root/drivers/clocksource/dw_apb_timer.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ced_to_dw_apb_ced
  2. clocksource_to_dw_apb_clocksource
  3. apbt_readl
  4. apbt_writel
  5. apbt_readl_relaxed
  6. apbt_writel_relaxed
  7. apbt_disable_int
  8. dw_apb_clockevent_pause
  9. apbt_eoi
  10. dw_apb_clockevent_irq
  11. apbt_enable_int
  12. apbt_shutdown
  13. apbt_set_oneshot
  14. apbt_set_periodic
  15. apbt_resume
  16. apbt_next_event
  17. dw_apb_clockevent_init
  18. dw_apb_clockevent_resume
  19. dw_apb_clockevent_stop
  20. dw_apb_clockevent_register
  21. dw_apb_clocksource_start
  22. __apbt_read_clocksource
  23. apbt_restart_clocksource
  24. dw_apb_clocksource_init
  25. dw_apb_clocksource_register
  26. dw_apb_clocksource_read

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * (C) Copyright 2009 Intel Corporation
   4  * Author: Jacob Pan (jacob.jun.pan@intel.com)
   5  *
   6  * Shared with ARM platforms, Jamie Iles, Picochip 2011
   7  *
   8  * Support for the Synopsys DesignWare APB Timers.
   9  */
  10 #include <linux/dw_apb_timer.h>
  11 #include <linux/delay.h>
  12 #include <linux/kernel.h>
  13 #include <linux/interrupt.h>
  14 #include <linux/irq.h>
  15 #include <linux/io.h>
  16 #include <linux/slab.h>
  17 
  18 #define APBT_MIN_PERIOD                 4
  19 #define APBT_MIN_DELTA_USEC             200
  20 
  21 #define APBTMR_N_LOAD_COUNT             0x00
  22 #define APBTMR_N_CURRENT_VALUE          0x04
  23 #define APBTMR_N_CONTROL                0x08
  24 #define APBTMR_N_EOI                    0x0c
  25 #define APBTMR_N_INT_STATUS             0x10
  26 
  27 #define APBTMRS_INT_STATUS              0xa0
  28 #define APBTMRS_EOI                     0xa4
  29 #define APBTMRS_RAW_INT_STATUS          0xa8
  30 #define APBTMRS_COMP_VERSION            0xac
  31 
  32 #define APBTMR_CONTROL_ENABLE           (1 << 0)
  33 /* 1: periodic, 0:free running. */
  34 #define APBTMR_CONTROL_MODE_PERIODIC    (1 << 1)
  35 #define APBTMR_CONTROL_INT              (1 << 2)
  36 
  37 static inline struct dw_apb_clock_event_device *
  38 ced_to_dw_apb_ced(struct clock_event_device *evt)
  39 {
  40         return container_of(evt, struct dw_apb_clock_event_device, ced);
  41 }
  42 
  43 static inline struct dw_apb_clocksource *
  44 clocksource_to_dw_apb_clocksource(struct clocksource *cs)
  45 {
  46         return container_of(cs, struct dw_apb_clocksource, cs);
  47 }
  48 
  49 static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
  50 {
  51         return readl(timer->base + offs);
  52 }
  53 
  54 static inline void apbt_writel(struct dw_apb_timer *timer, u32 val,
  55                         unsigned long offs)
  56 {
  57         writel(val, timer->base + offs);
  58 }
  59 
  60 static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs)
  61 {
  62         return readl_relaxed(timer->base + offs);
  63 }
  64 
  65 static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val,
  66                         unsigned long offs)
  67 {
  68         writel_relaxed(val, timer->base + offs);
  69 }
  70 
  71 static void apbt_disable_int(struct dw_apb_timer *timer)
  72 {
  73         u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
  74 
  75         ctrl |= APBTMR_CONTROL_INT;
  76         apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
  77 }
  78 
  79 /**
  80  * dw_apb_clockevent_pause() - stop the clock_event_device from running
  81  *
  82  * @dw_ced:     The APB clock to stop generating events.
  83  */
  84 void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
  85 {
  86         disable_irq(dw_ced->timer.irq);
  87         apbt_disable_int(&dw_ced->timer);
  88 }
  89 
  90 static void apbt_eoi(struct dw_apb_timer *timer)
  91 {
  92         apbt_readl_relaxed(timer, APBTMR_N_EOI);
  93 }
  94 
  95 static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
  96 {
  97         struct clock_event_device *evt = data;
  98         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
  99 
 100         if (!evt->event_handler) {
 101                 pr_info("Spurious APBT timer interrupt %d\n", irq);
 102                 return IRQ_NONE;
 103         }
 104 
 105         if (dw_ced->eoi)
 106                 dw_ced->eoi(&dw_ced->timer);
 107 
 108         evt->event_handler(evt);
 109         return IRQ_HANDLED;
 110 }
 111 
 112 static void apbt_enable_int(struct dw_apb_timer *timer)
 113 {
 114         u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
 115         /* clear pending intr */
 116         apbt_readl(timer, APBTMR_N_EOI);
 117         ctrl &= ~APBTMR_CONTROL_INT;
 118         apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
 119 }
 120 
 121 static int apbt_shutdown(struct clock_event_device *evt)
 122 {
 123         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 124         u32 ctrl;
 125 
 126         pr_debug("%s CPU %d state=shutdown\n", __func__,
 127                  cpumask_first(evt->cpumask));
 128 
 129         ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 130         ctrl &= ~APBTMR_CONTROL_ENABLE;
 131         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 132         return 0;
 133 }
 134 
 135 static int apbt_set_oneshot(struct clock_event_device *evt)
 136 {
 137         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 138         u32 ctrl;
 139 
 140         pr_debug("%s CPU %d state=oneshot\n", __func__,
 141                  cpumask_first(evt->cpumask));
 142 
 143         ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 144         /*
 145          * set free running mode, this mode will let timer reload max
 146          * timeout which will give time (3min on 25MHz clock) to rearm
 147          * the next event, therefore emulate the one-shot mode.
 148          */
 149         ctrl &= ~APBTMR_CONTROL_ENABLE;
 150         ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 151 
 152         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 153         /* write again to set free running mode */
 154         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 155 
 156         /*
 157          * DW APB p. 46, load counter with all 1s before starting free
 158          * running mode.
 159          */
 160         apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
 161         ctrl &= ~APBTMR_CONTROL_INT;
 162         ctrl |= APBTMR_CONTROL_ENABLE;
 163         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 164         return 0;
 165 }
 166 
 167 static int apbt_set_periodic(struct clock_event_device *evt)
 168 {
 169         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 170         unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
 171         u32 ctrl;
 172 
 173         pr_debug("%s CPU %d state=periodic\n", __func__,
 174                  cpumask_first(evt->cpumask));
 175 
 176         ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
 177         ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
 178         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 179         /*
 180          * DW APB p. 46, have to disable timer before load counter,
 181          * may cause sync problem.
 182          */
 183         ctrl &= ~APBTMR_CONTROL_ENABLE;
 184         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 185         udelay(1);
 186         pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
 187         apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
 188         ctrl |= APBTMR_CONTROL_ENABLE;
 189         apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 190         return 0;
 191 }
 192 
 193 static int apbt_resume(struct clock_event_device *evt)
 194 {
 195         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 196 
 197         pr_debug("%s CPU %d state=resume\n", __func__,
 198                  cpumask_first(evt->cpumask));
 199 
 200         apbt_enable_int(&dw_ced->timer);
 201         return 0;
 202 }
 203 
 204 static int apbt_next_event(unsigned long delta,
 205                            struct clock_event_device *evt)
 206 {
 207         u32 ctrl;
 208         struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
 209 
 210         /* Disable timer */
 211         ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL);
 212         ctrl &= ~APBTMR_CONTROL_ENABLE;
 213         apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 214         /* write new count */
 215         apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
 216         ctrl |= APBTMR_CONTROL_ENABLE;
 217         apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
 218 
 219         return 0;
 220 }
 221 
 222 /**
 223  * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
 224  *
 225  * @cpu:        The CPU the events will be targeted at.
 226  * @name:       The name used for the timer and the IRQ for it.
 227  * @rating:     The rating to give the timer.
 228  * @base:       I/O base for the timer registers.
 229  * @irq:        The interrupt number to use for the timer.
 230  * @freq:       The frequency that the timer counts at.
 231  *
 232  * This creates a clock_event_device for using with the generic clock layer
 233  * but does not start and register it.  This should be done with
 234  * dw_apb_clockevent_register() as the next step.  If this is the first time
 235  * it has been called for a timer then the IRQ will be requested, if not it
 236  * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
 237  * releasing the IRQ.
 238  */
 239 struct dw_apb_clock_event_device *
 240 dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
 241                        void __iomem *base, int irq, unsigned long freq)
 242 {
 243         struct dw_apb_clock_event_device *dw_ced =
 244                 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
 245         int err;
 246 
 247         if (!dw_ced)
 248                 return NULL;
 249 
 250         dw_ced->timer.base = base;
 251         dw_ced->timer.irq = irq;
 252         dw_ced->timer.freq = freq;
 253 
 254         clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
 255         dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
 256                                                        &dw_ced->ced);
 257         dw_ced->ced.max_delta_ticks = 0x7fffffff;
 258         dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
 259         dw_ced->ced.min_delta_ticks = 5000;
 260         dw_ced->ced.cpumask = cpumask_of(cpu);
 261         dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC |
 262                                 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ;
 263         dw_ced->ced.set_state_shutdown = apbt_shutdown;
 264         dw_ced->ced.set_state_periodic = apbt_set_periodic;
 265         dw_ced->ced.set_state_oneshot = apbt_set_oneshot;
 266         dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown;
 267         dw_ced->ced.tick_resume = apbt_resume;
 268         dw_ced->ced.set_next_event = apbt_next_event;
 269         dw_ced->ced.irq = dw_ced->timer.irq;
 270         dw_ced->ced.rating = rating;
 271         dw_ced->ced.name = name;
 272 
 273         dw_ced->irqaction.name          = dw_ced->ced.name;
 274         dw_ced->irqaction.handler       = dw_apb_clockevent_irq;
 275         dw_ced->irqaction.dev_id        = &dw_ced->ced;
 276         dw_ced->irqaction.irq           = irq;
 277         dw_ced->irqaction.flags         = IRQF_TIMER | IRQF_IRQPOLL |
 278                                           IRQF_NOBALANCING;
 279 
 280         dw_ced->eoi = apbt_eoi;
 281         err = setup_irq(irq, &dw_ced->irqaction);
 282         if (err) {
 283                 pr_err("failed to request timer irq\n");
 284                 kfree(dw_ced);
 285                 dw_ced = NULL;
 286         }
 287 
 288         return dw_ced;
 289 }
 290 
 291 /**
 292  * dw_apb_clockevent_resume() - resume a clock that has been paused.
 293  *
 294  * @dw_ced:     The APB clock to resume.
 295  */
 296 void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
 297 {
 298         enable_irq(dw_ced->timer.irq);
 299 }
 300 
 301 /**
 302  * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
 303  *
 304  * @dw_ced:     The APB clock to stop generating the events.
 305  */
 306 void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
 307 {
 308         free_irq(dw_ced->timer.irq, &dw_ced->ced);
 309 }
 310 
 311 /**
 312  * dw_apb_clockevent_register() - register the clock with the generic layer
 313  *
 314  * @dw_ced:     The APB clock to register as a clock_event_device.
 315  */
 316 void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
 317 {
 318         apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
 319         clockevents_register_device(&dw_ced->ced);
 320         apbt_enable_int(&dw_ced->timer);
 321 }
 322 
 323 /**
 324  * dw_apb_clocksource_start() - start the clocksource counting.
 325  *
 326  * @dw_cs:      The clocksource to start.
 327  *
 328  * This is used to start the clocksource before registration and can be used
 329  * to enable calibration of timers.
 330  */
 331 void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
 332 {
 333         /*
 334          * start count down from 0xffff_ffff. this is done by toggling the
 335          * enable bit then load initial load count to ~0.
 336          */
 337         u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
 338 
 339         ctrl &= ~APBTMR_CONTROL_ENABLE;
 340         apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 341         apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
 342         /* enable, mask interrupt */
 343         ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
 344         ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
 345         apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
 346         /* read it once to get cached counter value initialized */
 347         dw_apb_clocksource_read(dw_cs);
 348 }
 349 
 350 static u64 __apbt_read_clocksource(struct clocksource *cs)
 351 {
 352         u32 current_count;
 353         struct dw_apb_clocksource *dw_cs =
 354                 clocksource_to_dw_apb_clocksource(cs);
 355 
 356         current_count = apbt_readl_relaxed(&dw_cs->timer,
 357                                         APBTMR_N_CURRENT_VALUE);
 358 
 359         return (u64)~current_count;
 360 }
 361 
 362 static void apbt_restart_clocksource(struct clocksource *cs)
 363 {
 364         struct dw_apb_clocksource *dw_cs =
 365                 clocksource_to_dw_apb_clocksource(cs);
 366 
 367         dw_apb_clocksource_start(dw_cs);
 368 }
 369 
 370 /**
 371  * dw_apb_clocksource_init() - use an APB timer as a clocksource.
 372  *
 373  * @rating:     The rating to give the clocksource.
 374  * @name:       The name for the clocksource.
 375  * @base:       The I/O base for the timer registers.
 376  * @freq:       The frequency that the timer counts at.
 377  *
 378  * This creates a clocksource using an APB timer but does not yet register it
 379  * with the clocksource system.  This should be done with
 380  * dw_apb_clocksource_register() as the next step.
 381  */
 382 struct dw_apb_clocksource *
 383 dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
 384                         unsigned long freq)
 385 {
 386         struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
 387 
 388         if (!dw_cs)
 389                 return NULL;
 390 
 391         dw_cs->timer.base = base;
 392         dw_cs->timer.freq = freq;
 393         dw_cs->cs.name = name;
 394         dw_cs->cs.rating = rating;
 395         dw_cs->cs.read = __apbt_read_clocksource;
 396         dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
 397         dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
 398         dw_cs->cs.resume = apbt_restart_clocksource;
 399 
 400         return dw_cs;
 401 }
 402 
 403 /**
 404  * dw_apb_clocksource_register() - register the APB clocksource.
 405  *
 406  * @dw_cs:      The clocksource to register.
 407  */
 408 void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
 409 {
 410         clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
 411 }
 412 
 413 /**
 414  * dw_apb_clocksource_read() - read the current value of a clocksource.
 415  *
 416  * @dw_cs:      The clocksource to read.
 417  */
 418 u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
 419 {
 420         return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
 421 }

/* [<][>][^][v][top][bottom][index][help] */