This source file includes following definitions.
- _gt_counter_read
- gt_counter_read
- gt_compare_set
- gt_clockevent_shutdown
- gt_clockevent_set_periodic
- gt_clockevent_set_next_event
- gt_clockevent_interrupt
- gt_starting_cpu
- gt_dying_cpu
- gt_clocksource_read
- gt_resume
- gt_sched_clock_read
- gt_read_long
- gt_delay_timer_init
- gt_clocksource_init
- global_timer_of_register
1
2
3
4
5
6
7
8
9
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/cpu.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/io.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/sched_clock.h>
23
24 #include <asm/cputype.h>
25
26 #define GT_COUNTER0 0x00
27 #define GT_COUNTER1 0x04
28
29 #define GT_CONTROL 0x08
30 #define GT_CONTROL_TIMER_ENABLE BIT(0)
31 #define GT_CONTROL_COMP_ENABLE BIT(1)
32 #define GT_CONTROL_IRQ_ENABLE BIT(2)
33 #define GT_CONTROL_AUTO_INC BIT(3)
34
35 #define GT_INT_STATUS 0x0c
36 #define GT_INT_STATUS_EVENT_FLAG BIT(0)
37
38 #define GT_COMP0 0x10
39 #define GT_COMP1 0x14
40 #define GT_AUTO_INC 0x18
41
42
43
44
45
46
47
48 static void __iomem *gt_base;
49 static unsigned long gt_clk_rate;
50 static int gt_ppi;
51 static struct clock_event_device __percpu *gt_evt;
52
53
54
55
56
57
58
59
60
61 static u64 notrace _gt_counter_read(void)
62 {
63 u64 counter;
64 u32 lower;
65 u32 upper, old_upper;
66
67 upper = readl_relaxed(gt_base + GT_COUNTER1);
68 do {
69 old_upper = upper;
70 lower = readl_relaxed(gt_base + GT_COUNTER0);
71 upper = readl_relaxed(gt_base + GT_COUNTER1);
72 } while (upper != old_upper);
73
74 counter = upper;
75 counter <<= 32;
76 counter |= lower;
77 return counter;
78 }
79
80 static u64 gt_counter_read(void)
81 {
82 return _gt_counter_read();
83 }
84
85
86
87
88
89
90
91
92
93 static void gt_compare_set(unsigned long delta, int periodic)
94 {
95 u64 counter = gt_counter_read();
96 unsigned long ctrl;
97
98 counter += delta;
99 ctrl = GT_CONTROL_TIMER_ENABLE;
100 writel_relaxed(ctrl, gt_base + GT_CONTROL);
101 writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
102 writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
103
104 if (periodic) {
105 writel_relaxed(delta, gt_base + GT_AUTO_INC);
106 ctrl |= GT_CONTROL_AUTO_INC;
107 }
108
109 ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
110 writel_relaxed(ctrl, gt_base + GT_CONTROL);
111 }
112
113 static int gt_clockevent_shutdown(struct clock_event_device *evt)
114 {
115 unsigned long ctrl;
116
117 ctrl = readl(gt_base + GT_CONTROL);
118 ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
119 GT_CONTROL_AUTO_INC);
120 writel(ctrl, gt_base + GT_CONTROL);
121 return 0;
122 }
123
124 static int gt_clockevent_set_periodic(struct clock_event_device *evt)
125 {
126 gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
127 return 0;
128 }
129
130 static int gt_clockevent_set_next_event(unsigned long evt,
131 struct clock_event_device *unused)
132 {
133 gt_compare_set(evt, 0);
134 return 0;
135 }
136
137 static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
138 {
139 struct clock_event_device *evt = dev_id;
140
141 if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
142 GT_INT_STATUS_EVENT_FLAG))
143 return IRQ_NONE;
144
145
146
147
148
149
150
151
152
153
154
155
156 if (clockevent_state_oneshot(evt))
157 gt_compare_set(ULONG_MAX, 0);
158
159 writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
160 evt->event_handler(evt);
161
162 return IRQ_HANDLED;
163 }
164
165 static int gt_starting_cpu(unsigned int cpu)
166 {
167 struct clock_event_device *clk = this_cpu_ptr(gt_evt);
168
169 clk->name = "arm_global_timer";
170 clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
171 CLOCK_EVT_FEAT_PERCPU;
172 clk->set_state_shutdown = gt_clockevent_shutdown;
173 clk->set_state_periodic = gt_clockevent_set_periodic;
174 clk->set_state_oneshot = gt_clockevent_shutdown;
175 clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
176 clk->set_next_event = gt_clockevent_set_next_event;
177 clk->cpumask = cpumask_of(cpu);
178 clk->rating = 300;
179 clk->irq = gt_ppi;
180 clockevents_config_and_register(clk, gt_clk_rate,
181 1, 0xffffffff);
182 enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
183 return 0;
184 }
185
186 static int gt_dying_cpu(unsigned int cpu)
187 {
188 struct clock_event_device *clk = this_cpu_ptr(gt_evt);
189
190 gt_clockevent_shutdown(clk);
191 disable_percpu_irq(clk->irq);
192 return 0;
193 }
194
195 static u64 gt_clocksource_read(struct clocksource *cs)
196 {
197 return gt_counter_read();
198 }
199
200 static void gt_resume(struct clocksource *cs)
201 {
202 unsigned long ctrl;
203
204 ctrl = readl(gt_base + GT_CONTROL);
205 if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
206
207 writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
208 }
209
210 static struct clocksource gt_clocksource = {
211 .name = "arm_global_timer",
212 .rating = 300,
213 .read = gt_clocksource_read,
214 .mask = CLOCKSOURCE_MASK(64),
215 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
216 .resume = gt_resume,
217 };
218
219 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
220 static u64 notrace gt_sched_clock_read(void)
221 {
222 return _gt_counter_read();
223 }
224 #endif
225
226 static unsigned long gt_read_long(void)
227 {
228 return readl_relaxed(gt_base + GT_COUNTER0);
229 }
230
231 static struct delay_timer gt_delay_timer = {
232 .read_current_timer = gt_read_long,
233 };
234
235 static void __init gt_delay_timer_init(void)
236 {
237 gt_delay_timer.freq = gt_clk_rate;
238 register_current_timer_delay(>_delay_timer);
239 }
240
241 static int __init gt_clocksource_init(void)
242 {
243 writel(0, gt_base + GT_CONTROL);
244 writel(0, gt_base + GT_COUNTER0);
245 writel(0, gt_base + GT_COUNTER1);
246
247 writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
248
249 #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
250 sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
251 #endif
252 return clocksource_register_hz(>_clocksource, gt_clk_rate);
253 }
254
255 static int __init global_timer_of_register(struct device_node *np)
256 {
257 struct clk *gt_clk;
258 int err = 0;
259
260
261
262
263
264
265 if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
266 && (read_cpuid_id() & 0xf0000f) < 0x200000) {
267 pr_warn("global-timer: non support for this cpu version.\n");
268 return -ENOSYS;
269 }
270
271 gt_ppi = irq_of_parse_and_map(np, 0);
272 if (!gt_ppi) {
273 pr_warn("global-timer: unable to parse irq\n");
274 return -EINVAL;
275 }
276
277 gt_base = of_iomap(np, 0);
278 if (!gt_base) {
279 pr_warn("global-timer: invalid base address\n");
280 return -ENXIO;
281 }
282
283 gt_clk = of_clk_get(np, 0);
284 if (!IS_ERR(gt_clk)) {
285 err = clk_prepare_enable(gt_clk);
286 if (err)
287 goto out_unmap;
288 } else {
289 pr_warn("global-timer: clk not found\n");
290 err = -EINVAL;
291 goto out_unmap;
292 }
293
294 gt_clk_rate = clk_get_rate(gt_clk);
295 gt_evt = alloc_percpu(struct clock_event_device);
296 if (!gt_evt) {
297 pr_warn("global-timer: can't allocate memory\n");
298 err = -ENOMEM;
299 goto out_clk;
300 }
301
302 err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
303 "gt", gt_evt);
304 if (err) {
305 pr_warn("global-timer: can't register interrupt %d (%d)\n",
306 gt_ppi, err);
307 goto out_free;
308 }
309
310
311 err = gt_clocksource_init();
312 if (err)
313 goto out_irq;
314
315 err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
316 "clockevents/arm/global_timer:starting",
317 gt_starting_cpu, gt_dying_cpu);
318 if (err)
319 goto out_irq;
320
321 gt_delay_timer_init();
322
323 return 0;
324
325 out_irq:
326 free_percpu_irq(gt_ppi, gt_evt);
327 out_free:
328 free_percpu(gt_evt);
329 out_clk:
330 clk_disable_unprepare(gt_clk);
331 out_unmap:
332 iounmap(gt_base);
333 WARN(err, "ARM Global timer register failed (%d)\n", err);
334
335 return err;
336 }
337
338
339 TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
340 global_timer_of_register);