root/drivers/dma/at_xdmac.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. at_xdmac_chan_reg_base
  2. to_at_xdmac_chan
  3. chan2dev
  4. to_at_xdmac
  5. txd_to_at_desc
  6. at_xdmac_chan_is_cyclic
  7. at_xdmac_chan_is_paused
  8. at_xdmac_csize
  9. at_xdmac_chan_is_peripheral_xfer
  10. at_xdmac_get_dwidth
  11. at_xdmac_chan_is_enabled
  12. at_xdmac_off
  13. at_xdmac_start_xfer
  14. at_xdmac_tx_submit
  15. at_xdmac_alloc_desc
  16. at_xdmac_init_used_desc
  17. at_xdmac_get_desc
  18. at_xdmac_queue_desc
  19. at_xdmac_increment_block_count
  20. at_xdmac_xlate
  21. at_xdmac_compute_chan_conf
  22. at_xdmac_check_slave_config
  23. at_xdmac_set_slave_config
  24. at_xdmac_prep_slave_sg
  25. at_xdmac_prep_dma_cyclic
  26. at_xdmac_align_width
  27. at_xdmac_interleaved_queue_desc
  28. at_xdmac_prep_interleaved
  29. at_xdmac_prep_dma_memcpy
  30. at_xdmac_memset_create_desc
  31. at_xdmac_prep_dma_memset
  32. at_xdmac_prep_dma_memset_sg
  33. at_xdmac_tx_status
  34. at_xdmac_remove_xfer
  35. at_xdmac_advance_work
  36. at_xdmac_handle_cyclic
  37. at_xdmac_handle_error
  38. at_xdmac_tasklet
  39. at_xdmac_interrupt
  40. at_xdmac_issue_pending
  41. at_xdmac_device_config
  42. at_xdmac_device_pause
  43. at_xdmac_device_resume
  44. at_xdmac_device_terminate_all
  45. at_xdmac_alloc_chan_resources
  46. at_xdmac_free_chan_resources
  47. atmel_xdmac_prepare
  48. atmel_xdmac_suspend
  49. atmel_xdmac_resume
  50. at_xdmac_probe
  51. at_xdmac_remove
  52. at_xdmac_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
   4  *
   5  * Copyright (C) 2014 Atmel Corporation
   6  *
   7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
   8  */
   9 
  10 #include <asm/barrier.h>
  11 #include <dt-bindings/dma/at91.h>
  12 #include <linux/clk.h>
  13 #include <linux/dmaengine.h>
  14 #include <linux/dmapool.h>
  15 #include <linux/interrupt.h>
  16 #include <linux/irq.h>
  17 #include <linux/kernel.h>
  18 #include <linux/list.h>
  19 #include <linux/module.h>
  20 #include <linux/of_dma.h>
  21 #include <linux/of_platform.h>
  22 #include <linux/platform_device.h>
  23 #include <linux/pm.h>
  24 
  25 #include "dmaengine.h"
  26 
  27 /* Global registers */
  28 #define AT_XDMAC_GTYPE          0x00    /* Global Type Register */
  29 #define         AT_XDMAC_NB_CH(i)       (((i) & 0x1F) + 1)              /* Number of Channels Minus One */
  30 #define         AT_XDMAC_FIFO_SZ(i)     (((i) >> 5) & 0x7FF)            /* Number of Bytes */
  31 #define         AT_XDMAC_NB_REQ(i)      ((((i) >> 16) & 0x3F) + 1)      /* Number of Peripheral Requests Minus One */
  32 #define AT_XDMAC_GCFG           0x04    /* Global Configuration Register */
  33 #define AT_XDMAC_GWAC           0x08    /* Global Weighted Arbiter Configuration Register */
  34 #define AT_XDMAC_GIE            0x0C    /* Global Interrupt Enable Register */
  35 #define AT_XDMAC_GID            0x10    /* Global Interrupt Disable Register */
  36 #define AT_XDMAC_GIM            0x14    /* Global Interrupt Mask Register */
  37 #define AT_XDMAC_GIS            0x18    /* Global Interrupt Status Register */
  38 #define AT_XDMAC_GE             0x1C    /* Global Channel Enable Register */
  39 #define AT_XDMAC_GD             0x20    /* Global Channel Disable Register */
  40 #define AT_XDMAC_GS             0x24    /* Global Channel Status Register */
  41 #define AT_XDMAC_GRS            0x28    /* Global Channel Read Suspend Register */
  42 #define AT_XDMAC_GWS            0x2C    /* Global Write Suspend Register */
  43 #define AT_XDMAC_GRWS           0x30    /* Global Channel Read Write Suspend Register */
  44 #define AT_XDMAC_GRWR           0x34    /* Global Channel Read Write Resume Register */
  45 #define AT_XDMAC_GSWR           0x38    /* Global Channel Software Request Register */
  46 #define AT_XDMAC_GSWS           0x3C    /* Global channel Software Request Status Register */
  47 #define AT_XDMAC_GSWF           0x40    /* Global Channel Software Flush Request Register */
  48 #define AT_XDMAC_VERSION        0xFFC   /* XDMAC Version Register */
  49 
  50 /* Channel relative registers offsets */
  51 #define AT_XDMAC_CIE            0x00    /* Channel Interrupt Enable Register */
  52 #define         AT_XDMAC_CIE_BIE        BIT(0)  /* End of Block Interrupt Enable Bit */
  53 #define         AT_XDMAC_CIE_LIE        BIT(1)  /* End of Linked List Interrupt Enable Bit */
  54 #define         AT_XDMAC_CIE_DIE        BIT(2)  /* End of Disable Interrupt Enable Bit */
  55 #define         AT_XDMAC_CIE_FIE        BIT(3)  /* End of Flush Interrupt Enable Bit */
  56 #define         AT_XDMAC_CIE_RBEIE      BIT(4)  /* Read Bus Error Interrupt Enable Bit */
  57 #define         AT_XDMAC_CIE_WBEIE      BIT(5)  /* Write Bus Error Interrupt Enable Bit */
  58 #define         AT_XDMAC_CIE_ROIE       BIT(6)  /* Request Overflow Interrupt Enable Bit */
  59 #define AT_XDMAC_CID            0x04    /* Channel Interrupt Disable Register */
  60 #define         AT_XDMAC_CID_BID        BIT(0)  /* End of Block Interrupt Disable Bit */
  61 #define         AT_XDMAC_CID_LID        BIT(1)  /* End of Linked List Interrupt Disable Bit */
  62 #define         AT_XDMAC_CID_DID        BIT(2)  /* End of Disable Interrupt Disable Bit */
  63 #define         AT_XDMAC_CID_FID        BIT(3)  /* End of Flush Interrupt Disable Bit */
  64 #define         AT_XDMAC_CID_RBEID      BIT(4)  /* Read Bus Error Interrupt Disable Bit */
  65 #define         AT_XDMAC_CID_WBEID      BIT(5)  /* Write Bus Error Interrupt Disable Bit */
  66 #define         AT_XDMAC_CID_ROID       BIT(6)  /* Request Overflow Interrupt Disable Bit */
  67 #define AT_XDMAC_CIM            0x08    /* Channel Interrupt Mask Register */
  68 #define         AT_XDMAC_CIM_BIM        BIT(0)  /* End of Block Interrupt Mask Bit */
  69 #define         AT_XDMAC_CIM_LIM        BIT(1)  /* End of Linked List Interrupt Mask Bit */
  70 #define         AT_XDMAC_CIM_DIM        BIT(2)  /* End of Disable Interrupt Mask Bit */
  71 #define         AT_XDMAC_CIM_FIM        BIT(3)  /* End of Flush Interrupt Mask Bit */
  72 #define         AT_XDMAC_CIM_RBEIM      BIT(4)  /* Read Bus Error Interrupt Mask Bit */
  73 #define         AT_XDMAC_CIM_WBEIM      BIT(5)  /* Write Bus Error Interrupt Mask Bit */
  74 #define         AT_XDMAC_CIM_ROIM       BIT(6)  /* Request Overflow Interrupt Mask Bit */
  75 #define AT_XDMAC_CIS            0x0C    /* Channel Interrupt Status Register */
  76 #define         AT_XDMAC_CIS_BIS        BIT(0)  /* End of Block Interrupt Status Bit */
  77 #define         AT_XDMAC_CIS_LIS        BIT(1)  /* End of Linked List Interrupt Status Bit */
  78 #define         AT_XDMAC_CIS_DIS        BIT(2)  /* End of Disable Interrupt Status Bit */
  79 #define         AT_XDMAC_CIS_FIS        BIT(3)  /* End of Flush Interrupt Status Bit */
  80 #define         AT_XDMAC_CIS_RBEIS      BIT(4)  /* Read Bus Error Interrupt Status Bit */
  81 #define         AT_XDMAC_CIS_WBEIS      BIT(5)  /* Write Bus Error Interrupt Status Bit */
  82 #define         AT_XDMAC_CIS_ROIS       BIT(6)  /* Request Overflow Interrupt Status Bit */
  83 #define AT_XDMAC_CSA            0x10    /* Channel Source Address Register */
  84 #define AT_XDMAC_CDA            0x14    /* Channel Destination Address Register */
  85 #define AT_XDMAC_CNDA           0x18    /* Channel Next Descriptor Address Register */
  86 #define         AT_XDMAC_CNDA_NDAIF(i)  ((i) & 0x1)                     /* Channel x Next Descriptor Interface */
  87 #define         AT_XDMAC_CNDA_NDA(i)    ((i) & 0xfffffffc)              /* Channel x Next Descriptor Address */
  88 #define AT_XDMAC_CNDC           0x1C    /* Channel Next Descriptor Control Register */
  89 #define         AT_XDMAC_CNDC_NDE               (0x1 << 0)              /* Channel x Next Descriptor Enable */
  90 #define         AT_XDMAC_CNDC_NDSUP             (0x1 << 1)              /* Channel x Next Descriptor Source Update */
  91 #define         AT_XDMAC_CNDC_NDDUP             (0x1 << 2)              /* Channel x Next Descriptor Destination Update */
  92 #define         AT_XDMAC_CNDC_NDVIEW_NDV0       (0x0 << 3)              /* Channel x Next Descriptor View 0 */
  93 #define         AT_XDMAC_CNDC_NDVIEW_NDV1       (0x1 << 3)              /* Channel x Next Descriptor View 1 */
  94 #define         AT_XDMAC_CNDC_NDVIEW_NDV2       (0x2 << 3)              /* Channel x Next Descriptor View 2 */
  95 #define         AT_XDMAC_CNDC_NDVIEW_NDV3       (0x3 << 3)              /* Channel x Next Descriptor View 3 */
  96 #define AT_XDMAC_CUBC           0x20    /* Channel Microblock Control Register */
  97 #define AT_XDMAC_CBC            0x24    /* Channel Block Control Register */
  98 #define AT_XDMAC_CC             0x28    /* Channel Configuration Register */
  99 #define         AT_XDMAC_CC_TYPE        (0x1 << 0)      /* Channel Transfer Type */
 100 #define                 AT_XDMAC_CC_TYPE_MEM_TRAN       (0x0 << 0)      /* Memory to Memory Transfer */
 101 #define                 AT_XDMAC_CC_TYPE_PER_TRAN       (0x1 << 0)      /* Peripheral to Memory or Memory to Peripheral Transfer */
 102 #define         AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
 103 #define                 AT_XDMAC_CC_MBSIZE_SINGLE       (0x0 << 1)
 104 #define                 AT_XDMAC_CC_MBSIZE_FOUR         (0x1 << 1)
 105 #define                 AT_XDMAC_CC_MBSIZE_EIGHT        (0x2 << 1)
 106 #define                 AT_XDMAC_CC_MBSIZE_SIXTEEN      (0x3 << 1)
 107 #define         AT_XDMAC_CC_DSYNC       (0x1 << 4)      /* Channel Synchronization */
 108 #define                 AT_XDMAC_CC_DSYNC_PER2MEM       (0x0 << 4)
 109 #define                 AT_XDMAC_CC_DSYNC_MEM2PER       (0x1 << 4)
 110 #define         AT_XDMAC_CC_PROT        (0x1 << 5)      /* Channel Protection */
 111 #define                 AT_XDMAC_CC_PROT_SEC            (0x0 << 5)
 112 #define                 AT_XDMAC_CC_PROT_UNSEC          (0x1 << 5)
 113 #define         AT_XDMAC_CC_SWREQ       (0x1 << 6)      /* Channel Software Request Trigger */
 114 #define                 AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
 115 #define                 AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
 116 #define         AT_XDMAC_CC_MEMSET      (0x1 << 7)      /* Channel Fill Block of memory */
 117 #define                 AT_XDMAC_CC_MEMSET_NORMAL_MODE  (0x0 << 7)
 118 #define                 AT_XDMAC_CC_MEMSET_HW_MODE      (0x1 << 7)
 119 #define         AT_XDMAC_CC_CSIZE(i)    ((0x7 & (i)) << 8)      /* Channel Chunk Size */
 120 #define         AT_XDMAC_CC_DWIDTH_OFFSET       11
 121 #define         AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
 122 #define         AT_XDMAC_CC_DWIDTH(i)   ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)      /* Channel Data Width */
 123 #define                 AT_XDMAC_CC_DWIDTH_BYTE         0x0
 124 #define                 AT_XDMAC_CC_DWIDTH_HALFWORD     0x1
 125 #define                 AT_XDMAC_CC_DWIDTH_WORD         0x2
 126 #define                 AT_XDMAC_CC_DWIDTH_DWORD        0x3
 127 #define         AT_XDMAC_CC_SIF(i)      ((0x1 & (i)) << 13)     /* Channel Source Interface Identifier */
 128 #define         AT_XDMAC_CC_DIF(i)      ((0x1 & (i)) << 14)     /* Channel Destination Interface Identifier */
 129 #define         AT_XDMAC_CC_SAM_MASK    (0x3 << 16)     /* Channel Source Addressing Mode */
 130 #define                 AT_XDMAC_CC_SAM_FIXED_AM        (0x0 << 16)
 131 #define                 AT_XDMAC_CC_SAM_INCREMENTED_AM  (0x1 << 16)
 132 #define                 AT_XDMAC_CC_SAM_UBS_AM          (0x2 << 16)
 133 #define                 AT_XDMAC_CC_SAM_UBS_DS_AM       (0x3 << 16)
 134 #define         AT_XDMAC_CC_DAM_MASK    (0x3 << 18)     /* Channel Source Addressing Mode */
 135 #define                 AT_XDMAC_CC_DAM_FIXED_AM        (0x0 << 18)
 136 #define                 AT_XDMAC_CC_DAM_INCREMENTED_AM  (0x1 << 18)
 137 #define                 AT_XDMAC_CC_DAM_UBS_AM          (0x2 << 18)
 138 #define                 AT_XDMAC_CC_DAM_UBS_DS_AM       (0x3 << 18)
 139 #define         AT_XDMAC_CC_INITD       (0x1 << 21)     /* Channel Initialization Terminated (read only) */
 140 #define                 AT_XDMAC_CC_INITD_TERMINATED    (0x0 << 21)
 141 #define                 AT_XDMAC_CC_INITD_IN_PROGRESS   (0x1 << 21)
 142 #define         AT_XDMAC_CC_RDIP        (0x1 << 22)     /* Read in Progress (read only) */
 143 #define                 AT_XDMAC_CC_RDIP_DONE           (0x0 << 22)
 144 #define                 AT_XDMAC_CC_RDIP_IN_PROGRESS    (0x1 << 22)
 145 #define         AT_XDMAC_CC_WRIP        (0x1 << 23)     /* Write in Progress (read only) */
 146 #define                 AT_XDMAC_CC_WRIP_DONE           (0x0 << 23)
 147 #define                 AT_XDMAC_CC_WRIP_IN_PROGRESS    (0x1 << 23)
 148 #define         AT_XDMAC_CC_PERID(i)    (0x7f & (i) << 24)      /* Channel Peripheral Identifier */
 149 #define AT_XDMAC_CDS_MSP        0x2C    /* Channel Data Stride Memory Set Pattern */
 150 #define AT_XDMAC_CSUS           0x30    /* Channel Source Microblock Stride */
 151 #define AT_XDMAC_CDUS           0x34    /* Channel Destination Microblock Stride */
 152 
 153 #define AT_XDMAC_CHAN_REG_BASE  0x50    /* Channel registers base address */
 154 
 155 /* Microblock control members */
 156 #define AT_XDMAC_MBR_UBC_UBLEN_MAX      0xFFFFFFUL      /* Maximum Microblock Length */
 157 #define AT_XDMAC_MBR_UBC_NDE            (0x1 << 24)     /* Next Descriptor Enable */
 158 #define AT_XDMAC_MBR_UBC_NSEN           (0x1 << 25)     /* Next Descriptor Source Update */
 159 #define AT_XDMAC_MBR_UBC_NDEN           (0x1 << 26)     /* Next Descriptor Destination Update */
 160 #define AT_XDMAC_MBR_UBC_NDV0           (0x0 << 27)     /* Next Descriptor View 0 */
 161 #define AT_XDMAC_MBR_UBC_NDV1           (0x1 << 27)     /* Next Descriptor View 1 */
 162 #define AT_XDMAC_MBR_UBC_NDV2           (0x2 << 27)     /* Next Descriptor View 2 */
 163 #define AT_XDMAC_MBR_UBC_NDV3           (0x3 << 27)     /* Next Descriptor View 3 */
 164 
 165 #define AT_XDMAC_MAX_CHAN       0x20
 166 #define AT_XDMAC_MAX_CSIZE      16      /* 16 data */
 167 #define AT_XDMAC_MAX_DWIDTH     8       /* 64 bits */
 168 #define AT_XDMAC_RESIDUE_MAX_RETRIES    5
 169 
 170 #define AT_XDMAC_DMA_BUSWIDTHS\
 171         (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
 172         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
 173         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
 174         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
 175         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
 176 
 177 enum atc_status {
 178         AT_XDMAC_CHAN_IS_CYCLIC = 0,
 179         AT_XDMAC_CHAN_IS_PAUSED,
 180 };
 181 
 182 /* ----- Channels ----- */
 183 struct at_xdmac_chan {
 184         struct dma_chan                 chan;
 185         void __iomem                    *ch_regs;
 186         u32                             mask;           /* Channel Mask */
 187         u32                             cfg;            /* Channel Configuration Register */
 188         u8                              perid;          /* Peripheral ID */
 189         u8                              perif;          /* Peripheral Interface */
 190         u8                              memif;          /* Memory Interface */
 191         u32                             save_cc;
 192         u32                             save_cim;
 193         u32                             save_cnda;
 194         u32                             save_cndc;
 195         u32                             irq_status;
 196         unsigned long                   status;
 197         struct tasklet_struct           tasklet;
 198         struct dma_slave_config         sconfig;
 199 
 200         spinlock_t                      lock;
 201 
 202         struct list_head                xfers_list;
 203         struct list_head                free_descs_list;
 204 };
 205 
 206 
 207 /* ----- Controller ----- */
 208 struct at_xdmac {
 209         struct dma_device       dma;
 210         void __iomem            *regs;
 211         int                     irq;
 212         struct clk              *clk;
 213         u32                     save_gim;
 214         struct dma_pool         *at_xdmac_desc_pool;
 215         struct at_xdmac_chan    chan[0];
 216 };
 217 
 218 
 219 /* ----- Descriptors ----- */
 220 
 221 /* Linked List Descriptor */
 222 struct at_xdmac_lld {
 223         dma_addr_t      mbr_nda;        /* Next Descriptor Member */
 224         u32             mbr_ubc;        /* Microblock Control Member */
 225         dma_addr_t      mbr_sa;         /* Source Address Member */
 226         dma_addr_t      mbr_da;         /* Destination Address Member */
 227         u32             mbr_cfg;        /* Configuration Register */
 228         u32             mbr_bc;         /* Block Control Register */
 229         u32             mbr_ds;         /* Data Stride Register */
 230         u32             mbr_sus;        /* Source Microblock Stride Register */
 231         u32             mbr_dus;        /* Destination Microblock Stride Register */
 232 };
 233 
 234 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
 235 struct at_xdmac_desc {
 236         struct at_xdmac_lld             lld;
 237         enum dma_transfer_direction     direction;
 238         struct dma_async_tx_descriptor  tx_dma_desc;
 239         struct list_head                desc_node;
 240         /* Following members are only used by the first descriptor */
 241         bool                            active_xfer;
 242         unsigned int                    xfer_size;
 243         struct list_head                descs_list;
 244         struct list_head                xfer_node;
 245 } __aligned(sizeof(u64));
 246 
 247 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
 248 {
 249         return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
 250 }
 251 
 252 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
 253 #define at_xdmac_write(atxdmac, reg, value) \
 254         writel_relaxed((value), (atxdmac)->regs + (reg))
 255 
 256 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
 257 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
 258 
 259 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
 260 {
 261         return container_of(dchan, struct at_xdmac_chan, chan);
 262 }
 263 
 264 static struct device *chan2dev(struct dma_chan *chan)
 265 {
 266         return &chan->dev->device;
 267 }
 268 
 269 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
 270 {
 271         return container_of(ddev, struct at_xdmac, dma);
 272 }
 273 
 274 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
 275 {
 276         return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
 277 }
 278 
 279 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
 280 {
 281         return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
 282 }
 283 
 284 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
 285 {
 286         return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
 287 }
 288 
 289 static inline int at_xdmac_csize(u32 maxburst)
 290 {
 291         int csize;
 292 
 293         csize = ffs(maxburst) - 1;
 294         if (csize > 4)
 295                 csize = -EINVAL;
 296 
 297         return csize;
 298 };
 299 
 300 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
 301 {
 302         return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
 303 }
 304 
 305 static inline u8 at_xdmac_get_dwidth(u32 cfg)
 306 {
 307         return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
 308 };
 309 
 310 static unsigned int init_nr_desc_per_channel = 64;
 311 module_param(init_nr_desc_per_channel, uint, 0644);
 312 MODULE_PARM_DESC(init_nr_desc_per_channel,
 313                  "initial descriptors per channel (default: 64)");
 314 
 315 
 316 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
 317 {
 318         return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
 319 }
 320 
 321 static void at_xdmac_off(struct at_xdmac *atxdmac)
 322 {
 323         at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
 324 
 325         /* Wait that all chans are disabled. */
 326         while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
 327                 cpu_relax();
 328 
 329         at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
 330 }
 331 
 332 /* Call with lock hold. */
 333 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
 334                                 struct at_xdmac_desc *first)
 335 {
 336         struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
 337         u32             reg;
 338 
 339         dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
 340 
 341         if (at_xdmac_chan_is_enabled(atchan))
 342                 return;
 343 
 344         /* Set transfer as active to not try to start it again. */
 345         first->active_xfer = true;
 346 
 347         /* Tell xdmac where to get the first descriptor. */
 348         reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
 349               | AT_XDMAC_CNDA_NDAIF(atchan->memif);
 350         at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
 351 
 352         /*
 353          * When doing non cyclic transfer we need to use the next
 354          * descriptor view 2 since some fields of the configuration register
 355          * depend on transfer size and src/dest addresses.
 356          */
 357         if (at_xdmac_chan_is_cyclic(atchan))
 358                 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
 359         else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
 360                 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
 361         else
 362                 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
 363         /*
 364          * Even if the register will be updated from the configuration in the
 365          * descriptor when using view 2 or higher, the PROT bit won't be set
 366          * properly. This bit can be modified only by using the channel
 367          * configuration register.
 368          */
 369         at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
 370 
 371         reg |= AT_XDMAC_CNDC_NDDUP
 372                | AT_XDMAC_CNDC_NDSUP
 373                | AT_XDMAC_CNDC_NDE;
 374         at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
 375 
 376         dev_vdbg(chan2dev(&atchan->chan),
 377                  "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 378                  __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 379                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 380                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 381                  at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 382                  at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 383                  at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 384 
 385         at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
 386         reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
 387         /*
 388          * Request Overflow Error is only for peripheral synchronized transfers
 389          */
 390         if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
 391                 reg |= AT_XDMAC_CIE_ROIE;
 392 
 393         /*
 394          * There is no end of list when doing cyclic dma, we need to get
 395          * an interrupt after each periods.
 396          */
 397         if (at_xdmac_chan_is_cyclic(atchan))
 398                 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 399                                     reg | AT_XDMAC_CIE_BIE);
 400         else
 401                 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
 402                                     reg | AT_XDMAC_CIE_LIE);
 403         at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
 404         dev_vdbg(chan2dev(&atchan->chan),
 405                  "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
 406         wmb();
 407         at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
 408 
 409         dev_vdbg(chan2dev(&atchan->chan),
 410                  "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
 411                  __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
 412                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
 413                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
 414                  at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
 415                  at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
 416                  at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
 417 
 418 }
 419 
 420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
 421 {
 422         struct at_xdmac_desc    *desc = txd_to_at_desc(tx);
 423         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(tx->chan);
 424         dma_cookie_t            cookie;
 425         unsigned long           irqflags;
 426 
 427         spin_lock_irqsave(&atchan->lock, irqflags);
 428         cookie = dma_cookie_assign(tx);
 429 
 430         dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
 431                  __func__, atchan, desc);
 432         list_add_tail(&desc->xfer_node, &atchan->xfers_list);
 433         if (list_is_singular(&atchan->xfers_list))
 434                 at_xdmac_start_xfer(atchan, desc);
 435 
 436         spin_unlock_irqrestore(&atchan->lock, irqflags);
 437         return cookie;
 438 }
 439 
 440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
 441                                                  gfp_t gfp_flags)
 442 {
 443         struct at_xdmac_desc    *desc;
 444         struct at_xdmac         *atxdmac = to_at_xdmac(chan->device);
 445         dma_addr_t              phys;
 446 
 447         desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
 448         if (desc) {
 449                 INIT_LIST_HEAD(&desc->descs_list);
 450                 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
 451                 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
 452                 desc->tx_dma_desc.phys = phys;
 453         }
 454 
 455         return desc;
 456 }
 457 
 458 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
 459 {
 460         memset(&desc->lld, 0, sizeof(desc->lld));
 461         INIT_LIST_HEAD(&desc->descs_list);
 462         desc->direction = DMA_TRANS_NONE;
 463         desc->xfer_size = 0;
 464         desc->active_xfer = false;
 465 }
 466 
 467 /* Call must be protected by lock. */
 468 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
 469 {
 470         struct at_xdmac_desc *desc;
 471 
 472         if (list_empty(&atchan->free_descs_list)) {
 473                 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
 474         } else {
 475                 desc = list_first_entry(&atchan->free_descs_list,
 476                                         struct at_xdmac_desc, desc_node);
 477                 list_del(&desc->desc_node);
 478                 at_xdmac_init_used_desc(desc);
 479         }
 480 
 481         return desc;
 482 }
 483 
 484 static void at_xdmac_queue_desc(struct dma_chan *chan,
 485                                 struct at_xdmac_desc *prev,
 486                                 struct at_xdmac_desc *desc)
 487 {
 488         if (!prev || !desc)
 489                 return;
 490 
 491         prev->lld.mbr_nda = desc->tx_dma_desc.phys;
 492         prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
 493 
 494         dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
 495                 __func__, prev, &prev->lld.mbr_nda);
 496 }
 497 
 498 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
 499                                                   struct at_xdmac_desc *desc)
 500 {
 501         if (!desc)
 502                 return;
 503 
 504         desc->lld.mbr_bc++;
 505 
 506         dev_dbg(chan2dev(chan),
 507                 "%s: incrementing the block count of the desc 0x%p\n",
 508                 __func__, desc);
 509 }
 510 
 511 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
 512                                        struct of_dma *of_dma)
 513 {
 514         struct at_xdmac         *atxdmac = of_dma->of_dma_data;
 515         struct at_xdmac_chan    *atchan;
 516         struct dma_chan         *chan;
 517         struct device           *dev = atxdmac->dma.dev;
 518 
 519         if (dma_spec->args_count != 1) {
 520                 dev_err(dev, "dma phandler args: bad number of args\n");
 521                 return NULL;
 522         }
 523 
 524         chan = dma_get_any_slave_channel(&atxdmac->dma);
 525         if (!chan) {
 526                 dev_err(dev, "can't get a dma channel\n");
 527                 return NULL;
 528         }
 529 
 530         atchan = to_at_xdmac_chan(chan);
 531         atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
 532         atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
 533         atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
 534         dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
 535                  atchan->memif, atchan->perif, atchan->perid);
 536 
 537         return chan;
 538 }
 539 
 540 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
 541                                       enum dma_transfer_direction direction)
 542 {
 543         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
 544         int                     csize, dwidth;
 545 
 546         if (direction == DMA_DEV_TO_MEM) {
 547                 atchan->cfg =
 548                         AT91_XDMAC_DT_PERID(atchan->perid)
 549                         | AT_XDMAC_CC_DAM_INCREMENTED_AM
 550                         | AT_XDMAC_CC_SAM_FIXED_AM
 551                         | AT_XDMAC_CC_DIF(atchan->memif)
 552                         | AT_XDMAC_CC_SIF(atchan->perif)
 553                         | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 554                         | AT_XDMAC_CC_DSYNC_PER2MEM
 555                         | AT_XDMAC_CC_MBSIZE_SIXTEEN
 556                         | AT_XDMAC_CC_TYPE_PER_TRAN;
 557                 csize = ffs(atchan->sconfig.src_maxburst) - 1;
 558                 if (csize < 0) {
 559                         dev_err(chan2dev(chan), "invalid src maxburst value\n");
 560                         return -EINVAL;
 561                 }
 562                 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 563                 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
 564                 if (dwidth < 0) {
 565                         dev_err(chan2dev(chan), "invalid src addr width value\n");
 566                         return -EINVAL;
 567                 }
 568                 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 569         } else if (direction == DMA_MEM_TO_DEV) {
 570                 atchan->cfg =
 571                         AT91_XDMAC_DT_PERID(atchan->perid)
 572                         | AT_XDMAC_CC_DAM_FIXED_AM
 573                         | AT_XDMAC_CC_SAM_INCREMENTED_AM
 574                         | AT_XDMAC_CC_DIF(atchan->perif)
 575                         | AT_XDMAC_CC_SIF(atchan->memif)
 576                         | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
 577                         | AT_XDMAC_CC_DSYNC_MEM2PER
 578                         | AT_XDMAC_CC_MBSIZE_SIXTEEN
 579                         | AT_XDMAC_CC_TYPE_PER_TRAN;
 580                 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
 581                 if (csize < 0) {
 582                         dev_err(chan2dev(chan), "invalid src maxburst value\n");
 583                         return -EINVAL;
 584                 }
 585                 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
 586                 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
 587                 if (dwidth < 0) {
 588                         dev_err(chan2dev(chan), "invalid dst addr width value\n");
 589                         return -EINVAL;
 590                 }
 591                 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
 592         }
 593 
 594         dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
 595 
 596         return 0;
 597 }
 598 
 599 /*
 600  * Only check that maxburst and addr width values are supported by the
 601  * the controller but not that the configuration is good to perform the
 602  * transfer since we don't know the direction at this stage.
 603  */
 604 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
 605 {
 606         if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
 607             || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
 608                 return -EINVAL;
 609 
 610         if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
 611             || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
 612                 return -EINVAL;
 613 
 614         return 0;
 615 }
 616 
 617 static int at_xdmac_set_slave_config(struct dma_chan *chan,
 618                                       struct dma_slave_config *sconfig)
 619 {
 620         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
 621 
 622         if (at_xdmac_check_slave_config(sconfig)) {
 623                 dev_err(chan2dev(chan), "invalid slave configuration\n");
 624                 return -EINVAL;
 625         }
 626 
 627         memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
 628 
 629         return 0;
 630 }
 631 
 632 static struct dma_async_tx_descriptor *
 633 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 634                        unsigned int sg_len, enum dma_transfer_direction direction,
 635                        unsigned long flags, void *context)
 636 {
 637         struct at_xdmac_chan            *atchan = to_at_xdmac_chan(chan);
 638         struct at_xdmac_desc            *first = NULL, *prev = NULL;
 639         struct scatterlist              *sg;
 640         int                             i;
 641         unsigned int                    xfer_size = 0;
 642         unsigned long                   irqflags;
 643         struct dma_async_tx_descriptor  *ret = NULL;
 644 
 645         if (!sgl)
 646                 return NULL;
 647 
 648         if (!is_slave_direction(direction)) {
 649                 dev_err(chan2dev(chan), "invalid DMA direction\n");
 650                 return NULL;
 651         }
 652 
 653         dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
 654                  __func__, sg_len,
 655                  direction == DMA_MEM_TO_DEV ? "to device" : "from device",
 656                  flags);
 657 
 658         /* Protect dma_sconfig field that can be modified by set_slave_conf. */
 659         spin_lock_irqsave(&atchan->lock, irqflags);
 660 
 661         if (at_xdmac_compute_chan_conf(chan, direction))
 662                 goto spin_unlock;
 663 
 664         /* Prepare descriptors. */
 665         for_each_sg(sgl, sg, sg_len, i) {
 666                 struct at_xdmac_desc    *desc = NULL;
 667                 u32                     len, mem, dwidth, fixed_dwidth;
 668 
 669                 len = sg_dma_len(sg);
 670                 mem = sg_dma_address(sg);
 671                 if (unlikely(!len)) {
 672                         dev_err(chan2dev(chan), "sg data length is zero\n");
 673                         goto spin_unlock;
 674                 }
 675                 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
 676                          __func__, i, len, mem);
 677 
 678                 desc = at_xdmac_get_desc(atchan);
 679                 if (!desc) {
 680                         dev_err(chan2dev(chan), "can't get descriptor\n");
 681                         if (first)
 682                                 list_splice_init(&first->descs_list, &atchan->free_descs_list);
 683                         goto spin_unlock;
 684                 }
 685 
 686                 /* Linked list descriptor setup. */
 687                 if (direction == DMA_DEV_TO_MEM) {
 688                         desc->lld.mbr_sa = atchan->sconfig.src_addr;
 689                         desc->lld.mbr_da = mem;
 690                 } else {
 691                         desc->lld.mbr_sa = mem;
 692                         desc->lld.mbr_da = atchan->sconfig.dst_addr;
 693                 }
 694                 dwidth = at_xdmac_get_dwidth(atchan->cfg);
 695                 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
 696                                ? dwidth
 697                                : AT_XDMAC_CC_DWIDTH_BYTE;
 698                 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2                       /* next descriptor view */
 699                         | AT_XDMAC_MBR_UBC_NDEN                                 /* next descriptor dst parameter update */
 700                         | AT_XDMAC_MBR_UBC_NSEN                                 /* next descriptor src parameter update */
 701                         | (len >> fixed_dwidth);                                /* microblock length */
 702                 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
 703                                     AT_XDMAC_CC_DWIDTH(fixed_dwidth);
 704                 dev_dbg(chan2dev(chan),
 705                          "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 706                          __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 707 
 708                 /* Chain lld. */
 709                 if (prev)
 710                         at_xdmac_queue_desc(chan, prev, desc);
 711 
 712                 prev = desc;
 713                 if (!first)
 714                         first = desc;
 715 
 716                 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 717                          __func__, desc, first);
 718                 list_add_tail(&desc->desc_node, &first->descs_list);
 719                 xfer_size += len;
 720         }
 721 
 722 
 723         first->tx_dma_desc.flags = flags;
 724         first->xfer_size = xfer_size;
 725         first->direction = direction;
 726         ret = &first->tx_dma_desc;
 727 
 728 spin_unlock:
 729         spin_unlock_irqrestore(&atchan->lock, irqflags);
 730         return ret;
 731 }
 732 
 733 static struct dma_async_tx_descriptor *
 734 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
 735                          size_t buf_len, size_t period_len,
 736                          enum dma_transfer_direction direction,
 737                          unsigned long flags)
 738 {
 739         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
 740         struct at_xdmac_desc    *first = NULL, *prev = NULL;
 741         unsigned int            periods = buf_len / period_len;
 742         int                     i;
 743         unsigned long           irqflags;
 744 
 745         dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
 746                 __func__, &buf_addr, buf_len, period_len,
 747                 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
 748 
 749         if (!is_slave_direction(direction)) {
 750                 dev_err(chan2dev(chan), "invalid DMA direction\n");
 751                 return NULL;
 752         }
 753 
 754         if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
 755                 dev_err(chan2dev(chan), "channel currently used\n");
 756                 return NULL;
 757         }
 758 
 759         if (at_xdmac_compute_chan_conf(chan, direction))
 760                 return NULL;
 761 
 762         for (i = 0; i < periods; i++) {
 763                 struct at_xdmac_desc    *desc = NULL;
 764 
 765                 spin_lock_irqsave(&atchan->lock, irqflags);
 766                 desc = at_xdmac_get_desc(atchan);
 767                 if (!desc) {
 768                         dev_err(chan2dev(chan), "can't get descriptor\n");
 769                         if (first)
 770                                 list_splice_init(&first->descs_list, &atchan->free_descs_list);
 771                         spin_unlock_irqrestore(&atchan->lock, irqflags);
 772                         return NULL;
 773                 }
 774                 spin_unlock_irqrestore(&atchan->lock, irqflags);
 775                 dev_dbg(chan2dev(chan),
 776                         "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
 777                         __func__, desc, &desc->tx_dma_desc.phys);
 778 
 779                 if (direction == DMA_DEV_TO_MEM) {
 780                         desc->lld.mbr_sa = atchan->sconfig.src_addr;
 781                         desc->lld.mbr_da = buf_addr + i * period_len;
 782                 } else {
 783                         desc->lld.mbr_sa = buf_addr + i * period_len;
 784                         desc->lld.mbr_da = atchan->sconfig.dst_addr;
 785                 }
 786                 desc->lld.mbr_cfg = atchan->cfg;
 787                 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
 788                         | AT_XDMAC_MBR_UBC_NDEN
 789                         | AT_XDMAC_MBR_UBC_NSEN
 790                         | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
 791 
 792                 dev_dbg(chan2dev(chan),
 793                          "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
 794                          __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
 795 
 796                 /* Chain lld. */
 797                 if (prev)
 798                         at_xdmac_queue_desc(chan, prev, desc);
 799 
 800                 prev = desc;
 801                 if (!first)
 802                         first = desc;
 803 
 804                 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 805                          __func__, desc, first);
 806                 list_add_tail(&desc->desc_node, &first->descs_list);
 807         }
 808 
 809         at_xdmac_queue_desc(chan, prev, first);
 810         first->tx_dma_desc.flags = flags;
 811         first->xfer_size = buf_len;
 812         first->direction = direction;
 813 
 814         return &first->tx_dma_desc;
 815 }
 816 
 817 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
 818 {
 819         u32 width;
 820 
 821         /*
 822          * Check address alignment to select the greater data width we
 823          * can use.
 824          *
 825          * Some XDMAC implementations don't provide dword transfer, in
 826          * this case selecting dword has the same behavior as
 827          * selecting word transfers.
 828          */
 829         if (!(addr & 7)) {
 830                 width = AT_XDMAC_CC_DWIDTH_DWORD;
 831                 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
 832         } else if (!(addr & 3)) {
 833                 width = AT_XDMAC_CC_DWIDTH_WORD;
 834                 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
 835         } else if (!(addr & 1)) {
 836                 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
 837                 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
 838         } else {
 839                 width = AT_XDMAC_CC_DWIDTH_BYTE;
 840                 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
 841         }
 842 
 843         return width;
 844 }
 845 
 846 static struct at_xdmac_desc *
 847 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
 848                                 struct at_xdmac_chan *atchan,
 849                                 struct at_xdmac_desc *prev,
 850                                 dma_addr_t src, dma_addr_t dst,
 851                                 struct dma_interleaved_template *xt,
 852                                 struct data_chunk *chunk)
 853 {
 854         struct at_xdmac_desc    *desc;
 855         u32                     dwidth;
 856         unsigned long           flags;
 857         size_t                  ublen;
 858         /*
 859          * WARNING: The channel configuration is set here since there is no
 860          * dmaengine_slave_config call in this case. Moreover we don't know the
 861          * direction, it involves we can't dynamically set the source and dest
 862          * interface so we have to use the same one. Only interface 0 allows EBI
 863          * access. Hopefully we can access DDR through both ports (at least on
 864          * SAMA5D4x), so we can use the same interface for source and dest,
 865          * that solves the fact we don't know the direction.
 866          * ERRATA: Even if useless for memory transfers, the PERID has to not
 867          * match the one of another channel. If not, it could lead to spurious
 868          * flag status.
 869          */
 870         u32                     chan_cc = AT_XDMAC_CC_PERID(0x3f)
 871                                         | AT_XDMAC_CC_DIF(0)
 872                                         | AT_XDMAC_CC_SIF(0)
 873                                         | AT_XDMAC_CC_MBSIZE_SIXTEEN
 874                                         | AT_XDMAC_CC_TYPE_MEM_TRAN;
 875 
 876         dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
 877         if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
 878                 dev_dbg(chan2dev(chan),
 879                         "%s: chunk too big (%zu, max size %lu)...\n",
 880                         __func__, chunk->size,
 881                         AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
 882                 return NULL;
 883         }
 884 
 885         if (prev)
 886                 dev_dbg(chan2dev(chan),
 887                         "Adding items at the end of desc 0x%p\n", prev);
 888 
 889         if (xt->src_inc) {
 890                 if (xt->src_sgl)
 891                         chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
 892                 else
 893                         chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
 894         }
 895 
 896         if (xt->dst_inc) {
 897                 if (xt->dst_sgl)
 898                         chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
 899                 else
 900                         chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
 901         }
 902 
 903         spin_lock_irqsave(&atchan->lock, flags);
 904         desc = at_xdmac_get_desc(atchan);
 905         spin_unlock_irqrestore(&atchan->lock, flags);
 906         if (!desc) {
 907                 dev_err(chan2dev(chan), "can't get descriptor\n");
 908                 return NULL;
 909         }
 910 
 911         chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
 912 
 913         ublen = chunk->size >> dwidth;
 914 
 915         desc->lld.mbr_sa = src;
 916         desc->lld.mbr_da = dst;
 917         desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
 918         desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
 919 
 920         desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
 921                 | AT_XDMAC_MBR_UBC_NDEN
 922                 | AT_XDMAC_MBR_UBC_NSEN
 923                 | ublen;
 924         desc->lld.mbr_cfg = chan_cc;
 925 
 926         dev_dbg(chan2dev(chan),
 927                 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
 928                 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
 929                 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
 930 
 931         /* Chain lld. */
 932         if (prev)
 933                 at_xdmac_queue_desc(chan, prev, desc);
 934 
 935         return desc;
 936 }
 937 
 938 static struct dma_async_tx_descriptor *
 939 at_xdmac_prep_interleaved(struct dma_chan *chan,
 940                           struct dma_interleaved_template *xt,
 941                           unsigned long flags)
 942 {
 943         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
 944         struct at_xdmac_desc    *prev = NULL, *first = NULL;
 945         dma_addr_t              dst_addr, src_addr;
 946         size_t                  src_skip = 0, dst_skip = 0, len = 0;
 947         struct data_chunk       *chunk;
 948         int                     i;
 949 
 950         if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
 951                 return NULL;
 952 
 953         /*
 954          * TODO: Handle the case where we have to repeat a chain of
 955          * descriptors...
 956          */
 957         if ((xt->numf > 1) && (xt->frame_size > 1))
 958                 return NULL;
 959 
 960         dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
 961                 __func__, &xt->src_start, &xt->dst_start,       xt->numf,
 962                 xt->frame_size, flags);
 963 
 964         src_addr = xt->src_start;
 965         dst_addr = xt->dst_start;
 966 
 967         if (xt->numf > 1) {
 968                 first = at_xdmac_interleaved_queue_desc(chan, atchan,
 969                                                         NULL,
 970                                                         src_addr, dst_addr,
 971                                                         xt, xt->sgl);
 972 
 973                 /* Length of the block is (BLEN+1) microblocks. */
 974                 for (i = 0; i < xt->numf - 1; i++)
 975                         at_xdmac_increment_block_count(chan, first);
 976 
 977                 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
 978                         __func__, first, first);
 979                 list_add_tail(&first->desc_node, &first->descs_list);
 980         } else {
 981                 for (i = 0; i < xt->frame_size; i++) {
 982                         size_t src_icg = 0, dst_icg = 0;
 983                         struct at_xdmac_desc *desc;
 984 
 985                         chunk = xt->sgl + i;
 986 
 987                         dst_icg = dmaengine_get_dst_icg(xt, chunk);
 988                         src_icg = dmaengine_get_src_icg(xt, chunk);
 989 
 990                         src_skip = chunk->size + src_icg;
 991                         dst_skip = chunk->size + dst_icg;
 992 
 993                         dev_dbg(chan2dev(chan),
 994                                 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
 995                                 __func__, chunk->size, src_icg, dst_icg);
 996 
 997                         desc = at_xdmac_interleaved_queue_desc(chan, atchan,
 998                                                                prev,
 999                                                                src_addr, dst_addr,
1000                                                                xt, chunk);
1001                         if (!desc) {
1002                                 list_splice_init(&first->descs_list,
1003                                                  &atchan->free_descs_list);
1004                                 return NULL;
1005                         }
1006 
1007                         if (!first)
1008                                 first = desc;
1009 
1010                         dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1011                                 __func__, desc, first);
1012                         list_add_tail(&desc->desc_node, &first->descs_list);
1013 
1014                         if (xt->src_sgl)
1015                                 src_addr += src_skip;
1016 
1017                         if (xt->dst_sgl)
1018                                 dst_addr += dst_skip;
1019 
1020                         len += chunk->size;
1021                         prev = desc;
1022                 }
1023         }
1024 
1025         first->tx_dma_desc.cookie = -EBUSY;
1026         first->tx_dma_desc.flags = flags;
1027         first->xfer_size = len;
1028 
1029         return &first->tx_dma_desc;
1030 }
1031 
1032 static struct dma_async_tx_descriptor *
1033 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1034                          size_t len, unsigned long flags)
1035 {
1036         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1037         struct at_xdmac_desc    *first = NULL, *prev = NULL;
1038         size_t                  remaining_size = len, xfer_size = 0, ublen;
1039         dma_addr_t              src_addr = src, dst_addr = dest;
1040         u32                     dwidth;
1041         /*
1042          * WARNING: We don't know the direction, it involves we can't
1043          * dynamically set the source and dest interface so we have to use the
1044          * same one. Only interface 0 allows EBI access. Hopefully we can
1045          * access DDR through both ports (at least on SAMA5D4x), so we can use
1046          * the same interface for source and dest, that solves the fact we
1047          * don't know the direction.
1048          * ERRATA: Even if useless for memory transfers, the PERID has to not
1049          * match the one of another channel. If not, it could lead to spurious
1050          * flag status.
1051          */
1052         u32                     chan_cc = AT_XDMAC_CC_PERID(0x3f)
1053                                         | AT_XDMAC_CC_DAM_INCREMENTED_AM
1054                                         | AT_XDMAC_CC_SAM_INCREMENTED_AM
1055                                         | AT_XDMAC_CC_DIF(0)
1056                                         | AT_XDMAC_CC_SIF(0)
1057                                         | AT_XDMAC_CC_MBSIZE_SIXTEEN
1058                                         | AT_XDMAC_CC_TYPE_MEM_TRAN;
1059         unsigned long           irqflags;
1060 
1061         dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1062                 __func__, &src, &dest, len, flags);
1063 
1064         if (unlikely(!len))
1065                 return NULL;
1066 
1067         dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1068 
1069         /* Prepare descriptors. */
1070         while (remaining_size) {
1071                 struct at_xdmac_desc    *desc = NULL;
1072 
1073                 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1074 
1075                 spin_lock_irqsave(&atchan->lock, irqflags);
1076                 desc = at_xdmac_get_desc(atchan);
1077                 spin_unlock_irqrestore(&atchan->lock, irqflags);
1078                 if (!desc) {
1079                         dev_err(chan2dev(chan), "can't get descriptor\n");
1080                         if (first)
1081                                 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1082                         return NULL;
1083                 }
1084 
1085                 /* Update src and dest addresses. */
1086                 src_addr += xfer_size;
1087                 dst_addr += xfer_size;
1088 
1089                 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1090                         xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1091                 else
1092                         xfer_size = remaining_size;
1093 
1094                 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1095 
1096                 /* Check remaining length and change data width if needed. */
1097                 dwidth = at_xdmac_align_width(chan,
1098                                               src_addr | dst_addr | xfer_size);
1099                 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1100                 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1101 
1102                 ublen = xfer_size >> dwidth;
1103                 remaining_size -= xfer_size;
1104 
1105                 desc->lld.mbr_sa = src_addr;
1106                 desc->lld.mbr_da = dst_addr;
1107                 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1108                         | AT_XDMAC_MBR_UBC_NDEN
1109                         | AT_XDMAC_MBR_UBC_NSEN
1110                         | ublen;
1111                 desc->lld.mbr_cfg = chan_cc;
1112 
1113                 dev_dbg(chan2dev(chan),
1114                          "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1115                          __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1116 
1117                 /* Chain lld. */
1118                 if (prev)
1119                         at_xdmac_queue_desc(chan, prev, desc);
1120 
1121                 prev = desc;
1122                 if (!first)
1123                         first = desc;
1124 
1125                 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1126                          __func__, desc, first);
1127                 list_add_tail(&desc->desc_node, &first->descs_list);
1128         }
1129 
1130         first->tx_dma_desc.flags = flags;
1131         first->xfer_size = len;
1132 
1133         return &first->tx_dma_desc;
1134 }
1135 
1136 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1137                                                          struct at_xdmac_chan *atchan,
1138                                                          dma_addr_t dst_addr,
1139                                                          size_t len,
1140                                                          int value)
1141 {
1142         struct at_xdmac_desc    *desc;
1143         unsigned long           flags;
1144         size_t                  ublen;
1145         u32                     dwidth;
1146         /*
1147          * WARNING: The channel configuration is set here since there is no
1148          * dmaengine_slave_config call in this case. Moreover we don't know the
1149          * direction, it involves we can't dynamically set the source and dest
1150          * interface so we have to use the same one. Only interface 0 allows EBI
1151          * access. Hopefully we can access DDR through both ports (at least on
1152          * SAMA5D4x), so we can use the same interface for source and dest,
1153          * that solves the fact we don't know the direction.
1154          * ERRATA: Even if useless for memory transfers, the PERID has to not
1155          * match the one of another channel. If not, it could lead to spurious
1156          * flag status.
1157          */
1158         u32                     chan_cc = AT_XDMAC_CC_PERID(0x3f)
1159                                         | AT_XDMAC_CC_DAM_UBS_AM
1160                                         | AT_XDMAC_CC_SAM_INCREMENTED_AM
1161                                         | AT_XDMAC_CC_DIF(0)
1162                                         | AT_XDMAC_CC_SIF(0)
1163                                         | AT_XDMAC_CC_MBSIZE_SIXTEEN
1164                                         | AT_XDMAC_CC_MEMSET_HW_MODE
1165                                         | AT_XDMAC_CC_TYPE_MEM_TRAN;
1166 
1167         dwidth = at_xdmac_align_width(chan, dst_addr);
1168 
1169         if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1170                 dev_err(chan2dev(chan),
1171                         "%s: Transfer too large, aborting...\n",
1172                         __func__);
1173                 return NULL;
1174         }
1175 
1176         spin_lock_irqsave(&atchan->lock, flags);
1177         desc = at_xdmac_get_desc(atchan);
1178         spin_unlock_irqrestore(&atchan->lock, flags);
1179         if (!desc) {
1180                 dev_err(chan2dev(chan), "can't get descriptor\n");
1181                 return NULL;
1182         }
1183 
1184         chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1185 
1186         ublen = len >> dwidth;
1187 
1188         desc->lld.mbr_da = dst_addr;
1189         desc->lld.mbr_ds = value;
1190         desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1191                 | AT_XDMAC_MBR_UBC_NDEN
1192                 | AT_XDMAC_MBR_UBC_NSEN
1193                 | ublen;
1194         desc->lld.mbr_cfg = chan_cc;
1195 
1196         dev_dbg(chan2dev(chan),
1197                 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1198                 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1199                 desc->lld.mbr_cfg);
1200 
1201         return desc;
1202 }
1203 
1204 static struct dma_async_tx_descriptor *
1205 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1206                          size_t len, unsigned long flags)
1207 {
1208         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1209         struct at_xdmac_desc    *desc;
1210 
1211         dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1212                 __func__, &dest, len, value, flags);
1213 
1214         if (unlikely(!len))
1215                 return NULL;
1216 
1217         desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1218         list_add_tail(&desc->desc_node, &desc->descs_list);
1219 
1220         desc->tx_dma_desc.cookie = -EBUSY;
1221         desc->tx_dma_desc.flags = flags;
1222         desc->xfer_size = len;
1223 
1224         return &desc->tx_dma_desc;
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1229                             unsigned int sg_len, int value,
1230                             unsigned long flags)
1231 {
1232         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1233         struct at_xdmac_desc    *desc, *pdesc = NULL,
1234                                 *ppdesc = NULL, *first = NULL;
1235         struct scatterlist      *sg, *psg = NULL, *ppsg = NULL;
1236         size_t                  stride = 0, pstride = 0, len = 0;
1237         int                     i;
1238 
1239         if (!sgl)
1240                 return NULL;
1241 
1242         dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1243                 __func__, sg_len, value, flags);
1244 
1245         /* Prepare descriptors. */
1246         for_each_sg(sgl, sg, sg_len, i) {
1247                 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1248                         __func__, &sg_dma_address(sg), sg_dma_len(sg),
1249                         value, flags);
1250                 desc = at_xdmac_memset_create_desc(chan, atchan,
1251                                                    sg_dma_address(sg),
1252                                                    sg_dma_len(sg),
1253                                                    value);
1254                 if (!desc && first)
1255                         list_splice_init(&first->descs_list,
1256                                          &atchan->free_descs_list);
1257 
1258                 if (!first)
1259                         first = desc;
1260 
1261                 /* Update our strides */
1262                 pstride = stride;
1263                 if (psg)
1264                         stride = sg_dma_address(sg) -
1265                                 (sg_dma_address(psg) + sg_dma_len(psg));
1266 
1267                 /*
1268                  * The scatterlist API gives us only the address and
1269                  * length of each elements.
1270                  *
1271                  * Unfortunately, we don't have the stride, which we
1272                  * will need to compute.
1273                  *
1274                  * That make us end up in a situation like this one:
1275                  *    len    stride    len    stride    len
1276                  * +-------+        +-------+        +-------+
1277                  * |  N-2  |        |  N-1  |        |   N   |
1278                  * +-------+        +-------+        +-------+
1279                  *
1280                  * We need all these three elements (N-2, N-1 and N)
1281                  * to actually take the decision on whether we need to
1282                  * queue N-1 or reuse N-2.
1283                  *
1284                  * We will only consider N if it is the last element.
1285                  */
1286                 if (ppdesc && pdesc) {
1287                         if ((stride == pstride) &&
1288                             (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1289                                 dev_dbg(chan2dev(chan),
1290                                         "%s: desc 0x%p can be merged with desc 0x%p\n",
1291                                         __func__, pdesc, ppdesc);
1292 
1293                                 /*
1294                                  * Increment the block count of the
1295                                  * N-2 descriptor
1296                                  */
1297                                 at_xdmac_increment_block_count(chan, ppdesc);
1298                                 ppdesc->lld.mbr_dus = stride;
1299 
1300                                 /*
1301                                  * Put back the N-1 descriptor in the
1302                                  * free descriptor list
1303                                  */
1304                                 list_add_tail(&pdesc->desc_node,
1305                                               &atchan->free_descs_list);
1306 
1307                                 /*
1308                                  * Make our N-1 descriptor pointer
1309                                  * point to the N-2 since they were
1310                                  * actually merged.
1311                                  */
1312                                 pdesc = ppdesc;
1313 
1314                         /*
1315                          * Rule out the case where we don't have
1316                          * pstride computed yet (our second sg
1317                          * element)
1318                          *
1319                          * We also want to catch the case where there
1320                          * would be a negative stride,
1321                          */
1322                         } else if (pstride ||
1323                                    sg_dma_address(sg) < sg_dma_address(psg)) {
1324                                 /*
1325                                  * Queue the N-1 descriptor after the
1326                                  * N-2
1327                                  */
1328                                 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1329 
1330                                 /*
1331                                  * Add the N-1 descriptor to the list
1332                                  * of the descriptors used for this
1333                                  * transfer
1334                                  */
1335                                 list_add_tail(&desc->desc_node,
1336                                               &first->descs_list);
1337                                 dev_dbg(chan2dev(chan),
1338                                         "%s: add desc 0x%p to descs_list 0x%p\n",
1339                                         __func__, desc, first);
1340                         }
1341                 }
1342 
1343                 /*
1344                  * If we are the last element, just see if we have the
1345                  * same size than the previous element.
1346                  *
1347                  * If so, we can merge it with the previous descriptor
1348                  * since we don't care about the stride anymore.
1349                  */
1350                 if ((i == (sg_len - 1)) &&
1351                     sg_dma_len(psg) == sg_dma_len(sg)) {
1352                         dev_dbg(chan2dev(chan),
1353                                 "%s: desc 0x%p can be merged with desc 0x%p\n",
1354                                 __func__, desc, pdesc);
1355 
1356                         /*
1357                          * Increment the block count of the N-1
1358                          * descriptor
1359                          */
1360                         at_xdmac_increment_block_count(chan, pdesc);
1361                         pdesc->lld.mbr_dus = stride;
1362 
1363                         /*
1364                          * Put back the N descriptor in the free
1365                          * descriptor list
1366                          */
1367                         list_add_tail(&desc->desc_node,
1368                                       &atchan->free_descs_list);
1369                 }
1370 
1371                 /* Update our descriptors */
1372                 ppdesc = pdesc;
1373                 pdesc = desc;
1374 
1375                 /* Update our scatter pointers */
1376                 ppsg = psg;
1377                 psg = sg;
1378 
1379                 len += sg_dma_len(sg);
1380         }
1381 
1382         first->tx_dma_desc.cookie = -EBUSY;
1383         first->tx_dma_desc.flags = flags;
1384         first->xfer_size = len;
1385 
1386         return &first->tx_dma_desc;
1387 }
1388 
1389 static enum dma_status
1390 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1391                 struct dma_tx_state *txstate)
1392 {
1393         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1394         struct at_xdmac         *atxdmac = to_at_xdmac(atchan->chan.device);
1395         struct at_xdmac_desc    *desc, *_desc;
1396         struct list_head        *descs_list;
1397         enum dma_status         ret;
1398         int                     residue, retry;
1399         u32                     cur_nda, check_nda, cur_ubc, mask, value;
1400         u8                      dwidth = 0;
1401         unsigned long           flags;
1402         bool                    initd;
1403 
1404         ret = dma_cookie_status(chan, cookie, txstate);
1405         if (ret == DMA_COMPLETE)
1406                 return ret;
1407 
1408         if (!txstate)
1409                 return ret;
1410 
1411         spin_lock_irqsave(&atchan->lock, flags);
1412 
1413         desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1414 
1415         /*
1416          * If the transfer has not been started yet, don't need to compute the
1417          * residue, it's the transfer length.
1418          */
1419         if (!desc->active_xfer) {
1420                 dma_set_residue(txstate, desc->xfer_size);
1421                 goto spin_unlock;
1422         }
1423 
1424         residue = desc->xfer_size;
1425         /*
1426          * Flush FIFO: only relevant when the transfer is source peripheral
1427          * synchronized. Flush is needed before reading CUBC because data in
1428          * the FIFO are not reported by CUBC. Reporting a residue of the
1429          * transfer length while we have data in FIFO can cause issue.
1430          * Usecase: atmel USART has a timeout which means I have received
1431          * characters but there is no more character received for a while. On
1432          * timeout, it requests the residue. If the data are in the DMA FIFO,
1433          * we will return a residue of the transfer length. It means no data
1434          * received. If an application is waiting for these data, it will hang
1435          * since we won't have another USART timeout without receiving new
1436          * data.
1437          */
1438         mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1439         value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1440         if ((desc->lld.mbr_cfg & mask) == value) {
1441                 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1442                 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1443                         cpu_relax();
1444         }
1445 
1446         /*
1447          * The easiest way to compute the residue should be to pause the DMA
1448          * but doing this can lead to miss some data as some devices don't
1449          * have FIFO.
1450          * We need to read several registers because:
1451          * - DMA is running therefore a descriptor change is possible while
1452          * reading these registers
1453          * - When the block transfer is done, the value of the CUBC register
1454          * is set to its initial value until the fetch of the next descriptor.
1455          * This value will corrupt the residue calculation so we have to skip
1456          * it.
1457          *
1458          * INITD --------                    ------------
1459          *              |____________________|
1460          *       _______________________  _______________
1461          * NDA       @desc2             \/   @desc3
1462          *       _______________________/\_______________
1463          *       __________  ___________  _______________
1464          * CUBC       0    \/ MAX desc1 \/  MAX desc2
1465          *       __________/\___________/\_______________
1466          *
1467          * Since descriptors are aligned on 64 bits, we can assume that
1468          * the update of NDA and CUBC is atomic.
1469          * Memory barriers are used to ensure the read order of the registers.
1470          * A max number of retries is set because unlikely it could never ends.
1471          */
1472         for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1473                 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1474                 rmb();
1475                 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1476                 rmb();
1477                 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1478                 rmb();
1479                 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1480                 rmb();
1481 
1482                 if ((check_nda == cur_nda) && initd)
1483                         break;
1484         }
1485 
1486         if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1487                 ret = DMA_ERROR;
1488                 goto spin_unlock;
1489         }
1490 
1491         /*
1492          * Flush FIFO: only relevant when the transfer is source peripheral
1493          * synchronized. Another flush is needed here because CUBC is updated
1494          * when the controller sends the data write command. It can lead to
1495          * report data that are not written in the memory or the device. The
1496          * FIFO flush ensures that data are really written.
1497          */
1498         if ((desc->lld.mbr_cfg & mask) == value) {
1499                 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1500                 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1501                         cpu_relax();
1502         }
1503 
1504         /*
1505          * Remove size of all microblocks already transferred and the current
1506          * one. Then add the remaining size to transfer of the current
1507          * microblock.
1508          */
1509         descs_list = &desc->descs_list;
1510         list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1511                 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1512                 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1513                 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1514                         break;
1515         }
1516         residue += cur_ubc << dwidth;
1517 
1518         dma_set_residue(txstate, residue);
1519 
1520         dev_dbg(chan2dev(chan),
1521                  "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1522                  __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1523 
1524 spin_unlock:
1525         spin_unlock_irqrestore(&atchan->lock, flags);
1526         return ret;
1527 }
1528 
1529 /* Call must be protected by lock. */
1530 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1531                                     struct at_xdmac_desc *desc)
1532 {
1533         dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1534 
1535         /*
1536          * Remove the transfer from the transfer list then move the transfer
1537          * descriptors into the free descriptors list.
1538          */
1539         list_del(&desc->xfer_node);
1540         list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1541 }
1542 
1543 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1544 {
1545         struct at_xdmac_desc    *desc;
1546         unsigned long           flags;
1547 
1548         spin_lock_irqsave(&atchan->lock, flags);
1549 
1550         /*
1551          * If channel is enabled, do nothing, advance_work will be triggered
1552          * after the interruption.
1553          */
1554         if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1555                 desc = list_first_entry(&atchan->xfers_list,
1556                                         struct at_xdmac_desc,
1557                                         xfer_node);
1558                 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1559                 if (!desc->active_xfer)
1560                         at_xdmac_start_xfer(atchan, desc);
1561         }
1562 
1563         spin_unlock_irqrestore(&atchan->lock, flags);
1564 }
1565 
1566 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1567 {
1568         struct at_xdmac_desc            *desc;
1569         struct dma_async_tx_descriptor  *txd;
1570 
1571         if (!list_empty(&atchan->xfers_list)) {
1572                 desc = list_first_entry(&atchan->xfers_list,
1573                                         struct at_xdmac_desc, xfer_node);
1574                 txd = &desc->tx_dma_desc;
1575 
1576                 if (txd->flags & DMA_PREP_INTERRUPT)
1577                         dmaengine_desc_get_callback_invoke(txd, NULL);
1578         }
1579 }
1580 
1581 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1582 {
1583         struct at_xdmac         *atxdmac = to_at_xdmac(atchan->chan.device);
1584         struct at_xdmac_desc    *bad_desc;
1585 
1586         /*
1587          * The descriptor currently at the head of the active list is
1588          * broken. Since we don't have any way to report errors, we'll
1589          * just have to scream loudly and try to continue with other
1590          * descriptors queued (if any).
1591          */
1592         if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1593                 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1594         if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1595                 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1596         if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1597                 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1598 
1599         spin_lock_bh(&atchan->lock);
1600 
1601         /* Channel must be disabled first as it's not done automatically */
1602         at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1603         while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1604                 cpu_relax();
1605 
1606         bad_desc = list_first_entry(&atchan->xfers_list,
1607                                     struct at_xdmac_desc,
1608                                     xfer_node);
1609 
1610         spin_unlock_bh(&atchan->lock);
1611 
1612         /* Print bad descriptor's details if needed */
1613         dev_dbg(chan2dev(&atchan->chan),
1614                 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1615                 __func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1616                 bad_desc->lld.mbr_ubc);
1617 
1618         /* Then continue with usual descriptor management */
1619 }
1620 
1621 static void at_xdmac_tasklet(unsigned long data)
1622 {
1623         struct at_xdmac_chan    *atchan = (struct at_xdmac_chan *)data;
1624         struct at_xdmac_desc    *desc;
1625         u32                     error_mask;
1626 
1627         dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1628                 __func__, atchan->irq_status);
1629 
1630         error_mask = AT_XDMAC_CIS_RBEIS
1631                      | AT_XDMAC_CIS_WBEIS
1632                      | AT_XDMAC_CIS_ROIS;
1633 
1634         if (at_xdmac_chan_is_cyclic(atchan)) {
1635                 at_xdmac_handle_cyclic(atchan);
1636         } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1637                    || (atchan->irq_status & error_mask)) {
1638                 struct dma_async_tx_descriptor  *txd;
1639 
1640                 if (atchan->irq_status & error_mask)
1641                         at_xdmac_handle_error(atchan);
1642 
1643                 spin_lock(&atchan->lock);
1644                 desc = list_first_entry(&atchan->xfers_list,
1645                                         struct at_xdmac_desc,
1646                                         xfer_node);
1647                 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1648                 if (!desc->active_xfer) {
1649                         dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1650                         spin_unlock(&atchan->lock);
1651                         return;
1652                 }
1653 
1654                 txd = &desc->tx_dma_desc;
1655 
1656                 at_xdmac_remove_xfer(atchan, desc);
1657                 spin_unlock(&atchan->lock);
1658 
1659                 if (!at_xdmac_chan_is_cyclic(atchan)) {
1660                         dma_cookie_complete(txd);
1661                         if (txd->flags & DMA_PREP_INTERRUPT)
1662                                 dmaengine_desc_get_callback_invoke(txd, NULL);
1663                 }
1664 
1665                 dma_run_dependencies(txd);
1666 
1667                 at_xdmac_advance_work(atchan);
1668         }
1669 }
1670 
1671 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1672 {
1673         struct at_xdmac         *atxdmac = (struct at_xdmac *)dev_id;
1674         struct at_xdmac_chan    *atchan;
1675         u32                     imr, status, pending;
1676         u32                     chan_imr, chan_status;
1677         int                     i, ret = IRQ_NONE;
1678 
1679         do {
1680                 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1681                 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1682                 pending = status & imr;
1683 
1684                 dev_vdbg(atxdmac->dma.dev,
1685                          "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1686                          __func__, status, imr, pending);
1687 
1688                 if (!pending)
1689                         break;
1690 
1691                 /* We have to find which channel has generated the interrupt. */
1692                 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1693                         if (!((1 << i) & pending))
1694                                 continue;
1695 
1696                         atchan = &atxdmac->chan[i];
1697                         chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1698                         chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1699                         atchan->irq_status = chan_status & chan_imr;
1700                         dev_vdbg(atxdmac->dma.dev,
1701                                  "%s: chan%d: imr=0x%x, status=0x%x\n",
1702                                  __func__, i, chan_imr, chan_status);
1703                         dev_vdbg(chan2dev(&atchan->chan),
1704                                  "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1705                                  __func__,
1706                                  at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1707                                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1708                                  at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1709                                  at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1710                                  at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1711                                  at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1712 
1713                         if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1714                                 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1715 
1716                         tasklet_schedule(&atchan->tasklet);
1717                         ret = IRQ_HANDLED;
1718                 }
1719 
1720         } while (pending);
1721 
1722         return ret;
1723 }
1724 
1725 static void at_xdmac_issue_pending(struct dma_chan *chan)
1726 {
1727         struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1728 
1729         dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1730 
1731         if (!at_xdmac_chan_is_cyclic(atchan))
1732                 at_xdmac_advance_work(atchan);
1733 
1734         return;
1735 }
1736 
1737 static int at_xdmac_device_config(struct dma_chan *chan,
1738                                   struct dma_slave_config *config)
1739 {
1740         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1741         int ret;
1742         unsigned long           flags;
1743 
1744         dev_dbg(chan2dev(chan), "%s\n", __func__);
1745 
1746         spin_lock_irqsave(&atchan->lock, flags);
1747         ret = at_xdmac_set_slave_config(chan, config);
1748         spin_unlock_irqrestore(&atchan->lock, flags);
1749 
1750         return ret;
1751 }
1752 
1753 static int at_xdmac_device_pause(struct dma_chan *chan)
1754 {
1755         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1756         struct at_xdmac         *atxdmac = to_at_xdmac(atchan->chan.device);
1757         unsigned long           flags;
1758 
1759         dev_dbg(chan2dev(chan), "%s\n", __func__);
1760 
1761         if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1762                 return 0;
1763 
1764         spin_lock_irqsave(&atchan->lock, flags);
1765         at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1766         while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1767                & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1768                 cpu_relax();
1769         spin_unlock_irqrestore(&atchan->lock, flags);
1770 
1771         return 0;
1772 }
1773 
1774 static int at_xdmac_device_resume(struct dma_chan *chan)
1775 {
1776         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1777         struct at_xdmac         *atxdmac = to_at_xdmac(atchan->chan.device);
1778         unsigned long           flags;
1779 
1780         dev_dbg(chan2dev(chan), "%s\n", __func__);
1781 
1782         spin_lock_irqsave(&atchan->lock, flags);
1783         if (!at_xdmac_chan_is_paused(atchan)) {
1784                 spin_unlock_irqrestore(&atchan->lock, flags);
1785                 return 0;
1786         }
1787 
1788         at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1789         clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1790         spin_unlock_irqrestore(&atchan->lock, flags);
1791 
1792         return 0;
1793 }
1794 
1795 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1796 {
1797         struct at_xdmac_desc    *desc, *_desc;
1798         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1799         struct at_xdmac         *atxdmac = to_at_xdmac(atchan->chan.device);
1800         unsigned long           flags;
1801 
1802         dev_dbg(chan2dev(chan), "%s\n", __func__);
1803 
1804         spin_lock_irqsave(&atchan->lock, flags);
1805         at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1806         while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1807                 cpu_relax();
1808 
1809         /* Cancel all pending transfers. */
1810         list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1811                 at_xdmac_remove_xfer(atchan, desc);
1812 
1813         clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1814         clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1815         spin_unlock_irqrestore(&atchan->lock, flags);
1816 
1817         return 0;
1818 }
1819 
1820 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1821 {
1822         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1823         struct at_xdmac_desc    *desc;
1824         int                     i;
1825         unsigned long           flags;
1826 
1827         spin_lock_irqsave(&atchan->lock, flags);
1828 
1829         if (at_xdmac_chan_is_enabled(atchan)) {
1830                 dev_err(chan2dev(chan),
1831                         "can't allocate channel resources (channel enabled)\n");
1832                 i = -EIO;
1833                 goto spin_unlock;
1834         }
1835 
1836         if (!list_empty(&atchan->free_descs_list)) {
1837                 dev_err(chan2dev(chan),
1838                         "can't allocate channel resources (channel not free from a previous use)\n");
1839                 i = -EIO;
1840                 goto spin_unlock;
1841         }
1842 
1843         for (i = 0; i < init_nr_desc_per_channel; i++) {
1844                 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1845                 if (!desc) {
1846                         dev_warn(chan2dev(chan),
1847                                 "only %d descriptors have been allocated\n", i);
1848                         break;
1849                 }
1850                 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1851         }
1852 
1853         dma_cookie_init(chan);
1854 
1855         dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1856 
1857 spin_unlock:
1858         spin_unlock_irqrestore(&atchan->lock, flags);
1859         return i;
1860 }
1861 
1862 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1863 {
1864         struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1865         struct at_xdmac         *atxdmac = to_at_xdmac(chan->device);
1866         struct at_xdmac_desc    *desc, *_desc;
1867 
1868         list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1869                 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1870                 list_del(&desc->desc_node);
1871                 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1872         }
1873 
1874         return;
1875 }
1876 
1877 #ifdef CONFIG_PM
1878 static int atmel_xdmac_prepare(struct device *dev)
1879 {
1880         struct at_xdmac         *atxdmac = dev_get_drvdata(dev);
1881         struct dma_chan         *chan, *_chan;
1882 
1883         list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1884                 struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1885 
1886                 /* Wait for transfer completion, except in cyclic case. */
1887                 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1888                         return -EAGAIN;
1889         }
1890         return 0;
1891 }
1892 #else
1893 #       define atmel_xdmac_prepare NULL
1894 #endif
1895 
1896 #ifdef CONFIG_PM_SLEEP
1897 static int atmel_xdmac_suspend(struct device *dev)
1898 {
1899         struct at_xdmac         *atxdmac = dev_get_drvdata(dev);
1900         struct dma_chan         *chan, *_chan;
1901 
1902         list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1903                 struct at_xdmac_chan    *atchan = to_at_xdmac_chan(chan);
1904 
1905                 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1906                 if (at_xdmac_chan_is_cyclic(atchan)) {
1907                         if (!at_xdmac_chan_is_paused(atchan))
1908                                 at_xdmac_device_pause(chan);
1909                         atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1910                         atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1911                         atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1912                 }
1913         }
1914         atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1915 
1916         at_xdmac_off(atxdmac);
1917         clk_disable_unprepare(atxdmac->clk);
1918         return 0;
1919 }
1920 
1921 static int atmel_xdmac_resume(struct device *dev)
1922 {
1923         struct at_xdmac         *atxdmac = dev_get_drvdata(dev);
1924         struct at_xdmac_chan    *atchan;
1925         struct dma_chan         *chan, *_chan;
1926         int                     i;
1927         int ret;
1928 
1929         ret = clk_prepare_enable(atxdmac->clk);
1930         if (ret)
1931                 return ret;
1932 
1933         /* Clear pending interrupts. */
1934         for (i = 0; i < atxdmac->dma.chancnt; i++) {
1935                 atchan = &atxdmac->chan[i];
1936                 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1937                         cpu_relax();
1938         }
1939 
1940         at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1941         list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1942                 atchan = to_at_xdmac_chan(chan);
1943                 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1944                 if (at_xdmac_chan_is_cyclic(atchan)) {
1945                         if (at_xdmac_chan_is_paused(atchan))
1946                                 at_xdmac_device_resume(chan);
1947                         at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1948                         at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1949                         at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1950                         wmb();
1951                         at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1952                 }
1953         }
1954         return 0;
1955 }
1956 #endif /* CONFIG_PM_SLEEP */
1957 
1958 static int at_xdmac_probe(struct platform_device *pdev)
1959 {
1960         struct resource *res;
1961         struct at_xdmac *atxdmac;
1962         int             irq, size, nr_channels, i, ret;
1963         void __iomem    *base;
1964         u32             reg;
1965 
1966         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1967         if (!res)
1968                 return -EINVAL;
1969 
1970         irq = platform_get_irq(pdev, 0);
1971         if (irq < 0)
1972                 return irq;
1973 
1974         base = devm_ioremap_resource(&pdev->dev, res);
1975         if (IS_ERR(base))
1976                 return PTR_ERR(base);
1977 
1978         /*
1979          * Read number of xdmac channels, read helper function can't be used
1980          * since atxdmac is not yet allocated and we need to know the number
1981          * of channels to do the allocation.
1982          */
1983         reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1984         nr_channels = AT_XDMAC_NB_CH(reg);
1985         if (nr_channels > AT_XDMAC_MAX_CHAN) {
1986                 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1987                         nr_channels);
1988                 return -EINVAL;
1989         }
1990 
1991         size = sizeof(*atxdmac);
1992         size += nr_channels * sizeof(struct at_xdmac_chan);
1993         atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1994         if (!atxdmac) {
1995                 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1996                 return -ENOMEM;
1997         }
1998 
1999         atxdmac->regs = base;
2000         atxdmac->irq = irq;
2001 
2002         atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2003         if (IS_ERR(atxdmac->clk)) {
2004                 dev_err(&pdev->dev, "can't get dma_clk\n");
2005                 return PTR_ERR(atxdmac->clk);
2006         }
2007 
2008         /* Do not use dev res to prevent races with tasklet */
2009         ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2010         if (ret) {
2011                 dev_err(&pdev->dev, "can't request irq\n");
2012                 return ret;
2013         }
2014 
2015         ret = clk_prepare_enable(atxdmac->clk);
2016         if (ret) {
2017                 dev_err(&pdev->dev, "can't prepare or enable clock\n");
2018                 goto err_free_irq;
2019         }
2020 
2021         atxdmac->at_xdmac_desc_pool =
2022                 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2023                                 sizeof(struct at_xdmac_desc), 4, 0);
2024         if (!atxdmac->at_xdmac_desc_pool) {
2025                 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2026                 ret = -ENOMEM;
2027                 goto err_clk_disable;
2028         }
2029 
2030         dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2031         dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2032         dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2033         dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2034         dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2035         dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2036         /*
2037          * Without DMA_PRIVATE the driver is not able to allocate more than
2038          * one channel, second allocation fails in private_candidate.
2039          */
2040         dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2041         atxdmac->dma.dev                                = &pdev->dev;
2042         atxdmac->dma.device_alloc_chan_resources        = at_xdmac_alloc_chan_resources;
2043         atxdmac->dma.device_free_chan_resources         = at_xdmac_free_chan_resources;
2044         atxdmac->dma.device_tx_status                   = at_xdmac_tx_status;
2045         atxdmac->dma.device_issue_pending               = at_xdmac_issue_pending;
2046         atxdmac->dma.device_prep_dma_cyclic             = at_xdmac_prep_dma_cyclic;
2047         atxdmac->dma.device_prep_interleaved_dma        = at_xdmac_prep_interleaved;
2048         atxdmac->dma.device_prep_dma_memcpy             = at_xdmac_prep_dma_memcpy;
2049         atxdmac->dma.device_prep_dma_memset             = at_xdmac_prep_dma_memset;
2050         atxdmac->dma.device_prep_dma_memset_sg          = at_xdmac_prep_dma_memset_sg;
2051         atxdmac->dma.device_prep_slave_sg               = at_xdmac_prep_slave_sg;
2052         atxdmac->dma.device_config                      = at_xdmac_device_config;
2053         atxdmac->dma.device_pause                       = at_xdmac_device_pause;
2054         atxdmac->dma.device_resume                      = at_xdmac_device_resume;
2055         atxdmac->dma.device_terminate_all               = at_xdmac_device_terminate_all;
2056         atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2057         atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2058         atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2059         atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2060 
2061         /* Disable all chans and interrupts. */
2062         at_xdmac_off(atxdmac);
2063 
2064         /* Init channels. */
2065         INIT_LIST_HEAD(&atxdmac->dma.channels);
2066         for (i = 0; i < nr_channels; i++) {
2067                 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2068 
2069                 atchan->chan.device = &atxdmac->dma;
2070                 list_add_tail(&atchan->chan.device_node,
2071                               &atxdmac->dma.channels);
2072 
2073                 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2074                 atchan->mask = 1 << i;
2075 
2076                 spin_lock_init(&atchan->lock);
2077                 INIT_LIST_HEAD(&atchan->xfers_list);
2078                 INIT_LIST_HEAD(&atchan->free_descs_list);
2079                 tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2080                              (unsigned long)atchan);
2081 
2082                 /* Clear pending interrupts. */
2083                 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2084                         cpu_relax();
2085         }
2086         platform_set_drvdata(pdev, atxdmac);
2087 
2088         ret = dma_async_device_register(&atxdmac->dma);
2089         if (ret) {
2090                 dev_err(&pdev->dev, "fail to register DMA engine device\n");
2091                 goto err_clk_disable;
2092         }
2093 
2094         ret = of_dma_controller_register(pdev->dev.of_node,
2095                                          at_xdmac_xlate, atxdmac);
2096         if (ret) {
2097                 dev_err(&pdev->dev, "could not register of dma controller\n");
2098                 goto err_dma_unregister;
2099         }
2100 
2101         dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2102                  nr_channels, atxdmac->regs);
2103 
2104         return 0;
2105 
2106 err_dma_unregister:
2107         dma_async_device_unregister(&atxdmac->dma);
2108 err_clk_disable:
2109         clk_disable_unprepare(atxdmac->clk);
2110 err_free_irq:
2111         free_irq(atxdmac->irq, atxdmac);
2112         return ret;
2113 }
2114 
2115 static int at_xdmac_remove(struct platform_device *pdev)
2116 {
2117         struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2118         int             i;
2119 
2120         at_xdmac_off(atxdmac);
2121         of_dma_controller_free(pdev->dev.of_node);
2122         dma_async_device_unregister(&atxdmac->dma);
2123         clk_disable_unprepare(atxdmac->clk);
2124 
2125         free_irq(atxdmac->irq, atxdmac);
2126 
2127         for (i = 0; i < atxdmac->dma.chancnt; i++) {
2128                 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2129 
2130                 tasklet_kill(&atchan->tasklet);
2131                 at_xdmac_free_chan_resources(&atchan->chan);
2132         }
2133 
2134         return 0;
2135 }
2136 
2137 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2138         .prepare        = atmel_xdmac_prepare,
2139         SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2140 };
2141 
2142 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2143         {
2144                 .compatible = "atmel,sama5d4-dma",
2145         }, {
2146                 /* sentinel */
2147         }
2148 };
2149 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2150 
2151 static struct platform_driver at_xdmac_driver = {
2152         .probe          = at_xdmac_probe,
2153         .remove         = at_xdmac_remove,
2154         .driver = {
2155                 .name           = "at_xdmac",
2156                 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2157                 .pm             = &atmel_xdmac_dev_pm_ops,
2158         }
2159 };
2160 
2161 static int __init at_xdmac_init(void)
2162 {
2163         return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2164 }
2165 subsys_initcall(at_xdmac_init);
2166 
2167 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2168 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2169 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */