct usb_ctrlrequest *cmd,
  88                                     void *data, int len, int timeout)
  89 {
  90         struct urb *urb;
  91         int retv;
  92         int length;
  93 
  94         urb = usb_alloc_urb(0, GFP_NOIO);
  95         if (!urb)
  96                 return -ENOMEM;
  97 
  98         usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  99                              len, usb_api_blocking_completion, NULL);
 100 
 101         retv = usb_start_wait_urb(urb, timeout, &length);
 102         if (retv < 0)
 103                 return retv;
 104         else
 105                 return length;
 106 }
 107 
 108 /**
 109  * usb_control_msg - Builds a control urb, sends it off and waits for completion
 110  * @dev: pointer to the usb device to send the message to
 111  * @pipe: endpoint "pipe" to send the message to
 112  * @request: USB message request value
 113  * @requesttype: USB message request type value
 114  * @value: USB message value
 115  * @index: USB message index value
 116  * @data: pointer to the data to send
 117  * @size: length in bytes of the data to send
 118  * @timeout: time in msecs to wait for the message to complete before timing
 119  *      out (if 0 the wait is forever)
 120  *
 121  * Context: !in_interrupt ()
 122  *
 123  * This function sends a simple control message to a specified endpoint and
 124  * waits for the message to complete, or timeout.
 125  *
 126  * Don't use this function from within an interrupt context. If you need
 127  * an asynchronous message, or need to send a message from within interrupt
 128  * context, use usb_submit_urb(). If a thread in your driver uses this call,
 129  * make sure your disconnect() method can wait for it to complete. Since you
 130  * don't have a handle on the URB used, you can't cancel the request.
 131  *
 132  * Return: If successful, the number of bytes transferred. Otherwise, a negative
 133  * error number.
 134  */
 135 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 136                     __u8 requesttype, __u16 value, __u16 index, void *data,
 137                     __u16 size, int timeout)
 138 {
 139         struct usb_ctrlrequest *dr;
 140         int ret;
 141 
 142         dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 143         if (!dr)
 144                 return -ENOMEM;
 145 
 146         dr->bRequestType = requesttype;
 147         dr->bRequest = request;
 148         dr->wValue = cpu_to_le16(value);
 149         dr->wIndex = cpu_to_le16(index);
 150         dr->wLength = cpu_to_le16(size);
 151 
 152         ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 153 
 154         /* Linger a bit, prior to the next control message. */
 155         if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
 156                 msleep(200);
 157 
 158         kfree(dr);
 159 
 160         return ret;
 161 }
 162 EXPORT_SYMBOL_GPL(usb_control_msg);
 163 
 164 /**
 165  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 166  * @usb_dev: pointer to the usb device to send the message to
 167  * @pipe: endpoint "pipe" to send the message to
 168  * @data: pointer to the data to send
 169  * @len: length in bytes of the data to send
 170  * @actual_length: pointer to a location to put the actual length transferred
 171  *      in bytes
 172  * @timeout: time in msecs to wait for the message to complete before
 173  *      timing out (if 0 the wait is forever)
 174  *
 175  * Context: !in_interrupt ()
 176  *
 177  * This function sends a simple interrupt message to a specified endpoint and
 178  * waits for the message to complete, or timeout.
 179  *
 180  * Don't use this function from within an interrupt context. If you need
 181  * an asynchronous message, or need to send a message from within interrupt
 182  * context, use usb_submit_urb() If a thread in your driver uses this call,
 183  * make sure your disconnect() method can wait for it to complete. Since you
 184  * don't have a handle on the URB used, you can't cancel the request.
 185  *
 186  * Return:
 187  * If successful, 0. Otherwise a negative error number. The number of actual
 188  * bytes transferred will be stored in the @actual_length parameter.
 189  */
 190 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 191                       void *data, int len, int *actual_length, int timeout)
 192 {
 193         return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 194 }
 195 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 196 
 197 /**
 198  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 199  * @usb_dev: pointer to the usb device to send the message to
 200  * @pipe: endpoint "pipe" to send the message to
 201  * @data: pointer to the data to send
 202  * @len: length in bytes of the data to send
 203  * @actual_length: pointer to a location to put the actual length transferred
 204  *      in bytes
 205  * @timeout: time in msecs to wait for the message to complete before
 206  *      timing out (if 0 the wait is forever)
 207  *
 208  * Context: !in_interrupt ()
 209  *
 210  * This function sends a simple bulk message to a specified endpoint
 211  * and waits for the message to complete, or timeout.
 212  *
 213  * Don't use this function from within an interrupt context. If you need
 214  * an asynchronous message, or need to send a message from within interrupt
 215  * context, use usb_submit_urb() If a thread in your driver uses this call,
 216  * make sure your disconnect() method can wait for it to complete. Since you
 217  * don't have a handle on the URB used, you can't cancel the request.
 218  *
 219  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 220  * users are forced to abuse this routine by using it to submit URBs for
 221  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 222  * (with the default interval) if the target is an interrupt endpoint.
 223  *
 224  * Return:
 225  * If successful, 0. Otherwise a negative error number. The number of actual
 226  * bytes transferred will be stored in the @actual_length parameter.
 227  *
 228  */
 229 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 230                  void *data, int len, int *actual_length, int timeout)
 231 {
 232         struct urb *urb;
 233         struct usb_host_endpoint *ep;
 234 
 235         ep = usb_pipe_endpoint(usb_dev, pipe);
 236         if (!ep || len < 0)
 237                 return -EINVAL;
 238 
 239         urb = usb_alloc_urb(0, GFP_KERNEL);
 240         if (!urb)
 241                 return -ENOMEM;
 242 
 243         if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 244                         USB_ENDPOINT_XFER_INT) {
 245                 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 246                 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 247                                 usb_api_blocking_completion, NULL,
 248                                 ep->desc.bInterval);
 249         } else
 250                 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 251                                 usb_api_blocking_completion, NULL);
 252 
 253         return usb_start_wait_urb(urb, timeout, actual_length);
 254 }
 255 EXPORT_SYMBOL_GPL(usb_bulk_msg);
 256 
 257 /*-------------------------------------------------------------------*/
 258 
 259 static void sg_clean(struct usb_sg_request *io)
 260 {
 261         if (io->urbs) {
 262                 while (io->entries--)
 263                         usb_free_urb(io->urbs[io->entries]);
 264                 kfree(io->urbs);
 265                 io->urbs = NULL;
 266         }
 267         io->dev = NULL;
 268 }
 269 
 270 static void sg_complete(struct urb *urb)
 271 {
 272         unsigned long flags;
 273         struct usb_sg_request *io = urb->context;
 274         int status = urb->status;
 275 
 276         spin_lock_irqsave(&io->lock, flags);
 277 
 278         /* In 2.5 we require hcds' endpoint queues not to progress after fault
 279          * reports, until the completion callback (this!) returns.  That lets
 280          * device driver code (like this routine) unlink queued urbs first,
 281          * if it needs to, since the HC won't work on them at all.  So it's
 282          * not possible for page N+1 to overwrite page N, and so on.
 283          *
 284          * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 285          * complete before the HCD can get requests away from hardware,
 286          * though never during cleanup after a hard fault.
 287          */
 288         if (io->status
 289                         && (io->status != -ECONNRESET
 290                                 || status != -ECONNRESET)
 291                         && urb->actual_length) {
 292                 dev_err(io->dev->bus->controller,
 293                         "dev %s ep%d%s scatterlist error %d/%d\n",
 294                         io->dev->devpath,
 295                         usb_endpoint_num(&urb->ep->desc),
 296                         usb_urb_dir_in(urb) ? "in" : "out",
 297                         status, io->status);
 298                 /* BUG (); */
 299         }
 300 
 301         if (io->status == 0 && status && status != -ECONNRESET) {
 302                 int i, found, retval;
 303 
 304                 io->status = status;
 305 
 306                 /* the previous urbs, and this one, completed already.
 307                  * unlink pending urbs so they won't rx/tx bad data.
 308                  * careful: unlink can sometimes be synchronous...
 309                  */
 310                 spin_unlock_irqrestore(&io->lock, flags);
 311                 for (i = 0, found = 0; i < io->entries; i++) {
 312                         if (!io->urbs[i])
 313                                 continue;
 314                         if (found) {
 315                                 usb_block_urb(io->urbs[i]);
 316                                 retval = usb_unlink_urb(io->urbs[i]);
 317                                 if (retval != -EINPROGRESS &&
 318                                     retval != -ENODEV &&
 319                                     retval != -EBUSY &&
 320                                     retval != -EIDRM)
 321                                         dev_err(&io->dev->dev,
 322                                                 "%s, unlink --> %d\n",
 323                                                 __func__, retval);
 324                         } else if (urb == io->urbs[i])
 325                                 found = 1;
 326                 }
 327                 spin_lock_irqsave(&io->lock, flags);
 328         }
 329 
 330         /* on the last completion, signal usb_sg_wait() */
 331         io->bytes += urb->actual_length;
 332         io->count--;
 333         if (!io->count)
 334                 complete(&io->complete);
 335 
 336         spin_unlock_irqrestore(&io->lock, flags);
 337 }
 338 
 339 
 340 /**
 341  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 342  * @io: request block being initialized.  until usb_sg_wait() returns,
 343  *      treat this as a pointer to an opaque block of memory,
 344  * @dev: the usb device that will send or receive the data
 345  * @pipe: endpoint "pipe" used to transfer the data
 346  * @period: polling rate for interrupt endpoints, in frames or
 347  *      (for high speed endpoints) microframes; ignored for bulk
 348  * @sg: scatterlist entries
 349  * @nents: how many entries in the scatterlist
 350  * @length: how many bytes to send from the scatterlist, or zero to
 351  *      send every byte identified in the list.
 352  * @mem_flags: SLAB_* flags affecting memory allocations in this call
 353  *
 354  * This initializes a scatter/gather request, allocating resources such as
 355  * I/O mappings and urb memory (except maybe memory used by USB controller
 356  * drivers).
 357  *
 358  * The request must be issued using usb_sg_wait(), which waits for the I/O to
 359  * complete (or to be canceled) and then cleans up all resources allocated by
 360  * usb_sg_init().
 361  *
 362  * The request may be canceled with usb_sg_cancel(), either before or after
 363  * usb_sg_wait() is called.
 364  *
 365  * Return: Zero for success, else a negative errno value.
 366  */
 367 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 368                 unsigned pipe, unsigned period, struct scatterlist *sg,
 369                 int nents, size_t length, gfp_t mem_flags)
 370 {
 371         int i;
 372         int urb_flags;
 373         int use_sg;
 374 
 375         if (!io || !dev || !sg
 376                         || usb_pipecontrol(pipe)
 377                         || usb_pipeisoc(pipe)
 378                         || nents <= 0)
 379                 return -EINVAL;
 380 
 381         spin_lock_init(&io->lock);
 382         io->dev = dev;
 383         io->pipe = pipe;
 384 
 385         if (dev->bus->sg_tablesize > 0) {
 386                 use_sg = true;
 387                 io->entries = 1;
 388         } else {
 389                 use_sg = false;
 390                 io->entries = nents;
 391         }
 392 
 393         /* initialize all the urbs we'll use */
 394         io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
 395         if (!io->urbs)
 396                 goto nomem;
 397 
 398         urb_flags = URB_NO_INTERRUPT;
 399         if (usb_pipein(pipe))
 400                 urb_flags |= URB_SHORT_NOT_OK;
 401 
 402         for_each_sg(sg, sg, io->entries, i) {
 403                 struct urb *urb;
 404                 unsigned len;
 405 
 406                 urb = usb_alloc_urb(0, mem_flags);
 407                 if (!urb) {
 408                         io->entries = i;
 409                         goto nomem;
 410                 }
 411                 io->urbs[i] = urb;
 412 
 413                 urb->dev = NULL;
 414                 urb->pipe = pipe;
 415                 urb->interval = period;
 416                 urb->transfer_flags = urb_flags;
 417                 urb->complete = sg_complete;
 418                 urb->context = io;
 419                 urb->sg = sg;
 420 
 421                 if (use_sg) {
 422                         /* There is no single transfer buffer */
 423                         urb->transfer_buffer = NULL;
 424                         urb->num_sgs = nents;
 425 
 426                         /* A length of zero means transfer the whole sg list */
 427                         len = length;
 428                         if (len == 0) {
 429                                 struct scatterlist      *sg2;
 430                                 int                     j;
 431 
 432                                 for_each_sg(sg, sg2, nents, j)
 433                                         len += sg2->length;
 434                         }
 435                 } else {
 436                         /*
 437                          * Some systems can't use DMA; they use PIO instead.
 438                          * For their sakes, transfer_buffer is set whenever
 439                          * possible.
 440                          */
 441                         if (!PageHighMem(sg_page(sg)))
 442                                 urb->transfer_buffer = sg_virt(sg);
 443                         else
 444                                 urb->transfer_buffer = NULL;
 445 
 446                         len = sg->length;
 447                         if (length) {
 448                                 len = min_t(size_t, len, length);
 449                                 length -= len;
 450                                 if (length == 0)
 451                                         io->entries = i + 1;
 452                         }
 453                 }
 454                 urb->transfer_buffer_length = len;
 455         }
 456         io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 457 
 458         /* transaction state */
 459         io->count = io->entries;
 460         io->status = 0;
 461         io->bytes = 0;
 462         init_completion(&io->complete);
 463         return 0;
 464 
 465 nomem:
 466         sg_clean(io);
 467         return -ENOMEM;
 468 }
 469 EXPORT_SYMBOL_GPL(usb_sg_init);
 470 
 471 /**
 472  * usb_sg_wait - synchronously execute scatter/gather request
 473  * @io: request block handle, as initialized with usb_sg_init().
 474  *      some fields become accessible when this call returns.
 475  * Context: !in_interrupt ()
 476  *
 477  * This function blocks until the specified I/O operation completes.  It
 478  * leverages the grouping of the related I/O requests to get good transfer
 479  * rates, by queueing the requests.  At higher speeds, such queuing can
 480  * significantly improve USB throughput.
 481  *
 482  * There are three kinds of completion for this function.
 483  *
 484  * (1) success, where io->status is zero.  The number of io->bytes
 485  *     transferred is as requested.
 486  * (2) error, where io->status is a negative errno value.  The number
 487  *     of io->bytes transferred before the error is usually less
 488  *     than requested, and can be nonzero.
 489  * (3) cancellation, a type of error with status -ECONNRESET that
 490  *     is initiated by usb_sg_cancel().
 491  *
 492  * When this function returns, all memory allocated through usb_sg_init() or
 493  * this call will have been freed.  The request block parameter may still be
 494  * passed to usb_sg_cancel(), or it may be freed.  It could also be
 495  * reinitialized and then reused.
 496  *
 497  * Data Transfer Rates:
 498  *
 499  * Bulk transfers are valid for full or high speed endpoints.
 500  * The best full speed data rate is 19 packets of 64 bytes each
 501  * per frame, or 1216 bytes per millisecond.
 502  * The best high speed data rate is 13 packets of 512 bytes each
 503  * per microframe, or 52 KBytes per millisecond.
 504  *
 505  * The reason to use interrupt transfers through this API would most likely
 506  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 507  * could be transferred.  That capability is less useful for low or full
 508  * speed interrupt endpoints, which allow at most one packet per millisecond,
 509  * of at most 8 or 64 bytes (respectively).
 510  *
 511  * It is not necessary to call this function to reserve bandwidth for devices
 512  * under an xHCI host controller, as the bandwidth is reserved when the
 513  * configuration or interface alt setting is selected.
 514  */
 515 void usb_sg_wait(struct usb_sg_request *io)
 516 {
 517         int i;
 518         int entries = io->entries;
 519 
 520         /* queue the urbs.  */
 521         spin_lock_irq(&io->lock);
 522         i = 0;
 523         while (i < entries && !io->status) {
 524                 int retval;
 525 
 526                 io->urbs[i]->dev = io->dev;
 527                 spin_unlock_irq(&io->lock);
 528 
 529                 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 530 
 531                 switch (retval) {
 532                         /* maybe we retrying will recover */
 533                 case -ENXIO:    /* hc didn't queue this one */
 534                 case -EAGAIN:
 535                 case -ENOMEM:
 536                         retval = 0;
 537                         yield();
 538                         break;
 539 
 540                         /* no error? continue immediately.
 541                          *
 542                          * NOTE: to work better with UHCI (4K I/O buffer may
 543                          * need 3K of TDs) it may be good to limit how many
 544                          * URBs are queued at once; N milliseconds?
 545                          */
 546                 case 0:
 547                         ++i;
 548                         cpu_relax();
 549                         break;
 550 
 551                         /* fail any uncompleted urbs */
 552                 default:
 553                         io->urbs[i]->status = retval;
 554                         dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 555                                 __func__, retval);
 556                         usb_sg_cancel(io);
 557                 }
 558                 spin_lock_irq(&io->lock);
 559                 if (retval && (io->status == 0 || io->status == -ECONNRESET))
 560                         io->status = retval;
 561         }
 562         io->count -= entries - i;
 563         if (io->count == 0)
 564                 complete(&io->complete);
 565         spin_unlock_irq(&io->lock);
 566 
 567         /* OK, yes, this could be packaged as non-blocking.
 568          * So could the submit loop above ... but it's easier to
 569          * solve neither problem than to solve both!
 570          */
 571         wait_for_completion(&io->complete);
 572 
 573         sg_clean(io);
 574 }
 575 EXPORT_SYMBOL_GPL(usb_sg_wait);
 576 
 577 /**
 578  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 579  * @io: request block, initialized with usb_sg_init()
 580  *
 581  * This stops a request after it has been started by usb_sg_wait().
 582  * It can also prevents one initialized by usb_sg_init() from starting,
 583  * so that call just frees resources allocated to the request.
 584  */
 585 void usb_sg_cancel(struct usb_sg_request *io)
 586 {
 587         unsigned long flags;
 588         int i, retval;
 589 
 590         spin_lock_irqsave(&io->lock, flags);
 591         if (io->status || io->count == 0) {
 592                 spin_unlock_irqrestore(&io->lock, flags);
 593                 return;
 594         }
 595         /* shut everything down */
 596         io->status = -ECONNRESET;
 597         io->count++;            /* Keep the request alive until we're done */
 598         spin_unlock_irqrestore(&io->lock, flags);
 599 
 600         for (i = io->entries - 1; i >= 0; --i) {
 601                 usb_block_urb(io->urbs[i]);
 602 
 603                 retval = usb_unlink_urb(io->urbs[i]);
 604                 if (retval != -EINPROGRESS
 605                     && retval != -ENODEV
 606                     && retval != -EBUSY
 607                     && retval != -EIDRM)
 608                         dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 609                                  __func__, retval);
 610         }
 611 
 612         spin_lock_irqsave(&io->lock, flags);
 613         io->count--;
 614         if (!io->count)
 615                 complete(&io->complete);
 616         spin_unlock_irqrestore(&io->lock, flags);
 617 }
 618 EXPORT_SYMBOL_GPL(usb_sg_cancel);
 619 
 620 /*-------------------------------------------------------------------*/
 621 
 622 /**
 623  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 624  * @dev: the device whose descriptor is being retrieved
 625  * @type: the descriptor type (USB_DT_*)
 626  * @index: the number of the descriptor
 627  * @buf: where to put the descriptor
 628  * @size: how big is "buf"?
 629  * Context: !in_interrupt ()
 630  *
 631  * Gets a USB descriptor.  Convenience functions exist to simplify
 632  * getting some types of descriptors.  Use
 633  * usb_get_string() or usb_string() for USB_DT_STRING.
 634  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 635  * are part of the device structure.
 636  * In addition to a number of USB-standard descriptors, some
 637  * devices also use class-specific or vendor-specific descriptors.
 638  *
 639  * This call is synchronous, and may not be used in an interrupt context.
 640  *
 641  * Return: The number of bytes received on success, or else the status code
 642  * returned by the underlying usb_control_msg() call.
 643  */
 644 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 645                        unsigned char index, void *buf, int size)
 646 {
 647         int i;
 648         int result;
 649 
 650         memset(buf, 0, size);   /* Make sure we parse really received data */
 651 
 652         for (i = 0; i < 3; ++i) {
 653                 /* retry on length 0 or error; some devices are flakey */
 654                 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 655                                 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 656                                 (type << 8) + index, 0, buf, size,
 657                                 USB_CTRL_GET_TIMEOUT);
 658                 if (result <= 0 && result != -ETIMEDOUT)
 659                         continue;
 660                 if (result > 1 && ((u8 *)buf)[1] != type) {
 661                         result = -ENODATA;
 662                         continue;
 663                 }
 664                 break;
 665         }
 666         return result;
 667 }
 668 EXPORT_SYMBOL_GPL(usb_get_descriptor);
 669 
 670 /**
 671  * usb_get_string - gets a string descriptor
 672  * @dev: the device whose string descriptor is being retrieved
 673  * @langid: code for language chosen (from string descriptor zero)
 674  * @index: the number of the descriptor
 675  * @buf: where to put the string
 676  * @size: how big is "buf"?
 677  * Context: !in_interrupt ()
 678  *
 679  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 680  * in little-endian byte order).
 681  * The usb_string() function will often be a convenient way to turn
 682  * these strings into kernel-printable form.
 683  *
 684  * Strings may be referenced in device, configuration, interface, or other
 685  * descriptors, and could also be used in vendor-specific ways.
 686  *
 687  * This call is synchronous, and may not be used in an interrupt context.
 688  *
 689  * Return: The number of bytes received on success, or else the status code
 690  * returned by the underlying usb_control_msg() call.
 691  */
 692 static int usb_get_string(struct usb_device *dev, unsigned short langid,
 693                           unsigned char index, void *buf, int size)
 694 {
 695         int i;
 696         int result;
 697 
 698         for (i = 0; i < 3; ++i) {
 699                 /* retry on length 0 or stall; some devices are flakey */
 700                 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 701                         USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 702                         (USB_DT_STRING << 8) + index, langid, buf, size,
 703                         USB_CTRL_GET_TIMEOUT);
 704                 if (result == 0 || result == -EPIPE)
 705                         continue;
 706                 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 707                         result = -ENODATA;
 708                         continue;
 709                 }
 710                 break;
 711         }
 712         return result;
 713 }
 714 
 715 static void usb_try_string_workarounds(unsigned char *buf, int *length)
 716 {
 717         int newlength, oldlength = *length;
 718 
 719         for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 720                 if (!isprint(buf[newlength]) || buf[newlength + 1])
 721                         break;
 722 
 723         if (newlength > 2) {
 724                 buf[0] = newlength;
 725                 *length = newlength;
 726         }
 727 }
 728 
 729 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 730                           unsigned int index, unsigned char *buf)
 731 {
 732         int rc;
 733 
 734         /* Try to read the string descriptor by asking for the maximum
 735          * possible number of bytes */
 736         if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 737                 rc = -EIO;
 738         else
 739                 rc = usb_get_string(dev, langid, index, buf, 255);
 740 
 741         /* If that failed try to read the descriptor length, then
 742          * ask for just that many bytes */
 743         if (rc < 2) {
 744                 rc = usb_get_string(dev, langid, index, buf, 2);
 745                 if (rc == 2)
 746                         rc = usb_get_string(dev, langid, index, buf, buf[0]);
 747         }
 748 
 749         if (rc >= 2) {
 750                 if (!buf[0] && !buf[1])
 751                         usb_try_string_workarounds(buf, &rc);
 752 
 753                 /* There might be extra junk at the end of the descriptor */
 754                 if (buf[0] < rc)
 755                         rc = buf[0];
 756 
 757                 rc = rc - (rc & 1); /* force a multiple of two */
 758         }
 759 
 760         if (rc < 2)
 761                 rc = (rc < 0 ? rc : -EINVAL);
 762 
 763         return rc;
 764 }
 765 
 766 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 767 {
 768         int err;
 769 
 770         if (dev->have_langid)
 771                 return 0;
 772 
 773         if (dev->string_langid < 0)
 774                 return -EPIPE;
 775 
 776         err = usb_string_sub(dev, 0, 0, tbuf);
 777 
 778         /* If the string was reported but is malformed, default to english
 779          * (0x0409) */
 780         if (err == -ENODATA || (err > 0 && err < 4)) {
 781                 dev->string_langid = 0x0409;
 782                 dev->have_langid = 1;
 783                 dev_err(&dev->dev,
 784                         "language id specifier not provided by device, defaulting to English\n");
 785                 return 0;
 786         }
 787 
 788         /* In case of all other errors, we assume the device is not able to
 789          * deal with strings at all. Set string_langid to -1 in order to
 790          * prevent any string to be retrieved from the device */
 791         if (err < 0) {
 792                 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
 793                                         err);
 794                 dev->string_langid = -1;
 795                 return -EPIPE;
 796         }
 797 
 798         /* always use the first langid listed */
 799         dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 800         dev->have_langid = 1;
 801         dev_dbg(&dev->dev, "default language 0x%04x\n",
 802                                 dev->string_langid);
 803         return 0;
 804 }
 805 
 806 /**
 807  * usb_string - returns UTF-8 version of a string descriptor
 808  * @dev: the device whose string descriptor is being retrieved
 809  * @index: the number of the descriptor
 810  * @buf: where to put the string
 811  * @size: how big is "buf"?
 812  * Context: !in_interrupt ()
 813  *
 814  * This converts the UTF-16LE encoded strings returned by devices, from
 815  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 816  * that are more usable in most kernel contexts.  Note that this function
 817  * chooses strings in the first language supported by the device.
 818  *
 819  * This call is synchronous, and may not be used in an interrupt context.
 820  *
 821  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 822  */
 823 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 824 {
 825         unsigned char *tbuf;
 826         int err;
 827 
 828         if (dev->state == USB_STATE_SUSPENDED)
 829                 return -EHOSTUNREACH;
 830         if (size <= 0 || !buf)
 831                 return -EINVAL;
 832         buf[0] = 0;
 833         if (index <= 0 || index >= 256)
 834                 return -EINVAL;
 835         tbuf = kmalloc(256, GFP_NOIO);
 836         if (!tbuf)
 837                 return -ENOMEM;
 838 
 839         err = usb_get_langid(dev, tbuf);
 840         if (err < 0)
 841                 goto errout;
 842 
 843         err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 844         if (err < 0)
 845                 goto errout;
 846 
 847         size--;         /* leave room for trailing NULL char in output buffer */
 848         err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 849                         UTF16_LITTLE_ENDIAN, buf, size);
 850         buf[err] = 0;
 851 
 852         if (tbuf[1] != USB_DT_STRING)
 853                 dev_dbg(&dev->dev,
 854                         "wrong descriptor type %02x for string %d (\"%s\")\n",
 855                         tbuf[1], index, buf);
 856 
 857  errout:
 858         kfree(tbuf);
 859         return err;
 860 }
 861 EXPORT_SYMBOL_GPL(usb_string);
 862 
 863 /* one UTF-8-encoded 16-bit character has at most three bytes */
 864 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
 865 
 866 /**
 867  * usb_cache_string - read a string descriptor and cache it for later use
 868  * @udev: the device whose string descriptor is being read
 869  * @index: the descriptor index
 870  *
 871  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
 872  * or %NULL if the index is 0 or the string could not be read.
 873  */
 874 char *usb_cache_string(struct usb_device *udev, int index)
 875 {
 876         char *buf;
 877         char *smallbuf = NULL;
 878         int len;
 879 
 880         if (index <= 0)
 881                 return NULL;
 882 
 883         buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 884         if (buf) {
 885                 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 886                 if (len > 0) {
 887                         smallbuf = kmalloc(++len, GFP_NOIO);
 888                         if (!smallbuf)
 889                                 return buf;
 890                         memcpy(smallbuf, buf, len);
 891                 }
 892                 kfree(buf);
 893         }
 894         return smallbuf;
 895 }
 896 
 897 /*
 898  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 899  * @dev: the device whose device descriptor is being updated
 900  * @size: how much of the descriptor to read
 901  * Context: !in_interrupt ()
 902  *
 903  * Updates the copy of the device descriptor stored in the device structure,
 904  * which dedicates space for this purpose.
 905  *
 906  * Not exported, only for use by the core.  If drivers really want to read
 907  * the device descriptor directly, they can call usb_get_descriptor() with
 908  * type = USB_DT_DEVICE and index = 0.
 909  *
 910  * This call is synchronous, and may not be used in an interrupt context.
 911  *
 912  * Return: The number of bytes received on success, or else the status code
 913  * returned by the underlying usb_control_msg() call.
 914  */
 915 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 916 {
 917         struct usb_device_descriptor *desc;
 918         int ret;
 919 
 920         if (size > sizeof(*desc))
 921                 return -EINVAL;
 922         desc = kmalloc(sizeof(*desc), GFP_NOIO);
 923         if (!desc)
 924                 return -ENOMEM;
 925 
 926         ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 927         if (ret >= 0)
 928                 memcpy(&dev->descriptor, desc, size);
 929         kfree(desc);
 930         return ret;
 931 }
 932 
 933 /*
 934  * usb_set_isoch_delay - informs the device of the packet transmit delay
 935  * @dev: the device whose delay is to be informed
 936  * Context: !in_interrupt()
 937  *
 938  * Since this is an optional request, we don't bother if it fails.
 939  */
 940 int usb_set_isoch_delay(struct usb_device *dev)
 941 {
 942         /* skip hub devices */
 943         if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
 944                 return 0;
 945 
 946         /* skip non-SS/non-SSP devices */
 947         if (dev->speed < USB_SPEED_SUPER)
 948                 return 0;
 949 
 950         return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
 951                         USB_REQ_SET_ISOCH_DELAY,
 952                         USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
 953                         dev->hub_delay, 0, NULL, 0,
 954                         USB_CTRL_SET_TIMEOUT);
 955 }
 956 
 957 /**
 958  * usb_get_status - issues a GET_STATUS call
 959  * @dev: the device whose status is being checked
 960  * @recip: USB_RECIP_*; for device, interface, or endpoint
 961  * @type: USB_STATUS_TYPE_*; for standard or PTM status types
 962  * @target: zero (for device), else interface or endpoint number
 963  * @data: pointer to two bytes of bitmap data
 964  * Context: !in_interrupt ()
 965  *
 966  * Returns device, interface, or endpoint status.  Normally only of
 967  * interest to see if the device is self powered, or has enabled the
 968  * remote wakeup facility; or whether a bulk or interrupt endpoint
 969  * is halted ("stalled").
 970  *
 971  * Bits in these status bitmaps are set using the SET_FEATURE request,
 972  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 973  * function should be used to clear halt ("stall") status.
 974  *
 975  * This call is synchronous, and may not be used in an interrupt context.
 976  *
 977  * Returns 0 and the status value in *@data (in host byte order) on success,
 978  * or else the status code from the underlying usb_control_msg() call.
 979  */
 980 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
 981                 void *data)
 982 {
 983         int ret;
 984         void *status;
 985         int length;
 986 
 987         switch (type) {
 988         case USB_STATUS_TYPE_STANDARD:
 989                 length = 2;
 990                 break;
 991         case USB_STATUS_TYPE_PTM:
 992                 if (recip != USB_RECIP_DEVICE)
 993                         return -EINVAL;
 994 
 995                 length = 4;
 996                 break;
 997         default:
 998                 return -EINVAL;
 999         }
1000 
1001         status =  kmalloc(length, GFP_KERNEL);
1002         if (!status)
1003                 return -ENOMEM;
1004 
1005         ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1006                 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1007                 target, status, length, USB_CTRL_GET_TIMEOUT);
1008 
1009         switch (ret) {
1010         case 4:
1011                 if (type != USB_STATUS_TYPE_PTM) {
1012                         ret = -EIO;
1013                         break;
1014                 }
1015 
1016                 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1017                 ret = 0;
1018                 break;
1019         case 2:
1020                 if (type != USB_STATUS_TYPE_STANDARD) {
1021                         ret = -EIO;
1022                         break;
1023                 }
1024 
1025                 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1026                 ret = 0;
1027                 break;
1028         default:
1029                 ret = -EIO;
1030         }
1031 
1032         kfree(status);
1033         return ret;
1034 }
1035 EXPORT_SYMBOL_GPL(usb_get_status);
1036 
1037 /**
1038  * usb_clear_halt - tells device to clear endpoint halt/stall condition
1039  * @dev: device whose endpoint is halted
1040  * @pipe: endpoint "pipe" being cleared
1041  * Context: !in_interrupt ()
1042  *
1043  * This is used to clear halt conditions for bulk and interrupt endpoints,
1044  * as reported by URB completion status.  Endpoints that are halted are
1045  * sometimes referred to as being "stalled".  Such endpoints are unable
1046  * to transmit or receive data until the halt status is cleared.  Any URBs
1047  * queued for such an endpoint should normally be unlinked by the driver
1048  * before clearing the halt condition, as described in sections 5.7.5
1049  * and 5.8.5 of the USB 2.0 spec.
1050  *
1051  * Note that control and isochronous endpoints don't halt, although control
1052  * endpoints report "protocol stall" (for unsupported requests) using the
1053  * same status code used to report a true stall.
1054  *
1055  * This call is synchronous, and may not be used in an interrupt context.
1056  *
1057  * Return: Zero on success, or else the status code returned by the
1058  * underlying usb_control_msg() call.
1059  */
1060 int usb_clear_halt(struct usb_device *dev, int pipe)
1061 {
1062         int result;
1063         int endp = usb_pipeendpoint(pipe);
1064 
1065         if (usb_pipein(pipe))
1066                 endp |= USB_DIR_IN;
1067 
1068         /* we don't care if it wasn't halted first. in fact some devices
1069          * (like some ibmcam model 1 units) seem to expect hosts to make
1070          * this request for iso endpoints, which can't halt!
1071          */
1072         result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1073                 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1074                 USB_ENDPOINT_HALT, endp, NULL, 0,
1075                 USB_CTRL_SET_TIMEOUT);
1076 
1077         /* don't un-halt or force to DATA0 except on success */
1078         if (result < 0)
1079                 return result;
1080 
1081         /* NOTE:  seems like Microsoft and Apple don't bother verifying
1082          * the clear "took", so some devices could lock up if you check...
1083          * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1084          *
1085          * NOTE:  make sure the logic here doesn't diverge much from
1086          * the copy in usb-storage, for as long as we need two copies.
1087          */
1088 
1089         usb_reset_endpoint(dev, endp);
1090 
1091         return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(usb_clear_halt);
1094 
1095 static int create_intf_ep_devs(struct usb_interface *intf)
1096 {
1097         struct usb_device *udev = interface_to_usbdev(intf);
1098         struct usb_host_interface *alt = intf->cur_altsetting;
1099         int i;
1100 
1101         if (intf->ep_devs_created || intf->unregistering)
1102                 return 0;
1103 
1104         for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1105                 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1106         intf->ep_devs_created = 1;
1107         return 0;
1108 }
1109 
1110 static void remove_intf_ep_devs(struct usb_interface *intf)
1111 {
1112         struct usb_host_interface *alt = intf->cur_altsetting;
1113         int i;
1114 
1115         if (!intf->ep_devs_created)
1116                 return;
1117 
1118         for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1119                 usb_remove_ep_devs(&alt->endpoint[i]);
1120         intf->ep_devs_created = 0;
1121 }
1122 
1123 /**
1124  * usb_disable_endpoint -- Disable an endpoint by address
1125  * @dev: the device whose endpoint is being disabled
1126  * @epaddr: the endpoint's address.  Endpoint number for output,
1127  *      endpoint number + USB_DIR_IN for input
1128  * @reset_hardware: flag to erase any endpoint state stored in the
1129  *      controller hardware
1130  *
1131  * Disables the endpoint for URB submission and nukes all pending URBs.
1132  * If @reset_hardware is set then also deallocates hcd/hardware state
1133  * for the endpoint.
1134  */
1135 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1136                 bool reset_hardware)
1137 {
1138         unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1139         struct usb_host_endpoint *ep;
1140 
1141         if (!dev)
1142                 return;
1143 
1144         if (usb_endpoint_out(epaddr)) {
1145                 ep = dev->ep_out[epnum];
1146                 if (reset_hardware && epnum != 0)
1147                         dev->ep_out[epnum] = NULL;
1148         } else {
1149                 ep = dev->ep_in[epnum];
1150                 if (reset_hardware && epnum != 0)
1151                         dev->ep_in[epnum] = NULL;
1152         }
1153         if (ep) {
1154                 ep->enabled = 0;
1155                 usb_hcd_flush_endpoint(dev, ep);
1156                 if (reset_hardware)
1157                         usb_hcd_disable_endpoint(dev, ep);
1158         }
1159 }
1160 
1161 /**
1162  * usb_reset_endpoint - Reset an endpoint's state.
1163  * @dev: the device whose endpoint is to be reset
1164  * @epaddr: the endpoint's address.  Endpoint number for output,
1165  *      endpoint number + USB_DIR_IN for input
1166  *
1167  * Resets any host-side endpoint state such as the toggle bit,
1168  * sequence number or current window.
1169  */
1170 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1171 {
1172         unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1173         struct usb_host_endpoint *ep;
1174 
1175         if (usb_endpoint_out(epaddr))
1176                 ep = dev->ep_out[epnum];
1177         else
1178                 ep = dev->ep_in[epnum];
1179         if (ep)
1180                 usb_hcd_reset_endpoint(dev, ep);
1181 }
1182 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1183 
1184 
1185 /**
1186  * usb_disable_interface -- Disable all endpoints for an interface
1187  * @dev: the device whose interface is being disabled
1188  * @intf: pointer to the interface descriptor
1189  * @reset_hardware: flag to erase any endpoint state stored in the
1190  *      controller hardware
1191  *
1192  * Disables all the endpoints for the interface's current altsetting.
1193  */
1194 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1195                 bool reset_hardware)
1196 {
1197         struct usb_host_interface *alt = intf->cur_altsetting;
1198         int i;
1199 
1200         for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1201                 usb_disable_endpoint(dev,
1202                                 alt->endpoint[i].desc.bEndpointAddress,
1203                                 reset_hardware);
1204         }
1205 }
1206 
1207 /**
1208  * usb_disable_device - Disable all the endpoints for a USB device
1209  * @dev: the device whose endpoints are being disabled
1210  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1211  *
1212  * Disables all the device's endpoints, potentially including endpoint 0.
1213  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1214  * pending urbs) and usbcore state for the interfaces, so that usbcore
1215  * must usb_set_configuration() before any interfaces could be used.
1216  */
1217 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1218 {
1219         int i;
1220         struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1221 
1222         /* getting rid of interfaces will disconnect
1223          * any drivers bound to them (a key side effect)
1224          */
1225         if (dev->actconfig) {
1226                 /*
1227                  * FIXME: In order to avoid self-deadlock involving the
1228                  * bandwidth_mutex, we have to mark all the interfaces
1229                  * before unregistering any of them.
1230                  */
1231                 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1232                         dev->actconfig->interface[i]->unregistering = 1;
1233 
1234                 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1235                         struct usb_interface    *interface;
1236 
1237                         /* remove this interface if it has been registered */
1238                         interface = dev->actconfig->interface[i];
1239                         if (!device_is_registered(&interface->dev))
1240                                 continue;
1241                         dev_dbg(&dev->dev, "unregistering interface %s\n",
1242                                 dev_name(&interface->dev));
1243                         remove_intf_ep_devs(interface);
1244                         device_del(&interface->dev);
1245                 }
1246 
1247                 /* Now that the interfaces are unbound, nobody should
1248                  * try to access them.
1249                  */
1250                 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1251                         put_device(&dev->actconfig->interface[i]->dev);
1252                         dev->actconfig->interface[i] = NULL;
1253                 }
1254 
1255                 usb_disable_usb2_hardware_lpm(dev);
1256                 usb_unlocked_disable_lpm(dev);
1257                 usb_disable_ltm(dev);
1258 
1259                 dev->actconfig = NULL;
1260                 if (dev->state == USB_STATE_CONFIGURED)
1261                         usb_set_device_state(dev, USB_STATE_ADDRESS);
1262         }
1263 
1264         dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1265                 skip_ep0 ? "non-ep0" : "all");
1266         if (hcd->driver->check_bandwidth) {
1267                 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1268                 for (i = skip_ep0; i < 16; ++i) {
1269                         usb_disable_endpoint(dev, i, false);
1270                         usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1271                 }
1272                 /* Remove endpoints from the host controller internal state */
1273                 mutex_lock(hcd->bandwidth_mutex);
1274                 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1275                 mutex_unlock(hcd->bandwidth_mutex);
1276                 /* Second pass: remove endpoint pointers */
1277         }
1278         for (i = skip_ep0; i < 16; ++i) {
1279                 usb_disable_endpoint(dev, i, true);
1280                 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1281         }
1282 }
1283 
1284 /**
1285  * usb_enable_endpoint - Enable an endpoint for USB communications
1286  * @dev: the device whose interface is being enabled
1287  * @ep: the endpoint
1288  * @reset_ep: flag to reset the endpoint state
1289  *
1290  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1291  * For control endpoints, both the input and output sides are handled.
1292  */
1293 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1294                 bool reset_ep)
1295 {
1296         int epnum = usb_endpoint_num(&ep->desc);
1297         int is_out = usb_endpoint_dir_out(&ep->desc);
1298         int is_control = usb_endpoint_xfer_control(&ep->desc);
1299 
1300         if (reset_ep)
1301                 usb_hcd_reset_endpoint(dev, ep);
1302         if (is_out || is_control)
1303                 dev->ep_out[epnum] = ep;
1304         if (!is_out || is_control)
1305                 dev->ep_in[epnum] = ep;
1306         ep->enabled = 1;
1307 }
1308 
1309 /**
1310  * usb_enable_interface - Enable all the endpoints for an interface
1311  * @dev: the device whose interface is being enabled
1312  * @intf: pointer to the interface descriptor
1313  * @reset_eps: flag to reset the endpoints' state
1314  *
1315  * Enables all the endpoints for the interface's current altsetting.
1316  */
1317 void usb_enable_interface(struct usb_device *dev,
1318                 struct usb_interface *intf, bool reset_eps)
1319 {
1320         struct usb_host_interface *alt = intf->cur_altsetting;
1321         int i;
1322 
1323         for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1324                 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1325 }
1326 
1327 /**
1328  * usb_set_interface - Makes a particular alternate setting be current
1329  * @dev: the device whose interface is being updated
1330  * @interface: the interface being updated
1331  * @alternate: the setting being chosen.
1332  * Context: !in_interrupt ()
1333  *
1334  * This is used to enable data transfers on interfaces that may not
1335  * be enabled by default.  Not all devices support such configurability.
1336  * Only the driver bound to an interface may change its setting.
1337  *
1338  * Within any given configuration, each interface may have several
1339  * alternative settings.  These are often used to control levels of
1340  * bandwidth consumption.  For example, the default setting for a high
1341  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1342  * while interrupt transfers of up to 3KBytes per microframe are legal.
1343  * Also, isochronous endpoints may never be part of an
1344  * interface's default setting.  To access such bandwidth, alternate
1345  * interface settings must be made current.
1346  *
1347  * Note that in the Linux USB subsystem, bandwidth associated with
1348  * an endpoint in a given alternate setting is not reserved until an URB
1349  * is submitted that needs that bandwidth.  Some other operating systems
1350  * allocate bandwidth early, when a configuration is chosen.
1351  *
1352  * xHCI reserves bandwidth and configures the alternate setting in
1353  * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1354  * may be disabled. Drivers cannot rely on any particular alternate
1355  * setting being in effect after a failure.
1356  *
1357  * This call is synchronous, and may not be used in an interrupt context.
1358  * Also, drivers must not change altsettings while urbs are scheduled for
1359  * endpoints in that interface; all such urbs must first be completed
1360  * (perhaps forced by unlinking).
1361  *
1362  * Return: Zero on success, or else the status code returned by the
1363  * underlying usb_control_msg() call.
1364  */
1365 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1366 {
1367         struct usb_interface *iface;
1368         struct usb_host_interface *alt;
1369         struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1370         int i, ret, manual = 0;
1371         unsigned int epaddr;
1372         unsigned int pipe;
1373 
1374         if (dev->state == USB_STATE_SUSPENDED)
1375                 return -EHOSTUNREACH;
1376 
1377         iface = usb_ifnum_to_if(dev, interface);
1378         if (!iface) {
1379                 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1380                         interface);
1381                 return -EINVAL;
1382         }
1383         if (iface->unregistering)
1384                 return -ENODEV;
1385 
1386         alt = usb_altnum_to_altsetting(iface, alternate);
1387         if (!alt) {
1388                 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1389                          alternate);
1390                 return -EINVAL;
1391         }
1392         /*
1393          * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1394          * including freeing dropped endpoint ring buffers.
1395          * Make sure the interface endpoints are flushed before that
1396          */
1397         usb_disable_interface(dev, iface, false);
1398 
1399         /* Make sure we have enough bandwidth for this alternate interface.
1400          * Remove the current alt setting and add the new alt setting.
1401          */
1402         mutex_lock(hcd->bandwidth_mutex);
1403         /* Disable LPM, and re-enable it once the new alt setting is installed,
1404          * so that the xHCI driver can recalculate the U1/U2 timeouts.
1405          */
1406         if (usb_disable_lpm(dev)) {
1407                 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1408                 mutex_unlock(hcd->bandwidth_mutex);
1409                 return -ENOMEM;
1410         }
1411         /* Changing alt-setting also frees any allocated streams */
1412         for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1413                 iface->cur_altsetting->endpoint[i].streams = 0;
1414 
1415         ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1416         if (ret < 0) {
1417                 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1418                                 alternate);
1419                 usb_enable_lpm(dev);
1420                 mutex_unlock(hcd->bandwidth_mutex);
1421                 return ret;
1422         }
1423 
1424         if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1425                 ret = -EPIPE;
1426         else
1427                 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1428                                    USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1429                                    alternate, interface, NULL, 0, 5000);
1430 
1431         /* 9.4.10 says devices don't need this and are free to STALL the
1432          * request if the interface only has one alternate setting.
1433          */
1434         if (ret == -EPIPE && iface->num_altsetting == 1) {
1435                 dev_dbg(&dev->dev,
1436                         "manual set_interface for iface %d, alt %d\n",
1437                         interface, alternate);
1438                 manual = 1;
1439         } else if (ret < 0) {
1440                 /* Re-instate the old alt setting */
1441                 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1442                 usb_enable_lpm(dev);
1443                 mutex_unlock(hcd->bandwidth_mutex);
1444                 return ret;
1445         }
1446         mutex_unlock(hcd->bandwidth_mutex);
1447 
1448         /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1449          * when they implement async or easily-killable versions of this or
1450          * other "should-be-internal" functions (like clear_halt).
1451          * should hcd+usbcore postprocess control requests?
1452          */
1453 
1454         /* prevent submissions using previous endpoint settings */
1455         if (iface->cur_altsetting != alt) {
1456                 remove_intf_ep_devs(iface);
1457                 usb_remove_sysfs_intf_files(iface);
1458         }
1459         usb_disable_interface(dev, iface, true);
1460 
1461         iface->cur_altsetting = alt;
1462 
1463         /* Now that the interface is installed, re-enable LPM. */
1464         usb_unlocked_enable_lpm(dev);
1465 
1466         /* If the interface only has one altsetting and the device didn't
1467          * accept the request, we attempt to carry out the equivalent action
1468          * by manually clearing the HALT feature for each endpoint in the
1469          * new altsetting.
1470          */
1471         if (manual) {
1472                 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1473                         epaddr = alt->endpoint[i].desc.bEndpointAddress;
1474                         pipe = __create_pipe(dev,
1475                                         USB_ENDPOINT_NUMBER_MASK & epaddr) |
1476                                         (usb_endpoint_out(epaddr) ?
1477                                         USB_DIR_OUT : USB_DIR_IN);
1478 
1479                         usb_clear_halt(dev, pipe);
1480                 }
1481         }
1482 
1483         /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1484          *
1485          * Note:
1486          * Despite EP0 is always present in all interfaces/AS, the list of
1487          * endpoints from the descriptor does not contain EP0. Due to its
1488          * omnipresence one might expect EP0 being considered "affected" by
1489          * any SetInterface request and hence assume toggles need to be reset.
1490          * However, EP0 toggles are re-synced for every individual transfer
1491          * during the SETUP stage - hence EP0 toggles are "don't care" here.
1492          * (Likewise, EP0 never "halts" on well designed devices.)
1493          */
1494         usb_enable_interface(dev, iface, true);
1495         if (device_is_registered(&iface->dev)) {
1496                 usb_create_sysfs_intf_files(iface);
1497                 create_intf_ep_devs(iface);
1498         }
1499         return 0;
1500 }
1501 EXPORT_SYMBOL_GPL(usb_set_interface);
1502 
1503 /**
1504  * usb_reset_configuration - lightweight device reset
1505  * @dev: the device whose configuration is being reset
1506  *
1507  * This issues a standard SET_CONFIGURATION request to the device using
1508  * the current configuration.  The effect is to reset most USB-related
1509  * state in the device, including interface altsettings (reset to zero),
1510  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1511  * endpoints).  Other usbcore state is unchanged, including bindings of
1512  * usb device drivers to interfaces.
1513  *
1514  * Because this affects multiple interfaces, avoid using this with composite
1515  * (multi-interface) devices.  Instead, the driver for each interface may
1516  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1517  * some devices don't support the SET_INTERFACE request, and others won't
1518  * reset all the interface state (notably endpoint state).  Resetting the whole
1519  * configuration would affect other drivers' interfaces.
1520  *
1521  * The caller must own the device lock.
1522  *
1523  * Return: Zero on success, else a negative error code.
1524  */
1525 int usb_reset_configuration(struct usb_device *dev)
1526 {
1527         int                     i, retval;
1528         struct usb_host_config  *config;
1529         struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1530 
1531         if (dev->state == USB_STATE_SUSPENDED)
1532                 return -EHOSTUNREACH;
1533 
1534         /* caller must have locked the device and must own
1535          * the usb bus readlock (so driver bindings are stable);
1536          * calls during probe() are fine
1537          */
1538 
1539         for (i = 1; i < 16; ++i) {
1540                 usb_disable_endpoint(dev, i, true);
1541                 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1542         }
1543 
1544         config = dev->actconfig;
1545         retval = 0;
1546         mutex_lock(hcd->bandwidth_mutex);
1547         /* Disable LPM, and re-enable it once the configuration is reset, so
1548          * that the xHCI driver can recalculate the U1/U2 timeouts.
1549          */
1550         if (usb_disable_lpm(dev)) {
1551                 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1552                 mutex_unlock(hcd->bandwidth_mutex);
1553                 return -ENOMEM;
1554         }
1555         /* Make sure we have enough bandwidth for each alternate setting 0 */
1556         for (i = 0; i < config->desc.bNumInterfaces; i++) {
1557                 struct usb_interface *intf = config->interface[i];
1558                 struct usb_host_interface *alt;
1559 
1560                 alt = usb_altnum_to_altsetting(intf, 0);
1561                 if (!alt)
1562                         alt = &intf->altsetting[0];
1563                 if (alt != intf->cur_altsetting)
1564                         retval = usb_hcd_alloc_bandwidth(dev, NULL,
1565                                         intf->cur_altsetting, alt);
1566                 if (retval < 0)
1567                         break;
1568         }
1569         /* If not, reinstate the old alternate settings */
1570         if (retval < 0) {
1571 reset_old_alts:
1572                 for (i--; i >= 0; i--) {
1573                         struct usb_interface *intf = config->interface[i];
1574                         struct usb_host_interface *alt;
1575 
1576                         alt = usb_altnum_to_altsetting(intf, 0);
1577                         if (!alt)
1578                                 alt = &intf->altsetting[0];
1579                         if (alt != intf->cur_altsetting)
1580                                 usb_hcd_alloc_bandwidth(dev, NULL,
1581                                                 alt, intf->cur_altsetting);
1582                 }
1583                 usb_enable_lpm(dev);
1584                 mutex_unlock(hcd->bandwidth_mutex);
1585                 return retval;
1586         }
1587         retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1588                         USB_REQ_SET_CONFIGURATION, 0,
1589                         config->desc.bConfigurationValue, 0,
1590                         NULL, 0, USB_CTRL_SET_TIMEOUT);
1591         if (retval < 0)
1592                 goto reset_old_alts;
1593         mutex_unlock(hcd->bandwidth_mutex);
1594 
1595         /* re-init hc/hcd interface/endpoint state */
1596         for (i = 0; i < config->desc.bNumInterfaces; i++) {
1597                 struct usb_interface *intf = config->interface[i];
1598                 struct usb_host_interface *alt;
1599 
1600                 alt = usb_altnum_to_altsetting(intf, 0);
1601 
1602                 /* No altsetting 0?  We'll assume the first altsetting.
1603                  * We could use a GetInterface call, but if a device is
1604                  * so non-compliant that it doesn't have altsetting 0
1605                  * then I wouldn't trust its reply anyway.
1606                  */
1607                 if (!alt)
1608                         alt = &intf->altsetting[0];
1609 
1610                 if (alt != intf->cur_altsetting) {
1611                         remove_intf_ep_devs(intf);
1612                         usb_remove_sysfs_intf_files(intf);
1613                 }
1614                 intf->cur_altsetting = alt;
1615                 usb_enable_interface(dev, intf, true);
1616                 if (device_is_registered(&intf->dev)) {
1617                         usb_create_sysfs_intf_files(intf);
1618                         create_intf_ep_devs(intf);
1619                 }
1620         }
1621         /* Now that the interfaces are installed, re-enable LPM. */
1622         usb_unlocked_enable_lpm(dev);
1623         return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1626 
1627 static void usb_release_interface(struct device *dev)
1628 {
1629         struct usb_interface *intf = to_usb_interface(dev);
1630         struct usb_interface_cache *intfc =
1631                         altsetting_to_usb_interface_cache(intf->altsetting);
1632 
1633         kref_put(&intfc->ref, usb_release_interface_cache);
1634         usb_put_dev(interface_to_usbdev(intf));
1635         of_node_put(dev->of_node);
1636         kfree(intf);
1637 }
1638 
1639 /*
1640  * usb_deauthorize_interface - deauthorize an USB interface
1641  *
1642  * @intf: USB interface structure
1643  */
1644 void usb_deauthorize_interface(struct usb_interface *intf)
1645 {
1646         struct device *dev = &intf->dev;
1647 
1648         device_lock(dev->parent);
1649 
1650         if (intf->authorized) {
1651                 device_lock(dev);
1652                 intf->authorized = 0;
1653                 device_unlock(dev);
1654 
1655                 usb_forced_unbind_intf(intf);
1656         }
1657 
1658         device_unlock(dev->parent);
1659 }
1660 
1661 /*
1662  * usb_authorize_interface - authorize an USB interface
1663  *
1664  * @intf: USB interface structure
1665  */
1666 void usb_authorize_interface(struct usb_interface *intf)
1667 {
1668         struct device *dev = &intf->dev;
1669 
1670         if (!intf->authorized) {
1671                 device_lock(dev);
1672                 intf->authorized = 1; /* authorize interface */
1673                 device_unlock(dev);
1674         }
1675 }
1676 
1677 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1678 {
1679         struct usb_device *usb_dev;
1680         struct usb_interface *intf;
1681         struct usb_host_interface *alt;
1682 
1683         intf = to_usb_interface(dev);
1684         usb_dev = interface_to_usbdev(intf);
1685         alt = intf->cur_altsetting;
1686 
1687         if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1688                    alt->desc.bInterfaceClass,
1689                    alt->desc.bInterfaceSubClass,
1690                    alt->desc.bInterfaceProtocol))
1691                 return -ENOMEM;
1692 
1693         if (add_uevent_var(env,
1694                    "MODALIAS=usb:"
1695                    "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1696                    le16_to_cpu(usb_dev->descriptor.idVendor),
1697                    le16_to_cpu(usb_dev->descriptor.idProduct),
1698                    le16_to_cpu(usb_dev->descriptor.bcdDevice),
1699                    usb_dev->descriptor.bDeviceClass,
1700                    usb_dev->descriptor.bDeviceSubClass,
1701                    usb_dev->descriptor.bDeviceProtocol,
1702                    alt->desc.bInterfaceClass,
1703                    alt->desc.bInterfaceSubClass,
1704                    alt->desc.bInterfaceProtocol,
1705                    alt->desc.bInterfaceNumber))
1706                 return -ENOMEM;
1707 
1708         return 0;
1709 }
1710 
1711 struct device_type usb_if_device_type = {
1712         .name =         "usb_interface",
1713         .release =      usb_release_interface,
1714         .uevent =       usb_if_uevent,
1715 };
1716 
1717 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1718                                                 struct usb_host_config *config,
1719                                                 u8 inum)
1720 {
1721         struct usb_interface_assoc_descriptor *retval = NULL;
1722         struct usb_interface_assoc_descriptor *intf_assoc;
1723         int first_intf;
1724         int last_intf;
1725         int i;
1726 
1727         for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1728                 intf_assoc = config->intf_assoc[i];
1729                 if (intf_assoc->bInterfaceCount == 0)
1730                         continue;
1731 
1732                 first_intf = intf_assoc->bFirstInterface;
1733                 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1734                 if (inum >= first_intf && inum <= last_intf) {
1735                         if (!retval)
1736                                 retval = intf_assoc;
1737                         else
1738                                 dev_err(&dev->dev, "Interface #%d referenced"
1739                                         " by multiple IADs\n", inum);
1740                 }
1741         }
1742 
1743         return retval;
1744 }
1745 
1746 
1747 /*
1748  * Internal function to queue a device reset
1749  * See usb_queue_reset_device() for more details
1750  */
1751 static void __usb_queue_reset_device(struct work_struct *ws)
1752 {
1753         int rc;
1754         struct usb_interface *iface =
1755                 container_of(ws, struct usb_interface, reset_ws);
1756         struct usb_device *udev = interface_to_usbdev(iface);
1757 
1758         rc = usb_lock_device_for_reset(udev, iface);
1759         if (rc >= 0) {
1760                 usb_reset_device(udev);
1761                 usb_unlock_device(udev);
1762         }
1763         usb_put_intf(iface);    /* Undo _get_ in usb_queue_reset_device() */
1764 }
1765 
1766 
1767 /*
1768  * usb_set_configuration - Makes a particular device setting be current
1769  * @dev: the device whose configuration is being updated
1770  * @configuration: the configuration being chosen.
1771  * Context: !in_interrupt(), caller owns the device lock
1772  *
1773  * This is used to enable non-default device modes.  Not all devices
1774  * use this kind of configurability; many devices only have one
1775  * configuration.
1776  *
1777  * @configuration is the value of the configuration to be installed.
1778  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1779  * must be non-zero; a value of zero indicates that the device in
1780  * unconfigured.  However some devices erroneously use 0 as one of their
1781  * configuration values.  To help manage such devices, this routine will
1782  * accept @configuration = -1 as indicating the device should be put in
1783  * an unconfigured state.
1784  *
1785  * USB device configurations may affect Linux interoperability,
1786  * power consumption and the functionality available.  For example,
1787  * the default configuration is limited to using 100mA of bus power,
1788  * so that when certain device functionality requires more power,
1789  * and the device is bus powered, that functionality should be in some
1790  * non-default device configuration.  Other device modes may also be
1791  * reflected as configuration options, such as whether two ISDN
1792  * channels are available independently; and choosing between open
1793  * standard device protocols (like CDC) or proprietary ones.
1794  *
1795  * Note that a non-authorized device (dev->authorized == 0) will only
1796  * be put in unconfigured mode.
1797  *
1798  * Note that USB has an additional level of device configurability,
1799  * associated with interfaces.  That configurability is accessed using
1800  * usb_set_interface().
1801  *
1802  * This call is synchronous. The calling context must be able to sleep,
1803  * must own the device lock, and must not hold the driver model's USB
1804  * bus mutex; usb interface driver probe() methods cannot use this routine.
1805  *
1806  * Returns zero on success, or else the status code returned by the
1807  * underlying call that failed.  On successful completion, each interface
1808  * in the original device configuration has been destroyed, and each one
1809  * in the new configuration has been probed by all relevant usb device
1810  * drivers currently known to the kernel.
1811  */
1812 int usb_set_configuration(struct usb_device *dev, int configuration)
1813 {
1814         int i, ret;
1815         struct usb_host_config *cp = NULL;
1816         struct usb_interface **new_interfaces = NULL;
1817         struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1818         int n, nintf;
1819 
1820         if (dev->authorized == 0 || configuration == -1)
1821                 configuration = 0;
1822         else {
1823                 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1824                         if (dev->config[i].desc.bConfigurationValue ==
1825                                         configuration) {
1826                                 cp = &dev->config[i];
1827                                 break;
1828                         }
1829                 }
1830         }
1831         if ((!cp && configuration != 0))
1832                 return -EINVAL;
1833 
1834         /* The USB spec says configuration 0 means unconfigured.
1835          * But if a device includes a configuration numbered 0,
1836          * we will accept it as a correctly configured state.
1837          * Use -1 if you really want to unconfigure the device.
1838          */
1839         if (cp && configuration == 0)
1840                 dev_warn(&dev->dev, "config 0 descriptor??\n");
1841 
1842         /* Allocate memory for new interfaces before doing anything else,
1843          * so that if we run out then nothing will have changed. */
1844         n = nintf = 0;
1845         if (cp) {
1846                 nintf = cp->desc.bNumInterfaces;
1847                 new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1848                                                GFP_NOIO);
1849                 if (!new_interfaces)
1850                         return -ENOMEM;
1851 
1852                 for (; n < nintf; ++n) {
1853                         new_interfaces[n] = kzalloc(
1854                                         sizeof(struct usb_interface),
1855                                         GFP_NOIO);
1856                         if (!new_interfaces[n]) {
1857                                 ret = -ENOMEM;
1858 free_interfaces:
1859                                 while (--n >= 0)
1860                                         kfree(new_interfaces[n]);
1861                                 kfree(new_interfaces);
1862                                 return ret;
1863                         }
1864                 }
1865 
1866                 i = dev->bus_mA - usb_get_max_power(dev, cp);
1867                 if (i < 0)
1868                         dev_warn(&dev->dev, "new config #%d exceeds power "
1869                                         "limit by %dmA\n",
1870                                         configuration, -i);
1871         }
1872 
1873         /* Wake up the device so we can send it the Set-Config request */
1874         ret = usb_autoresume_device(dev);
1875         if (ret)
1876                 goto free_interfaces;
1877 
1878         /* if it's already configured, clear out old state first.
1879          * getting rid of old interfaces means unbinding their drivers.
1880          */
1881         if (dev->state != USB_STATE_ADDRESS)
1882                 usb_disable_device(dev, 1);     /* Skip ep0 */
1883 
1884         /* Get rid of pending async Set-Config requests for this device */
1885         cancel_async_set_config(dev);
1886 
1887         /* Make sure we have bandwidth (and available HCD resources) for this
1888          * configuration.  Remove endpoints from the schedule if we're dropping
1889          * this configuration to set configuration 0.  After this point, the
1890          * host controller will not allow submissions to dropped endpoints.  If
1891          * this call fails, the device state is unchanged.
1892          */
1893         mutex_lock(hcd->bandwidth_mutex);
1894         /* Disable LPM, and re-enable it once the new configuration is
1895          * installed, so that the xHCI driver can recalculate the U1/U2
1896          * timeouts.
1897          */
1898         if (dev->actconfig && usb_disable_lpm(dev)) {
1899                 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1900                 mutex_unlock(hcd->bandwidth_mutex);
1901                 ret = -ENOMEM;
1902                 goto free_interfaces;
1903         }
1904         ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1905         if (ret < 0) {
1906                 if (dev->actconfig)
1907                         usb_enable_lpm(dev);
1908                 mutex_unlock(hcd->bandwidth_mutex);
1909                 usb_autosuspend_device(dev);
1910                 goto free_interfaces;
1911         }
1912 
1913         /*
1914          * Initialize the new interface structures and the
1915          * hc/hcd/usbcore interface/endpoint state.
1916          */
1917         for (i = 0; i < nintf; ++i) {
1918                 struct usb_interface_cache *intfc;
1919                 struct usb_interface *intf;
1920                 struct usb_host_interface *alt;
1921                 u8 ifnum;
1922 
1923                 cp->interface[i] = intf = new_interfaces[i];
1924                 intfc = cp->intf_cache[i];
1925                 intf->altsetting = intfc->altsetting;
1926                 intf->num_altsetting = intfc->num_altsetting;
1927                 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1928                 kref_get(&intfc->ref);
1929 
1930                 alt = usb_altnum_to_altsetting(intf, 0);
1931 
1932                 /* No altsetting 0?  We'll assume the first altsetting.
1933                  * We could use a GetInterface call, but if a device is
1934                  * so non-compliant that it doesn't have altsetting 0
1935                  * then I wouldn't trust its reply anyway.
1936                  */
1937                 if (!alt)
1938                         alt = &intf->altsetting[0];
1939 
1940                 ifnum = alt->desc.bInterfaceNumber;
1941                 intf->intf_assoc = find_iad(dev, cp, ifnum);
1942                 intf->cur_altsetting = alt;
1943                 usb_enable_interface(dev, intf, true);
1944                 intf->dev.parent = &dev->dev;
1945                 if (usb_of_has_combined_node(dev)) {
1946                         device_set_of_node_from_dev(&intf->dev, &dev->dev);
1947                 } else {
1948                         intf->dev.of_node = usb_of_get_interface_node(dev,
1949                                         configuration, ifnum);
1950                 }
1951                 intf->dev.driver = NULL;
1952                 intf->dev.bus = &usb_bus_type;
1953                 intf->dev.type = &usb_if_device_type;
1954                 intf->dev.groups = usb_interface_groups;
1955                 /*
1956                  * Please refer to usb_alloc_dev() to see why we set
1957                  * dma_mask and dma_pfn_offset.
1958                  */
1959                 intf->dev.dma_mask = dev->dev.dma_mask;
1960                 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1961                 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1962                 intf->minor = -1;
1963                 device_initialize(&intf->dev);
1964                 pm_runtime_no_callbacks(&intf->dev);
1965                 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1966                                 dev->devpath, configuration, ifnum);
1967                 usb_get_dev(dev);
1968         }
1969         kfree(new_interfaces);
1970 
1971         ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1972                               USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1973                               NULL, 0, USB_CTRL_SET_TIMEOUT);
1974         if (ret < 0 && cp) {
1975                 /*
1976                  * All the old state is gone, so what else can we do?
1977                  * The device is probably useless now anyway.
1978                  */
1979                 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1980                 for (i = 0; i < nintf; ++i) {
1981                         usb_disable_interface(dev, cp->interface[i], true);
1982                         put_device(&cp->interface[i]->dev);
1983                         cp->interface[i] = NULL;
1984                 }
1985                 cp = NULL;
1986         }
1987 
1988         dev->actconfig = cp;
1989         mutex_unlock(hcd->bandwidth_mutex);
1990 
1991         if (!cp) {
1992                 usb_set_device_state(dev, USB_STATE_ADDRESS);
1993 
1994                 /* Leave LPM disabled while the device is unconfigured. */
1995                 usb_autosuspend_device(dev);
1996                 return ret;
1997         }
1998         usb_set_device_state(dev, USB_STATE_CONFIGURED);
1999 
2000         if (cp->string == NULL &&
2001                         !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2002                 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2003 
2004         /* Now that the interfaces are installed, re-enable LPM. */
2005         usb_unlocked_enable_lpm(dev);
2006         /* Enable LTM if it was turned off by usb_disable_device. */
2007         usb_enable_ltm(dev);
2008 
2009         /* Now that all the interfaces are set up, register them
2010          * to trigger binding of drivers to interfaces.  probe()
2011          * routines may install different altsettings and may
2012          * claim() any interfaces not yet bound.  Many class drivers
2013          * need that: CDC, audio, video, etc.
2014          */
2015         for (i = 0; i < nintf; ++i) {
2016                 struct usb_interface *intf = cp->interface[i];
2017 
2018                 if (intf->dev.of_node &&
2019                     !of_device_is_available(intf->dev.of_node)) {
2020                         dev_info(&dev->dev, "skipping disabled interface %d\n",
2021                                  intf->cur_altsetting->desc.bInterfaceNumber);
2022                         continue;
2023                 }
2024 
2025                 dev_dbg(&dev->dev,
2026                         "adding %s (config #%d, interface %d)\n",
2027                         dev_name(&intf->dev), configuration,
2028                         intf->cur_altsetting->desc.bInterfaceNumber);
2029                 device_enable_async_suspend(&intf->dev);
2030                 ret = device_add(&intf->dev);
2031                 if (ret != 0) {
2032                         dev_err(&dev->dev, "device_add(%s) --> %d\n",
2033                                 dev_name(&intf->dev), ret);
2034                         continue;
2035                 }
2036                 create_intf_ep_devs(intf);
2037         }
2038 
2039         usb_autosuspend_device(dev);
2040         return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(usb_set_configuration);
2043 
2044 static LIST_HEAD(set_config_list);
2045 static DEFINE_SPINLOCK(set_config_lock);
2046 
2047 struct set_config_request {
2048         struct usb_device       *udev;
2049         int                     config;
2050         struct work_struct      work;
2051         struct list_head        node;
2052 };
2053 
2054 /* Worker routine for usb_driver_set_configuration() */
2055 static void driver_set_config_work(struct work_struct *work)
2056 {
2057         struct set_config_request *req =
2058                 container_of(work, struct set_config_request, work);
2059         struct usb_device *udev = req->udev;
2060 
2061         usb_lock_device(udev);
2062         spin_lock(&set_config_lock);
2063         list_del(&req->node);
2064         spin_unlock(&set_config_lock);
2065 
2066         if (req->config >= -1)          /* Is req still valid? */
2067                 usb_set_configuration(udev, req->config);
2068         usb_unlock_device(udev);
2069         usb_put_dev(udev);
2070         kfree(req);
2071 }
2072 
2073 /* Cancel pending Set-Config requests for a device whose configuration
2074  * was just changed
2075  */
2076 static void cancel_async_set_config(struct usb_device *udev)
2077 {
2078         struct set_config_request *req;
2079 
2080         spin_lock(&set_config_lock);
2081         list_for_each_entry(req, &set_config_list, node) {
2082                 if (req->udev == udev)
2083                         req->config = -999;     /* Mark as cancelled */
2084         }
2085         spin_unlock(&set_config_lock);
2086 }
2087 
2088 /**
2089  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2090  * @udev: the device whose configuration is being updated
2091  * @config: the configuration being chosen.
2092  * Context: In process context, must be able to sleep
2093  *
2094  * Device interface drivers are not allowed to change device configurations.
2095  * This is because changing configurations will destroy the interface the
2096  * driver is bound to and create new ones; it would be like a floppy-disk
2097  * driver telling the computer to replace the floppy-disk drive with a
2098  * tape drive!
2099  *
2100  * Still, in certain specialized circumstances the need may arise.  This
2101  * routine gets around the normal restrictions by using a work thread to
2102  * submit the change-config request.
2103  *
2104  * Return: 0 if the request was successfully queued, error code otherwise.
2105  * The caller has no way to know whether the queued request will eventually
2106  * succeed.
2107  */
2108 int usb_driver_set_configuration(struct usb_device *udev, int config)
2109 {
2110         struct set_config_request *req;
2111 
2112         req = kmalloc(sizeof(*req), GFP_KERNEL);
2113         if (!req)
2114                 return -ENOMEM;
2115         req->udev = udev;
2116         req->config = config;
2117         INIT_WORK(&req->work, driver_set_config_work);
2118 
2119         spin_lock(&set_config_lock);
2120         list_add(&req->node, &set_config_list);
2121         spin_unlock(&set_config_lock);
2122 
2123         usb_get_dev(udev);
2124         schedule_work(&req->work);
2125         return 0;
2126 }
2127 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2128 
2129 /**
2130  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2131  * @hdr: the place to put the results of the parsing
2132  * @intf: the interface for which parsing is requested
2133  * @buffer: pointer to the extra headers to be parsed
2134  * @buflen: length of the extra headers
2135  *
2136  * This evaluates the extra headers present in CDC devices which
2137  * bind the interfaces for data and control and provide details
2138  * about the capabilities of the device.
2139  *
2140  * Return: number of descriptors parsed or -EINVAL
2141  * if the header is contradictory beyond salvage
2142  */
2143 
2144 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2145                                 struct usb_interface *intf,
2146                                 u8 *buffer,
2147                                 int buflen)
2148 {
2149         /* duplicates are ignored */
2150         struct usb_cdc_union_desc *union_header = NULL;
2151 
2152         /* duplicates are not tolerated */
2153         struct usb_cdc_header_desc *header = NULL;
2154         struct usb_cdc_ether_desc *ether = NULL;
2155         struct usb_cdc_mdlm_detail_desc *detail = NULL;
2156         struct usb_cdc_mdlm_desc *desc = NULL;
2157 
2158         unsigned int elength;
2159         int cnt = 0;
2160 
2161         memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2162         hdr->phonet_magic_present = false;
2163         while (buflen > 0) {
2164                 elength = buffer[0];
2165                 if (!elength) {
2166                         dev_err(&intf->dev, "skipping garbage byte\n");
2167                         elength = 1;
2168                         goto next_desc;
2169                 }
2170                 if ((buflen < elength) || (elength < 3)) {
2171                         dev_err(&intf->dev, "invalid descriptor buffer length\n");
2172                         break;
2173                 }
2174                 if (buffer[1] != USB_DT_CS_INTERFACE) {
2175                         dev_err(&intf->dev, "skipping garbage\n");
2176                         goto next_desc;
2177                 }
2178 
2179                 switch (buffer[2]) {
2180                 case USB_CDC_UNION_TYPE: /* we've found it */
2181                         if (elength < sizeof(struct usb_cdc_union_desc))
2182                                 goto next_desc;
2183                         if (union_header) {
2184                                 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2185                                 goto next_desc;
2186                         }
2187                         union_header = (struct usb_cdc_union_desc *)buffer;
2188                         break;
2189                 case USB_CDC_COUNTRY_TYPE:
2190                         if (elength < sizeof(struct usb_cdc_country_functional_desc))
2191                                 goto next_desc;
2192                         hdr->usb_cdc_country_functional_desc =
2193                                 (struct usb_cdc_country_functional_desc *)buffer;
2194                         break;
2195                 case USB_CDC_HEADER_TYPE:
2196                         if (elength != sizeof(struct usb_cdc_header_desc))
2197                                 goto next_desc;
2198                         if (header)
2199                                 return -EINVAL;
2200                         header = (struct usb_cdc_header_desc *)buffer;
2201                         break;
2202                 case USB_CDC_ACM_TYPE:
2203                         if (elength < sizeof(struct usb_cdc_acm_descriptor))
2204                                 goto next_desc;
2205                         hdr->usb_cdc_acm_descriptor =
2206                                 (struct usb_cdc_acm_descriptor *)buffer;
2207                         break;
2208                 case USB_CDC_ETHERNET_TYPE:
2209                         if (elength != sizeof(struct usb_cdc_ether_desc))
2210                                 goto next_desc;
2211                         if (ether)
2212                                 return -EINVAL;
2213                         ether = (struct usb_cdc_ether_desc *)buffer;
2214                         break;
2215                 case USB_CDC_CALL_MANAGEMENT_TYPE:
2216                         if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2217                                 goto next_desc;
2218                         hdr->usb_cdc_call_mgmt_descriptor =
2219                                 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2220                         break;
2221                 case USB_CDC_DMM_TYPE:
2222                         if (elength < sizeof(struct usb_cdc_dmm_desc))
2223                                 goto next_desc;
2224                         hdr->usb_cdc_dmm_desc =
2225                                 (struct usb_cdc_dmm_desc *)buffer;
2226                         break;
2227                 case USB_CDC_MDLM_TYPE:
2228                         if (elength < sizeof(struct usb_cdc_mdlm_desc))
2229                                 goto next_desc;
2230                         if (desc)
2231                                 return -EINVAL;
2232                         desc = (struct usb_cdc_mdlm_desc *)buffer;
2233                         break;
2234                 case USB_CDC_MDLM_DETAIL_TYPE:
2235                         if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2236                                 goto next_desc;
2237                         if (detail)
2238                                 return -EINVAL;
2239                         detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2240                         break;
2241                 case USB_CDC_NCM_TYPE:
2242                         if (elength < sizeof(struct usb_cdc_ncm_desc))
2243                                 goto next_desc;
2244                         hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2245                         break;
2246                 case USB_CDC_MBIM_TYPE:
2247                         if (elength < sizeof(struct usb_cdc_mbim_desc))
2248                                 goto next_desc;
2249 
2250                         hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2251                         break;
2252                 case USB_CDC_MBIM_EXTENDED_TYPE:
2253                         if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2254                                 break;
2255                         hdr->usb_cdc_mbim_extended_desc =
2256                                 (struct usb_cdc_mbim_extended_desc *)buffer;
2257                         break;
2258                 case CDC_PHONET_MAGIC_NUMBER:
2259                         hdr->phonet_magic_present = true;
2260                         break;
2261                 default:
2262                         /*
2263                          * there are LOTS more CDC descriptors that
2264                          * could legitimately be found here.
2265                          */
2266                         dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2267                                         buffer[2], elength);
2268                         goto next_desc;
2269                 }
2270                 cnt++;
2271 next_desc:
2272                 buflen -= elength;
2273                 buffer += elength;
2274         }
2275         hdr->usb_cdc_union_desc = union_header;
2276         hdr->usb_cdc_header_desc = header;
2277         hdr->usb_cdc_mdlm_detail_desc = detail;
2278         hdr->usb_cdc_mdlm_desc = desc;
2279         hdr->usb_cdc_ether_desc = ether;
2280         return cnt;
2281 }
2282 
2283 EXPORT_SYMBOL(cdc_parse_cdc_header);

/* [<][>][^][v][top][bottom][index][help] */