This source file includes following definitions.
- edma_read
- edma_write
- edma_modify
- edma_and
- edma_or
- edma_read_array
- edma_write_array
- edma_modify_array
- edma_or_array
- edma_or_array2
- edma_write_array2
- edma_shadow0_read
- edma_shadow0_read_array
- edma_shadow0_write
- edma_shadow0_write_array
- edma_param_read
- edma_param_write
- edma_param_modify
- edma_param_and
- edma_param_or
- edma_assign_priority_to_queue
- edma_set_chmap
- edma_setup_interrupt
- edma_write_slot
- edma_read_slot
- edma_alloc_slot
- edma_free_slot
- edma_link
- edma_get_position
- edma_start
- edma_stop
- edma_pause
- edma_resume
- edma_trigger_channel
- edma_clean_channel
- edma_assign_channel_eventq
- edma_alloc_channel
- edma_free_channel
- to_edma_cc
- to_edma_chan
- to_edma_desc
- edma_desc_free
- edma_execute
- edma_terminate_all
- edma_synchronize
- edma_slave_config
- edma_dma_pause
- edma_dma_resume
- edma_config_pset
- edma_prep_slave_sg
- edma_prep_dma_memcpy
- edma_prep_dma_cyclic
- edma_completion_handler
- dma_irq_handler
- edma_error_handler
- edma_error_pending
- dma_ccerr_handler
- edma_alloc_chan_resources
- edma_free_chan_resources
- edma_issue_pending
- edma_residue
- edma_tx_status
- edma_is_memcpy_channel
- edma_dma_init
- edma_setup_from_hw
- edma_xbar_event_map
- edma_setup_info_from_dt
- of_edma_xlate
- edma_setup_info_from_dt
- of_edma_xlate
- edma_probe
- edma_cleanupp_vchan
- edma_remove
- edma_pm_suspend
- edma_pm_resume
- edma_tptc_probe
- edma_filter_fn
- edma_init
- edma_exit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/bitmap.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
38
39
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51
52 #define SH_ER 0x00
53 #define SH_ECR 0x08
54 #define SH_ESR 0x10
55 #define SH_CER 0x18
56 #define SH_EER 0x20
57 #define SH_EECR 0x28
58 #define SH_EESR 0x30
59 #define SH_SER 0x38
60 #define SH_SECR 0x40
61 #define SH_IER 0x50
62 #define SH_IECR 0x58
63 #define SH_IESR 0x60
64 #define SH_IPR 0x68
65 #define SH_ICR 0x70
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200
79 #define EDMA_DMAQNUM 0x0240
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300
84 #define EDMA_EMCR 0x0308
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340
91 #define EDMA_QRAE 0x0380
92 #define EDMA_QUEEVTENTRY 0x0400
93 #define EDMA_QSTAT 0x0600
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000
102 #define EDMA_PARM 0x4000
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100
107
108
109 #define GET_NUM_DMACH(x) (x & 0x7)
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4)
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12)
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16)
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20)
114 #define CHMAP_EXIST BIT(24)
115
116
117 #define EDMA_CCSTAT_ACTV BIT(4)
118
119
120
121
122
123
124
125
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
129
130 #define EDMA_CHANNEL_ANY -1
131 #define EDMA_SLOT_ANY -1
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135
136
137
138
139
140
141
142
143
144 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5)
145 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f))
146
147
148 struct edmacc_param {
149 u32 opt;
150 u32 src;
151 u32 a_b_cnt;
152 u32 dst;
153 u32 src_dst_bidx;
154 u32 link_bcntrld;
155 u32 src_dst_cidx;
156 u32 ccnt;
157 } __packed;
158
159
160 #define SAM BIT(0)
161 #define DAM BIT(1)
162 #define SYNCDIM BIT(2)
163 #define STATIC BIT(3)
164 #define EDMA_FWID (0x07 << 8)
165 #define TCCMODE BIT(11)
166 #define EDMA_TCC(t) ((t) << 12)
167 #define TCINTEN BIT(20)
168 #define ITCINTEN BIT(21)
169 #define TCCHEN BIT(22)
170 #define ITCCHEN BIT(23)
171
172 struct edma_pset {
173 u32 len;
174 dma_addr_t addr;
175 struct edmacc_param param;
176 };
177
178 struct edma_desc {
179 struct virt_dma_desc vdesc;
180 struct list_head node;
181 enum dma_transfer_direction direction;
182 int cyclic;
183 bool polled;
184 int absync;
185 int pset_nr;
186 struct edma_chan *echan;
187 int processed;
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209 int processed_stat;
210 u32 sg_len;
211 u32 residue;
212 u32 residue_stat;
213
214 struct edma_pset pset[0];
215 };
216
217 struct edma_cc;
218
219 struct edma_tc {
220 struct device_node *node;
221 u16 id;
222 };
223
224 struct edma_chan {
225 struct virt_dma_chan vchan;
226 struct list_head node;
227 struct edma_desc *edesc;
228 struct edma_cc *ecc;
229 struct edma_tc *tc;
230 int ch_num;
231 bool alloced;
232 bool hw_triggered;
233 int slot[EDMA_MAX_SLOTS];
234 int missed;
235 struct dma_slave_config cfg;
236 };
237
238 struct edma_cc {
239 struct device *dev;
240 struct edma_soc_info *info;
241 void __iomem *base;
242 int id;
243 bool legacy_mode;
244
245
246 unsigned num_channels;
247 unsigned num_qchannels;
248 unsigned num_region;
249 unsigned num_slots;
250 unsigned num_tc;
251 bool chmap_exist;
252 enum dma_event_q default_queue;
253
254 unsigned int ccint;
255 unsigned int ccerrint;
256
257
258
259
260
261 unsigned long *slot_inuse;
262
263 struct dma_device dma_slave;
264 struct dma_device *dma_memcpy;
265 struct edma_chan *slave_chans;
266 struct edma_tc *tc_list;
267 int dummy_slot;
268 };
269
270
271 static const struct edmacc_param dummy_paramset = {
272 .link_bcntrld = 0xffff,
273 .ccnt = 1,
274 };
275
276 #define EDMA_BINDING_LEGACY 0
277 #define EDMA_BINDING_TPCC 1
278 static const u32 edma_binding_type[] = {
279 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
280 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
281 };
282
283 static const struct of_device_id edma_of_ids[] = {
284 {
285 .compatible = "ti,edma3",
286 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
287 },
288 {
289 .compatible = "ti,edma3-tpcc",
290 .data = &edma_binding_type[EDMA_BINDING_TPCC],
291 },
292 {}
293 };
294 MODULE_DEVICE_TABLE(of, edma_of_ids);
295
296 static const struct of_device_id edma_tptc_of_ids[] = {
297 { .compatible = "ti,edma3-tptc", },
298 {}
299 };
300 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
301
302 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
303 {
304 return (unsigned int)__raw_readl(ecc->base + offset);
305 }
306
307 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
308 {
309 __raw_writel(val, ecc->base + offset);
310 }
311
312 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
313 unsigned or)
314 {
315 unsigned val = edma_read(ecc, offset);
316
317 val &= and;
318 val |= or;
319 edma_write(ecc, offset, val);
320 }
321
322 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
323 {
324 unsigned val = edma_read(ecc, offset);
325
326 val &= and;
327 edma_write(ecc, offset, val);
328 }
329
330 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
331 {
332 unsigned val = edma_read(ecc, offset);
333
334 val |= or;
335 edma_write(ecc, offset, val);
336 }
337
338 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
339 int i)
340 {
341 return edma_read(ecc, offset + (i << 2));
342 }
343
344 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
345 unsigned val)
346 {
347 edma_write(ecc, offset + (i << 2), val);
348 }
349
350 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
351 unsigned and, unsigned or)
352 {
353 edma_modify(ecc, offset + (i << 2), and, or);
354 }
355
356 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
357 unsigned or)
358 {
359 edma_or(ecc, offset + (i << 2), or);
360 }
361
362 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
363 unsigned or)
364 {
365 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
366 }
367
368 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
369 int j, unsigned val)
370 {
371 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
372 }
373
374 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
375 {
376 return edma_read(ecc, EDMA_SHADOW0 + offset);
377 }
378
379 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
380 int offset, int i)
381 {
382 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
383 }
384
385 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
386 unsigned val)
387 {
388 edma_write(ecc, EDMA_SHADOW0 + offset, val);
389 }
390
391 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
392 int i, unsigned val)
393 {
394 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
395 }
396
397 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
398 int param_no)
399 {
400 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
401 }
402
403 static inline void edma_param_write(struct edma_cc *ecc, int offset,
404 int param_no, unsigned val)
405 {
406 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
407 }
408
409 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
410 int param_no, unsigned and, unsigned or)
411 {
412 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
413 }
414
415 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
416 unsigned and)
417 {
418 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
419 }
420
421 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
422 unsigned or)
423 {
424 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
425 }
426
427 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
428 int priority)
429 {
430 int bit = queue_no * 4;
431
432 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
433 }
434
435 static void edma_set_chmap(struct edma_chan *echan, int slot)
436 {
437 struct edma_cc *ecc = echan->ecc;
438 int channel = EDMA_CHAN_SLOT(echan->ch_num);
439
440 if (ecc->chmap_exist) {
441 slot = EDMA_CHAN_SLOT(slot);
442 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
443 }
444 }
445
446 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
447 {
448 struct edma_cc *ecc = echan->ecc;
449 int channel = EDMA_CHAN_SLOT(echan->ch_num);
450 int idx = EDMA_REG_ARRAY_INDEX(channel);
451 int ch_bit = EDMA_CHANNEL_BIT(channel);
452
453 if (enable) {
454 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
455 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
456 } else {
457 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
458 }
459 }
460
461
462
463
464 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
465 const struct edmacc_param *param)
466 {
467 slot = EDMA_CHAN_SLOT(slot);
468 if (slot >= ecc->num_slots)
469 return;
470 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
471 }
472
473 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
474 struct edmacc_param *param)
475 {
476 slot = EDMA_CHAN_SLOT(slot);
477 if (slot >= ecc->num_slots)
478 return -EINVAL;
479 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
480
481 return 0;
482 }
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
500 {
501 if (slot >= 0) {
502 slot = EDMA_CHAN_SLOT(slot);
503
504 if (ecc->chmap_exist && slot < ecc->num_channels)
505 slot = EDMA_SLOT_ANY;
506 }
507
508 if (slot < 0) {
509 if (ecc->chmap_exist)
510 slot = 0;
511 else
512 slot = ecc->num_channels;
513 for (;;) {
514 slot = find_next_zero_bit(ecc->slot_inuse,
515 ecc->num_slots,
516 slot);
517 if (slot == ecc->num_slots)
518 return -ENOMEM;
519 if (!test_and_set_bit(slot, ecc->slot_inuse))
520 break;
521 }
522 } else if (slot >= ecc->num_slots) {
523 return -EINVAL;
524 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
525 return -EBUSY;
526 }
527
528 edma_write_slot(ecc, slot, &dummy_paramset);
529
530 return EDMA_CTLR_CHAN(ecc->id, slot);
531 }
532
533 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
534 {
535 slot = EDMA_CHAN_SLOT(slot);
536 if (slot >= ecc->num_slots)
537 return;
538
539 edma_write_slot(ecc, slot, &dummy_paramset);
540 clear_bit(slot, ecc->slot_inuse);
541 }
542
543
544
545
546
547
548
549
550
551 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
552 {
553 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
554 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
555
556 from = EDMA_CHAN_SLOT(from);
557 to = EDMA_CHAN_SLOT(to);
558 if (from >= ecc->num_slots || to >= ecc->num_slots)
559 return;
560
561 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
562 PARM_OFFSET(to));
563 }
564
565
566
567
568
569
570
571
572
573 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
574 bool dst)
575 {
576 u32 offs;
577
578 slot = EDMA_CHAN_SLOT(slot);
579 offs = PARM_OFFSET(slot);
580 offs += dst ? PARM_DST : PARM_SRC;
581
582 return edma_read(ecc, offs);
583 }
584
585
586
587
588
589
590
591 static void edma_start(struct edma_chan *echan)
592 {
593 struct edma_cc *ecc = echan->ecc;
594 int channel = EDMA_CHAN_SLOT(echan->ch_num);
595 int idx = EDMA_REG_ARRAY_INDEX(channel);
596 int ch_bit = EDMA_CHANNEL_BIT(channel);
597
598 if (!echan->hw_triggered) {
599
600 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
601 edma_shadow0_read_array(ecc, SH_ESR, idx));
602 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
603 } else {
604
605 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
606 edma_shadow0_read_array(ecc, SH_ER, idx));
607
608 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
609 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
610
611 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
612 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
613 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
614 edma_shadow0_read_array(ecc, SH_EER, idx));
615 }
616 }
617
618 static void edma_stop(struct edma_chan *echan)
619 {
620 struct edma_cc *ecc = echan->ecc;
621 int channel = EDMA_CHAN_SLOT(echan->ch_num);
622 int idx = EDMA_REG_ARRAY_INDEX(channel);
623 int ch_bit = EDMA_CHANNEL_BIT(channel);
624
625 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
626 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
627 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
628 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
629
630
631 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
632
633 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
634 edma_shadow0_read_array(ecc, SH_EER, idx));
635
636
637
638
639 }
640
641
642
643
644
645 static void edma_pause(struct edma_chan *echan)
646 {
647 int channel = EDMA_CHAN_SLOT(echan->ch_num);
648
649 edma_shadow0_write_array(echan->ecc, SH_EECR,
650 EDMA_REG_ARRAY_INDEX(channel),
651 EDMA_CHANNEL_BIT(channel));
652 }
653
654
655 static void edma_resume(struct edma_chan *echan)
656 {
657 int channel = EDMA_CHAN_SLOT(echan->ch_num);
658
659 edma_shadow0_write_array(echan->ecc, SH_EESR,
660 EDMA_REG_ARRAY_INDEX(channel),
661 EDMA_CHANNEL_BIT(channel));
662 }
663
664 static void edma_trigger_channel(struct edma_chan *echan)
665 {
666 struct edma_cc *ecc = echan->ecc;
667 int channel = EDMA_CHAN_SLOT(echan->ch_num);
668 int idx = EDMA_REG_ARRAY_INDEX(channel);
669 int ch_bit = EDMA_CHANNEL_BIT(channel);
670
671 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
672
673 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
674 edma_shadow0_read_array(ecc, SH_ESR, idx));
675 }
676
677 static void edma_clean_channel(struct edma_chan *echan)
678 {
679 struct edma_cc *ecc = echan->ecc;
680 int channel = EDMA_CHAN_SLOT(echan->ch_num);
681 int idx = EDMA_REG_ARRAY_INDEX(channel);
682 int ch_bit = EDMA_CHANNEL_BIT(channel);
683
684 dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
685 edma_read_array(ecc, EDMA_EMR, idx));
686 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
687
688 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
689
690 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
691 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
692 }
693
694
695 static void edma_assign_channel_eventq(struct edma_chan *echan,
696 enum dma_event_q eventq_no)
697 {
698 struct edma_cc *ecc = echan->ecc;
699 int channel = EDMA_CHAN_SLOT(echan->ch_num);
700 int bit = (channel & 0x7) * 4;
701
702
703 if (eventq_no == EVENTQ_DEFAULT)
704 eventq_no = ecc->default_queue;
705 if (eventq_no >= ecc->num_tc)
706 return;
707
708 eventq_no &= 7;
709 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
710 eventq_no << bit);
711 }
712
713 static int edma_alloc_channel(struct edma_chan *echan,
714 enum dma_event_q eventq_no)
715 {
716 struct edma_cc *ecc = echan->ecc;
717 int channel = EDMA_CHAN_SLOT(echan->ch_num);
718
719
720 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
721 EDMA_CHANNEL_BIT(channel));
722
723
724 edma_stop(echan);
725
726 edma_setup_interrupt(echan, true);
727
728 edma_assign_channel_eventq(echan, eventq_no);
729
730 return 0;
731 }
732
733 static void edma_free_channel(struct edma_chan *echan)
734 {
735
736 edma_stop(echan);
737
738 edma_setup_interrupt(echan, false);
739 }
740
741 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
742 {
743 return container_of(d, struct edma_cc, dma_slave);
744 }
745
746 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
747 {
748 return container_of(c, struct edma_chan, vchan.chan);
749 }
750
751 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
752 {
753 return container_of(tx, struct edma_desc, vdesc.tx);
754 }
755
756 static void edma_desc_free(struct virt_dma_desc *vdesc)
757 {
758 kfree(container_of(vdesc, struct edma_desc, vdesc));
759 }
760
761
762 static void edma_execute(struct edma_chan *echan)
763 {
764 struct edma_cc *ecc = echan->ecc;
765 struct virt_dma_desc *vdesc;
766 struct edma_desc *edesc;
767 struct device *dev = echan->vchan.chan.device->dev;
768 int i, j, left, nslots;
769
770 if (!echan->edesc) {
771
772 vdesc = vchan_next_desc(&echan->vchan);
773 if (!vdesc)
774 return;
775 list_del(&vdesc->node);
776 echan->edesc = to_edma_desc(&vdesc->tx);
777 }
778
779 edesc = echan->edesc;
780
781
782 left = edesc->pset_nr - edesc->processed;
783 nslots = min(MAX_NR_SG, left);
784 edesc->sg_len = 0;
785
786
787 for (i = 0; i < nslots; i++) {
788 j = i + edesc->processed;
789 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
790 edesc->sg_len += edesc->pset[j].len;
791 dev_vdbg(dev,
792 "\n pset[%d]:\n"
793 " chnum\t%d\n"
794 " slot\t%d\n"
795 " opt\t%08x\n"
796 " src\t%08x\n"
797 " dst\t%08x\n"
798 " abcnt\t%08x\n"
799 " ccnt\t%08x\n"
800 " bidx\t%08x\n"
801 " cidx\t%08x\n"
802 " lkrld\t%08x\n",
803 j, echan->ch_num, echan->slot[i],
804 edesc->pset[j].param.opt,
805 edesc->pset[j].param.src,
806 edesc->pset[j].param.dst,
807 edesc->pset[j].param.a_b_cnt,
808 edesc->pset[j].param.ccnt,
809 edesc->pset[j].param.src_dst_bidx,
810 edesc->pset[j].param.src_dst_cidx,
811 edesc->pset[j].param.link_bcntrld);
812
813 if (i != (nslots - 1))
814 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
815 }
816
817 edesc->processed += nslots;
818
819
820
821
822
823
824 if (edesc->processed == edesc->pset_nr) {
825 if (edesc->cyclic)
826 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
827 else
828 edma_link(ecc, echan->slot[nslots - 1],
829 echan->ecc->dummy_slot);
830 }
831
832 if (echan->missed) {
833
834
835
836
837
838 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
839 edma_clean_channel(echan);
840 edma_stop(echan);
841 edma_start(echan);
842 edma_trigger_channel(echan);
843 echan->missed = 0;
844 } else if (edesc->processed <= MAX_NR_SG) {
845 dev_dbg(dev, "first transfer starting on channel %d\n",
846 echan->ch_num);
847 edma_start(echan);
848 } else {
849 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
850 echan->ch_num, edesc->processed);
851 edma_resume(echan);
852 }
853 }
854
855 static int edma_terminate_all(struct dma_chan *chan)
856 {
857 struct edma_chan *echan = to_edma_chan(chan);
858 unsigned long flags;
859 LIST_HEAD(head);
860
861 spin_lock_irqsave(&echan->vchan.lock, flags);
862
863
864
865
866
867
868 if (echan->edesc) {
869 edma_stop(echan);
870
871 if (!echan->tc && echan->edesc->cyclic)
872 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
873
874 vchan_terminate_vdesc(&echan->edesc->vdesc);
875 echan->edesc = NULL;
876 }
877
878 vchan_get_all_descriptors(&echan->vchan, &head);
879 spin_unlock_irqrestore(&echan->vchan.lock, flags);
880 vchan_dma_desc_free_list(&echan->vchan, &head);
881
882 return 0;
883 }
884
885 static void edma_synchronize(struct dma_chan *chan)
886 {
887 struct edma_chan *echan = to_edma_chan(chan);
888
889 vchan_synchronize(&echan->vchan);
890 }
891
892 static int edma_slave_config(struct dma_chan *chan,
893 struct dma_slave_config *cfg)
894 {
895 struct edma_chan *echan = to_edma_chan(chan);
896
897 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
898 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
899 return -EINVAL;
900
901 if (cfg->src_maxburst > chan->device->max_burst ||
902 cfg->dst_maxburst > chan->device->max_burst)
903 return -EINVAL;
904
905 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
906
907 return 0;
908 }
909
910 static int edma_dma_pause(struct dma_chan *chan)
911 {
912 struct edma_chan *echan = to_edma_chan(chan);
913
914 if (!echan->edesc)
915 return -EINVAL;
916
917 edma_pause(echan);
918 return 0;
919 }
920
921 static int edma_dma_resume(struct dma_chan *chan)
922 {
923 struct edma_chan *echan = to_edma_chan(chan);
924
925 edma_resume(echan);
926 return 0;
927 }
928
929
930
931
932
933
934
935
936
937
938
939
940 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
941 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
942 unsigned int acnt, unsigned int dma_length,
943 enum dma_transfer_direction direction)
944 {
945 struct edma_chan *echan = to_edma_chan(chan);
946 struct device *dev = chan->device->dev;
947 struct edmacc_param *param = &epset->param;
948 int bcnt, ccnt, cidx;
949 int src_bidx, dst_bidx, src_cidx, dst_cidx;
950 int absync;
951
952
953 if (!burst)
954 burst = 1;
955
956
957
958
959
960 if (burst == 1) {
961
962
963
964
965
966
967
968
969
970
971
972
973 absync = false;
974 ccnt = dma_length / acnt / (SZ_64K - 1);
975 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
976
977
978
979
980 if (bcnt)
981 ccnt++;
982 else
983 bcnt = SZ_64K - 1;
984 cidx = acnt;
985 } else {
986
987
988
989
990
991
992
993
994
995 absync = true;
996 bcnt = burst;
997 ccnt = dma_length / (acnt * bcnt);
998 if (ccnt > (SZ_64K - 1)) {
999 dev_err(dev, "Exceeded max SG segment size\n");
1000 return -EINVAL;
1001 }
1002 cidx = acnt * bcnt;
1003 }
1004
1005 epset->len = dma_length;
1006
1007 if (direction == DMA_MEM_TO_DEV) {
1008 src_bidx = acnt;
1009 src_cidx = cidx;
1010 dst_bidx = 0;
1011 dst_cidx = 0;
1012 epset->addr = src_addr;
1013 } else if (direction == DMA_DEV_TO_MEM) {
1014 src_bidx = 0;
1015 src_cidx = 0;
1016 dst_bidx = acnt;
1017 dst_cidx = cidx;
1018 epset->addr = dst_addr;
1019 } else if (direction == DMA_MEM_TO_MEM) {
1020 src_bidx = acnt;
1021 src_cidx = cidx;
1022 dst_bidx = acnt;
1023 dst_cidx = cidx;
1024 epset->addr = src_addr;
1025 } else {
1026 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1027 return -EINVAL;
1028 }
1029
1030 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1031
1032 if (absync)
1033 param->opt |= SYNCDIM;
1034
1035 param->src = src_addr;
1036 param->dst = dst_addr;
1037
1038 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1039 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1040
1041 param->a_b_cnt = bcnt << 16 | acnt;
1042 param->ccnt = ccnt;
1043
1044
1045
1046
1047
1048
1049 param->link_bcntrld = 0xffffffff;
1050 return absync;
1051 }
1052
1053 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1054 struct dma_chan *chan, struct scatterlist *sgl,
1055 unsigned int sg_len, enum dma_transfer_direction direction,
1056 unsigned long tx_flags, void *context)
1057 {
1058 struct edma_chan *echan = to_edma_chan(chan);
1059 struct device *dev = chan->device->dev;
1060 struct edma_desc *edesc;
1061 dma_addr_t src_addr = 0, dst_addr = 0;
1062 enum dma_slave_buswidth dev_width;
1063 u32 burst;
1064 struct scatterlist *sg;
1065 int i, nslots, ret;
1066
1067 if (unlikely(!echan || !sgl || !sg_len))
1068 return NULL;
1069
1070 if (direction == DMA_DEV_TO_MEM) {
1071 src_addr = echan->cfg.src_addr;
1072 dev_width = echan->cfg.src_addr_width;
1073 burst = echan->cfg.src_maxburst;
1074 } else if (direction == DMA_MEM_TO_DEV) {
1075 dst_addr = echan->cfg.dst_addr;
1076 dev_width = echan->cfg.dst_addr_width;
1077 burst = echan->cfg.dst_maxburst;
1078 } else {
1079 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1080 return NULL;
1081 }
1082
1083 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1084 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1085 return NULL;
1086 }
1087
1088 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1089 if (!edesc)
1090 return NULL;
1091
1092 edesc->pset_nr = sg_len;
1093 edesc->residue = 0;
1094 edesc->direction = direction;
1095 edesc->echan = echan;
1096
1097
1098 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1099
1100 for (i = 0; i < nslots; i++) {
1101 if (echan->slot[i] < 0) {
1102 echan->slot[i] =
1103 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1104 if (echan->slot[i] < 0) {
1105 kfree(edesc);
1106 dev_err(dev, "%s: Failed to allocate slot\n",
1107 __func__);
1108 return NULL;
1109 }
1110 }
1111 }
1112
1113
1114 for_each_sg(sgl, sg, sg_len, i) {
1115
1116 if (direction == DMA_DEV_TO_MEM)
1117 dst_addr = sg_dma_address(sg);
1118 else
1119 src_addr = sg_dma_address(sg);
1120
1121 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1122 dst_addr, burst, dev_width,
1123 sg_dma_len(sg), direction);
1124 if (ret < 0) {
1125 kfree(edesc);
1126 return NULL;
1127 }
1128
1129 edesc->absync = ret;
1130 edesc->residue += sg_dma_len(sg);
1131
1132 if (i == sg_len - 1)
1133
1134 edesc->pset[i].param.opt |= TCINTEN;
1135 else if (!((i+1) % MAX_NR_SG))
1136
1137
1138
1139
1140
1141
1142 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1143 }
1144 edesc->residue_stat = edesc->residue;
1145
1146 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1147 }
1148
1149 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1150 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1151 size_t len, unsigned long tx_flags)
1152 {
1153 int ret, nslots;
1154 struct edma_desc *edesc;
1155 struct device *dev = chan->device->dev;
1156 struct edma_chan *echan = to_edma_chan(chan);
1157 unsigned int width, pset_len, array_size;
1158
1159 if (unlikely(!echan || !len))
1160 return NULL;
1161
1162
1163 switch (__ffs((src | dest | len))) {
1164 case 0:
1165 array_size = SZ_32K - 1;
1166 break;
1167 case 1:
1168 array_size = SZ_32K - 2;
1169 break;
1170 default:
1171 array_size = SZ_32K - 4;
1172 break;
1173 }
1174
1175 if (len < SZ_64K) {
1176
1177
1178
1179
1180
1181 width = len;
1182 pset_len = len;
1183 nslots = 1;
1184 } else {
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196 width = array_size;
1197 pset_len = rounddown(len, width);
1198
1199 if (unlikely(pset_len == len))
1200 nslots = 1;
1201 else
1202 nslots = 2;
1203 }
1204
1205 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1206 if (!edesc)
1207 return NULL;
1208
1209 edesc->pset_nr = nslots;
1210 edesc->residue = edesc->residue_stat = len;
1211 edesc->direction = DMA_MEM_TO_MEM;
1212 edesc->echan = echan;
1213
1214 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1215 width, pset_len, DMA_MEM_TO_MEM);
1216 if (ret < 0) {
1217 kfree(edesc);
1218 return NULL;
1219 }
1220
1221 edesc->absync = ret;
1222
1223 edesc->pset[0].param.opt |= ITCCHEN;
1224 if (nslots == 1) {
1225
1226 if (tx_flags & DMA_PREP_INTERRUPT)
1227 edesc->pset[0].param.opt |= TCINTEN;
1228 } else {
1229
1230 edesc->pset[0].param.opt |= TCCHEN;
1231
1232 if (echan->slot[1] < 0) {
1233 echan->slot[1] = edma_alloc_slot(echan->ecc,
1234 EDMA_SLOT_ANY);
1235 if (echan->slot[1] < 0) {
1236 kfree(edesc);
1237 dev_err(dev, "%s: Failed to allocate slot\n",
1238 __func__);
1239 return NULL;
1240 }
1241 }
1242 dest += pset_len;
1243 src += pset_len;
1244 pset_len = width = len % array_size;
1245
1246 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1247 width, pset_len, DMA_MEM_TO_MEM);
1248 if (ret < 0) {
1249 kfree(edesc);
1250 return NULL;
1251 }
1252
1253 edesc->pset[1].param.opt |= ITCCHEN;
1254
1255 if (tx_flags & DMA_PREP_INTERRUPT)
1256 edesc->pset[1].param.opt |= TCINTEN;
1257 }
1258
1259 if (!(tx_flags & DMA_PREP_INTERRUPT))
1260 edesc->polled = true;
1261
1262 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1263 }
1264
1265 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1266 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1267 size_t period_len, enum dma_transfer_direction direction,
1268 unsigned long tx_flags)
1269 {
1270 struct edma_chan *echan = to_edma_chan(chan);
1271 struct device *dev = chan->device->dev;
1272 struct edma_desc *edesc;
1273 dma_addr_t src_addr, dst_addr;
1274 enum dma_slave_buswidth dev_width;
1275 bool use_intermediate = false;
1276 u32 burst;
1277 int i, ret, nslots;
1278
1279 if (unlikely(!echan || !buf_len || !period_len))
1280 return NULL;
1281
1282 if (direction == DMA_DEV_TO_MEM) {
1283 src_addr = echan->cfg.src_addr;
1284 dst_addr = buf_addr;
1285 dev_width = echan->cfg.src_addr_width;
1286 burst = echan->cfg.src_maxburst;
1287 } else if (direction == DMA_MEM_TO_DEV) {
1288 src_addr = buf_addr;
1289 dst_addr = echan->cfg.dst_addr;
1290 dev_width = echan->cfg.dst_addr_width;
1291 burst = echan->cfg.dst_maxburst;
1292 } else {
1293 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1294 return NULL;
1295 }
1296
1297 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1298 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1299 return NULL;
1300 }
1301
1302 if (unlikely(buf_len % period_len)) {
1303 dev_err(dev, "Period should be multiple of Buffer length\n");
1304 return NULL;
1305 }
1306
1307 nslots = (buf_len / period_len) + 1;
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317 if (nslots > MAX_NR_SG) {
1318
1319
1320
1321
1322
1323
1324 if (burst == period_len) {
1325 period_len = buf_len;
1326 nslots = 2;
1327 use_intermediate = true;
1328 } else {
1329 return NULL;
1330 }
1331 }
1332
1333 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1334 if (!edesc)
1335 return NULL;
1336
1337 edesc->cyclic = 1;
1338 edesc->pset_nr = nslots;
1339 edesc->residue = edesc->residue_stat = buf_len;
1340 edesc->direction = direction;
1341 edesc->echan = echan;
1342
1343 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1344 __func__, echan->ch_num, nslots, period_len, buf_len);
1345
1346 for (i = 0; i < nslots; i++) {
1347
1348 if (echan->slot[i] < 0) {
1349 echan->slot[i] =
1350 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1351 if (echan->slot[i] < 0) {
1352 kfree(edesc);
1353 dev_err(dev, "%s: Failed to allocate slot\n",
1354 __func__);
1355 return NULL;
1356 }
1357 }
1358
1359 if (i == nslots - 1) {
1360 memcpy(&edesc->pset[i], &edesc->pset[0],
1361 sizeof(edesc->pset[0]));
1362 break;
1363 }
1364
1365 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1366 dst_addr, burst, dev_width, period_len,
1367 direction);
1368 if (ret < 0) {
1369 kfree(edesc);
1370 return NULL;
1371 }
1372
1373 if (direction == DMA_DEV_TO_MEM)
1374 dst_addr += period_len;
1375 else
1376 src_addr += period_len;
1377
1378 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1379 dev_vdbg(dev,
1380 "\n pset[%d]:\n"
1381 " chnum\t%d\n"
1382 " slot\t%d\n"
1383 " opt\t%08x\n"
1384 " src\t%08x\n"
1385 " dst\t%08x\n"
1386 " abcnt\t%08x\n"
1387 " ccnt\t%08x\n"
1388 " bidx\t%08x\n"
1389 " cidx\t%08x\n"
1390 " lkrld\t%08x\n",
1391 i, echan->ch_num, echan->slot[i],
1392 edesc->pset[i].param.opt,
1393 edesc->pset[i].param.src,
1394 edesc->pset[i].param.dst,
1395 edesc->pset[i].param.a_b_cnt,
1396 edesc->pset[i].param.ccnt,
1397 edesc->pset[i].param.src_dst_bidx,
1398 edesc->pset[i].param.src_dst_cidx,
1399 edesc->pset[i].param.link_bcntrld);
1400
1401 edesc->absync = ret;
1402
1403
1404
1405
1406 if (tx_flags & DMA_PREP_INTERRUPT) {
1407 edesc->pset[i].param.opt |= TCINTEN;
1408
1409
1410 if (use_intermediate)
1411 edesc->pset[i].param.opt |= ITCINTEN;
1412 }
1413 }
1414
1415
1416 if (!echan->tc)
1417 edma_assign_channel_eventq(echan, EVENTQ_0);
1418
1419 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1420 }
1421
1422 static void edma_completion_handler(struct edma_chan *echan)
1423 {
1424 struct device *dev = echan->vchan.chan.device->dev;
1425 struct edma_desc *edesc;
1426
1427 spin_lock(&echan->vchan.lock);
1428 edesc = echan->edesc;
1429 if (edesc) {
1430 if (edesc->cyclic) {
1431 vchan_cyclic_callback(&edesc->vdesc);
1432 spin_unlock(&echan->vchan.lock);
1433 return;
1434 } else if (edesc->processed == edesc->pset_nr) {
1435 edesc->residue = 0;
1436 edma_stop(echan);
1437 vchan_cookie_complete(&edesc->vdesc);
1438 echan->edesc = NULL;
1439
1440 dev_dbg(dev, "Transfer completed on channel %d\n",
1441 echan->ch_num);
1442 } else {
1443 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1444 echan->ch_num);
1445
1446 edma_pause(echan);
1447
1448
1449 edesc->residue -= edesc->sg_len;
1450 edesc->residue_stat = edesc->residue;
1451 edesc->processed_stat = edesc->processed;
1452 }
1453 edma_execute(echan);
1454 }
1455
1456 spin_unlock(&echan->vchan.lock);
1457 }
1458
1459
1460 static irqreturn_t dma_irq_handler(int irq, void *data)
1461 {
1462 struct edma_cc *ecc = data;
1463 int ctlr;
1464 u32 sh_ier;
1465 u32 sh_ipr;
1466 u32 bank;
1467
1468 ctlr = ecc->id;
1469 if (ctlr < 0)
1470 return IRQ_NONE;
1471
1472 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1473
1474 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1475 if (!sh_ipr) {
1476 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1477 if (!sh_ipr)
1478 return IRQ_NONE;
1479 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1480 bank = 1;
1481 } else {
1482 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1483 bank = 0;
1484 }
1485
1486 do {
1487 u32 slot;
1488 u32 channel;
1489
1490 slot = __ffs(sh_ipr);
1491 sh_ipr &= ~(BIT(slot));
1492
1493 if (sh_ier & BIT(slot)) {
1494 channel = (bank << 5) | slot;
1495
1496 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1497 edma_completion_handler(&ecc->slave_chans[channel]);
1498 }
1499 } while (sh_ipr);
1500
1501 edma_shadow0_write(ecc, SH_IEVAL, 1);
1502 return IRQ_HANDLED;
1503 }
1504
1505 static void edma_error_handler(struct edma_chan *echan)
1506 {
1507 struct edma_cc *ecc = echan->ecc;
1508 struct device *dev = echan->vchan.chan.device->dev;
1509 struct edmacc_param p;
1510 int err;
1511
1512 if (!echan->edesc)
1513 return;
1514
1515 spin_lock(&echan->vchan.lock);
1516
1517 err = edma_read_slot(ecc, echan->slot[0], &p);
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1532 dev_dbg(dev, "Error on null slot, setting miss\n");
1533 echan->missed = 1;
1534 } else {
1535
1536
1537
1538
1539 dev_dbg(dev, "Missed event, TRIGGERING\n");
1540 edma_clean_channel(echan);
1541 edma_stop(echan);
1542 edma_start(echan);
1543 edma_trigger_channel(echan);
1544 }
1545 spin_unlock(&echan->vchan.lock);
1546 }
1547
1548 static inline bool edma_error_pending(struct edma_cc *ecc)
1549 {
1550 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1551 edma_read_array(ecc, EDMA_EMR, 1) ||
1552 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1553 return true;
1554
1555 return false;
1556 }
1557
1558
1559 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1560 {
1561 struct edma_cc *ecc = data;
1562 int i, j;
1563 int ctlr;
1564 unsigned int cnt = 0;
1565 unsigned int val;
1566
1567 ctlr = ecc->id;
1568 if (ctlr < 0)
1569 return IRQ_NONE;
1570
1571 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1572
1573 if (!edma_error_pending(ecc)) {
1574
1575
1576
1577
1578
1579 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1580 __func__);
1581 edma_write(ecc, EDMA_EEVAL, 1);
1582 return IRQ_NONE;
1583 }
1584
1585 while (1) {
1586
1587 for (j = 0; j < 2; j++) {
1588 unsigned long emr;
1589
1590 val = edma_read_array(ecc, EDMA_EMR, j);
1591 if (!val)
1592 continue;
1593
1594 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1595 emr = val;
1596 for (i = find_next_bit(&emr, 32, 0); i < 32;
1597 i = find_next_bit(&emr, 32, i + 1)) {
1598 int k = (j << 5) + i;
1599
1600
1601 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1602
1603 edma_shadow0_write_array(ecc, SH_SECR, j,
1604 BIT(i));
1605 edma_error_handler(&ecc->slave_chans[k]);
1606 }
1607 }
1608
1609 val = edma_read(ecc, EDMA_QEMR);
1610 if (val) {
1611 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1612
1613 edma_write(ecc, EDMA_QEMCR, val);
1614 edma_shadow0_write(ecc, SH_QSECR, val);
1615 }
1616
1617 val = edma_read(ecc, EDMA_CCERR);
1618 if (val) {
1619 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1620
1621 edma_write(ecc, EDMA_CCERRCLR, val);
1622 }
1623
1624 if (!edma_error_pending(ecc))
1625 break;
1626 cnt++;
1627 if (cnt > 10)
1628 break;
1629 }
1630 edma_write(ecc, EDMA_EEVAL, 1);
1631 return IRQ_HANDLED;
1632 }
1633
1634
1635 static int edma_alloc_chan_resources(struct dma_chan *chan)
1636 {
1637 struct edma_chan *echan = to_edma_chan(chan);
1638 struct edma_cc *ecc = echan->ecc;
1639 struct device *dev = ecc->dev;
1640 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1641 int ret;
1642
1643 if (echan->tc) {
1644 eventq_no = echan->tc->id;
1645 } else if (ecc->tc_list) {
1646
1647 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1648 eventq_no = echan->tc->id;
1649 }
1650
1651 ret = edma_alloc_channel(echan, eventq_no);
1652 if (ret)
1653 return ret;
1654
1655 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1656 if (echan->slot[0] < 0) {
1657 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1658 EDMA_CHAN_SLOT(echan->ch_num));
1659 ret = echan->slot[0];
1660 goto err_slot;
1661 }
1662
1663
1664 edma_set_chmap(echan, echan->slot[0]);
1665 echan->alloced = true;
1666
1667 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1668 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1669 echan->hw_triggered ? "HW" : "SW");
1670
1671 return 0;
1672
1673 err_slot:
1674 edma_free_channel(echan);
1675 return ret;
1676 }
1677
1678
1679 static void edma_free_chan_resources(struct dma_chan *chan)
1680 {
1681 struct edma_chan *echan = to_edma_chan(chan);
1682 struct device *dev = echan->ecc->dev;
1683 int i;
1684
1685
1686 edma_stop(echan);
1687
1688 vchan_free_chan_resources(&echan->vchan);
1689
1690
1691 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1692 if (echan->slot[i] >= 0) {
1693 edma_free_slot(echan->ecc, echan->slot[i]);
1694 echan->slot[i] = -1;
1695 }
1696 }
1697
1698
1699 edma_set_chmap(echan, echan->ecc->dummy_slot);
1700
1701
1702 if (echan->alloced) {
1703 edma_free_channel(echan);
1704 echan->alloced = false;
1705 }
1706
1707 echan->tc = NULL;
1708 echan->hw_triggered = false;
1709
1710 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1711 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1712 }
1713
1714
1715 static void edma_issue_pending(struct dma_chan *chan)
1716 {
1717 struct edma_chan *echan = to_edma_chan(chan);
1718 unsigned long flags;
1719
1720 spin_lock_irqsave(&echan->vchan.lock, flags);
1721 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1722 edma_execute(echan);
1723 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1724 }
1725
1726
1727
1728
1729
1730
1731
1732
1733 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1734
1735 static u32 edma_residue(struct edma_desc *edesc)
1736 {
1737 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1738 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1739 struct edma_chan *echan = edesc->echan;
1740 struct edma_pset *pset = edesc->pset;
1741 dma_addr_t done, pos, pos_old;
1742 int channel = EDMA_CHAN_SLOT(echan->ch_num);
1743 int idx = EDMA_REG_ARRAY_INDEX(channel);
1744 int ch_bit = EDMA_CHANNEL_BIT(channel);
1745 int event_reg;
1746 int i;
1747
1748
1749
1750
1751
1752 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762 if (is_slave_direction(edesc->direction))
1763 event_reg = SH_ER;
1764 else
1765 event_reg = SH_ESR;
1766
1767 pos_old = pos;
1768 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1769 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1770 if (pos != pos_old)
1771 break;
1772
1773 if (!--loop_count) {
1774 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1775 "%s: timeout waiting for PaRAM update\n",
1776 __func__);
1777 break;
1778 }
1779
1780 cpu_relax();
1781 }
1782
1783
1784
1785
1786
1787
1788
1789
1790 if (edesc->cyclic) {
1791 done = pos - pset->addr;
1792 edesc->residue_stat = edesc->residue - done;
1793 return edesc->residue_stat;
1794 }
1795
1796
1797
1798
1799
1800 if (!pos)
1801 return 0;
1802
1803
1804
1805
1806 pset += edesc->processed_stat;
1807
1808 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1809
1810
1811
1812
1813
1814 if (pos >= pset->addr && pos < pset->addr + pset->len)
1815 return edesc->residue_stat - (pos - pset->addr);
1816
1817
1818 edesc->processed_stat++;
1819 edesc->residue_stat -= pset->len;
1820 }
1821 return edesc->residue_stat;
1822 }
1823
1824
1825 static enum dma_status edma_tx_status(struct dma_chan *chan,
1826 dma_cookie_t cookie,
1827 struct dma_tx_state *txstate)
1828 {
1829 struct edma_chan *echan = to_edma_chan(chan);
1830 struct dma_tx_state txstate_tmp;
1831 enum dma_status ret;
1832 unsigned long flags;
1833
1834 ret = dma_cookie_status(chan, cookie, txstate);
1835
1836 if (ret == DMA_COMPLETE)
1837 return ret;
1838
1839
1840 if (!txstate)
1841 txstate = &txstate_tmp;
1842
1843 spin_lock_irqsave(&echan->vchan.lock, flags);
1844 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1845 txstate->residue = edma_residue(echan->edesc);
1846 } else {
1847 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1848 cookie);
1849
1850 if (vdesc)
1851 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1852 else
1853 txstate->residue = 0;
1854 }
1855
1856
1857
1858
1859
1860 if (ret != DMA_COMPLETE && !txstate->residue &&
1861 echan->edesc && echan->edesc->polled &&
1862 echan->edesc->vdesc.tx.cookie == cookie) {
1863 edma_stop(echan);
1864 vchan_cookie_complete(&echan->edesc->vdesc);
1865 echan->edesc = NULL;
1866 edma_execute(echan);
1867 ret = DMA_COMPLETE;
1868 }
1869
1870 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1871
1872 return ret;
1873 }
1874
1875 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1876 {
1877 if (!memcpy_channels)
1878 return false;
1879 while (*memcpy_channels != -1) {
1880 if (*memcpy_channels == ch_num)
1881 return true;
1882 memcpy_channels++;
1883 }
1884 return false;
1885 }
1886
1887 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1888 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1889 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1890 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1891
1892 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1893 {
1894 struct dma_device *s_ddev = &ecc->dma_slave;
1895 struct dma_device *m_ddev = NULL;
1896 s32 *memcpy_channels = ecc->info->memcpy_channels;
1897 int i, j;
1898
1899 dma_cap_zero(s_ddev->cap_mask);
1900 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1901 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1902 if (ecc->legacy_mode && !memcpy_channels) {
1903 dev_warn(ecc->dev,
1904 "Legacy memcpy is enabled, things might not work\n");
1905
1906 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1907 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1908 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1909 }
1910
1911 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1912 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1913 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1914 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1915 s_ddev->device_issue_pending = edma_issue_pending;
1916 s_ddev->device_tx_status = edma_tx_status;
1917 s_ddev->device_config = edma_slave_config;
1918 s_ddev->device_pause = edma_dma_pause;
1919 s_ddev->device_resume = edma_dma_resume;
1920 s_ddev->device_terminate_all = edma_terminate_all;
1921 s_ddev->device_synchronize = edma_synchronize;
1922
1923 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1924 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1925 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1926 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1927 s_ddev->max_burst = SZ_32K - 1;
1928
1929 s_ddev->dev = ecc->dev;
1930 INIT_LIST_HEAD(&s_ddev->channels);
1931
1932 if (memcpy_channels) {
1933 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1934 if (!m_ddev) {
1935 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1936 memcpy_channels = NULL;
1937 goto ch_setup;
1938 }
1939 ecc->dma_memcpy = m_ddev;
1940
1941 dma_cap_zero(m_ddev->cap_mask);
1942 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1943
1944 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1945 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1947 m_ddev->device_issue_pending = edma_issue_pending;
1948 m_ddev->device_tx_status = edma_tx_status;
1949 m_ddev->device_config = edma_slave_config;
1950 m_ddev->device_pause = edma_dma_pause;
1951 m_ddev->device_resume = edma_dma_resume;
1952 m_ddev->device_terminate_all = edma_terminate_all;
1953 m_ddev->device_synchronize = edma_synchronize;
1954
1955 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1958 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959
1960 m_ddev->dev = ecc->dev;
1961 INIT_LIST_HEAD(&m_ddev->channels);
1962 } else if (!ecc->legacy_mode) {
1963 dev_info(ecc->dev, "memcpy is disabled\n");
1964 }
1965
1966 ch_setup:
1967 for (i = 0; i < ecc->num_channels; i++) {
1968 struct edma_chan *echan = &ecc->slave_chans[i];
1969 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1970 echan->ecc = ecc;
1971 echan->vchan.desc_free = edma_desc_free;
1972
1973 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1974 vchan_init(&echan->vchan, m_ddev);
1975 else
1976 vchan_init(&echan->vchan, s_ddev);
1977
1978 INIT_LIST_HEAD(&echan->node);
1979 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1980 echan->slot[j] = -1;
1981 }
1982 }
1983
1984 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1985 struct edma_cc *ecc)
1986 {
1987 int i;
1988 u32 value, cccfg;
1989 s8 (*queue_priority_map)[2];
1990
1991
1992 cccfg = edma_read(ecc, EDMA_CCCFG);
1993
1994 value = GET_NUM_REGN(cccfg);
1995 ecc->num_region = BIT(value);
1996
1997 value = GET_NUM_DMACH(cccfg);
1998 ecc->num_channels = BIT(value + 1);
1999
2000 value = GET_NUM_QDMACH(cccfg);
2001 ecc->num_qchannels = value * 2;
2002
2003 value = GET_NUM_PAENTRY(cccfg);
2004 ecc->num_slots = BIT(value + 4);
2005
2006 value = GET_NUM_EVQUE(cccfg);
2007 ecc->num_tc = value + 1;
2008
2009 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2010
2011 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2012 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2013 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2014 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2015 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2016 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2017 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2018
2019
2020 if (pdata->queue_priority_mapping)
2021 return 0;
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2034 GFP_KERNEL);
2035 if (!queue_priority_map)
2036 return -ENOMEM;
2037
2038 for (i = 0; i < ecc->num_tc; i++) {
2039 queue_priority_map[i][0] = i;
2040 queue_priority_map[i][1] = i;
2041 }
2042 queue_priority_map[i][0] = -1;
2043 queue_priority_map[i][1] = -1;
2044
2045 pdata->queue_priority_mapping = queue_priority_map;
2046
2047 pdata->default_queue = i - 1;
2048
2049 return 0;
2050 }
2051
2052 #if IS_ENABLED(CONFIG_OF)
2053 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2054 size_t sz)
2055 {
2056 const char pname[] = "ti,edma-xbar-event-map";
2057 struct resource res;
2058 void __iomem *xbar;
2059 s16 (*xbar_chans)[2];
2060 size_t nelm = sz / sizeof(s16);
2061 u32 shift, offset, mux;
2062 int ret, i;
2063
2064 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2065 if (!xbar_chans)
2066 return -ENOMEM;
2067
2068 ret = of_address_to_resource(dev->of_node, 1, &res);
2069 if (ret)
2070 return -ENOMEM;
2071
2072 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2073 if (!xbar)
2074 return -ENOMEM;
2075
2076 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2077 nelm);
2078 if (ret)
2079 return -EIO;
2080
2081
2082 nelm >>= 1;
2083 xbar_chans[nelm][0] = -1;
2084 xbar_chans[nelm][1] = -1;
2085
2086 for (i = 0; i < nelm; i++) {
2087 shift = (xbar_chans[i][1] & 0x03) << 3;
2088 offset = xbar_chans[i][1] & 0xfffffffc;
2089 mux = readl(xbar + offset);
2090 mux &= ~(0xff << shift);
2091 mux |= xbar_chans[i][0] << shift;
2092 writel(mux, (xbar + offset));
2093 }
2094
2095 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2096 return 0;
2097 }
2098
2099 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2100 bool legacy_mode)
2101 {
2102 struct edma_soc_info *info;
2103 struct property *prop;
2104 int sz, ret;
2105
2106 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2107 if (!info)
2108 return ERR_PTR(-ENOMEM);
2109
2110 if (legacy_mode) {
2111 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2112 &sz);
2113 if (prop) {
2114 ret = edma_xbar_event_map(dev, info, sz);
2115 if (ret)
2116 return ERR_PTR(ret);
2117 }
2118 return info;
2119 }
2120
2121
2122 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2123 if (prop) {
2124 const char pname[] = "ti,edma-memcpy-channels";
2125 size_t nelm = sz / sizeof(s32);
2126 s32 *memcpy_ch;
2127
2128 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2129 GFP_KERNEL);
2130 if (!memcpy_ch)
2131 return ERR_PTR(-ENOMEM);
2132
2133 ret = of_property_read_u32_array(dev->of_node, pname,
2134 (u32 *)memcpy_ch, nelm);
2135 if (ret)
2136 return ERR_PTR(ret);
2137
2138 memcpy_ch[nelm] = -1;
2139 info->memcpy_channels = memcpy_ch;
2140 }
2141
2142 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2143 &sz);
2144 if (prop) {
2145 const char pname[] = "ti,edma-reserved-slot-ranges";
2146 u32 (*tmp)[2];
2147 s16 (*rsv_slots)[2];
2148 size_t nelm = sz / sizeof(*tmp);
2149 struct edma_rsv_info *rsv_info;
2150 int i;
2151
2152 if (!nelm)
2153 return info;
2154
2155 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2156 if (!tmp)
2157 return ERR_PTR(-ENOMEM);
2158
2159 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2160 if (!rsv_info) {
2161 kfree(tmp);
2162 return ERR_PTR(-ENOMEM);
2163 }
2164
2165 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2166 GFP_KERNEL);
2167 if (!rsv_slots) {
2168 kfree(tmp);
2169 return ERR_PTR(-ENOMEM);
2170 }
2171
2172 ret = of_property_read_u32_array(dev->of_node, pname,
2173 (u32 *)tmp, nelm * 2);
2174 if (ret) {
2175 kfree(tmp);
2176 return ERR_PTR(ret);
2177 }
2178
2179 for (i = 0; i < nelm; i++) {
2180 rsv_slots[i][0] = tmp[i][0];
2181 rsv_slots[i][1] = tmp[i][1];
2182 }
2183 rsv_slots[nelm][0] = -1;
2184 rsv_slots[nelm][1] = -1;
2185
2186 info->rsv = rsv_info;
2187 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2188
2189 kfree(tmp);
2190 }
2191
2192 return info;
2193 }
2194
2195 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2196 struct of_dma *ofdma)
2197 {
2198 struct edma_cc *ecc = ofdma->of_dma_data;
2199 struct dma_chan *chan = NULL;
2200 struct edma_chan *echan;
2201 int i;
2202
2203 if (!ecc || dma_spec->args_count < 1)
2204 return NULL;
2205
2206 for (i = 0; i < ecc->num_channels; i++) {
2207 echan = &ecc->slave_chans[i];
2208 if (echan->ch_num == dma_spec->args[0]) {
2209 chan = &echan->vchan.chan;
2210 break;
2211 }
2212 }
2213
2214 if (!chan)
2215 return NULL;
2216
2217 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2218 goto out;
2219
2220 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2221 dma_spec->args[1] < echan->ecc->num_tc) {
2222 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2223 goto out;
2224 }
2225
2226 return NULL;
2227 out:
2228
2229 echan->hw_triggered = true;
2230 return dma_get_slave_channel(chan);
2231 }
2232 #else
2233 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2234 bool legacy_mode)
2235 {
2236 return ERR_PTR(-EINVAL);
2237 }
2238
2239 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2240 struct of_dma *ofdma)
2241 {
2242 return NULL;
2243 }
2244 #endif
2245
2246 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2247
2248 static int edma_probe(struct platform_device *pdev)
2249 {
2250 struct edma_soc_info *info = pdev->dev.platform_data;
2251 s8 (*queue_priority_mapping)[2];
2252 int i, off;
2253 const s16 (*rsv_slots)[2];
2254 const s16 (*xbar_chans)[2];
2255 int irq;
2256 char *irq_name;
2257 struct resource *mem;
2258 struct device_node *node = pdev->dev.of_node;
2259 struct device *dev = &pdev->dev;
2260 struct edma_cc *ecc;
2261 bool legacy_mode = true;
2262 int ret;
2263
2264 if (node) {
2265 const struct of_device_id *match;
2266
2267 match = of_match_node(edma_of_ids, node);
2268 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2269 legacy_mode = false;
2270
2271 info = edma_setup_info_from_dt(dev, legacy_mode);
2272 if (IS_ERR(info)) {
2273 dev_err(dev, "failed to get DT data\n");
2274 return PTR_ERR(info);
2275 }
2276 }
2277
2278 if (!info)
2279 return -ENODEV;
2280
2281 pm_runtime_enable(dev);
2282 ret = pm_runtime_get_sync(dev);
2283 if (ret < 0) {
2284 dev_err(dev, "pm_runtime_get_sync() failed\n");
2285 return ret;
2286 }
2287
2288 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2289 if (ret)
2290 return ret;
2291
2292 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2293 if (!ecc)
2294 return -ENOMEM;
2295
2296 ecc->dev = dev;
2297 ecc->id = pdev->id;
2298 ecc->legacy_mode = legacy_mode;
2299
2300 if (ecc->id < 0)
2301 ecc->id = 0;
2302
2303 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2304 if (!mem) {
2305 dev_dbg(dev, "mem resource not found, using index 0\n");
2306 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2307 if (!mem) {
2308 dev_err(dev, "no mem resource?\n");
2309 return -ENODEV;
2310 }
2311 }
2312 ecc->base = devm_ioremap_resource(dev, mem);
2313 if (IS_ERR(ecc->base))
2314 return PTR_ERR(ecc->base);
2315
2316 platform_set_drvdata(pdev, ecc);
2317
2318
2319 ret = edma_setup_from_hw(dev, info, ecc);
2320 if (ret)
2321 return ret;
2322
2323
2324 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2325 sizeof(*ecc->slave_chans), GFP_KERNEL);
2326 if (!ecc->slave_chans)
2327 return -ENOMEM;
2328
2329 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2330 sizeof(unsigned long), GFP_KERNEL);
2331 if (!ecc->slot_inuse)
2332 return -ENOMEM;
2333
2334 ecc->default_queue = info->default_queue;
2335
2336 if (info->rsv) {
2337
2338 rsv_slots = info->rsv->rsv_slots;
2339 if (rsv_slots) {
2340 for (i = 0; rsv_slots[i][0] != -1; i++)
2341 bitmap_set(ecc->slot_inuse, rsv_slots[i][0],
2342 rsv_slots[i][1]);
2343 }
2344 }
2345
2346 for (i = 0; i < ecc->num_slots; i++) {
2347
2348 if (!test_bit(i, ecc->slot_inuse))
2349 edma_write_slot(ecc, i, &dummy_paramset);
2350 }
2351
2352
2353 xbar_chans = info->xbar_chans;
2354 if (xbar_chans) {
2355 for (i = 0; xbar_chans[i][1] != -1; i++) {
2356 off = xbar_chans[i][1];
2357 }
2358 }
2359
2360 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2361 if (irq < 0 && node)
2362 irq = irq_of_parse_and_map(node, 0);
2363
2364 if (irq >= 0) {
2365 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2366 dev_name(dev));
2367 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2368 ecc);
2369 if (ret) {
2370 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2371 return ret;
2372 }
2373 ecc->ccint = irq;
2374 }
2375
2376 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2377 if (irq < 0 && node)
2378 irq = irq_of_parse_and_map(node, 2);
2379
2380 if (irq >= 0) {
2381 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2382 dev_name(dev));
2383 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2384 ecc);
2385 if (ret) {
2386 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2387 return ret;
2388 }
2389 ecc->ccerrint = irq;
2390 }
2391
2392 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2393 if (ecc->dummy_slot < 0) {
2394 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2395 return ecc->dummy_slot;
2396 }
2397
2398 queue_priority_mapping = info->queue_priority_mapping;
2399
2400 if (!ecc->legacy_mode) {
2401 int lowest_priority = 0;
2402 struct of_phandle_args tc_args;
2403
2404 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2405 sizeof(*ecc->tc_list), GFP_KERNEL);
2406 if (!ecc->tc_list) {
2407 ret = -ENOMEM;
2408 goto err_reg1;
2409 }
2410
2411 for (i = 0;; i++) {
2412 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2413 1, i, &tc_args);
2414 if (ret || i == ecc->num_tc)
2415 break;
2416
2417 ecc->tc_list[i].node = tc_args.np;
2418 ecc->tc_list[i].id = i;
2419 queue_priority_mapping[i][1] = tc_args.args[0];
2420 if (queue_priority_mapping[i][1] > lowest_priority) {
2421 lowest_priority = queue_priority_mapping[i][1];
2422 info->default_queue = i;
2423 }
2424 }
2425 }
2426
2427
2428 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2429 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2430 queue_priority_mapping[i][1]);
2431
2432 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2433 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2434 edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2435
2436 ecc->info = info;
2437
2438
2439 edma_dma_init(ecc, legacy_mode);
2440
2441 for (i = 0; i < ecc->num_channels; i++) {
2442
2443 edma_assign_channel_eventq(&ecc->slave_chans[i],
2444 info->default_queue);
2445
2446 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2447 }
2448
2449 ecc->dma_slave.filter.map = info->slave_map;
2450 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2451 ecc->dma_slave.filter.fn = edma_filter_fn;
2452
2453 ret = dma_async_device_register(&ecc->dma_slave);
2454 if (ret) {
2455 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2456 goto err_reg1;
2457 }
2458
2459 if (ecc->dma_memcpy) {
2460 ret = dma_async_device_register(ecc->dma_memcpy);
2461 if (ret) {
2462 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2463 ret);
2464 dma_async_device_unregister(&ecc->dma_slave);
2465 goto err_reg1;
2466 }
2467 }
2468
2469 if (node)
2470 of_dma_controller_register(node, of_edma_xlate, ecc);
2471
2472 dev_info(dev, "TI EDMA DMA engine driver\n");
2473
2474 return 0;
2475
2476 err_reg1:
2477 edma_free_slot(ecc, ecc->dummy_slot);
2478 return ret;
2479 }
2480
2481 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2482 {
2483 struct edma_chan *echan, *_echan;
2484
2485 list_for_each_entry_safe(echan, _echan,
2486 &dmadev->channels, vchan.chan.device_node) {
2487 list_del(&echan->vchan.chan.device_node);
2488 tasklet_kill(&echan->vchan.task);
2489 }
2490 }
2491
2492 static int edma_remove(struct platform_device *pdev)
2493 {
2494 struct device *dev = &pdev->dev;
2495 struct edma_cc *ecc = dev_get_drvdata(dev);
2496
2497 devm_free_irq(dev, ecc->ccint, ecc);
2498 devm_free_irq(dev, ecc->ccerrint, ecc);
2499
2500 edma_cleanupp_vchan(&ecc->dma_slave);
2501
2502 if (dev->of_node)
2503 of_dma_controller_free(dev->of_node);
2504 dma_async_device_unregister(&ecc->dma_slave);
2505 if (ecc->dma_memcpy)
2506 dma_async_device_unregister(ecc->dma_memcpy);
2507 edma_free_slot(ecc, ecc->dummy_slot);
2508
2509 return 0;
2510 }
2511
2512 #ifdef CONFIG_PM_SLEEP
2513 static int edma_pm_suspend(struct device *dev)
2514 {
2515 struct edma_cc *ecc = dev_get_drvdata(dev);
2516 struct edma_chan *echan = ecc->slave_chans;
2517 int i;
2518
2519 for (i = 0; i < ecc->num_channels; i++) {
2520 if (echan[i].alloced)
2521 edma_setup_interrupt(&echan[i], false);
2522 }
2523
2524 return 0;
2525 }
2526
2527 static int edma_pm_resume(struct device *dev)
2528 {
2529 struct edma_cc *ecc = dev_get_drvdata(dev);
2530 struct edma_chan *echan = ecc->slave_chans;
2531 int i;
2532 s8 (*queue_priority_mapping)[2];
2533
2534
2535 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2536
2537 queue_priority_mapping = ecc->info->queue_priority_mapping;
2538
2539
2540 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2541 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2542 queue_priority_mapping[i][1]);
2543
2544 for (i = 0; i < ecc->num_channels; i++) {
2545 if (echan[i].alloced) {
2546
2547 edma_or_array2(ecc, EDMA_DRAE, 0,
2548 EDMA_REG_ARRAY_INDEX(i),
2549 EDMA_CHANNEL_BIT(i));
2550
2551 edma_setup_interrupt(&echan[i], true);
2552
2553
2554 edma_set_chmap(&echan[i], echan[i].slot[0]);
2555 }
2556 }
2557
2558 return 0;
2559 }
2560 #endif
2561
2562 static const struct dev_pm_ops edma_pm_ops = {
2563 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2564 };
2565
2566 static struct platform_driver edma_driver = {
2567 .probe = edma_probe,
2568 .remove = edma_remove,
2569 .driver = {
2570 .name = "edma",
2571 .pm = &edma_pm_ops,
2572 .of_match_table = edma_of_ids,
2573 },
2574 };
2575
2576 static int edma_tptc_probe(struct platform_device *pdev)
2577 {
2578 pm_runtime_enable(&pdev->dev);
2579 return pm_runtime_get_sync(&pdev->dev);
2580 }
2581
2582 static struct platform_driver edma_tptc_driver = {
2583 .probe = edma_tptc_probe,
2584 .driver = {
2585 .name = "edma3-tptc",
2586 .of_match_table = edma_tptc_of_ids,
2587 },
2588 };
2589
2590 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2591 {
2592 bool match = false;
2593
2594 if (chan->device->dev->driver == &edma_driver.driver) {
2595 struct edma_chan *echan = to_edma_chan(chan);
2596 unsigned ch_req = *(unsigned *)param;
2597 if (ch_req == echan->ch_num) {
2598
2599 echan->hw_triggered = true;
2600 match = true;
2601 }
2602 }
2603 return match;
2604 }
2605
2606 static int edma_init(void)
2607 {
2608 int ret;
2609
2610 ret = platform_driver_register(&edma_tptc_driver);
2611 if (ret)
2612 return ret;
2613
2614 return platform_driver_register(&edma_driver);
2615 }
2616 subsys_initcall(edma_init);
2617
2618 static void __exit edma_exit(void)
2619 {
2620 platform_driver_unregister(&edma_driver);
2621 platform_driver_unregister(&edma_tptc_driver);
2622 }
2623 module_exit(edma_exit);
2624
2625 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2626 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2627 MODULE_LICENSE("GPL v2");