This source file includes following definitions.
- ttc_set_interval
- ttc_clock_event_interrupt
- __ttc_clocksource_read
- ttc_sched_clock_read
- ttc_set_next_event
- ttc_shutdown
- ttc_set_periodic
- ttc_resume
- ttc_rate_change_clocksource_cb
- ttc_setup_clocksource
- ttc_rate_change_clockevent_cb
- ttc_setup_clockevent
- ttc_timer_init
1
2
3
4
5
6
7
8
9
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/slab.h>
17 #include <linux/sched_clock.h>
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 #define TTC_CLK_CNTRL_OFFSET 0x00
39 #define TTC_CNT_CNTRL_OFFSET 0x0C
40 #define TTC_COUNT_VAL_OFFSET 0x18
41 #define TTC_INTR_VAL_OFFSET 0x24
42 #define TTC_ISR_OFFSET 0x54
43 #define TTC_IER_OFFSET 0x60
44
45 #define TTC_CNT_CNTRL_DISABLE_MASK 0x1
46
47 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5)
48 #define TTC_CLK_CNTRL_PSV_MASK 0x1e
49 #define TTC_CLK_CNTRL_PSV_SHIFT 1
50
51
52
53
54
55 #define PRESCALE_EXPONENT 11
56 #define PRESCALE 2048
57 #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1)
58 #define CLK_CNTRL_PRESCALE_EN 1
59 #define CNT_CNTRL_RESET (1 << 4)
60
61 #define MAX_F_ERR 50
62
63
64
65
66
67
68
69
70
71 struct ttc_timer {
72 void __iomem *base_addr;
73 unsigned long freq;
74 struct clk *clk;
75 struct notifier_block clk_rate_change_nb;
76 };
77
78 #define to_ttc_timer(x) \
79 container_of(x, struct ttc_timer, clk_rate_change_nb)
80
81 struct ttc_timer_clocksource {
82 u32 scale_clk_ctrl_reg_old;
83 u32 scale_clk_ctrl_reg_new;
84 struct ttc_timer ttc;
85 struct clocksource cs;
86 };
87
88 #define to_ttc_timer_clksrc(x) \
89 container_of(x, struct ttc_timer_clocksource, cs)
90
91 struct ttc_timer_clockevent {
92 struct ttc_timer ttc;
93 struct clock_event_device ce;
94 };
95
96 #define to_ttc_timer_clkevent(x) \
97 container_of(x, struct ttc_timer_clockevent, ce)
98
99 static void __iomem *ttc_sched_clock_val_reg;
100
101
102
103
104
105
106
107 static void ttc_set_interval(struct ttc_timer *timer,
108 unsigned long cycles)
109 {
110 u32 ctrl_reg;
111
112
113 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
114 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
115 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116
117 writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
118
119
120
121
122
123 ctrl_reg |= CNT_CNTRL_RESET;
124 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
125 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
126 }
127
128
129
130
131
132
133
134
135
136 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
137 {
138 struct ttc_timer_clockevent *ttce = dev_id;
139 struct ttc_timer *timer = &ttce->ttc;
140
141
142 readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
143
144 ttce->ce.event_handler(&ttce->ce);
145
146 return IRQ_HANDLED;
147 }
148
149
150
151
152
153
154 static u64 __ttc_clocksource_read(struct clocksource *cs)
155 {
156 struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
157
158 return (u64)readl_relaxed(timer->base_addr +
159 TTC_COUNT_VAL_OFFSET);
160 }
161
162 static u64 notrace ttc_sched_clock_read(void)
163 {
164 return readl_relaxed(ttc_sched_clock_val_reg);
165 }
166
167
168
169
170
171
172
173
174
175 static int ttc_set_next_event(unsigned long cycles,
176 struct clock_event_device *evt)
177 {
178 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
179 struct ttc_timer *timer = &ttce->ttc;
180
181 ttc_set_interval(timer, cycles);
182 return 0;
183 }
184
185
186
187
188
189
190 static int ttc_shutdown(struct clock_event_device *evt)
191 {
192 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
193 struct ttc_timer *timer = &ttce->ttc;
194 u32 ctrl_reg;
195
196 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
197 ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
198 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199 return 0;
200 }
201
202 static int ttc_set_periodic(struct clock_event_device *evt)
203 {
204 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
205 struct ttc_timer *timer = &ttce->ttc;
206
207 ttc_set_interval(timer,
208 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
209 return 0;
210 }
211
212 static int ttc_resume(struct clock_event_device *evt)
213 {
214 struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
215 struct ttc_timer *timer = &ttce->ttc;
216 u32 ctrl_reg;
217
218 ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219 ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
220 writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221 return 0;
222 }
223
224 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
225 unsigned long event, void *data)
226 {
227 struct clk_notifier_data *ndata = data;
228 struct ttc_timer *ttc = to_ttc_timer(nb);
229 struct ttc_timer_clocksource *ttccs = container_of(ttc,
230 struct ttc_timer_clocksource, ttc);
231
232 switch (event) {
233 case PRE_RATE_CHANGE:
234 {
235 u32 psv;
236 unsigned long factor, rate_low, rate_high;
237
238 if (ndata->new_rate > ndata->old_rate) {
239 factor = DIV_ROUND_CLOSEST(ndata->new_rate,
240 ndata->old_rate);
241 rate_low = ndata->old_rate;
242 rate_high = ndata->new_rate;
243 } else {
244 factor = DIV_ROUND_CLOSEST(ndata->old_rate,
245 ndata->new_rate);
246 rate_low = ndata->new_rate;
247 rate_high = ndata->old_rate;
248 }
249
250 if (!is_power_of_2(factor))
251 return NOTIFY_BAD;
252
253 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
254 return NOTIFY_BAD;
255
256 factor = __ilog2_u32(factor);
257
258
259
260
261
262 ttccs->scale_clk_ctrl_reg_old =
263 readl_relaxed(ttccs->ttc.base_addr +
264 TTC_CLK_CNTRL_OFFSET);
265
266 psv = (ttccs->scale_clk_ctrl_reg_old &
267 TTC_CLK_CNTRL_PSV_MASK) >>
268 TTC_CLK_CNTRL_PSV_SHIFT;
269 if (ndata->new_rate < ndata->old_rate)
270 psv -= factor;
271 else
272 psv += factor;
273
274
275 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
276 return NOTIFY_BAD;
277
278 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
279 ~TTC_CLK_CNTRL_PSV_MASK;
280 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
281
282
283
284 if (ndata->new_rate < ndata->old_rate)
285 return NOTIFY_DONE;
286
287
288 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
289 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
290 break;
291 }
292 case POST_RATE_CHANGE:
293
294 if (ndata->new_rate > ndata->old_rate)
295 return NOTIFY_OK;
296
297
298 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
299 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
300 break;
301
302 case ABORT_RATE_CHANGE:
303
304 if (ndata->new_rate < ndata->old_rate)
305 return NOTIFY_OK;
306
307
308 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
309 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
310
311 default:
312 return NOTIFY_DONE;
313 }
314
315 return NOTIFY_DONE;
316 }
317
318 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
319 u32 timer_width)
320 {
321 struct ttc_timer_clocksource *ttccs;
322 int err;
323
324 ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
325 if (!ttccs)
326 return -ENOMEM;
327
328 ttccs->ttc.clk = clk;
329
330 err = clk_prepare_enable(ttccs->ttc.clk);
331 if (err) {
332 kfree(ttccs);
333 return err;
334 }
335
336 ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
337
338 ttccs->ttc.clk_rate_change_nb.notifier_call =
339 ttc_rate_change_clocksource_cb;
340 ttccs->ttc.clk_rate_change_nb.next = NULL;
341
342 err = clk_notifier_register(ttccs->ttc.clk,
343 &ttccs->ttc.clk_rate_change_nb);
344 if (err)
345 pr_warn("Unable to register clock notifier.\n");
346
347 ttccs->ttc.base_addr = base;
348 ttccs->cs.name = "ttc_clocksource";
349 ttccs->cs.rating = 200;
350 ttccs->cs.read = __ttc_clocksource_read;
351 ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
352 ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
353
354
355
356
357
358
359 writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET);
360 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
361 ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
362 writel_relaxed(CNT_CNTRL_RESET,
363 ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
364
365 err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
366 if (err) {
367 kfree(ttccs);
368 return err;
369 }
370
371 ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
372 sched_clock_register(ttc_sched_clock_read, timer_width,
373 ttccs->ttc.freq / PRESCALE);
374
375 return 0;
376 }
377
378 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379 unsigned long event, void *data)
380 {
381 struct clk_notifier_data *ndata = data;
382 struct ttc_timer *ttc = to_ttc_timer(nb);
383 struct ttc_timer_clockevent *ttcce = container_of(ttc,
384 struct ttc_timer_clockevent, ttc);
385
386 switch (event) {
387 case POST_RATE_CHANGE:
388
389 ttc->freq = ndata->new_rate;
390
391 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392
393
394 case PRE_RATE_CHANGE:
395 case ABORT_RATE_CHANGE:
396 default:
397 return NOTIFY_DONE;
398 }
399 }
400
401 static int __init ttc_setup_clockevent(struct clk *clk,
402 void __iomem *base, u32 irq)
403 {
404 struct ttc_timer_clockevent *ttcce;
405 int err;
406
407 ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408 if (!ttcce)
409 return -ENOMEM;
410
411 ttcce->ttc.clk = clk;
412
413 err = clk_prepare_enable(ttcce->ttc.clk);
414 if (err) {
415 kfree(ttcce);
416 return err;
417 }
418
419 ttcce->ttc.clk_rate_change_nb.notifier_call =
420 ttc_rate_change_clockevent_cb;
421 ttcce->ttc.clk_rate_change_nb.next = NULL;
422
423 err = clk_notifier_register(ttcce->ttc.clk,
424 &ttcce->ttc.clk_rate_change_nb);
425 if (err) {
426 pr_warn("Unable to register clock notifier.\n");
427 return err;
428 }
429
430 ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
431
432 ttcce->ttc.base_addr = base;
433 ttcce->ce.name = "ttc_clockevent";
434 ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
435 ttcce->ce.set_next_event = ttc_set_next_event;
436 ttcce->ce.set_state_shutdown = ttc_shutdown;
437 ttcce->ce.set_state_periodic = ttc_set_periodic;
438 ttcce->ce.set_state_oneshot = ttc_shutdown;
439 ttcce->ce.tick_resume = ttc_resume;
440 ttcce->ce.rating = 200;
441 ttcce->ce.irq = irq;
442 ttcce->ce.cpumask = cpu_possible_mask;
443
444
445
446
447
448
449 writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
450 writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
451 ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
452 writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET);
453
454 err = request_irq(irq, ttc_clock_event_interrupt,
455 IRQF_TIMER, ttcce->ce.name, ttcce);
456 if (err) {
457 kfree(ttcce);
458 return err;
459 }
460
461 clockevents_config_and_register(&ttcce->ce,
462 ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
463
464 return 0;
465 }
466
467
468
469
470
471
472
473 static int __init ttc_timer_init(struct device_node *timer)
474 {
475 unsigned int irq;
476 void __iomem *timer_baseaddr;
477 struct clk *clk_cs, *clk_ce;
478 static int initialized;
479 int clksel, ret;
480 u32 timer_width = 16;
481
482 if (initialized)
483 return 0;
484
485 initialized = 1;
486
487
488
489
490
491
492 timer_baseaddr = of_iomap(timer, 0);
493 if (!timer_baseaddr) {
494 pr_err("ERROR: invalid timer base address\n");
495 return -ENXIO;
496 }
497
498 irq = irq_of_parse_and_map(timer, 1);
499 if (irq <= 0) {
500 pr_err("ERROR: invalid interrupt number\n");
501 return -EINVAL;
502 }
503
504 of_property_read_u32(timer, "timer-width", &timer_width);
505
506 clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
507 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508 clk_cs = of_clk_get(timer, clksel);
509 if (IS_ERR(clk_cs)) {
510 pr_err("ERROR: timer input clock not found\n");
511 return PTR_ERR(clk_cs);
512 }
513
514 clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
515 clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516 clk_ce = of_clk_get(timer, clksel);
517 if (IS_ERR(clk_ce)) {
518 pr_err("ERROR: timer input clock not found\n");
519 return PTR_ERR(clk_ce);
520 }
521
522 ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
523 if (ret)
524 return ret;
525
526 ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
527 if (ret)
528 return ret;
529
530 pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
531
532 return 0;
533 }
534
535 TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);