root/drivers/dma/imx-sdma.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. chnenbl_ofs
  2. sdma_config_ownership
  3. sdma_enable_channel
  4. sdma_run_channel0
  5. sdma_load_script
  6. sdma_event_enable
  7. sdma_event_disable
  8. to_sdma_desc
  9. sdma_start_desc
  10. sdma_update_channel_loop
  11. mxc_sdma_handle_channel_normal
  12. sdma_int_handler
  13. sdma_get_pc
  14. sdma_load_context
  15. to_sdma_chan
  16. sdma_disable_channel
  17. sdma_channel_terminate_work
  18. sdma_disable_channel_async
  19. sdma_channel_synchronize
  20. sdma_set_watermarklevel_for_p2p
  21. sdma_config_channel
  22. sdma_set_channel_priority
  23. sdma_request_channel0
  24. sdma_alloc_bd
  25. sdma_free_bd
  26. sdma_desc_free
  27. sdma_alloc_chan_resources
  28. sdma_free_chan_resources
  29. sdma_transfer_init
  30. sdma_prep_memcpy
  31. sdma_prep_slave_sg
  32. sdma_prep_dma_cyclic
  33. sdma_config_write
  34. sdma_config
  35. sdma_tx_status
  36. sdma_issue_pending
  37. sdma_add_scripts
  38. sdma_load_firmware
  39. sdma_event_remap
  40. sdma_get_firmware
  41. sdma_init
  42. sdma_filter_fn
  43. sdma_xlate
  44. sdma_probe
  45. sdma_remove

   1 // SPDX-License-Identifier: GPL-2.0+
   2 //
   3 // drivers/dma/imx-sdma.c
   4 //
   5 // This file contains a driver for the Freescale Smart DMA engine
   6 //
   7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   8 //
   9 // Based on code from Freescale:
  10 //
  11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  12 
  13 #include <linux/init.h>
  14 #include <linux/iopoll.h>
  15 #include <linux/module.h>
  16 #include <linux/types.h>
  17 #include <linux/bitops.h>
  18 #include <linux/mm.h>
  19 #include <linux/interrupt.h>
  20 #include <linux/clk.h>
  21 #include <linux/delay.h>
  22 #include <linux/sched.h>
  23 #include <linux/semaphore.h>
  24 #include <linux/spinlock.h>
  25 #include <linux/device.h>
  26 #include <linux/dma-mapping.h>
  27 #include <linux/firmware.h>
  28 #include <linux/slab.h>
  29 #include <linux/platform_device.h>
  30 #include <linux/dmaengine.h>
  31 #include <linux/of.h>
  32 #include <linux/of_address.h>
  33 #include <linux/of_device.h>
  34 #include <linux/of_dma.h>
  35 #include <linux/workqueue.h>
  36 
  37 #include <asm/irq.h>
  38 #include <linux/platform_data/dma-imx-sdma.h>
  39 #include <linux/platform_data/dma-imx.h>
  40 #include <linux/regmap.h>
  41 #include <linux/mfd/syscon.h>
  42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  43 
  44 #include "dmaengine.h"
  45 #include "virt-dma.h"
  46 
  47 /* SDMA registers */
  48 #define SDMA_H_C0PTR            0x000
  49 #define SDMA_H_INTR             0x004
  50 #define SDMA_H_STATSTOP         0x008
  51 #define SDMA_H_START            0x00c
  52 #define SDMA_H_EVTOVR           0x010
  53 #define SDMA_H_DSPOVR           0x014
  54 #define SDMA_H_HOSTOVR          0x018
  55 #define SDMA_H_EVTPEND          0x01c
  56 #define SDMA_H_DSPENBL          0x020
  57 #define SDMA_H_RESET            0x024
  58 #define SDMA_H_EVTERR           0x028
  59 #define SDMA_H_INTRMSK          0x02c
  60 #define SDMA_H_PSW              0x030
  61 #define SDMA_H_EVTERRDBG        0x034
  62 #define SDMA_H_CONFIG           0x038
  63 #define SDMA_ONCE_ENB           0x040
  64 #define SDMA_ONCE_DATA          0x044
  65 #define SDMA_ONCE_INSTR         0x048
  66 #define SDMA_ONCE_STAT          0x04c
  67 #define SDMA_ONCE_CMD           0x050
  68 #define SDMA_EVT_MIRROR         0x054
  69 #define SDMA_ILLINSTADDR        0x058
  70 #define SDMA_CHN0ADDR           0x05c
  71 #define SDMA_ONCE_RTB           0x060
  72 #define SDMA_XTRIG_CONF1        0x070
  73 #define SDMA_XTRIG_CONF2        0x074
  74 #define SDMA_CHNENBL0_IMX35     0x200
  75 #define SDMA_CHNENBL0_IMX31     0x080
  76 #define SDMA_CHNPRI_0           0x100
  77 
  78 /*
  79  * Buffer descriptor status values.
  80  */
  81 #define BD_DONE  0x01
  82 #define BD_WRAP  0x02
  83 #define BD_CONT  0x04
  84 #define BD_INTR  0x08
  85 #define BD_RROR  0x10
  86 #define BD_LAST  0x20
  87 #define BD_EXTD  0x80
  88 
  89 /*
  90  * Data Node descriptor status values.
  91  */
  92 #define DND_END_OF_FRAME  0x80
  93 #define DND_END_OF_XFER   0x40
  94 #define DND_DONE          0x20
  95 #define DND_UNUSED        0x01
  96 
  97 /*
  98  * IPCV2 descriptor status values.
  99  */
 100 #define BD_IPCV2_END_OF_FRAME  0x40
 101 
 102 #define IPCV2_MAX_NODES        50
 103 /*
 104  * Error bit set in the CCB status field by the SDMA,
 105  * in setbd routine, in case of a transfer error
 106  */
 107 #define DATA_ERROR  0x10000000
 108 
 109 /*
 110  * Buffer descriptor commands.
 111  */
 112 #define C0_ADDR             0x01
 113 #define C0_LOAD             0x02
 114 #define C0_DUMP             0x03
 115 #define C0_SETCTX           0x07
 116 #define C0_GETCTX           0x03
 117 #define C0_SETDM            0x01
 118 #define C0_SETPM            0x04
 119 #define C0_GETDM            0x02
 120 #define C0_GETPM            0x08
 121 /*
 122  * Change endianness indicator in the BD command field
 123  */
 124 #define CHANGE_ENDIANNESS   0x80
 125 
 126 /*
 127  *  p_2_p watermark_level description
 128  *      Bits            Name                    Description
 129  *      0-7             Lower WML               Lower watermark level
 130  *      8               PS                      1: Pad Swallowing
 131  *                                              0: No Pad Swallowing
 132  *      9               PA                      1: Pad Adding
 133  *                                              0: No Pad Adding
 134  *      10              SPDIF                   If this bit is set both source
 135  *                                              and destination are on SPBA
 136  *      11              Source Bit(SP)          1: Source on SPBA
 137  *                                              0: Source on AIPS
 138  *      12              Destination Bit(DP)     1: Destination on SPBA
 139  *                                              0: Destination on AIPS
 140  *      13-15           ---------               MUST BE 0
 141  *      16-23           Higher WML              HWML
 142  *      24-27           N                       Total number of samples after
 143  *                                              which Pad adding/Swallowing
 144  *                                              must be done. It must be odd.
 145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
 146  *                                              LWML event mask
 147  *                                              0: LWE in EVENTS register
 148  *                                              1: LWE in EVENTS2 register
 149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
 150  *                                              HWML event mask
 151  *                                              0: HWE in EVENTS register
 152  *                                              1: HWE in EVENTS2 register
 153  *      30              ---------               MUST BE 0
 154  *      31              CONT                    1: Amount of samples to be
 155  *                                              transferred is unknown and
 156  *                                              script will keep on
 157  *                                              transferring samples as long as
 158  *                                              both events are detected and
 159  *                                              script must be manually stopped
 160  *                                              by the application
 161  *                                              0: The amount of samples to be
 162  *                                              transferred is equal to the
 163  *                                              count field of mode word
 164  */
 165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
 166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
 167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
 168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
 169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
 170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
 171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
 172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
 173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
 174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
 175 
 176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 179 
 180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
 181                                  BIT(DMA_MEM_TO_DEV) | \
 182                                  BIT(DMA_DEV_TO_DEV))
 183 
 184 /*
 185  * Mode/Count of data node descriptors - IPCv2
 186  */
 187 struct sdma_mode_count {
 188 #define SDMA_BD_MAX_CNT 0xffff
 189         u32 count   : 16; /* size of the buffer pointed by this BD */
 190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 191         u32 command :  8; /* command mostly used for channel 0 */
 192 };
 193 
 194 /*
 195  * Buffer descriptor
 196  */
 197 struct sdma_buffer_descriptor {
 198         struct sdma_mode_count  mode;
 199         u32 buffer_addr;        /* address of the buffer described */
 200         u32 ext_buffer_addr;    /* extended buffer address */
 201 } __attribute__ ((packed));
 202 
 203 /**
 204  * struct sdma_channel_control - Channel control Block
 205  *
 206  * @current_bd_ptr:     current buffer descriptor processed
 207  * @base_bd_ptr:        first element of buffer descriptor array
 208  * @unused:             padding. The SDMA engine expects an array of 128 byte
 209  *                      control blocks
 210  */
 211 struct sdma_channel_control {
 212         u32 current_bd_ptr;
 213         u32 base_bd_ptr;
 214         u32 unused[2];
 215 } __attribute__ ((packed));
 216 
 217 /**
 218  * struct sdma_state_registers - SDMA context for a channel
 219  *
 220  * @pc:         program counter
 221  * @unused1:    unused
 222  * @t:          test bit: status of arithmetic & test instruction
 223  * @rpc:        return program counter
 224  * @unused0:    unused
 225  * @sf:         source fault while loading data
 226  * @spc:        loop start program counter
 227  * @unused2:    unused
 228  * @df:         destination fault while storing data
 229  * @epc:        loop end program counter
 230  * @lm:         loop mode
 231  */
 232 struct sdma_state_registers {
 233         u32 pc     :14;
 234         u32 unused1: 1;
 235         u32 t      : 1;
 236         u32 rpc    :14;
 237         u32 unused0: 1;
 238         u32 sf     : 1;
 239         u32 spc    :14;
 240         u32 unused2: 1;
 241         u32 df     : 1;
 242         u32 epc    :14;
 243         u32 lm     : 2;
 244 } __attribute__ ((packed));
 245 
 246 /**
 247  * struct sdma_context_data - sdma context specific to a channel
 248  *
 249  * @channel_state:      channel state bits
 250  * @gReg:               general registers
 251  * @mda:                burst dma destination address register
 252  * @msa:                burst dma source address register
 253  * @ms:                 burst dma status register
 254  * @md:                 burst dma data register
 255  * @pda:                peripheral dma destination address register
 256  * @psa:                peripheral dma source address register
 257  * @ps:                 peripheral dma status register
 258  * @pd:                 peripheral dma data register
 259  * @ca:                 CRC polynomial register
 260  * @cs:                 CRC accumulator register
 261  * @dda:                dedicated core destination address register
 262  * @dsa:                dedicated core source address register
 263  * @ds:                 dedicated core status register
 264  * @dd:                 dedicated core data register
 265  * @scratch0:           1st word of dedicated ram for context switch
 266  * @scratch1:           2nd word of dedicated ram for context switch
 267  * @scratch2:           3rd word of dedicated ram for context switch
 268  * @scratch3:           4th word of dedicated ram for context switch
 269  * @scratch4:           5th word of dedicated ram for context switch
 270  * @scratch5:           6th word of dedicated ram for context switch
 271  * @scratch6:           7th word of dedicated ram for context switch
 272  * @scratch7:           8th word of dedicated ram for context switch
 273  */
 274 struct sdma_context_data {
 275         struct sdma_state_registers  channel_state;
 276         u32  gReg[8];
 277         u32  mda;
 278         u32  msa;
 279         u32  ms;
 280         u32  md;
 281         u32  pda;
 282         u32  psa;
 283         u32  ps;
 284         u32  pd;
 285         u32  ca;
 286         u32  cs;
 287         u32  dda;
 288         u32  dsa;
 289         u32  ds;
 290         u32  dd;
 291         u32  scratch0;
 292         u32  scratch1;
 293         u32  scratch2;
 294         u32  scratch3;
 295         u32  scratch4;
 296         u32  scratch5;
 297         u32  scratch6;
 298         u32  scratch7;
 299 } __attribute__ ((packed));
 300 
 301 
 302 struct sdma_engine;
 303 
 304 /**
 305  * struct sdma_desc - descriptor structor for one transfer
 306  * @vd:                 descriptor for virt dma
 307  * @num_bd:             number of descriptors currently handling
 308  * @bd_phys:            physical address of bd
 309  * @buf_tail:           ID of the buffer that was processed
 310  * @buf_ptail:          ID of the previous buffer that was processed
 311  * @period_len:         period length, used in cyclic.
 312  * @chn_real_count:     the real count updated from bd->mode.count
 313  * @chn_count:          the transfer count set
 314  * @sdmac:              sdma_channel pointer
 315  * @bd:                 pointer of allocate bd
 316  */
 317 struct sdma_desc {
 318         struct virt_dma_desc    vd;
 319         unsigned int            num_bd;
 320         dma_addr_t              bd_phys;
 321         unsigned int            buf_tail;
 322         unsigned int            buf_ptail;
 323         unsigned int            period_len;
 324         unsigned int            chn_real_count;
 325         unsigned int            chn_count;
 326         struct sdma_channel     *sdmac;
 327         struct sdma_buffer_descriptor *bd;
 328 };
 329 
 330 /**
 331  * struct sdma_channel - housekeeping for a SDMA channel
 332  *
 333  * @vc:                 virt_dma base structure
 334  * @desc:               sdma description including vd and other special member
 335  * @sdma:               pointer to the SDMA engine for this channel
 336  * @channel:            the channel number, matches dmaengine chan_id + 1
 337  * @direction:          transfer type. Needed for setting SDMA script
 338  * @slave_config        Slave configuration
 339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
 340  * @event_id0:          aka dma request line
 341  * @event_id1:          for channels that use 2 events
 342  * @word_size:          peripheral access size
 343  * @pc_from_device:     script address for those device_2_memory
 344  * @pc_to_device:       script address for those memory_2_device
 345  * @device_to_device:   script address for those device_2_device
 346  * @pc_to_pc:           script address for those memory_2_memory
 347  * @flags:              loop mode or not
 348  * @per_address:        peripheral source or destination address in common case
 349  *                      destination address in p_2_p case
 350  * @per_address2:       peripheral source address in p_2_p case
 351  * @event_mask:         event mask used in p_2_p script
 352  * @watermark_level:    value for gReg[7], some script will extend it from
 353  *                      basic watermark such as p_2_p
 354  * @shp_addr:           value for gReg[6]
 355  * @per_addr:           value for gReg[2]
 356  * @status:             status of dma channel
 357  * @data:               specific sdma interface structure
 358  * @bd_pool:            dma_pool for bd
 359  */
 360 struct sdma_channel {
 361         struct virt_dma_chan            vc;
 362         struct sdma_desc                *desc;
 363         struct sdma_engine              *sdma;
 364         unsigned int                    channel;
 365         enum dma_transfer_direction             direction;
 366         struct dma_slave_config         slave_config;
 367         enum sdma_peripheral_type       peripheral_type;
 368         unsigned int                    event_id0;
 369         unsigned int                    event_id1;
 370         enum dma_slave_buswidth         word_size;
 371         unsigned int                    pc_from_device, pc_to_device;
 372         unsigned int                    device_to_device;
 373         unsigned int                    pc_to_pc;
 374         unsigned long                   flags;
 375         dma_addr_t                      per_address, per_address2;
 376         unsigned long                   event_mask[2];
 377         unsigned long                   watermark_level;
 378         u32                             shp_addr, per_addr;
 379         enum dma_status                 status;
 380         bool                            context_loaded;
 381         struct imx_dma_data             data;
 382         struct work_struct              terminate_worker;
 383 };
 384 
 385 #define IMX_DMA_SG_LOOP         BIT(0)
 386 
 387 #define MAX_DMA_CHANNELS 32
 388 #define MXC_SDMA_DEFAULT_PRIORITY 1
 389 #define MXC_SDMA_MIN_PRIORITY 1
 390 #define MXC_SDMA_MAX_PRIORITY 7
 391 
 392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
 393 
 394 /**
 395  * struct sdma_firmware_header - Layout of the firmware image
 396  *
 397  * @magic:              "SDMA"
 398  * @version_major:      increased whenever layout of struct
 399  *                      sdma_script_start_addrs changes.
 400  * @version_minor:      firmware minor version (for binary compatible changes)
 401  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
 402  * @num_script_addrs:   Number of script addresses in this image
 403  * @ram_code_start:     offset of SDMA ram image in this firmware image
 404  * @ram_code_size:      size of SDMA ram image
 405  * @script_addrs:       Stores the start address of the SDMA scripts
 406  *                      (in SDMA memory space)
 407  */
 408 struct sdma_firmware_header {
 409         u32     magic;
 410         u32     version_major;
 411         u32     version_minor;
 412         u32     script_addrs_start;
 413         u32     num_script_addrs;
 414         u32     ram_code_start;
 415         u32     ram_code_size;
 416 };
 417 
 418 struct sdma_driver_data {
 419         int chnenbl0;
 420         int num_events;
 421         struct sdma_script_start_addrs  *script_addrs;
 422         bool check_ratio;
 423 };
 424 
 425 struct sdma_engine {
 426         struct device                   *dev;
 427         struct device_dma_parameters    dma_parms;
 428         struct sdma_channel             channel[MAX_DMA_CHANNELS];
 429         struct sdma_channel_control     *channel_control;
 430         void __iomem                    *regs;
 431         struct sdma_context_data        *context;
 432         dma_addr_t                      context_phys;
 433         struct dma_device               dma_device;
 434         struct clk                      *clk_ipg;
 435         struct clk                      *clk_ahb;
 436         spinlock_t                      channel_0_lock;
 437         u32                             script_number;
 438         struct sdma_script_start_addrs  *script_addrs;
 439         const struct sdma_driver_data   *drvdata;
 440         u32                             spba_start_addr;
 441         u32                             spba_end_addr;
 442         unsigned int                    irq;
 443         dma_addr_t                      bd0_phys;
 444         struct sdma_buffer_descriptor   *bd0;
 445         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
 446         bool                            clk_ratio;
 447 };
 448 
 449 static int sdma_config_write(struct dma_chan *chan,
 450                        struct dma_slave_config *dmaengine_cfg,
 451                        enum dma_transfer_direction direction);
 452 
 453 static struct sdma_driver_data sdma_imx31 = {
 454         .chnenbl0 = SDMA_CHNENBL0_IMX31,
 455         .num_events = 32,
 456 };
 457 
 458 static struct sdma_script_start_addrs sdma_script_imx25 = {
 459         .ap_2_ap_addr = 729,
 460         .uart_2_mcu_addr = 904,
 461         .per_2_app_addr = 1255,
 462         .mcu_2_app_addr = 834,
 463         .uartsh_2_mcu_addr = 1120,
 464         .per_2_shp_addr = 1329,
 465         .mcu_2_shp_addr = 1048,
 466         .ata_2_mcu_addr = 1560,
 467         .mcu_2_ata_addr = 1479,
 468         .app_2_per_addr = 1189,
 469         .app_2_mcu_addr = 770,
 470         .shp_2_per_addr = 1407,
 471         .shp_2_mcu_addr = 979,
 472 };
 473 
 474 static struct sdma_driver_data sdma_imx25 = {
 475         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 476         .num_events = 48,
 477         .script_addrs = &sdma_script_imx25,
 478 };
 479 
 480 static struct sdma_driver_data sdma_imx35 = {
 481         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 482         .num_events = 48,
 483 };
 484 
 485 static struct sdma_script_start_addrs sdma_script_imx51 = {
 486         .ap_2_ap_addr = 642,
 487         .uart_2_mcu_addr = 817,
 488         .mcu_2_app_addr = 747,
 489         .mcu_2_shp_addr = 961,
 490         .ata_2_mcu_addr = 1473,
 491         .mcu_2_ata_addr = 1392,
 492         .app_2_per_addr = 1033,
 493         .app_2_mcu_addr = 683,
 494         .shp_2_per_addr = 1251,
 495         .shp_2_mcu_addr = 892,
 496 };
 497 
 498 static struct sdma_driver_data sdma_imx51 = {
 499         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 500         .num_events = 48,
 501         .script_addrs = &sdma_script_imx51,
 502 };
 503 
 504 static struct sdma_script_start_addrs sdma_script_imx53 = {
 505         .ap_2_ap_addr = 642,
 506         .app_2_mcu_addr = 683,
 507         .mcu_2_app_addr = 747,
 508         .uart_2_mcu_addr = 817,
 509         .shp_2_mcu_addr = 891,
 510         .mcu_2_shp_addr = 960,
 511         .uartsh_2_mcu_addr = 1032,
 512         .spdif_2_mcu_addr = 1100,
 513         .mcu_2_spdif_addr = 1134,
 514         .firi_2_mcu_addr = 1193,
 515         .mcu_2_firi_addr = 1290,
 516 };
 517 
 518 static struct sdma_driver_data sdma_imx53 = {
 519         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 520         .num_events = 48,
 521         .script_addrs = &sdma_script_imx53,
 522 };
 523 
 524 static struct sdma_script_start_addrs sdma_script_imx6q = {
 525         .ap_2_ap_addr = 642,
 526         .uart_2_mcu_addr = 817,
 527         .mcu_2_app_addr = 747,
 528         .per_2_per_addr = 6331,
 529         .uartsh_2_mcu_addr = 1032,
 530         .mcu_2_shp_addr = 960,
 531         .app_2_mcu_addr = 683,
 532         .shp_2_mcu_addr = 891,
 533         .spdif_2_mcu_addr = 1100,
 534         .mcu_2_spdif_addr = 1134,
 535 };
 536 
 537 static struct sdma_driver_data sdma_imx6q = {
 538         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 539         .num_events = 48,
 540         .script_addrs = &sdma_script_imx6q,
 541 };
 542 
 543 static struct sdma_script_start_addrs sdma_script_imx7d = {
 544         .ap_2_ap_addr = 644,
 545         .uart_2_mcu_addr = 819,
 546         .mcu_2_app_addr = 749,
 547         .uartsh_2_mcu_addr = 1034,
 548         .mcu_2_shp_addr = 962,
 549         .app_2_mcu_addr = 685,
 550         .shp_2_mcu_addr = 893,
 551         .spdif_2_mcu_addr = 1102,
 552         .mcu_2_spdif_addr = 1136,
 553 };
 554 
 555 static struct sdma_driver_data sdma_imx7d = {
 556         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 557         .num_events = 48,
 558         .script_addrs = &sdma_script_imx7d,
 559 };
 560 
 561 static struct sdma_driver_data sdma_imx8mq = {
 562         .chnenbl0 = SDMA_CHNENBL0_IMX35,
 563         .num_events = 48,
 564         .script_addrs = &sdma_script_imx7d,
 565         .check_ratio = 1,
 566 };
 567 
 568 static const struct platform_device_id sdma_devtypes[] = {
 569         {
 570                 .name = "imx25-sdma",
 571                 .driver_data = (unsigned long)&sdma_imx25,
 572         }, {
 573                 .name = "imx31-sdma",
 574                 .driver_data = (unsigned long)&sdma_imx31,
 575         }, {
 576                 .name = "imx35-sdma",
 577                 .driver_data = (unsigned long)&sdma_imx35,
 578         }, {
 579                 .name = "imx51-sdma",
 580                 .driver_data = (unsigned long)&sdma_imx51,
 581         }, {
 582                 .name = "imx53-sdma",
 583                 .driver_data = (unsigned long)&sdma_imx53,
 584         }, {
 585                 .name = "imx6q-sdma",
 586                 .driver_data = (unsigned long)&sdma_imx6q,
 587         }, {
 588                 .name = "imx7d-sdma",
 589                 .driver_data = (unsigned long)&sdma_imx7d,
 590         }, {
 591                 .name = "imx8mq-sdma",
 592                 .driver_data = (unsigned long)&sdma_imx8mq,
 593         }, {
 594                 /* sentinel */
 595         }
 596 };
 597 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
 598 
 599 static const struct of_device_id sdma_dt_ids[] = {
 600         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
 601         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
 602         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
 603         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
 604         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
 605         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
 606         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
 607         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
 608         { /* sentinel */ }
 609 };
 610 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 611 
 612 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
 613 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
 614 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
 615 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
 616 
 617 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 618 {
 619         u32 chnenbl0 = sdma->drvdata->chnenbl0;
 620         return chnenbl0 + event * 4;
 621 }
 622 
 623 static int sdma_config_ownership(struct sdma_channel *sdmac,
 624                 bool event_override, bool mcu_override, bool dsp_override)
 625 {
 626         struct sdma_engine *sdma = sdmac->sdma;
 627         int channel = sdmac->channel;
 628         unsigned long evt, mcu, dsp;
 629 
 630         if (event_override && mcu_override && dsp_override)
 631                 return -EINVAL;
 632 
 633         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
 634         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
 635         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
 636 
 637         if (dsp_override)
 638                 __clear_bit(channel, &dsp);
 639         else
 640                 __set_bit(channel, &dsp);
 641 
 642         if (event_override)
 643                 __clear_bit(channel, &evt);
 644         else
 645                 __set_bit(channel, &evt);
 646 
 647         if (mcu_override)
 648                 __clear_bit(channel, &mcu);
 649         else
 650                 __set_bit(channel, &mcu);
 651 
 652         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
 653         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
 654         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
 655 
 656         return 0;
 657 }
 658 
 659 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 660 {
 661         writel(BIT(channel), sdma->regs + SDMA_H_START);
 662 }
 663 
 664 /*
 665  * sdma_run_channel0 - run a channel and wait till it's done
 666  */
 667 static int sdma_run_channel0(struct sdma_engine *sdma)
 668 {
 669         int ret;
 670         u32 reg;
 671 
 672         sdma_enable_channel(sdma, 0);
 673 
 674         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
 675                                                 reg, !(reg & 1), 1, 500);
 676         if (ret)
 677                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
 678 
 679         /* Set bits of CONFIG register with dynamic context switching */
 680         reg = readl(sdma->regs + SDMA_H_CONFIG);
 681         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
 682                 reg |= SDMA_H_CONFIG_CSM;
 683                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
 684         }
 685 
 686         return ret;
 687 }
 688 
 689 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 690                 u32 address)
 691 {
 692         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 693         void *buf_virt;
 694         dma_addr_t buf_phys;
 695         int ret;
 696         unsigned long flags;
 697 
 698         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
 699         if (!buf_virt) {
 700                 return -ENOMEM;
 701         }
 702 
 703         spin_lock_irqsave(&sdma->channel_0_lock, flags);
 704 
 705         bd0->mode.command = C0_SETPM;
 706         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
 707         bd0->mode.count = size / 2;
 708         bd0->buffer_addr = buf_phys;
 709         bd0->ext_buffer_addr = address;
 710 
 711         memcpy(buf_virt, buf, size);
 712 
 713         ret = sdma_run_channel0(sdma);
 714 
 715         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
 716 
 717         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
 718 
 719         return ret;
 720 }
 721 
 722 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 723 {
 724         struct sdma_engine *sdma = sdmac->sdma;
 725         int channel = sdmac->channel;
 726         unsigned long val;
 727         u32 chnenbl = chnenbl_ofs(sdma, event);
 728 
 729         val = readl_relaxed(sdma->regs + chnenbl);
 730         __set_bit(channel, &val);
 731         writel_relaxed(val, sdma->regs + chnenbl);
 732 }
 733 
 734 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 735 {
 736         struct sdma_engine *sdma = sdmac->sdma;
 737         int channel = sdmac->channel;
 738         u32 chnenbl = chnenbl_ofs(sdma, event);
 739         unsigned long val;
 740 
 741         val = readl_relaxed(sdma->regs + chnenbl);
 742         __clear_bit(channel, &val);
 743         writel_relaxed(val, sdma->regs + chnenbl);
 744 }
 745 
 746 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
 747 {
 748         return container_of(t, struct sdma_desc, vd.tx);
 749 }
 750 
 751 static void sdma_start_desc(struct sdma_channel *sdmac)
 752 {
 753         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
 754         struct sdma_desc *desc;
 755         struct sdma_engine *sdma = sdmac->sdma;
 756         int channel = sdmac->channel;
 757 
 758         if (!vd) {
 759                 sdmac->desc = NULL;
 760                 return;
 761         }
 762         sdmac->desc = desc = to_sdma_desc(&vd->tx);
 763         /*
 764          * Do not delete the node in desc_issued list in cyclic mode, otherwise
 765          * the desc allocated will never be freed in vchan_dma_desc_free_list
 766          */
 767         if (!(sdmac->flags & IMX_DMA_SG_LOOP))
 768                 list_del(&vd->node);
 769 
 770         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
 771         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
 772         sdma_enable_channel(sdma, sdmac->channel);
 773 }
 774 
 775 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
 776 {
 777         struct sdma_buffer_descriptor *bd;
 778         int error = 0;
 779         enum dma_status old_status = sdmac->status;
 780 
 781         /*
 782          * loop mode. Iterate over descriptors, re-setup them and
 783          * call callback function.
 784          */
 785         while (sdmac->desc) {
 786                 struct sdma_desc *desc = sdmac->desc;
 787 
 788                 bd = &desc->bd[desc->buf_tail];
 789 
 790                 if (bd->mode.status & BD_DONE)
 791                         break;
 792 
 793                 if (bd->mode.status & BD_RROR) {
 794                         bd->mode.status &= ~BD_RROR;
 795                         sdmac->status = DMA_ERROR;
 796                         error = -EIO;
 797                 }
 798 
 799                /*
 800                 * We use bd->mode.count to calculate the residue, since contains
 801                 * the number of bytes present in the current buffer descriptor.
 802                 */
 803 
 804                 desc->chn_real_count = bd->mode.count;
 805                 bd->mode.status |= BD_DONE;
 806                 bd->mode.count = desc->period_len;
 807                 desc->buf_ptail = desc->buf_tail;
 808                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
 809 
 810                 /*
 811                  * The callback is called from the interrupt context in order
 812                  * to reduce latency and to avoid the risk of altering the
 813                  * SDMA transaction status by the time the client tasklet is
 814                  * executed.
 815                  */
 816                 spin_unlock(&sdmac->vc.lock);
 817                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
 818                 spin_lock(&sdmac->vc.lock);
 819 
 820                 if (error)
 821                         sdmac->status = old_status;
 822         }
 823 }
 824 
 825 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
 826 {
 827         struct sdma_channel *sdmac = (struct sdma_channel *) data;
 828         struct sdma_buffer_descriptor *bd;
 829         int i, error = 0;
 830 
 831         sdmac->desc->chn_real_count = 0;
 832         /*
 833          * non loop mode. Iterate over all descriptors, collect
 834          * errors and call callback function
 835          */
 836         for (i = 0; i < sdmac->desc->num_bd; i++) {
 837                 bd = &sdmac->desc->bd[i];
 838 
 839                  if (bd->mode.status & (BD_DONE | BD_RROR))
 840                         error = -EIO;
 841                  sdmac->desc->chn_real_count += bd->mode.count;
 842         }
 843 
 844         if (error)
 845                 sdmac->status = DMA_ERROR;
 846         else
 847                 sdmac->status = DMA_COMPLETE;
 848 }
 849 
 850 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 851 {
 852         struct sdma_engine *sdma = dev_id;
 853         unsigned long stat;
 854 
 855         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
 856         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
 857         /* channel 0 is special and not handled here, see run_channel0() */
 858         stat &= ~1;
 859 
 860         while (stat) {
 861                 int channel = fls(stat) - 1;
 862                 struct sdma_channel *sdmac = &sdma->channel[channel];
 863                 struct sdma_desc *desc;
 864 
 865                 spin_lock(&sdmac->vc.lock);
 866                 desc = sdmac->desc;
 867                 if (desc) {
 868                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
 869                                 sdma_update_channel_loop(sdmac);
 870                         } else {
 871                                 mxc_sdma_handle_channel_normal(sdmac);
 872                                 vchan_cookie_complete(&desc->vd);
 873                                 sdma_start_desc(sdmac);
 874                         }
 875                 }
 876 
 877                 spin_unlock(&sdmac->vc.lock);
 878                 __clear_bit(channel, &stat);
 879         }
 880 
 881         return IRQ_HANDLED;
 882 }
 883 
 884 /*
 885  * sets the pc of SDMA script according to the peripheral type
 886  */
 887 static void sdma_get_pc(struct sdma_channel *sdmac,
 888                 enum sdma_peripheral_type peripheral_type)
 889 {
 890         struct sdma_engine *sdma = sdmac->sdma;
 891         int per_2_emi = 0, emi_2_per = 0;
 892         /*
 893          * These are needed once we start to support transfers between
 894          * two peripherals or memory-to-memory transfers
 895          */
 896         int per_2_per = 0, emi_2_emi = 0;
 897 
 898         sdmac->pc_from_device = 0;
 899         sdmac->pc_to_device = 0;
 900         sdmac->device_to_device = 0;
 901         sdmac->pc_to_pc = 0;
 902 
 903         switch (peripheral_type) {
 904         case IMX_DMATYPE_MEMORY:
 905                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
 906                 break;
 907         case IMX_DMATYPE_DSP:
 908                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
 909                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
 910                 break;
 911         case IMX_DMATYPE_FIRI:
 912                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
 913                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
 914                 break;
 915         case IMX_DMATYPE_UART:
 916                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
 917                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 918                 break;
 919         case IMX_DMATYPE_UART_SP:
 920                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
 921                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 922                 break;
 923         case IMX_DMATYPE_ATA:
 924                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
 925                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
 926                 break;
 927         case IMX_DMATYPE_CSPI:
 928         case IMX_DMATYPE_EXT:
 929         case IMX_DMATYPE_SSI:
 930         case IMX_DMATYPE_SAI:
 931                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
 932                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 933                 break;
 934         case IMX_DMATYPE_SSI_DUAL:
 935                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
 936                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
 937                 break;
 938         case IMX_DMATYPE_SSI_SP:
 939         case IMX_DMATYPE_MMC:
 940         case IMX_DMATYPE_SDHC:
 941         case IMX_DMATYPE_CSPI_SP:
 942         case IMX_DMATYPE_ESAI:
 943         case IMX_DMATYPE_MSHC_SP:
 944                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 945                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 946                 break;
 947         case IMX_DMATYPE_ASRC:
 948                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
 949                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
 950                 per_2_per = sdma->script_addrs->per_2_per_addr;
 951                 break;
 952         case IMX_DMATYPE_ASRC_SP:
 953                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 954                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 955                 per_2_per = sdma->script_addrs->per_2_per_addr;
 956                 break;
 957         case IMX_DMATYPE_MSHC:
 958                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
 959                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
 960                 break;
 961         case IMX_DMATYPE_CCM:
 962                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
 963                 break;
 964         case IMX_DMATYPE_SPDIF:
 965                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
 966                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
 967                 break;
 968         case IMX_DMATYPE_IPU_MEMORY:
 969                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
 970                 break;
 971         default:
 972                 break;
 973         }
 974 
 975         sdmac->pc_from_device = per_2_emi;
 976         sdmac->pc_to_device = emi_2_per;
 977         sdmac->device_to_device = per_2_per;
 978         sdmac->pc_to_pc = emi_2_emi;
 979 }
 980 
 981 static int sdma_load_context(struct sdma_channel *sdmac)
 982 {
 983         struct sdma_engine *sdma = sdmac->sdma;
 984         int channel = sdmac->channel;
 985         int load_address;
 986         struct sdma_context_data *context = sdma->context;
 987         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 988         int ret;
 989         unsigned long flags;
 990 
 991         if (sdmac->context_loaded)
 992                 return 0;
 993 
 994         if (sdmac->direction == DMA_DEV_TO_MEM)
 995                 load_address = sdmac->pc_from_device;
 996         else if (sdmac->direction == DMA_DEV_TO_DEV)
 997                 load_address = sdmac->device_to_device;
 998         else if (sdmac->direction == DMA_MEM_TO_MEM)
 999                 load_address = sdmac->pc_to_pc;
1000         else
1001                 load_address = sdmac->pc_to_device;
1002 
1003         if (load_address < 0)
1004                 return load_address;
1005 
1006         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1007         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1008         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1009         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1010         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1011         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1012 
1013         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1014 
1015         memset(context, 0, sizeof(*context));
1016         context->channel_state.pc = load_address;
1017 
1018         /* Send by context the event mask,base address for peripheral
1019          * and watermark level
1020          */
1021         context->gReg[0] = sdmac->event_mask[1];
1022         context->gReg[1] = sdmac->event_mask[0];
1023         context->gReg[2] = sdmac->per_addr;
1024         context->gReg[6] = sdmac->shp_addr;
1025         context->gReg[7] = sdmac->watermark_level;
1026 
1027         bd0->mode.command = C0_SETDM;
1028         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1029         bd0->mode.count = sizeof(*context) / 4;
1030         bd0->buffer_addr = sdma->context_phys;
1031         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1032         ret = sdma_run_channel0(sdma);
1033 
1034         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1035 
1036         sdmac->context_loaded = true;
1037 
1038         return ret;
1039 }
1040 
1041 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1042 {
1043         return container_of(chan, struct sdma_channel, vc.chan);
1044 }
1045 
1046 static int sdma_disable_channel(struct dma_chan *chan)
1047 {
1048         struct sdma_channel *sdmac = to_sdma_chan(chan);
1049         struct sdma_engine *sdma = sdmac->sdma;
1050         int channel = sdmac->channel;
1051 
1052         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1053         sdmac->status = DMA_ERROR;
1054 
1055         return 0;
1056 }
1057 static void sdma_channel_terminate_work(struct work_struct *work)
1058 {
1059         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1060                                                   terminate_worker);
1061         unsigned long flags;
1062         LIST_HEAD(head);
1063 
1064         /*
1065          * According to NXP R&D team a delay of one BD SDMA cost time
1066          * (maximum is 1ms) should be added after disable of the channel
1067          * bit, to ensure SDMA core has really been stopped after SDMA
1068          * clients call .device_terminate_all.
1069          */
1070         usleep_range(1000, 2000);
1071 
1072         spin_lock_irqsave(&sdmac->vc.lock, flags);
1073         vchan_get_all_descriptors(&sdmac->vc, &head);
1074         sdmac->desc = NULL;
1075         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1076         vchan_dma_desc_free_list(&sdmac->vc, &head);
1077         sdmac->context_loaded = false;
1078 }
1079 
1080 static int sdma_disable_channel_async(struct dma_chan *chan)
1081 {
1082         struct sdma_channel *sdmac = to_sdma_chan(chan);
1083 
1084         sdma_disable_channel(chan);
1085 
1086         if (sdmac->desc)
1087                 schedule_work(&sdmac->terminate_worker);
1088 
1089         return 0;
1090 }
1091 
1092 static void sdma_channel_synchronize(struct dma_chan *chan)
1093 {
1094         struct sdma_channel *sdmac = to_sdma_chan(chan);
1095 
1096         vchan_synchronize(&sdmac->vc);
1097 
1098         flush_work(&sdmac->terminate_worker);
1099 }
1100 
1101 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1102 {
1103         struct sdma_engine *sdma = sdmac->sdma;
1104 
1105         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1106         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1107 
1108         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1109         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1110 
1111         if (sdmac->event_id0 > 31)
1112                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1113 
1114         if (sdmac->event_id1 > 31)
1115                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1116 
1117         /*
1118          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1119          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1120          * r0(event_mask[1]) and r1(event_mask[0]).
1121          */
1122         if (lwml > hwml) {
1123                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1124                                                 SDMA_WATERMARK_LEVEL_HWML);
1125                 sdmac->watermark_level |= hwml;
1126                 sdmac->watermark_level |= lwml << 16;
1127                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1128         }
1129 
1130         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1131                         sdmac->per_address2 <= sdma->spba_end_addr)
1132                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1133 
1134         if (sdmac->per_address >= sdma->spba_start_addr &&
1135                         sdmac->per_address <= sdma->spba_end_addr)
1136                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1137 
1138         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1139 }
1140 
1141 static int sdma_config_channel(struct dma_chan *chan)
1142 {
1143         struct sdma_channel *sdmac = to_sdma_chan(chan);
1144         int ret;
1145 
1146         sdma_disable_channel(chan);
1147 
1148         sdmac->event_mask[0] = 0;
1149         sdmac->event_mask[1] = 0;
1150         sdmac->shp_addr = 0;
1151         sdmac->per_addr = 0;
1152 
1153         switch (sdmac->peripheral_type) {
1154         case IMX_DMATYPE_DSP:
1155                 sdma_config_ownership(sdmac, false, true, true);
1156                 break;
1157         case IMX_DMATYPE_MEMORY:
1158                 sdma_config_ownership(sdmac, false, true, false);
1159                 break;
1160         default:
1161                 sdma_config_ownership(sdmac, true, true, false);
1162                 break;
1163         }
1164 
1165         sdma_get_pc(sdmac, sdmac->peripheral_type);
1166 
1167         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1168                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1169                 /* Handle multiple event channels differently */
1170                 if (sdmac->event_id1) {
1171                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1172                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1173                                 sdma_set_watermarklevel_for_p2p(sdmac);
1174                 } else
1175                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1176 
1177                 /* Address */
1178                 sdmac->shp_addr = sdmac->per_address;
1179                 sdmac->per_addr = sdmac->per_address2;
1180         } else {
1181                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1182         }
1183 
1184         ret = sdma_load_context(sdmac);
1185 
1186         return ret;
1187 }
1188 
1189 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1190                 unsigned int priority)
1191 {
1192         struct sdma_engine *sdma = sdmac->sdma;
1193         int channel = sdmac->channel;
1194 
1195         if (priority < MXC_SDMA_MIN_PRIORITY
1196             || priority > MXC_SDMA_MAX_PRIORITY) {
1197                 return -EINVAL;
1198         }
1199 
1200         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1201 
1202         return 0;
1203 }
1204 
1205 static int sdma_request_channel0(struct sdma_engine *sdma)
1206 {
1207         int ret = -EBUSY;
1208 
1209         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1210                                         GFP_NOWAIT);
1211         if (!sdma->bd0) {
1212                 ret = -ENOMEM;
1213                 goto out;
1214         }
1215 
1216         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1217         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1218 
1219         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1220         return 0;
1221 out:
1222 
1223         return ret;
1224 }
1225 
1226 
1227 static int sdma_alloc_bd(struct sdma_desc *desc)
1228 {
1229         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1230         int ret = 0;
1231 
1232         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1233                                        &desc->bd_phys, GFP_NOWAIT);
1234         if (!desc->bd) {
1235                 ret = -ENOMEM;
1236                 goto out;
1237         }
1238 out:
1239         return ret;
1240 }
1241 
1242 static void sdma_free_bd(struct sdma_desc *desc)
1243 {
1244         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1245 
1246         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1247                           desc->bd_phys);
1248 }
1249 
1250 static void sdma_desc_free(struct virt_dma_desc *vd)
1251 {
1252         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1253 
1254         sdma_free_bd(desc);
1255         kfree(desc);
1256 }
1257 
1258 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1259 {
1260         struct sdma_channel *sdmac = to_sdma_chan(chan);
1261         struct imx_dma_data *data = chan->private;
1262         struct imx_dma_data mem_data;
1263         int prio, ret;
1264 
1265         /*
1266          * MEMCPY may never setup chan->private by filter function such as
1267          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1268          * Please note in any other slave case, you have to setup chan->private
1269          * with 'struct imx_dma_data' in your own filter function if you want to
1270          * request dma channel by dma_request_channel() rather than
1271          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1272          * to warn you to correct your filter function.
1273          */
1274         if (!data) {
1275                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1276                 mem_data.priority = 2;
1277                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1278                 mem_data.dma_request = 0;
1279                 mem_data.dma_request2 = 0;
1280                 data = &mem_data;
1281 
1282                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1283         }
1284 
1285         switch (data->priority) {
1286         case DMA_PRIO_HIGH:
1287                 prio = 3;
1288                 break;
1289         case DMA_PRIO_MEDIUM:
1290                 prio = 2;
1291                 break;
1292         case DMA_PRIO_LOW:
1293         default:
1294                 prio = 1;
1295                 break;
1296         }
1297 
1298         sdmac->peripheral_type = data->peripheral_type;
1299         sdmac->event_id0 = data->dma_request;
1300         sdmac->event_id1 = data->dma_request2;
1301 
1302         ret = clk_enable(sdmac->sdma->clk_ipg);
1303         if (ret)
1304                 return ret;
1305         ret = clk_enable(sdmac->sdma->clk_ahb);
1306         if (ret)
1307                 goto disable_clk_ipg;
1308 
1309         ret = sdma_set_channel_priority(sdmac, prio);
1310         if (ret)
1311                 goto disable_clk_ahb;
1312 
1313         return 0;
1314 
1315 disable_clk_ahb:
1316         clk_disable(sdmac->sdma->clk_ahb);
1317 disable_clk_ipg:
1318         clk_disable(sdmac->sdma->clk_ipg);
1319         return ret;
1320 }
1321 
1322 static void sdma_free_chan_resources(struct dma_chan *chan)
1323 {
1324         struct sdma_channel *sdmac = to_sdma_chan(chan);
1325         struct sdma_engine *sdma = sdmac->sdma;
1326 
1327         sdma_disable_channel_async(chan);
1328 
1329         sdma_channel_synchronize(chan);
1330 
1331         if (sdmac->event_id0 >= 0)
1332                 sdma_event_disable(sdmac, sdmac->event_id0);
1333         if (sdmac->event_id1)
1334                 sdma_event_disable(sdmac, sdmac->event_id1);
1335 
1336         sdmac->event_id0 = 0;
1337         sdmac->event_id1 = 0;
1338         sdmac->context_loaded = false;
1339 
1340         sdma_set_channel_priority(sdmac, 0);
1341 
1342         clk_disable(sdma->clk_ipg);
1343         clk_disable(sdma->clk_ahb);
1344 }
1345 
1346 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1347                                 enum dma_transfer_direction direction, u32 bds)
1348 {
1349         struct sdma_desc *desc;
1350 
1351         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1352         if (!desc)
1353                 goto err_out;
1354 
1355         sdmac->status = DMA_IN_PROGRESS;
1356         sdmac->direction = direction;
1357         sdmac->flags = 0;
1358 
1359         desc->chn_count = 0;
1360         desc->chn_real_count = 0;
1361         desc->buf_tail = 0;
1362         desc->buf_ptail = 0;
1363         desc->sdmac = sdmac;
1364         desc->num_bd = bds;
1365 
1366         if (sdma_alloc_bd(desc))
1367                 goto err_desc_out;
1368 
1369         /* No slave_config called in MEMCPY case, so do here */
1370         if (direction == DMA_MEM_TO_MEM)
1371                 sdma_config_ownership(sdmac, false, true, false);
1372 
1373         if (sdma_load_context(sdmac))
1374                 goto err_desc_out;
1375 
1376         return desc;
1377 
1378 err_desc_out:
1379         kfree(desc);
1380 err_out:
1381         return NULL;
1382 }
1383 
1384 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1385                 struct dma_chan *chan, dma_addr_t dma_dst,
1386                 dma_addr_t dma_src, size_t len, unsigned long flags)
1387 {
1388         struct sdma_channel *sdmac = to_sdma_chan(chan);
1389         struct sdma_engine *sdma = sdmac->sdma;
1390         int channel = sdmac->channel;
1391         size_t count;
1392         int i = 0, param;
1393         struct sdma_buffer_descriptor *bd;
1394         struct sdma_desc *desc;
1395 
1396         if (!chan || !len)
1397                 return NULL;
1398 
1399         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1400                 &dma_src, &dma_dst, len, channel);
1401 
1402         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1403                                         len / SDMA_BD_MAX_CNT + 1);
1404         if (!desc)
1405                 return NULL;
1406 
1407         do {
1408                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1409                 bd = &desc->bd[i];
1410                 bd->buffer_addr = dma_src;
1411                 bd->ext_buffer_addr = dma_dst;
1412                 bd->mode.count = count;
1413                 desc->chn_count += count;
1414                 bd->mode.command = 0;
1415 
1416                 dma_src += count;
1417                 dma_dst += count;
1418                 len -= count;
1419                 i++;
1420 
1421                 param = BD_DONE | BD_EXTD | BD_CONT;
1422                 /* last bd */
1423                 if (!len) {
1424                         param |= BD_INTR;
1425                         param |= BD_LAST;
1426                         param &= ~BD_CONT;
1427                 }
1428 
1429                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1430                                 i, count, bd->buffer_addr,
1431                                 param & BD_WRAP ? "wrap" : "",
1432                                 param & BD_INTR ? " intr" : "");
1433 
1434                 bd->mode.status = param;
1435         } while (len);
1436 
1437         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1438 }
1439 
1440 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1441                 struct dma_chan *chan, struct scatterlist *sgl,
1442                 unsigned int sg_len, enum dma_transfer_direction direction,
1443                 unsigned long flags, void *context)
1444 {
1445         struct sdma_channel *sdmac = to_sdma_chan(chan);
1446         struct sdma_engine *sdma = sdmac->sdma;
1447         int i, count;
1448         int channel = sdmac->channel;
1449         struct scatterlist *sg;
1450         struct sdma_desc *desc;
1451 
1452         sdma_config_write(chan, &sdmac->slave_config, direction);
1453 
1454         desc = sdma_transfer_init(sdmac, direction, sg_len);
1455         if (!desc)
1456                 goto err_out;
1457 
1458         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1459                         sg_len, channel);
1460 
1461         for_each_sg(sgl, sg, sg_len, i) {
1462                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1463                 int param;
1464 
1465                 bd->buffer_addr = sg->dma_address;
1466 
1467                 count = sg_dma_len(sg);
1468 
1469                 if (count > SDMA_BD_MAX_CNT) {
1470                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1471                                         channel, count, SDMA_BD_MAX_CNT);
1472                         goto err_bd_out;
1473                 }
1474 
1475                 bd->mode.count = count;
1476                 desc->chn_count += count;
1477 
1478                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1479                         goto err_bd_out;
1480 
1481                 switch (sdmac->word_size) {
1482                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1483                         bd->mode.command = 0;
1484                         if (count & 3 || sg->dma_address & 3)
1485                                 goto err_bd_out;
1486                         break;
1487                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1488                         bd->mode.command = 2;
1489                         if (count & 1 || sg->dma_address & 1)
1490                                 goto err_bd_out;
1491                         break;
1492                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1493                         bd->mode.command = 1;
1494                         break;
1495                 default:
1496                         goto err_bd_out;
1497                 }
1498 
1499                 param = BD_DONE | BD_EXTD | BD_CONT;
1500 
1501                 if (i + 1 == sg_len) {
1502                         param |= BD_INTR;
1503                         param |= BD_LAST;
1504                         param &= ~BD_CONT;
1505                 }
1506 
1507                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1508                                 i, count, (u64)sg->dma_address,
1509                                 param & BD_WRAP ? "wrap" : "",
1510                                 param & BD_INTR ? " intr" : "");
1511 
1512                 bd->mode.status = param;
1513         }
1514 
1515         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1516 err_bd_out:
1517         sdma_free_bd(desc);
1518         kfree(desc);
1519 err_out:
1520         sdmac->status = DMA_ERROR;
1521         return NULL;
1522 }
1523 
1524 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1525                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1526                 size_t period_len, enum dma_transfer_direction direction,
1527                 unsigned long flags)
1528 {
1529         struct sdma_channel *sdmac = to_sdma_chan(chan);
1530         struct sdma_engine *sdma = sdmac->sdma;
1531         int num_periods = buf_len / period_len;
1532         int channel = sdmac->channel;
1533         int i = 0, buf = 0;
1534         struct sdma_desc *desc;
1535 
1536         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1537 
1538         sdma_config_write(chan, &sdmac->slave_config, direction);
1539 
1540         desc = sdma_transfer_init(sdmac, direction, num_periods);
1541         if (!desc)
1542                 goto err_out;
1543 
1544         desc->period_len = period_len;
1545 
1546         sdmac->flags |= IMX_DMA_SG_LOOP;
1547 
1548         if (period_len > SDMA_BD_MAX_CNT) {
1549                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1550                                 channel, period_len, SDMA_BD_MAX_CNT);
1551                 goto err_bd_out;
1552         }
1553 
1554         while (buf < buf_len) {
1555                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1556                 int param;
1557 
1558                 bd->buffer_addr = dma_addr;
1559 
1560                 bd->mode.count = period_len;
1561 
1562                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1563                         goto err_bd_out;
1564                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1565                         bd->mode.command = 0;
1566                 else
1567                         bd->mode.command = sdmac->word_size;
1568 
1569                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1570                 if (i + 1 == num_periods)
1571                         param |= BD_WRAP;
1572 
1573                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1574                                 i, period_len, (u64)dma_addr,
1575                                 param & BD_WRAP ? "wrap" : "",
1576                                 param & BD_INTR ? " intr" : "");
1577 
1578                 bd->mode.status = param;
1579 
1580                 dma_addr += period_len;
1581                 buf += period_len;
1582 
1583                 i++;
1584         }
1585 
1586         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1587 err_bd_out:
1588         sdma_free_bd(desc);
1589         kfree(desc);
1590 err_out:
1591         sdmac->status = DMA_ERROR;
1592         return NULL;
1593 }
1594 
1595 static int sdma_config_write(struct dma_chan *chan,
1596                        struct dma_slave_config *dmaengine_cfg,
1597                        enum dma_transfer_direction direction)
1598 {
1599         struct sdma_channel *sdmac = to_sdma_chan(chan);
1600 
1601         if (direction == DMA_DEV_TO_MEM) {
1602                 sdmac->per_address = dmaengine_cfg->src_addr;
1603                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1604                         dmaengine_cfg->src_addr_width;
1605                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1606         } else if (direction == DMA_DEV_TO_DEV) {
1607                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1608                 sdmac->per_address = dmaengine_cfg->dst_addr;
1609                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1610                         SDMA_WATERMARK_LEVEL_LWML;
1611                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1612                         SDMA_WATERMARK_LEVEL_HWML;
1613                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1614         } else {
1615                 sdmac->per_address = dmaengine_cfg->dst_addr;
1616                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1617                         dmaengine_cfg->dst_addr_width;
1618                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1619         }
1620         sdmac->direction = direction;
1621         return sdma_config_channel(chan);
1622 }
1623 
1624 static int sdma_config(struct dma_chan *chan,
1625                        struct dma_slave_config *dmaengine_cfg)
1626 {
1627         struct sdma_channel *sdmac = to_sdma_chan(chan);
1628 
1629         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1630 
1631         /* Set ENBLn earlier to make sure dma request triggered after that */
1632         if (sdmac->event_id0 >= 0) {
1633                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1634                         return -EINVAL;
1635                 sdma_event_enable(sdmac, sdmac->event_id0);
1636         }
1637 
1638         if (sdmac->event_id1) {
1639                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1640                         return -EINVAL;
1641                 sdma_event_enable(sdmac, sdmac->event_id1);
1642         }
1643 
1644         return 0;
1645 }
1646 
1647 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1648                                       dma_cookie_t cookie,
1649                                       struct dma_tx_state *txstate)
1650 {
1651         struct sdma_channel *sdmac = to_sdma_chan(chan);
1652         struct sdma_desc *desc;
1653         u32 residue;
1654         struct virt_dma_desc *vd;
1655         enum dma_status ret;
1656         unsigned long flags;
1657 
1658         ret = dma_cookie_status(chan, cookie, txstate);
1659         if (ret == DMA_COMPLETE || !txstate)
1660                 return ret;
1661 
1662         spin_lock_irqsave(&sdmac->vc.lock, flags);
1663         vd = vchan_find_desc(&sdmac->vc, cookie);
1664         if (vd) {
1665                 desc = to_sdma_desc(&vd->tx);
1666                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1667                         residue = (desc->num_bd - desc->buf_ptail) *
1668                                 desc->period_len - desc->chn_real_count;
1669                 else
1670                         residue = desc->chn_count - desc->chn_real_count;
1671         } else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie) {
1672                 residue = sdmac->desc->chn_count - sdmac->desc->chn_real_count;
1673         } else {
1674                 residue = 0;
1675         }
1676         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1677 
1678         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1679                          residue);
1680 
1681         return sdmac->status;
1682 }
1683 
1684 static void sdma_issue_pending(struct dma_chan *chan)
1685 {
1686         struct sdma_channel *sdmac = to_sdma_chan(chan);
1687         unsigned long flags;
1688 
1689         spin_lock_irqsave(&sdmac->vc.lock, flags);
1690         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1691                 sdma_start_desc(sdmac);
1692         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1693 }
1694 
1695 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1696 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1697 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1698 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1699 
1700 static void sdma_add_scripts(struct sdma_engine *sdma,
1701                 const struct sdma_script_start_addrs *addr)
1702 {
1703         s32 *addr_arr = (u32 *)addr;
1704         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1705         int i;
1706 
1707         /* use the default firmware in ROM if missing external firmware */
1708         if (!sdma->script_number)
1709                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1710 
1711         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1712                                   / sizeof(s32)) {
1713                 dev_err(sdma->dev,
1714                         "SDMA script number %d not match with firmware.\n",
1715                         sdma->script_number);
1716                 return;
1717         }
1718 
1719         for (i = 0; i < sdma->script_number; i++)
1720                 if (addr_arr[i] > 0)
1721                         saddr_arr[i] = addr_arr[i];
1722 }
1723 
1724 static void sdma_load_firmware(const struct firmware *fw, void *context)
1725 {
1726         struct sdma_engine *sdma = context;
1727         const struct sdma_firmware_header *header;
1728         const struct sdma_script_start_addrs *addr;
1729         unsigned short *ram_code;
1730 
1731         if (!fw) {
1732                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1733                 /* In this case we just use the ROM firmware. */
1734                 return;
1735         }
1736 
1737         if (fw->size < sizeof(*header))
1738                 goto err_firmware;
1739 
1740         header = (struct sdma_firmware_header *)fw->data;
1741 
1742         if (header->magic != SDMA_FIRMWARE_MAGIC)
1743                 goto err_firmware;
1744         if (header->ram_code_start + header->ram_code_size > fw->size)
1745                 goto err_firmware;
1746         switch (header->version_major) {
1747         case 1:
1748                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1749                 break;
1750         case 2:
1751                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1752                 break;
1753         case 3:
1754                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1755                 break;
1756         case 4:
1757                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1758                 break;
1759         default:
1760                 dev_err(sdma->dev, "unknown firmware version\n");
1761                 goto err_firmware;
1762         }
1763 
1764         addr = (void *)header + header->script_addrs_start;
1765         ram_code = (void *)header + header->ram_code_start;
1766 
1767         clk_enable(sdma->clk_ipg);
1768         clk_enable(sdma->clk_ahb);
1769         /* download the RAM image for SDMA */
1770         sdma_load_script(sdma, ram_code,
1771                         header->ram_code_size,
1772                         addr->ram_code_start_addr);
1773         clk_disable(sdma->clk_ipg);
1774         clk_disable(sdma->clk_ahb);
1775 
1776         sdma_add_scripts(sdma, addr);
1777 
1778         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1779                         header->version_major,
1780                         header->version_minor);
1781 
1782 err_firmware:
1783         release_firmware(fw);
1784 }
1785 
1786 #define EVENT_REMAP_CELLS 3
1787 
1788 static int sdma_event_remap(struct sdma_engine *sdma)
1789 {
1790         struct device_node *np = sdma->dev->of_node;
1791         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1792         struct property *event_remap;
1793         struct regmap *gpr;
1794         char propname[] = "fsl,sdma-event-remap";
1795         u32 reg, val, shift, num_map, i;
1796         int ret = 0;
1797 
1798         if (IS_ERR(np) || IS_ERR(gpr_np))
1799                 goto out;
1800 
1801         event_remap = of_find_property(np, propname, NULL);
1802         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1803         if (!num_map) {
1804                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1805                 goto out;
1806         } else if (num_map % EVENT_REMAP_CELLS) {
1807                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1808                                 propname, EVENT_REMAP_CELLS);
1809                 ret = -EINVAL;
1810                 goto out;
1811         }
1812 
1813         gpr = syscon_node_to_regmap(gpr_np);
1814         if (IS_ERR(gpr)) {
1815                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1816                 ret = PTR_ERR(gpr);
1817                 goto out;
1818         }
1819 
1820         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1821                 ret = of_property_read_u32_index(np, propname, i, &reg);
1822                 if (ret) {
1823                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1824                                         propname, i);
1825                         goto out;
1826                 }
1827 
1828                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1829                 if (ret) {
1830                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1831                                         propname, i + 1);
1832                         goto out;
1833                 }
1834 
1835                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1836                 if (ret) {
1837                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1838                                         propname, i + 2);
1839                         goto out;
1840                 }
1841 
1842                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1843         }
1844 
1845 out:
1846         if (!IS_ERR(gpr_np))
1847                 of_node_put(gpr_np);
1848 
1849         return ret;
1850 }
1851 
1852 static int sdma_get_firmware(struct sdma_engine *sdma,
1853                 const char *fw_name)
1854 {
1855         int ret;
1856 
1857         ret = request_firmware_nowait(THIS_MODULE,
1858                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1859                         GFP_KERNEL, sdma, sdma_load_firmware);
1860 
1861         return ret;
1862 }
1863 
1864 static int sdma_init(struct sdma_engine *sdma)
1865 {
1866         int i, ret;
1867         dma_addr_t ccb_phys;
1868 
1869         ret = clk_enable(sdma->clk_ipg);
1870         if (ret)
1871                 return ret;
1872         ret = clk_enable(sdma->clk_ahb);
1873         if (ret)
1874                 goto disable_clk_ipg;
1875 
1876         if (sdma->drvdata->check_ratio &&
1877             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1878                 sdma->clk_ratio = 1;
1879 
1880         /* Be sure SDMA has not started yet */
1881         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1882 
1883         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1884                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1885                         sizeof(struct sdma_context_data),
1886                         &ccb_phys, GFP_KERNEL);
1887 
1888         if (!sdma->channel_control) {
1889                 ret = -ENOMEM;
1890                 goto err_dma_alloc;
1891         }
1892 
1893         sdma->context = (void *)sdma->channel_control +
1894                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1895         sdma->context_phys = ccb_phys +
1896                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1897 
1898         /* disable all channels */
1899         for (i = 0; i < sdma->drvdata->num_events; i++)
1900                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1901 
1902         /* All channels have priority 0 */
1903         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1904                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1905 
1906         ret = sdma_request_channel0(sdma);
1907         if (ret)
1908                 goto err_dma_alloc;
1909 
1910         sdma_config_ownership(&sdma->channel[0], false, true, false);
1911 
1912         /* Set Command Channel (Channel Zero) */
1913         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1914 
1915         /* Set bits of CONFIG register but with static context switching */
1916         if (sdma->clk_ratio)
1917                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1918         else
1919                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1920 
1921         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1922 
1923         /* Initializes channel's priorities */
1924         sdma_set_channel_priority(&sdma->channel[0], 7);
1925 
1926         clk_disable(sdma->clk_ipg);
1927         clk_disable(sdma->clk_ahb);
1928 
1929         return 0;
1930 
1931 err_dma_alloc:
1932         clk_disable(sdma->clk_ahb);
1933 disable_clk_ipg:
1934         clk_disable(sdma->clk_ipg);
1935         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1936         return ret;
1937 }
1938 
1939 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1940 {
1941         struct sdma_channel *sdmac = to_sdma_chan(chan);
1942         struct imx_dma_data *data = fn_param;
1943 
1944         if (!imx_dma_is_general_purpose(chan))
1945                 return false;
1946 
1947         sdmac->data = *data;
1948         chan->private = &sdmac->data;
1949 
1950         return true;
1951 }
1952 
1953 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1954                                    struct of_dma *ofdma)
1955 {
1956         struct sdma_engine *sdma = ofdma->of_dma_data;
1957         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1958         struct imx_dma_data data;
1959 
1960         if (dma_spec->args_count != 3)
1961                 return NULL;
1962 
1963         data.dma_request = dma_spec->args[0];
1964         data.peripheral_type = dma_spec->args[1];
1965         data.priority = dma_spec->args[2];
1966         /*
1967          * init dma_request2 to zero, which is not used by the dts.
1968          * For P2P, dma_request2 is init from dma_request_channel(),
1969          * chan->private will point to the imx_dma_data, and in
1970          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1971          * be set to sdmac->event_id1.
1972          */
1973         data.dma_request2 = 0;
1974 
1975         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1976                                      ofdma->of_node);
1977 }
1978 
1979 static int sdma_probe(struct platform_device *pdev)
1980 {
1981         const struct of_device_id *of_id =
1982                         of_match_device(sdma_dt_ids, &pdev->dev);
1983         struct device_node *np = pdev->dev.of_node;
1984         struct device_node *spba_bus;
1985         const char *fw_name;
1986         int ret;
1987         int irq;
1988         struct resource *iores;
1989         struct resource spba_res;
1990         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1991         int i;
1992         struct sdma_engine *sdma;
1993         s32 *saddr_arr;
1994         const struct sdma_driver_data *drvdata = NULL;
1995 
1996         if (of_id)
1997                 drvdata = of_id->data;
1998         else if (pdev->id_entry)
1999                 drvdata = (void *)pdev->id_entry->driver_data;
2000 
2001         if (!drvdata) {
2002                 dev_err(&pdev->dev, "unable to find driver data\n");
2003                 return -EINVAL;
2004         }
2005 
2006         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2007         if (ret)
2008                 return ret;
2009 
2010         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2011         if (!sdma)
2012                 return -ENOMEM;
2013 
2014         spin_lock_init(&sdma->channel_0_lock);
2015 
2016         sdma->dev = &pdev->dev;
2017         sdma->drvdata = drvdata;
2018 
2019         irq = platform_get_irq(pdev, 0);
2020         if (irq < 0)
2021                 return irq;
2022 
2023         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2024         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2025         if (IS_ERR(sdma->regs))
2026                 return PTR_ERR(sdma->regs);
2027 
2028         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2029         if (IS_ERR(sdma->clk_ipg))
2030                 return PTR_ERR(sdma->clk_ipg);
2031 
2032         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2033         if (IS_ERR(sdma->clk_ahb))
2034                 return PTR_ERR(sdma->clk_ahb);
2035 
2036         ret = clk_prepare(sdma->clk_ipg);
2037         if (ret)
2038                 return ret;
2039 
2040         ret = clk_prepare(sdma->clk_ahb);
2041         if (ret)
2042                 goto err_clk;
2043 
2044         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2045                                sdma);
2046         if (ret)
2047                 goto err_irq;
2048 
2049         sdma->irq = irq;
2050 
2051         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2052         if (!sdma->script_addrs) {
2053                 ret = -ENOMEM;
2054                 goto err_irq;
2055         }
2056 
2057         /* initially no scripts available */
2058         saddr_arr = (s32 *)sdma->script_addrs;
2059         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
2060                 saddr_arr[i] = -EINVAL;
2061 
2062         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2063         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2064         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2065 
2066         INIT_LIST_HEAD(&sdma->dma_device.channels);
2067         /* Initialize channel parameters */
2068         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2069                 struct sdma_channel *sdmac = &sdma->channel[i];
2070 
2071                 sdmac->sdma = sdma;
2072 
2073                 sdmac->channel = i;
2074                 sdmac->vc.desc_free = sdma_desc_free;
2075                 INIT_WORK(&sdmac->terminate_worker,
2076                                 sdma_channel_terminate_work);
2077                 /*
2078                  * Add the channel to the DMAC list. Do not add channel 0 though
2079                  * because we need it internally in the SDMA driver. This also means
2080                  * that channel 0 in dmaengine counting matches sdma channel 1.
2081                  */
2082                 if (i)
2083                         vchan_init(&sdmac->vc, &sdma->dma_device);
2084         }
2085 
2086         ret = sdma_init(sdma);
2087         if (ret)
2088                 goto err_init;
2089 
2090         ret = sdma_event_remap(sdma);
2091         if (ret)
2092                 goto err_init;
2093 
2094         if (sdma->drvdata->script_addrs)
2095                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2096         if (pdata && pdata->script_addrs)
2097                 sdma_add_scripts(sdma, pdata->script_addrs);
2098 
2099         sdma->dma_device.dev = &pdev->dev;
2100 
2101         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2102         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2103         sdma->dma_device.device_tx_status = sdma_tx_status;
2104         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2105         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2106         sdma->dma_device.device_config = sdma_config;
2107         sdma->dma_device.device_terminate_all = sdma_disable_channel_async;
2108         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2109         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2110         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2111         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2112         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2113         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2114         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2115         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2116         sdma->dma_device.copy_align = 2;
2117         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2118 
2119         platform_set_drvdata(pdev, sdma);
2120 
2121         ret = dma_async_device_register(&sdma->dma_device);
2122         if (ret) {
2123                 dev_err(&pdev->dev, "unable to register\n");
2124                 goto err_init;
2125         }
2126 
2127         if (np) {
2128                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2129                 if (ret) {
2130                         dev_err(&pdev->dev, "failed to register controller\n");
2131                         goto err_register;
2132                 }
2133 
2134                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2135                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2136                 if (!ret) {
2137                         sdma->spba_start_addr = spba_res.start;
2138                         sdma->spba_end_addr = spba_res.end;
2139                 }
2140                 of_node_put(spba_bus);
2141         }
2142 
2143         /*
2144          * Kick off firmware loading as the very last step:
2145          * attempt to load firmware only if we're not on the error path, because
2146          * the firmware callback requires a fully functional and allocated sdma
2147          * instance.
2148          */
2149         if (pdata) {
2150                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2151                 if (ret)
2152                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2153         } else {
2154                 /*
2155                  * Because that device tree does not encode ROM script address,
2156                  * the RAM script in firmware is mandatory for device tree
2157                  * probe, otherwise it fails.
2158                  */
2159                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2160                                               &fw_name);
2161                 if (ret) {
2162                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2163                 } else {
2164                         ret = sdma_get_firmware(sdma, fw_name);
2165                         if (ret)
2166                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2167                 }
2168         }
2169 
2170         return 0;
2171 
2172 err_register:
2173         dma_async_device_unregister(&sdma->dma_device);
2174 err_init:
2175         kfree(sdma->script_addrs);
2176 err_irq:
2177         clk_unprepare(sdma->clk_ahb);
2178 err_clk:
2179         clk_unprepare(sdma->clk_ipg);
2180         return ret;
2181 }
2182 
2183 static int sdma_remove(struct platform_device *pdev)
2184 {
2185         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2186         int i;
2187 
2188         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2189         dma_async_device_unregister(&sdma->dma_device);
2190         kfree(sdma->script_addrs);
2191         clk_unprepare(sdma->clk_ahb);
2192         clk_unprepare(sdma->clk_ipg);
2193         /* Kill the tasklet */
2194         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2195                 struct sdma_channel *sdmac = &sdma->channel[i];
2196 
2197                 tasklet_kill(&sdmac->vc.task);
2198                 sdma_free_chan_resources(&sdmac->vc.chan);
2199         }
2200 
2201         platform_set_drvdata(pdev, NULL);
2202         return 0;
2203 }
2204 
2205 static struct platform_driver sdma_driver = {
2206         .driver         = {
2207                 .name   = "imx-sdma",
2208                 .of_match_table = sdma_dt_ids,
2209         },
2210         .id_table       = sdma_devtypes,
2211         .remove         = sdma_remove,
2212         .probe          = sdma_probe,
2213 };
2214 
2215 module_platform_driver(sdma_driver);
2216 
2217 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2218 MODULE_DESCRIPTION("i.MX SDMA driver");
2219 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2220 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2221 #endif
2222 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2223 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2224 #endif
2225 MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */