root/drivers/clocksource/timer-vf-pit.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pit_timer_enable
  2. pit_timer_disable
  3. pit_irq_acknowledge
  4. pit_read_sched_clock
  5. pit_clocksource_init
  6. pit_set_next_event
  7. pit_shutdown
  8. pit_set_periodic
  9. pit_timer_interrupt
  10. pit_clockevent_init
  11. pit_timer_init

   1 // SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3  * Copyright 2012-2013 Freescale Semiconductor, Inc.
   4  */
   5 
   6 #include <linux/interrupt.h>
   7 #include <linux/clockchips.h>
   8 #include <linux/clk.h>
   9 #include <linux/of_address.h>
  10 #include <linux/of_irq.h>
  11 #include <linux/sched_clock.h>
  12 
  13 /*
  14  * Each pit takes 0x10 Bytes register space
  15  */
  16 #define PITMCR          0x00
  17 #define PIT0_OFFSET     0x100
  18 #define PITn_OFFSET(n)  (PIT0_OFFSET + 0x10 * (n))
  19 #define PITLDVAL        0x00
  20 #define PITCVAL         0x04
  21 #define PITTCTRL        0x08
  22 #define PITTFLG         0x0c
  23 
  24 #define PITMCR_MDIS     (0x1 << 1)
  25 
  26 #define PITTCTRL_TEN    (0x1 << 0)
  27 #define PITTCTRL_TIE    (0x1 << 1)
  28 #define PITCTRL_CHN     (0x1 << 2)
  29 
  30 #define PITTFLG_TIF     0x1
  31 
  32 static void __iomem *clksrc_base;
  33 static void __iomem *clkevt_base;
  34 static unsigned long cycle_per_jiffy;
  35 
  36 static inline void pit_timer_enable(void)
  37 {
  38         __raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL);
  39 }
  40 
  41 static inline void pit_timer_disable(void)
  42 {
  43         __raw_writel(0, clkevt_base + PITTCTRL);
  44 }
  45 
  46 static inline void pit_irq_acknowledge(void)
  47 {
  48         __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
  49 }
  50 
  51 static u64 notrace pit_read_sched_clock(void)
  52 {
  53         return ~__raw_readl(clksrc_base + PITCVAL);
  54 }
  55 
  56 static int __init pit_clocksource_init(unsigned long rate)
  57 {
  58         /* set the max load value and start the clock source counter */
  59         __raw_writel(0, clksrc_base + PITTCTRL);
  60         __raw_writel(~0UL, clksrc_base + PITLDVAL);
  61         __raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL);
  62 
  63         sched_clock_register(pit_read_sched_clock, 32, rate);
  64         return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate,
  65                         300, 32, clocksource_mmio_readl_down);
  66 }
  67 
  68 static int pit_set_next_event(unsigned long delta,
  69                                 struct clock_event_device *unused)
  70 {
  71         /*
  72          * set a new value to PITLDVAL register will not restart the timer,
  73          * to abort the current cycle and start a timer period with the new
  74          * value, the timer must be disabled and enabled again.
  75          * and the PITLAVAL should be set to delta minus one according to pit
  76          * hardware requirement.
  77          */
  78         pit_timer_disable();
  79         __raw_writel(delta - 1, clkevt_base + PITLDVAL);
  80         pit_timer_enable();
  81 
  82         return 0;
  83 }
  84 
  85 static int pit_shutdown(struct clock_event_device *evt)
  86 {
  87         pit_timer_disable();
  88         return 0;
  89 }
  90 
  91 static int pit_set_periodic(struct clock_event_device *evt)
  92 {
  93         pit_set_next_event(cycle_per_jiffy, evt);
  94         return 0;
  95 }
  96 
  97 static irqreturn_t pit_timer_interrupt(int irq, void *dev_id)
  98 {
  99         struct clock_event_device *evt = dev_id;
 100 
 101         pit_irq_acknowledge();
 102 
 103         /*
 104          * pit hardware doesn't support oneshot, it will generate an interrupt
 105          * and reload the counter value from PITLDVAL when PITCVAL reach zero,
 106          * and start the counter again. So software need to disable the timer
 107          * to stop the counter loop in ONESHOT mode.
 108          */
 109         if (likely(clockevent_state_oneshot(evt)))
 110                 pit_timer_disable();
 111 
 112         evt->event_handler(evt);
 113 
 114         return IRQ_HANDLED;
 115 }
 116 
 117 static struct clock_event_device clockevent_pit = {
 118         .name           = "VF pit timer",
 119         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 120         .set_state_shutdown = pit_shutdown,
 121         .set_state_periodic = pit_set_periodic,
 122         .set_next_event = pit_set_next_event,
 123         .rating         = 300,
 124 };
 125 
 126 static struct irqaction pit_timer_irq = {
 127         .name           = "VF pit timer",
 128         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
 129         .handler        = pit_timer_interrupt,
 130         .dev_id         = &clockevent_pit,
 131 };
 132 
 133 static int __init pit_clockevent_init(unsigned long rate, int irq)
 134 {
 135         __raw_writel(0, clkevt_base + PITTCTRL);
 136         __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG);
 137 
 138         BUG_ON(setup_irq(irq, &pit_timer_irq));
 139 
 140         clockevent_pit.cpumask = cpumask_of(0);
 141         clockevent_pit.irq = irq;
 142         /*
 143          * The value for the LDVAL register trigger is calculated as:
 144          * LDVAL trigger = (period / clock period) - 1
 145          * The pit is a 32-bit down count timer, when the conter value
 146          * reaches 0, it will generate an interrupt, thus the minimal
 147          * LDVAL trigger value is 1. And then the min_delta is
 148          * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit.
 149          */
 150         clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff);
 151 
 152         return 0;
 153 }
 154 
 155 static int __init pit_timer_init(struct device_node *np)
 156 {
 157         struct clk *pit_clk;
 158         void __iomem *timer_base;
 159         unsigned long clk_rate;
 160         int irq, ret;
 161 
 162         timer_base = of_iomap(np, 0);
 163         if (!timer_base) {
 164                 pr_err("Failed to iomap\n");
 165                 return -ENXIO;
 166         }
 167 
 168         /*
 169          * PIT0 and PIT1 can be chained to build a 64-bit timer,
 170          * so choose PIT2 as clocksource, PIT3 as clockevent device,
 171          * and leave PIT0 and PIT1 unused for anyone else who needs them.
 172          */
 173         clksrc_base = timer_base + PITn_OFFSET(2);
 174         clkevt_base = timer_base + PITn_OFFSET(3);
 175 
 176         irq = irq_of_parse_and_map(np, 0);
 177         if (irq <= 0)
 178                 return -EINVAL;
 179 
 180         pit_clk = of_clk_get(np, 0);
 181         if (IS_ERR(pit_clk))
 182                 return PTR_ERR(pit_clk);
 183 
 184         ret = clk_prepare_enable(pit_clk);
 185         if (ret)
 186                 return ret;
 187 
 188         clk_rate = clk_get_rate(pit_clk);
 189         cycle_per_jiffy = clk_rate / (HZ);
 190 
 191         /* enable the pit module */
 192         __raw_writel(~PITMCR_MDIS, timer_base + PITMCR);
 193 
 194         ret = pit_clocksource_init(clk_rate);
 195         if (ret)
 196                 return ret;
 197 
 198         return pit_clockevent_init(clk_rate, irq);
 199 }
 200 TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);

/* [<][>][^][v][top][bottom][index][help] */