root/drivers/clocksource/timer-fttmr010.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_fttmr010
  2. fttmr010_read_current_timer_up
  3. fttmr010_read_current_timer_down
  4. fttmr010_read_sched_clock_up
  5. fttmr010_read_sched_clock_down
  6. fttmr010_timer_set_next_event
  7. fttmr010_timer_shutdown
  8. fttmr010_timer_set_oneshot
  9. fttmr010_timer_set_periodic
  10. fttmr010_timer_interrupt
  11. fttmr010_common_init
  12. aspeed_timer_init
  13. fttmr010_timer_init

   1 // SPDX-License-Identifier: GPL-2.0
   2 /*
   3  * Faraday Technology FTTMR010 timer driver
   4  * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
   5  *
   6  * Based on a rewrite of arch/arm/mach-gemini/timer.c:
   7  * Copyright (C) 2001-2006 Storlink, Corp.
   8  * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
   9  */
  10 #include <linux/interrupt.h>
  11 #include <linux/io.h>
  12 #include <linux/of.h>
  13 #include <linux/of_address.h>
  14 #include <linux/of_irq.h>
  15 #include <linux/clockchips.h>
  16 #include <linux/clocksource.h>
  17 #include <linux/sched_clock.h>
  18 #include <linux/clk.h>
  19 #include <linux/slab.h>
  20 #include <linux/bitops.h>
  21 #include <linux/delay.h>
  22 
  23 /*
  24  * Register definitions common for all the timer variants.
  25  */
  26 #define TIMER1_COUNT            (0x00)
  27 #define TIMER1_LOAD             (0x04)
  28 #define TIMER1_MATCH1           (0x08)
  29 #define TIMER1_MATCH2           (0x0c)
  30 #define TIMER2_COUNT            (0x10)
  31 #define TIMER2_LOAD             (0x14)
  32 #define TIMER2_MATCH1           (0x18)
  33 #define TIMER2_MATCH2           (0x1c)
  34 #define TIMER3_COUNT            (0x20)
  35 #define TIMER3_LOAD             (0x24)
  36 #define TIMER3_MATCH1           (0x28)
  37 #define TIMER3_MATCH2           (0x2c)
  38 #define TIMER_CR                (0x30)
  39 
  40 /*
  41  * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
  42  */
  43 #define TIMER_1_CR_ENABLE       BIT(0)
  44 #define TIMER_1_CR_CLOCK        BIT(1)
  45 #define TIMER_1_CR_INT          BIT(2)
  46 #define TIMER_2_CR_ENABLE       BIT(3)
  47 #define TIMER_2_CR_CLOCK        BIT(4)
  48 #define TIMER_2_CR_INT          BIT(5)
  49 #define TIMER_3_CR_ENABLE       BIT(6)
  50 #define TIMER_3_CR_CLOCK        BIT(7)
  51 #define TIMER_3_CR_INT          BIT(8)
  52 #define TIMER_1_CR_UPDOWN       BIT(9)
  53 #define TIMER_2_CR_UPDOWN       BIT(10)
  54 #define TIMER_3_CR_UPDOWN       BIT(11)
  55 
  56 /*
  57  * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
  58  * The aspeed timers move bits around in the control register and lacks
  59  * bits for setting the timer to count upwards.
  60  */
  61 #define TIMER_1_CR_ASPEED_ENABLE        BIT(0)
  62 #define TIMER_1_CR_ASPEED_CLOCK         BIT(1)
  63 #define TIMER_1_CR_ASPEED_INT           BIT(2)
  64 #define TIMER_2_CR_ASPEED_ENABLE        BIT(4)
  65 #define TIMER_2_CR_ASPEED_CLOCK         BIT(5)
  66 #define TIMER_2_CR_ASPEED_INT           BIT(6)
  67 #define TIMER_3_CR_ASPEED_ENABLE        BIT(8)
  68 #define TIMER_3_CR_ASPEED_CLOCK         BIT(9)
  69 #define TIMER_3_CR_ASPEED_INT           BIT(10)
  70 
  71 /*
  72  * Interrupt status/mask register definitions for fttmr010/gemini/moxart
  73  * timers.
  74  * The registers don't exist and they are not needed on aspeed timers
  75  * because:
  76  *   - aspeed timer overflow interrupt is controlled by bits in Control
  77  *     Register (TMC30).
  78  *   - aspeed timers always generate interrupt when either one of the
  79  *     Match registers equals to Status register.
  80  */
  81 #define TIMER_INTR_STATE        (0x34)
  82 #define TIMER_INTR_MASK         (0x38)
  83 #define TIMER_1_INT_MATCH1      BIT(0)
  84 #define TIMER_1_INT_MATCH2      BIT(1)
  85 #define TIMER_1_INT_OVERFLOW    BIT(2)
  86 #define TIMER_2_INT_MATCH1      BIT(3)
  87 #define TIMER_2_INT_MATCH2      BIT(4)
  88 #define TIMER_2_INT_OVERFLOW    BIT(5)
  89 #define TIMER_3_INT_MATCH1      BIT(6)
  90 #define TIMER_3_INT_MATCH2      BIT(7)
  91 #define TIMER_3_INT_OVERFLOW    BIT(8)
  92 #define TIMER_INT_ALL_MASK      0x1ff
  93 
  94 struct fttmr010 {
  95         void __iomem *base;
  96         unsigned int tick_rate;
  97         bool is_aspeed;
  98         u32 t1_enable_val;
  99         struct clock_event_device clkevt;
 100 #ifdef CONFIG_ARM
 101         struct delay_timer delay_timer;
 102 #endif
 103 };
 104 
 105 /*
 106  * A local singleton used by sched_clock and delay timer reads, which are
 107  * fast and stateless
 108  */
 109 static struct fttmr010 *local_fttmr;
 110 
 111 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 112 {
 113         return container_of(evt, struct fttmr010, clkevt);
 114 }
 115 
 116 static unsigned long fttmr010_read_current_timer_up(void)
 117 {
 118         return readl(local_fttmr->base + TIMER2_COUNT);
 119 }
 120 
 121 static unsigned long fttmr010_read_current_timer_down(void)
 122 {
 123         return ~readl(local_fttmr->base + TIMER2_COUNT);
 124 }
 125 
 126 static u64 notrace fttmr010_read_sched_clock_up(void)
 127 {
 128         return fttmr010_read_current_timer_up();
 129 }
 130 
 131 static u64 notrace fttmr010_read_sched_clock_down(void)
 132 {
 133         return fttmr010_read_current_timer_down();
 134 }
 135 
 136 static int fttmr010_timer_set_next_event(unsigned long cycles,
 137                                        struct clock_event_device *evt)
 138 {
 139         struct fttmr010 *fttmr010 = to_fttmr010(evt);
 140         u32 cr;
 141 
 142         /* Stop */
 143         cr = readl(fttmr010->base + TIMER_CR);
 144         cr &= ~fttmr010->t1_enable_val;
 145         writel(cr, fttmr010->base + TIMER_CR);
 146 
 147         if (fttmr010->is_aspeed) {
 148                 /*
 149                  * ASPEED Timer Controller will load TIMER1_LOAD register
 150                  * into TIMER1_COUNT register when the timer is re-enabled.
 151                  */
 152                 writel(cycles, fttmr010->base + TIMER1_LOAD);
 153         } else {
 154                 /* Setup the match register forward in time */
 155                 cr = readl(fttmr010->base + TIMER1_COUNT);
 156                 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
 157         }
 158 
 159         /* Start */
 160         cr = readl(fttmr010->base + TIMER_CR);
 161         cr |= fttmr010->t1_enable_val;
 162         writel(cr, fttmr010->base + TIMER_CR);
 163 
 164         return 0;
 165 }
 166 
 167 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
 168 {
 169         struct fttmr010 *fttmr010 = to_fttmr010(evt);
 170         u32 cr;
 171 
 172         /* Stop */
 173         cr = readl(fttmr010->base + TIMER_CR);
 174         cr &= ~fttmr010->t1_enable_val;
 175         writel(cr, fttmr010->base + TIMER_CR);
 176 
 177         return 0;
 178 }
 179 
 180 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
 181 {
 182         struct fttmr010 *fttmr010 = to_fttmr010(evt);
 183         u32 cr;
 184 
 185         /* Stop */
 186         cr = readl(fttmr010->base + TIMER_CR);
 187         cr &= ~fttmr010->t1_enable_val;
 188         writel(cr, fttmr010->base + TIMER_CR);
 189 
 190         /* Setup counter start from 0 or ~0 */
 191         writel(0, fttmr010->base + TIMER1_COUNT);
 192         if (fttmr010->is_aspeed) {
 193                 writel(~0, fttmr010->base + TIMER1_LOAD);
 194         } else {
 195                 writel(0, fttmr010->base + TIMER1_LOAD);
 196 
 197                 /* Enable interrupt */
 198                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
 199                 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
 200                 cr |= TIMER_1_INT_MATCH1;
 201                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
 202         }
 203 
 204         return 0;
 205 }
 206 
 207 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
 208 {
 209         struct fttmr010 *fttmr010 = to_fttmr010(evt);
 210         u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
 211         u32 cr;
 212 
 213         /* Stop */
 214         cr = readl(fttmr010->base + TIMER_CR);
 215         cr &= ~fttmr010->t1_enable_val;
 216         writel(cr, fttmr010->base + TIMER_CR);
 217 
 218         /* Setup timer to fire at 1/HZ intervals. */
 219         if (fttmr010->is_aspeed) {
 220                 writel(period, fttmr010->base + TIMER1_LOAD);
 221         } else {
 222                 cr = 0xffffffff - (period - 1);
 223                 writel(cr, fttmr010->base + TIMER1_COUNT);
 224                 writel(cr, fttmr010->base + TIMER1_LOAD);
 225 
 226                 /* Enable interrupt on overflow */
 227                 cr = readl(fttmr010->base + TIMER_INTR_MASK);
 228                 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
 229                 cr |= TIMER_1_INT_OVERFLOW;
 230                 writel(cr, fttmr010->base + TIMER_INTR_MASK);
 231         }
 232 
 233         /* Start the timer */
 234         cr = readl(fttmr010->base + TIMER_CR);
 235         cr |= fttmr010->t1_enable_val;
 236         writel(cr, fttmr010->base + TIMER_CR);
 237 
 238         return 0;
 239 }
 240 
 241 /*
 242  * IRQ handler for the timer
 243  */
 244 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
 245 {
 246         struct clock_event_device *evt = dev_id;
 247 
 248         evt->event_handler(evt);
 249         return IRQ_HANDLED;
 250 }
 251 
 252 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
 253 {
 254         struct fttmr010 *fttmr010;
 255         int irq;
 256         struct clk *clk;
 257         int ret;
 258         u32 val;
 259 
 260         /*
 261          * These implementations require a clock reference.
 262          * FIXME: we currently only support clocking using PCLK
 263          * and using EXTCLK is not supported in the driver.
 264          */
 265         clk = of_clk_get_by_name(np, "PCLK");
 266         if (IS_ERR(clk)) {
 267                 pr_err("could not get PCLK\n");
 268                 return PTR_ERR(clk);
 269         }
 270         ret = clk_prepare_enable(clk);
 271         if (ret) {
 272                 pr_err("failed to enable PCLK\n");
 273                 return ret;
 274         }
 275 
 276         fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
 277         if (!fttmr010) {
 278                 ret = -ENOMEM;
 279                 goto out_disable_clock;
 280         }
 281         fttmr010->tick_rate = clk_get_rate(clk);
 282 
 283         fttmr010->base = of_iomap(np, 0);
 284         if (!fttmr010->base) {
 285                 pr_err("Can't remap registers\n");
 286                 ret = -ENXIO;
 287                 goto out_free;
 288         }
 289         /* IRQ for timer 1 */
 290         irq = irq_of_parse_and_map(np, 0);
 291         if (irq <= 0) {
 292                 pr_err("Can't parse IRQ\n");
 293                 ret = -EINVAL;
 294                 goto out_unmap;
 295         }
 296 
 297         /*
 298          * The Aspeed timers move bits around in the control register.
 299          */
 300         if (is_aspeed) {
 301                 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
 302                         TIMER_1_CR_ASPEED_INT;
 303                 fttmr010->is_aspeed = true;
 304         } else {
 305                 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
 306 
 307                 /*
 308                  * Reset the interrupt mask and status
 309                  */
 310                 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
 311                 writel(0, fttmr010->base + TIMER_INTR_STATE);
 312         }
 313 
 314         /*
 315          * Enable timer 1 count up, timer 2 count up, except on Aspeed,
 316          * where everything just counts down.
 317          */
 318         if (is_aspeed)
 319                 val = TIMER_2_CR_ASPEED_ENABLE;
 320         else {
 321                 val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
 322                         TIMER_2_CR_UPDOWN;
 323         }
 324         writel(val, fttmr010->base + TIMER_CR);
 325 
 326         /*
 327          * Setup free-running clocksource timer (interrupts
 328          * disabled.)
 329          */
 330         local_fttmr = fttmr010;
 331         writel(0, fttmr010->base + TIMER2_COUNT);
 332         writel(0, fttmr010->base + TIMER2_MATCH1);
 333         writel(0, fttmr010->base + TIMER2_MATCH2);
 334 
 335         if (fttmr010->is_aspeed) {
 336                 writel(~0, fttmr010->base + TIMER2_LOAD);
 337                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 338                                       "FTTMR010-TIMER2",
 339                                       fttmr010->tick_rate,
 340                                       300, 32, clocksource_mmio_readl_down);
 341                 sched_clock_register(fttmr010_read_sched_clock_down, 32,
 342                                      fttmr010->tick_rate);
 343         } else {
 344                 writel(0, fttmr010->base + TIMER2_LOAD);
 345                 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
 346                                       "FTTMR010-TIMER2",
 347                                       fttmr010->tick_rate,
 348                                       300, 32, clocksource_mmio_readl_up);
 349                 sched_clock_register(fttmr010_read_sched_clock_up, 32,
 350                                      fttmr010->tick_rate);
 351         }
 352 
 353         /*
 354          * Setup clockevent timer (interrupt-driven) on timer 1.
 355          */
 356         writel(0, fttmr010->base + TIMER1_COUNT);
 357         writel(0, fttmr010->base + TIMER1_LOAD);
 358         writel(0, fttmr010->base + TIMER1_MATCH1);
 359         writel(0, fttmr010->base + TIMER1_MATCH2);
 360         ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
 361                           "FTTMR010-TIMER1", &fttmr010->clkevt);
 362         if (ret) {
 363                 pr_err("FTTMR010-TIMER1 no IRQ\n");
 364                 goto out_unmap;
 365         }
 366 
 367         fttmr010->clkevt.name = "FTTMR010-TIMER1";
 368         /* Reasonably fast and accurate clock event */
 369         fttmr010->clkevt.rating = 300;
 370         fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
 371                 CLOCK_EVT_FEAT_ONESHOT;
 372         fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
 373         fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
 374         fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
 375         fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
 376         fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
 377         fttmr010->clkevt.cpumask = cpumask_of(0);
 378         fttmr010->clkevt.irq = irq;
 379         clockevents_config_and_register(&fttmr010->clkevt,
 380                                         fttmr010->tick_rate,
 381                                         1, 0xffffffff);
 382 
 383 #ifdef CONFIG_ARM
 384         /* Also use this timer for delays */
 385         if (fttmr010->is_aspeed)
 386                 fttmr010->delay_timer.read_current_timer =
 387                         fttmr010_read_current_timer_down;
 388         else
 389                 fttmr010->delay_timer.read_current_timer =
 390                         fttmr010_read_current_timer_up;
 391         fttmr010->delay_timer.freq = fttmr010->tick_rate;
 392         register_current_timer_delay(&fttmr010->delay_timer);
 393 #endif
 394 
 395         return 0;
 396 
 397 out_unmap:
 398         iounmap(fttmr010->base);
 399 out_free:
 400         kfree(fttmr010);
 401 out_disable_clock:
 402         clk_disable_unprepare(clk);
 403 
 404         return ret;
 405 }
 406 
 407 static __init int aspeed_timer_init(struct device_node *np)
 408 {
 409         return fttmr010_common_init(np, true);
 410 }
 411 
 412 static __init int fttmr010_timer_init(struct device_node *np)
 413 {
 414         return fttmr010_common_init(np, false);
 415 }
 416 
 417 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
 418 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
 419 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
 420 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
 421 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);

/* [<][>][^][v][top][bottom][index][help] */