This source file includes following definitions.
- em_sti_read
- em_sti_write
- em_sti_enable
- em_sti_disable
- em_sti_count
- em_sti_set_next
- em_sti_interrupt
- em_sti_start
- em_sti_stop
- cs_to_em_sti
- em_sti_clocksource_read
- em_sti_clocksource_enable
- em_sti_clocksource_disable
- em_sti_clocksource_resume
- em_sti_register_clocksource
- ced_to_em_sti
- em_sti_clock_event_shutdown
- em_sti_clock_event_set_oneshot
- em_sti_clock_event_next
- em_sti_register_clockevent
- em_sti_probe
- em_sti_remove
- em_sti_init
- em_sti_exit
1
2
3
4
5
6
7
8 #include <linux/init.h>
9 #include <linux/platform_device.h>
10 #include <linux/spinlock.h>
11 #include <linux/interrupt.h>
12 #include <linux/ioport.h>
13 #include <linux/io.h>
14 #include <linux/clk.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/delay.h>
18 #include <linux/clocksource.h>
19 #include <linux/clockchips.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22
23 enum { USER_CLOCKSOURCE, USER_CLOCKEVENT, USER_NR };
24
25 struct em_sti_priv {
26 void __iomem *base;
27 struct clk *clk;
28 struct platform_device *pdev;
29 unsigned int active[USER_NR];
30 unsigned long rate;
31 raw_spinlock_t lock;
32 struct clock_event_device ced;
33 struct clocksource cs;
34 };
35
36 #define STI_CONTROL 0x00
37 #define STI_COMPA_H 0x10
38 #define STI_COMPA_L 0x14
39 #define STI_COMPB_H 0x18
40 #define STI_COMPB_L 0x1c
41 #define STI_COUNT_H 0x20
42 #define STI_COUNT_L 0x24
43 #define STI_COUNT_RAW_H 0x28
44 #define STI_COUNT_RAW_L 0x2c
45 #define STI_SET_H 0x30
46 #define STI_SET_L 0x34
47 #define STI_INTSTATUS 0x40
48 #define STI_INTRAWSTATUS 0x44
49 #define STI_INTENSET 0x48
50 #define STI_INTENCLR 0x4c
51 #define STI_INTFFCLR 0x50
52
53 static inline unsigned long em_sti_read(struct em_sti_priv *p, int offs)
54 {
55 return ioread32(p->base + offs);
56 }
57
58 static inline void em_sti_write(struct em_sti_priv *p, int offs,
59 unsigned long value)
60 {
61 iowrite32(value, p->base + offs);
62 }
63
64 static int em_sti_enable(struct em_sti_priv *p)
65 {
66 int ret;
67
68
69 ret = clk_enable(p->clk);
70 if (ret) {
71 dev_err(&p->pdev->dev, "cannot enable clock\n");
72 return ret;
73 }
74
75
76 em_sti_write(p, STI_SET_H, 0x40000000);
77 em_sti_write(p, STI_SET_L, 0x00000000);
78
79
80 em_sti_write(p, STI_INTENCLR, 3);
81 em_sti_write(p, STI_INTFFCLR, 3);
82
83
84 em_sti_write(p, STI_CONTROL, 1);
85
86 return 0;
87 }
88
89 static void em_sti_disable(struct em_sti_priv *p)
90 {
91
92 em_sti_write(p, STI_INTENCLR, 3);
93
94
95 clk_disable(p->clk);
96 }
97
98 static u64 em_sti_count(struct em_sti_priv *p)
99 {
100 u64 ticks;
101 unsigned long flags;
102
103
104
105
106
107
108 raw_spin_lock_irqsave(&p->lock, flags);
109 ticks = (u64)(em_sti_read(p, STI_COUNT_H) & 0xffff) << 32;
110 ticks |= em_sti_read(p, STI_COUNT_L);
111 raw_spin_unlock_irqrestore(&p->lock, flags);
112
113 return ticks;
114 }
115
116 static u64 em_sti_set_next(struct em_sti_priv *p, u64 next)
117 {
118 unsigned long flags;
119
120 raw_spin_lock_irqsave(&p->lock, flags);
121
122
123 em_sti_write(p, STI_INTENCLR, 1);
124
125
126 em_sti_write(p, STI_COMPA_H, next >> 32);
127 em_sti_write(p, STI_COMPA_L, next & 0xffffffff);
128
129
130 em_sti_write(p, STI_INTFFCLR, 1);
131
132
133 em_sti_write(p, STI_INTENSET, 1);
134
135 raw_spin_unlock_irqrestore(&p->lock, flags);
136
137 return next;
138 }
139
140 static irqreturn_t em_sti_interrupt(int irq, void *dev_id)
141 {
142 struct em_sti_priv *p = dev_id;
143
144 p->ced.event_handler(&p->ced);
145 return IRQ_HANDLED;
146 }
147
148 static int em_sti_start(struct em_sti_priv *p, unsigned int user)
149 {
150 unsigned long flags;
151 int used_before;
152 int ret = 0;
153
154 raw_spin_lock_irqsave(&p->lock, flags);
155 used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
156 if (!used_before)
157 ret = em_sti_enable(p);
158
159 if (!ret)
160 p->active[user] = 1;
161 raw_spin_unlock_irqrestore(&p->lock, flags);
162
163 return ret;
164 }
165
166 static void em_sti_stop(struct em_sti_priv *p, unsigned int user)
167 {
168 unsigned long flags;
169 int used_before, used_after;
170
171 raw_spin_lock_irqsave(&p->lock, flags);
172 used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
173 p->active[user] = 0;
174 used_after = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
175
176 if (used_before && !used_after)
177 em_sti_disable(p);
178 raw_spin_unlock_irqrestore(&p->lock, flags);
179 }
180
181 static struct em_sti_priv *cs_to_em_sti(struct clocksource *cs)
182 {
183 return container_of(cs, struct em_sti_priv, cs);
184 }
185
186 static u64 em_sti_clocksource_read(struct clocksource *cs)
187 {
188 return em_sti_count(cs_to_em_sti(cs));
189 }
190
191 static int em_sti_clocksource_enable(struct clocksource *cs)
192 {
193 struct em_sti_priv *p = cs_to_em_sti(cs);
194
195 return em_sti_start(p, USER_CLOCKSOURCE);
196 }
197
198 static void em_sti_clocksource_disable(struct clocksource *cs)
199 {
200 em_sti_stop(cs_to_em_sti(cs), USER_CLOCKSOURCE);
201 }
202
203 static void em_sti_clocksource_resume(struct clocksource *cs)
204 {
205 em_sti_clocksource_enable(cs);
206 }
207
208 static int em_sti_register_clocksource(struct em_sti_priv *p)
209 {
210 struct clocksource *cs = &p->cs;
211
212 cs->name = dev_name(&p->pdev->dev);
213 cs->rating = 200;
214 cs->read = em_sti_clocksource_read;
215 cs->enable = em_sti_clocksource_enable;
216 cs->disable = em_sti_clocksource_disable;
217 cs->suspend = em_sti_clocksource_disable;
218 cs->resume = em_sti_clocksource_resume;
219 cs->mask = CLOCKSOURCE_MASK(48);
220 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
221
222 dev_info(&p->pdev->dev, "used as clock source\n");
223
224 clocksource_register_hz(cs, p->rate);
225 return 0;
226 }
227
228 static struct em_sti_priv *ced_to_em_sti(struct clock_event_device *ced)
229 {
230 return container_of(ced, struct em_sti_priv, ced);
231 }
232
233 static int em_sti_clock_event_shutdown(struct clock_event_device *ced)
234 {
235 struct em_sti_priv *p = ced_to_em_sti(ced);
236 em_sti_stop(p, USER_CLOCKEVENT);
237 return 0;
238 }
239
240 static int em_sti_clock_event_set_oneshot(struct clock_event_device *ced)
241 {
242 struct em_sti_priv *p = ced_to_em_sti(ced);
243
244 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
245 em_sti_start(p, USER_CLOCKEVENT);
246 return 0;
247 }
248
249 static int em_sti_clock_event_next(unsigned long delta,
250 struct clock_event_device *ced)
251 {
252 struct em_sti_priv *p = ced_to_em_sti(ced);
253 u64 next;
254 int safe;
255
256 next = em_sti_set_next(p, em_sti_count(p) + delta);
257 safe = em_sti_count(p) < (next - 1);
258
259 return !safe;
260 }
261
262 static void em_sti_register_clockevent(struct em_sti_priv *p)
263 {
264 struct clock_event_device *ced = &p->ced;
265
266 ced->name = dev_name(&p->pdev->dev);
267 ced->features = CLOCK_EVT_FEAT_ONESHOT;
268 ced->rating = 200;
269 ced->cpumask = cpu_possible_mask;
270 ced->set_next_event = em_sti_clock_event_next;
271 ced->set_state_shutdown = em_sti_clock_event_shutdown;
272 ced->set_state_oneshot = em_sti_clock_event_set_oneshot;
273
274 dev_info(&p->pdev->dev, "used for clock events\n");
275
276 clockevents_config_and_register(ced, p->rate, 2, 0xffffffff);
277 }
278
279 static int em_sti_probe(struct platform_device *pdev)
280 {
281 struct em_sti_priv *p;
282 struct resource *res;
283 int irq;
284 int ret;
285
286 p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL);
287 if (p == NULL)
288 return -ENOMEM;
289
290 p->pdev = pdev;
291 platform_set_drvdata(pdev, p);
292
293 irq = platform_get_irq(pdev, 0);
294 if (irq < 0)
295 return irq;
296
297
298 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
299 p->base = devm_ioremap_resource(&pdev->dev, res);
300 if (IS_ERR(p->base))
301 return PTR_ERR(p->base);
302
303 ret = devm_request_irq(&pdev->dev, irq, em_sti_interrupt,
304 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
305 dev_name(&pdev->dev), p);
306 if (ret) {
307 dev_err(&pdev->dev, "failed to request low IRQ\n");
308 return ret;
309 }
310
311
312 p->clk = devm_clk_get(&pdev->dev, "sclk");
313 if (IS_ERR(p->clk)) {
314 dev_err(&pdev->dev, "cannot get clock\n");
315 return PTR_ERR(p->clk);
316 }
317
318 ret = clk_prepare(p->clk);
319 if (ret < 0) {
320 dev_err(&pdev->dev, "cannot prepare clock\n");
321 return ret;
322 }
323
324 ret = clk_enable(p->clk);
325 if (ret < 0) {
326 dev_err(&p->pdev->dev, "cannot enable clock\n");
327 clk_unprepare(p->clk);
328 return ret;
329 }
330 p->rate = clk_get_rate(p->clk);
331 clk_disable(p->clk);
332
333 raw_spin_lock_init(&p->lock);
334 em_sti_register_clockevent(p);
335 em_sti_register_clocksource(p);
336 return 0;
337 }
338
339 static int em_sti_remove(struct platform_device *pdev)
340 {
341 return -EBUSY;
342 }
343
344 static const struct of_device_id em_sti_dt_ids[] = {
345 { .compatible = "renesas,em-sti", },
346 {},
347 };
348 MODULE_DEVICE_TABLE(of, em_sti_dt_ids);
349
350 static struct platform_driver em_sti_device_driver = {
351 .probe = em_sti_probe,
352 .remove = em_sti_remove,
353 .driver = {
354 .name = "em_sti",
355 .of_match_table = em_sti_dt_ids,
356 }
357 };
358
359 static int __init em_sti_init(void)
360 {
361 return platform_driver_register(&em_sti_device_driver);
362 }
363
364 static void __exit em_sti_exit(void)
365 {
366 platform_driver_unregister(&em_sti_device_driver);
367 }
368
369 subsys_initcall(em_sti_init);
370 module_exit(em_sti_exit);
371
372 MODULE_AUTHOR("Magnus Damm");
373 MODULE_DESCRIPTION("Renesas Emma Mobile STI Timer Driver");
374 MODULE_LICENSE("GPL v2");