root/drivers/dma/ste_dma40.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. chan2dev
  2. chan_is_physical
  3. chan_is_logical
  4. chan_base
  5. d40_pool_lli_alloc
  6. d40_pool_lli_free
  7. d40_lcla_alloc_one
  8. d40_lcla_free_all
  9. d40_desc_remove
  10. d40_desc_get
  11. d40_desc_free
  12. d40_desc_submit
  13. d40_phy_lli_load
  14. d40_desc_done
  15. d40_log_lli_to_lcxa
  16. d40_desc_load
  17. d40_first_active_get
  18. d40_desc_queue
  19. d40_first_pending
  20. d40_first_queued
  21. d40_first_done
  22. d40_psize_2_burst_size
  23. d40_size_2_dmalen
  24. d40_sg_2_dmalen
  25. __d40_execute_command_phy
  26. d40_term_all
  27. __d40_config_set_event
  28. d40_config_set_event
  29. d40_chan_has_events
  30. __d40_execute_command_log
  31. d40_channel_execute_command
  32. d40_get_prmo
  33. d40_config_write
  34. d40_residue
  35. d40_tx_is_linked
  36. d40_pause
  37. d40_resume
  38. d40_tx_submit
  39. d40_start
  40. d40_queue_start
  41. dma_tc_handle
  42. dma_tasklet
  43. d40_handle_interrupt
  44. d40_validate_conf
  45. d40_alloc_mask_set
  46. d40_alloc_mask_free
  47. d40_allocate_channel
  48. d40_config_memcpy
  49. d40_free_dma
  50. d40_is_paused
  51. stedma40_residue
  52. d40_prep_sg_log
  53. d40_prep_sg_phy
  54. d40_prep_desc
  55. d40_prep_sg
  56. stedma40_filter
  57. __d40_set_prio_rt
  58. d40_set_prio_realtime
  59. d40_xlate
  60. d40_alloc_chan_resources
  61. d40_free_chan_resources
  62. d40_prep_memcpy
  63. d40_prep_slave_sg
  64. dma40_prep_dma_cyclic
  65. d40_tx_status
  66. d40_issue_pending
  67. d40_terminate_all
  68. dma40_config_to_halfchannel
  69. d40_set_runtime_config
  70. d40_set_runtime_config_write
  71. d40_chan_init
  72. d40_ops_init
  73. d40_dmaengine_init
  74. dma40_suspend
  75. dma40_resume
  76. dma40_backup
  77. d40_save_restore_registers
  78. dma40_runtime_suspend
  79. dma40_runtime_resume
  80. d40_phy_res_init
  81. d40_hw_detect_init
  82. d40_hw_init
  83. d40_lcla_allocate
  84. d40_of_probe
  85. d40_probe
  86. stedma40_init

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Copyright (C) Ericsson AB 2007-2008
   4  * Copyright (C) ST-Ericsson SA 2008-2010
   5  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
   6  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
   7  */
   8 
   9 #include <linux/dma-mapping.h>
  10 #include <linux/kernel.h>
  11 #include <linux/slab.h>
  12 #include <linux/export.h>
  13 #include <linux/dmaengine.h>
  14 #include <linux/platform_device.h>
  15 #include <linux/clk.h>
  16 #include <linux/delay.h>
  17 #include <linux/log2.h>
  18 #include <linux/pm.h>
  19 #include <linux/pm_runtime.h>
  20 #include <linux/err.h>
  21 #include <linux/of.h>
  22 #include <linux/of_dma.h>
  23 #include <linux/amba/bus.h>
  24 #include <linux/regulator/consumer.h>
  25 #include <linux/platform_data/dma-ste-dma40.h>
  26 
  27 #include "dmaengine.h"
  28 #include "ste_dma40_ll.h"
  29 
  30 #define D40_NAME "dma40"
  31 
  32 #define D40_PHY_CHAN -1
  33 
  34 /* For masking out/in 2 bit channel positions */
  35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
  36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  37 
  38 /* Maximum iterations taken before giving up suspending a channel */
  39 #define D40_SUSPEND_MAX_IT 500
  40 
  41 /* Milliseconds */
  42 #define DMA40_AUTOSUSPEND_DELAY 100
  43 
  44 /* Hardware requirement on LCLA alignment */
  45 #define LCLA_ALIGNMENT 0x40000
  46 
  47 /* Max number of links per event group */
  48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
  49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  50 
  51 /* Max number of logical channels per physical channel */
  52 #define D40_MAX_LOG_CHAN_PER_PHY 32
  53 
  54 /* Attempts before giving up to trying to get pages that are aligned */
  55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
  56 
  57 /* Bit markings for allocation map */
  58 #define D40_ALLOC_FREE          BIT(31)
  59 #define D40_ALLOC_PHY           BIT(30)
  60 #define D40_ALLOC_LOG_FREE      0
  61 
  62 #define D40_MEMCPY_MAX_CHANS    8
  63 
  64 /* Reserved event lines for memcpy only. */
  65 #define DB8500_DMA_MEMCPY_EV_0  51
  66 #define DB8500_DMA_MEMCPY_EV_1  56
  67 #define DB8500_DMA_MEMCPY_EV_2  57
  68 #define DB8500_DMA_MEMCPY_EV_3  58
  69 #define DB8500_DMA_MEMCPY_EV_4  59
  70 #define DB8500_DMA_MEMCPY_EV_5  60
  71 
  72 static int dma40_memcpy_channels[] = {
  73         DB8500_DMA_MEMCPY_EV_0,
  74         DB8500_DMA_MEMCPY_EV_1,
  75         DB8500_DMA_MEMCPY_EV_2,
  76         DB8500_DMA_MEMCPY_EV_3,
  77         DB8500_DMA_MEMCPY_EV_4,
  78         DB8500_DMA_MEMCPY_EV_5,
  79 };
  80 
  81 /* Default configuration for physcial memcpy */
  82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
  83         .mode = STEDMA40_MODE_PHYSICAL,
  84         .dir = DMA_MEM_TO_MEM,
  85 
  86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
  88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  89 
  90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
  92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
  93 };
  94 
  95 /* Default configuration for logical memcpy */
  96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
  97         .mode = STEDMA40_MODE_LOGICAL,
  98         .dir = DMA_MEM_TO_MEM,
  99 
 100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
 102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 103 
 104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
 106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 107 };
 108 
 109 /**
 110  * enum 40_command - The different commands and/or statuses.
 111  *
 112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
 113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
 114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
 115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
 116  */
 117 enum d40_command {
 118         D40_DMA_STOP            = 0,
 119         D40_DMA_RUN             = 1,
 120         D40_DMA_SUSPEND_REQ     = 2,
 121         D40_DMA_SUSPENDED       = 3
 122 };
 123 
 124 /*
 125  * enum d40_events - The different Event Enables for the event lines.
 126  *
 127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
 128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
 129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
 130  * @D40_ROUND_EVENTLINE: Status check for event line.
 131  */
 132 
 133 enum d40_events {
 134         D40_DEACTIVATE_EVENTLINE        = 0,
 135         D40_ACTIVATE_EVENTLINE          = 1,
 136         D40_SUSPEND_REQ_EVENTLINE       = 2,
 137         D40_ROUND_EVENTLINE             = 3
 138 };
 139 
 140 /*
 141  * These are the registers that has to be saved and later restored
 142  * when the DMA hw is powered off.
 143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
 144  */
 145 static __maybe_unused u32 d40_backup_regs[] = {
 146         D40_DREG_LCPA,
 147         D40_DREG_LCLA,
 148         D40_DREG_PRMSE,
 149         D40_DREG_PRMSO,
 150         D40_DREG_PRMOE,
 151         D40_DREG_PRMOO,
 152 };
 153 
 154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
 155 
 156 /*
 157  * since 9540 and 8540 has the same HW revision
 158  * use v4a for 9540 or ealier
 159  * use v4b for 8540 or later
 160  * HW revision:
 161  * DB8500ed has revision 0
 162  * DB8500v1 has revision 2
 163  * DB8500v2 has revision 3
 164  * AP9540v1 has revision 4
 165  * DB8540v1 has revision 4
 166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
 167  */
 168 static u32 d40_backup_regs_v4a[] = {
 169         D40_DREG_PSEG1,
 170         D40_DREG_PSEG2,
 171         D40_DREG_PSEG3,
 172         D40_DREG_PSEG4,
 173         D40_DREG_PCEG1,
 174         D40_DREG_PCEG2,
 175         D40_DREG_PCEG3,
 176         D40_DREG_PCEG4,
 177         D40_DREG_RSEG1,
 178         D40_DREG_RSEG2,
 179         D40_DREG_RSEG3,
 180         D40_DREG_RSEG4,
 181         D40_DREG_RCEG1,
 182         D40_DREG_RCEG2,
 183         D40_DREG_RCEG3,
 184         D40_DREG_RCEG4,
 185 };
 186 
 187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
 188 
 189 static u32 d40_backup_regs_v4b[] = {
 190         D40_DREG_CPSEG1,
 191         D40_DREG_CPSEG2,
 192         D40_DREG_CPSEG3,
 193         D40_DREG_CPSEG4,
 194         D40_DREG_CPSEG5,
 195         D40_DREG_CPCEG1,
 196         D40_DREG_CPCEG2,
 197         D40_DREG_CPCEG3,
 198         D40_DREG_CPCEG4,
 199         D40_DREG_CPCEG5,
 200         D40_DREG_CRSEG1,
 201         D40_DREG_CRSEG2,
 202         D40_DREG_CRSEG3,
 203         D40_DREG_CRSEG4,
 204         D40_DREG_CRSEG5,
 205         D40_DREG_CRCEG1,
 206         D40_DREG_CRCEG2,
 207         D40_DREG_CRCEG3,
 208         D40_DREG_CRCEG4,
 209         D40_DREG_CRCEG5,
 210 };
 211 
 212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
 213 
 214 static __maybe_unused u32 d40_backup_regs_chan[] = {
 215         D40_CHAN_REG_SSCFG,
 216         D40_CHAN_REG_SSELT,
 217         D40_CHAN_REG_SSPTR,
 218         D40_CHAN_REG_SSLNK,
 219         D40_CHAN_REG_SDCFG,
 220         D40_CHAN_REG_SDELT,
 221         D40_CHAN_REG_SDPTR,
 222         D40_CHAN_REG_SDLNK,
 223 };
 224 
 225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
 226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
 227 
 228 /**
 229  * struct d40_interrupt_lookup - lookup table for interrupt handler
 230  *
 231  * @src: Interrupt mask register.
 232  * @clr: Interrupt clear register.
 233  * @is_error: true if this is an error interrupt.
 234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
 235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
 236  */
 237 struct d40_interrupt_lookup {
 238         u32 src;
 239         u32 clr;
 240         bool is_error;
 241         int offset;
 242 };
 243 
 244 
 245 static struct d40_interrupt_lookup il_v4a[] = {
 246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
 247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
 248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
 249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
 250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
 251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
 252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
 253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
 254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
 255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
 256 };
 257 
 258 static struct d40_interrupt_lookup il_v4b[] = {
 259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
 260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
 261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
 262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
 263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
 264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
 265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
 266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
 267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
 268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
 269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
 270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
 271 };
 272 
 273 /**
 274  * struct d40_reg_val - simple lookup struct
 275  *
 276  * @reg: The register.
 277  * @val: The value that belongs to the register in reg.
 278  */
 279 struct d40_reg_val {
 280         unsigned int reg;
 281         unsigned int val;
 282 };
 283 
 284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
 285         /* Clock every part of the DMA block from start */
 286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 287 
 288         /* Interrupts on all logical channels */
 289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
 290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
 291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
 292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
 293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
 294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
 295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
 296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
 297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
 298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
 299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
 300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
 301 };
 302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
 303         /* Clock every part of the DMA block from start */
 304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
 305 
 306         /* Interrupts on all logical channels */
 307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
 308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
 309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
 310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
 311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
 312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
 313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
 314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
 315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
 316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
 317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
 318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
 319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
 320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
 321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
 322 };
 323 
 324 /**
 325  * struct d40_lli_pool - Structure for keeping LLIs in memory
 326  *
 327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
 328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
 329  * pre_alloc_lli is used.
 330  * @dma_addr: DMA address, if mapped
 331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
 332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
 333  * one buffer to one buffer.
 334  */
 335 struct d40_lli_pool {
 336         void    *base;
 337         int      size;
 338         dma_addr_t      dma_addr;
 339         /* Space for dst and src, plus an extra for padding */
 340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
 341 };
 342 
 343 /**
 344  * struct d40_desc - A descriptor is one DMA job.
 345  *
 346  * @lli_phy: LLI settings for physical channel. Both src and dst=
 347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
 348  * lli_len equals one.
 349  * @lli_log: Same as above but for logical channels.
 350  * @lli_pool: The pool with two entries pre-allocated.
 351  * @lli_len: Number of llis of current descriptor.
 352  * @lli_current: Number of transferred llis.
 353  * @lcla_alloc: Number of LCLA entries allocated.
 354  * @txd: DMA engine struct. Used for among other things for communication
 355  * during a transfer.
 356  * @node: List entry.
 357  * @is_in_client_list: true if the client owns this descriptor.
 358  * @cyclic: true if this is a cyclic job
 359  *
 360  * This descriptor is used for both logical and physical transfers.
 361  */
 362 struct d40_desc {
 363         /* LLI physical */
 364         struct d40_phy_lli_bidir         lli_phy;
 365         /* LLI logical */
 366         struct d40_log_lli_bidir         lli_log;
 367 
 368         struct d40_lli_pool              lli_pool;
 369         int                              lli_len;
 370         int                              lli_current;
 371         int                              lcla_alloc;
 372 
 373         struct dma_async_tx_descriptor   txd;
 374         struct list_head                 node;
 375 
 376         bool                             is_in_client_list;
 377         bool                             cyclic;
 378 };
 379 
 380 /**
 381  * struct d40_lcla_pool - LCLA pool settings and data.
 382  *
 383  * @base: The virtual address of LCLA. 18 bit aligned.
 384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
 385  * This pointer is only there for clean-up on error.
 386  * @pages: The number of pages needed for all physical channels.
 387  * Only used later for clean-up on error
 388  * @lock: Lock to protect the content in this struct.
 389  * @alloc_map: big map over which LCLA entry is own by which job.
 390  */
 391 struct d40_lcla_pool {
 392         void            *base;
 393         dma_addr_t      dma_addr;
 394         void            *base_unaligned;
 395         int              pages;
 396         spinlock_t       lock;
 397         struct d40_desc **alloc_map;
 398 };
 399 
 400 /**
 401  * struct d40_phy_res - struct for handling eventlines mapped to physical
 402  * channels.
 403  *
 404  * @lock: A lock protection this entity.
 405  * @reserved: True if used by secure world or otherwise.
 406  * @num: The physical channel number of this entity.
 407  * @allocated_src: Bit mapped to show which src event line's are mapped to
 408  * this physical channel. Can also be free or physically allocated.
 409  * @allocated_dst: Same as for src but is dst.
 410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
 411  * event line number.
 412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
 413  */
 414 struct d40_phy_res {
 415         spinlock_t lock;
 416         bool       reserved;
 417         int        num;
 418         u32        allocated_src;
 419         u32        allocated_dst;
 420         bool       use_soft_lli;
 421 };
 422 
 423 struct d40_base;
 424 
 425 /**
 426  * struct d40_chan - Struct that describes a channel.
 427  *
 428  * @lock: A spinlock to protect this struct.
 429  * @log_num: The logical number, if any of this channel.
 430  * @pending_tx: The number of pending transfers. Used between interrupt handler
 431  * and tasklet.
 432  * @busy: Set to true when transfer is ongoing on this channel.
 433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
 434  * point is NULL, then the channel is not allocated.
 435  * @chan: DMA engine handle.
 436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
 437  * transfer and call client callback.
 438  * @client: Cliented owned descriptor list.
 439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
 440  * @active: Active descriptor.
 441  * @done: Completed jobs
 442  * @queue: Queued jobs.
 443  * @prepare_queue: Prepared jobs.
 444  * @dma_cfg: The client configuration of this dma channel.
 445  * @slave_config: DMA slave configuration.
 446  * @configured: whether the dma_cfg configuration is valid
 447  * @base: Pointer to the device instance struct.
 448  * @src_def_cfg: Default cfg register setting for src.
 449  * @dst_def_cfg: Default cfg register setting for dst.
 450  * @log_def: Default logical channel settings.
 451  * @lcpa: Pointer to dst and src lcpa settings.
 452  * @runtime_addr: runtime configured address.
 453  * @runtime_direction: runtime configured direction.
 454  *
 455  * This struct can either "be" a logical or a physical channel.
 456  */
 457 struct d40_chan {
 458         spinlock_t                       lock;
 459         int                              log_num;
 460         int                              pending_tx;
 461         bool                             busy;
 462         struct d40_phy_res              *phy_chan;
 463         struct dma_chan                  chan;
 464         struct tasklet_struct            tasklet;
 465         struct list_head                 client;
 466         struct list_head                 pending_queue;
 467         struct list_head                 active;
 468         struct list_head                 done;
 469         struct list_head                 queue;
 470         struct list_head                 prepare_queue;
 471         struct stedma40_chan_cfg         dma_cfg;
 472         struct dma_slave_config          slave_config;
 473         bool                             configured;
 474         struct d40_base                 *base;
 475         /* Default register configurations */
 476         u32                              src_def_cfg;
 477         u32                              dst_def_cfg;
 478         struct d40_def_lcsp              log_def;
 479         struct d40_log_lli_full         *lcpa;
 480         /* Runtime reconfiguration */
 481         dma_addr_t                      runtime_addr;
 482         enum dma_transfer_direction     runtime_direction;
 483 };
 484 
 485 /**
 486  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
 487  * controller
 488  *
 489  * @backup: the pointer to the registers address array for backup
 490  * @backup_size: the size of the registers address array for backup
 491  * @realtime_en: the realtime enable register
 492  * @realtime_clear: the realtime clear register
 493  * @high_prio_en: the high priority enable register
 494  * @high_prio_clear: the high priority clear register
 495  * @interrupt_en: the interrupt enable register
 496  * @interrupt_clear: the interrupt clear register
 497  * @il: the pointer to struct d40_interrupt_lookup
 498  * @il_size: the size of d40_interrupt_lookup array
 499  * @init_reg: the pointer to the struct d40_reg_val
 500  * @init_reg_size: the size of d40_reg_val array
 501  */
 502 struct d40_gen_dmac {
 503         u32                             *backup;
 504         u32                              backup_size;
 505         u32                              realtime_en;
 506         u32                              realtime_clear;
 507         u32                              high_prio_en;
 508         u32                              high_prio_clear;
 509         u32                              interrupt_en;
 510         u32                              interrupt_clear;
 511         struct d40_interrupt_lookup     *il;
 512         u32                              il_size;
 513         struct d40_reg_val              *init_reg;
 514         u32                              init_reg_size;
 515 };
 516 
 517 /**
 518  * struct d40_base - The big global struct, one for each probe'd instance.
 519  *
 520  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
 521  * @execmd_lock: Lock for execute command usage since several channels share
 522  * the same physical register.
 523  * @dev: The device structure.
 524  * @virtbase: The virtual base address of the DMA's register.
 525  * @rev: silicon revision detected.
 526  * @clk: Pointer to the DMA clock structure.
 527  * @phy_start: Physical memory start of the DMA registers.
 528  * @phy_size: Size of the DMA register map.
 529  * @irq: The IRQ number.
 530  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
 531  * transfers).
 532  * @num_phy_chans: The number of physical channels. Read from HW. This
 533  * is the number of available channels for this driver, not counting "Secure
 534  * mode" allocated physical channels.
 535  * @num_log_chans: The number of logical channels. Calculated from
 536  * num_phy_chans.
 537  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
 538  * @dma_slave: dma_device channels that can do only do slave transfers.
 539  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
 540  * @phy_chans: Room for all possible physical channels in system.
 541  * @log_chans: Room for all possible logical channels in system.
 542  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
 543  * to log_chans entries.
 544  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
 545  * to phy_chans entries.
 546  * @plat_data: Pointer to provided platform_data which is the driver
 547  * configuration.
 548  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
 549  * @phy_res: Vector containing all physical channels.
 550  * @lcla_pool: lcla pool settings and data.
 551  * @lcpa_base: The virtual mapped address of LCPA.
 552  * @phy_lcpa: The physical address of the LCPA.
 553  * @lcpa_size: The size of the LCPA area.
 554  * @desc_slab: cache for descriptors.
 555  * @reg_val_backup: Here the values of some hardware registers are stored
 556  * before the DMA is powered off. They are restored when the power is back on.
 557  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
 558  * later
 559  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
 560  * @regs_interrupt: Scratch space for registers during interrupt.
 561  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
 562  * @gen_dmac: the struct for generic registers values to represent u8500/8540
 563  * DMA controller
 564  */
 565 struct d40_base {
 566         spinlock_t                       interrupt_lock;
 567         spinlock_t                       execmd_lock;
 568         struct device                    *dev;
 569         void __iomem                     *virtbase;
 570         u8                                rev:4;
 571         struct clk                       *clk;
 572         phys_addr_t                       phy_start;
 573         resource_size_t                   phy_size;
 574         int                               irq;
 575         int                               num_memcpy_chans;
 576         int                               num_phy_chans;
 577         int                               num_log_chans;
 578         struct device_dma_parameters      dma_parms;
 579         struct dma_device                 dma_both;
 580         struct dma_device                 dma_slave;
 581         struct dma_device                 dma_memcpy;
 582         struct d40_chan                  *phy_chans;
 583         struct d40_chan                  *log_chans;
 584         struct d40_chan                 **lookup_log_chans;
 585         struct d40_chan                 **lookup_phy_chans;
 586         struct stedma40_platform_data    *plat_data;
 587         struct regulator                 *lcpa_regulator;
 588         /* Physical half channels */
 589         struct d40_phy_res               *phy_res;
 590         struct d40_lcla_pool              lcla_pool;
 591         void                             *lcpa_base;
 592         dma_addr_t                        phy_lcpa;
 593         resource_size_t                   lcpa_size;
 594         struct kmem_cache                *desc_slab;
 595         u32                               reg_val_backup[BACKUP_REGS_SZ];
 596         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
 597         u32                              *reg_val_backup_chan;
 598         u32                              *regs_interrupt;
 599         u16                               gcc_pwr_off_mask;
 600         struct d40_gen_dmac               gen_dmac;
 601 };
 602 
 603 static struct device *chan2dev(struct d40_chan *d40c)
 604 {
 605         return &d40c->chan.dev->device;
 606 }
 607 
 608 static bool chan_is_physical(struct d40_chan *chan)
 609 {
 610         return chan->log_num == D40_PHY_CHAN;
 611 }
 612 
 613 static bool chan_is_logical(struct d40_chan *chan)
 614 {
 615         return !chan_is_physical(chan);
 616 }
 617 
 618 static void __iomem *chan_base(struct d40_chan *chan)
 619 {
 620         return chan->base->virtbase + D40_DREG_PCBASE +
 621                chan->phy_chan->num * D40_DREG_PCDELTA;
 622 }
 623 
 624 #define d40_err(dev, format, arg...)            \
 625         dev_err(dev, "[%s] " format, __func__, ## arg)
 626 
 627 #define chan_err(d40c, format, arg...)          \
 628         d40_err(chan2dev(d40c), format, ## arg)
 629 
 630 static int d40_set_runtime_config_write(struct dma_chan *chan,
 631                                   struct dma_slave_config *config,
 632                                   enum dma_transfer_direction direction);
 633 
 634 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
 635                               int lli_len)
 636 {
 637         bool is_log = chan_is_logical(d40c);
 638         u32 align;
 639         void *base;
 640 
 641         if (is_log)
 642                 align = sizeof(struct d40_log_lli);
 643         else
 644                 align = sizeof(struct d40_phy_lli);
 645 
 646         if (lli_len == 1) {
 647                 base = d40d->lli_pool.pre_alloc_lli;
 648                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
 649                 d40d->lli_pool.base = NULL;
 650         } else {
 651                 d40d->lli_pool.size = lli_len * 2 * align;
 652 
 653                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
 654                 d40d->lli_pool.base = base;
 655 
 656                 if (d40d->lli_pool.base == NULL)
 657                         return -ENOMEM;
 658         }
 659 
 660         if (is_log) {
 661                 d40d->lli_log.src = PTR_ALIGN(base, align);
 662                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
 663 
 664                 d40d->lli_pool.dma_addr = 0;
 665         } else {
 666                 d40d->lli_phy.src = PTR_ALIGN(base, align);
 667                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
 668 
 669                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
 670                                                          d40d->lli_phy.src,
 671                                                          d40d->lli_pool.size,
 672                                                          DMA_TO_DEVICE);
 673 
 674                 if (dma_mapping_error(d40c->base->dev,
 675                                       d40d->lli_pool.dma_addr)) {
 676                         kfree(d40d->lli_pool.base);
 677                         d40d->lli_pool.base = NULL;
 678                         d40d->lli_pool.dma_addr = 0;
 679                         return -ENOMEM;
 680                 }
 681         }
 682 
 683         return 0;
 684 }
 685 
 686 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
 687 {
 688         if (d40d->lli_pool.dma_addr)
 689                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
 690                                  d40d->lli_pool.size, DMA_TO_DEVICE);
 691 
 692         kfree(d40d->lli_pool.base);
 693         d40d->lli_pool.base = NULL;
 694         d40d->lli_pool.size = 0;
 695         d40d->lli_log.src = NULL;
 696         d40d->lli_log.dst = NULL;
 697         d40d->lli_phy.src = NULL;
 698         d40d->lli_phy.dst = NULL;
 699 }
 700 
 701 static int d40_lcla_alloc_one(struct d40_chan *d40c,
 702                               struct d40_desc *d40d)
 703 {
 704         unsigned long flags;
 705         int i;
 706         int ret = -EINVAL;
 707 
 708         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 709 
 710         /*
 711          * Allocate both src and dst at the same time, therefore the half
 712          * start on 1 since 0 can't be used since zero is used as end marker.
 713          */
 714         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 715                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 716 
 717                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
 718                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
 719                         d40d->lcla_alloc++;
 720                         ret = i;
 721                         break;
 722                 }
 723         }
 724 
 725         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 726 
 727         return ret;
 728 }
 729 
 730 static int d40_lcla_free_all(struct d40_chan *d40c,
 731                              struct d40_desc *d40d)
 732 {
 733         unsigned long flags;
 734         int i;
 735         int ret = -EINVAL;
 736 
 737         if (chan_is_physical(d40c))
 738                 return 0;
 739 
 740         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
 741 
 742         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
 743                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
 744 
 745                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
 746                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
 747                         d40d->lcla_alloc--;
 748                         if (d40d->lcla_alloc == 0) {
 749                                 ret = 0;
 750                                 break;
 751                         }
 752                 }
 753         }
 754 
 755         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
 756 
 757         return ret;
 758 
 759 }
 760 
 761 static void d40_desc_remove(struct d40_desc *d40d)
 762 {
 763         list_del(&d40d->node);
 764 }
 765 
 766 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
 767 {
 768         struct d40_desc *desc = NULL;
 769 
 770         if (!list_empty(&d40c->client)) {
 771                 struct d40_desc *d;
 772                 struct d40_desc *_d;
 773 
 774                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
 775                         if (async_tx_test_ack(&d->txd)) {
 776                                 d40_desc_remove(d);
 777                                 desc = d;
 778                                 memset(desc, 0, sizeof(*desc));
 779                                 break;
 780                         }
 781                 }
 782         }
 783 
 784         if (!desc)
 785                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
 786 
 787         if (desc)
 788                 INIT_LIST_HEAD(&desc->node);
 789 
 790         return desc;
 791 }
 792 
 793 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
 794 {
 795 
 796         d40_pool_lli_free(d40c, d40d);
 797         d40_lcla_free_all(d40c, d40d);
 798         kmem_cache_free(d40c->base->desc_slab, d40d);
 799 }
 800 
 801 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
 802 {
 803         list_add_tail(&desc->node, &d40c->active);
 804 }
 805 
 806 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
 807 {
 808         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
 809         struct d40_phy_lli *lli_src = desc->lli_phy.src;
 810         void __iomem *base = chan_base(chan);
 811 
 812         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
 813         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
 814         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
 815         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
 816 
 817         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
 818         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
 819         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
 820         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
 821 }
 822 
 823 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
 824 {
 825         list_add_tail(&desc->node, &d40c->done);
 826 }
 827 
 828 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
 829 {
 830         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
 831         struct d40_log_lli_bidir *lli = &desc->lli_log;
 832         int lli_current = desc->lli_current;
 833         int lli_len = desc->lli_len;
 834         bool cyclic = desc->cyclic;
 835         int curr_lcla = -EINVAL;
 836         int first_lcla = 0;
 837         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
 838         bool linkback;
 839 
 840         /*
 841          * We may have partially running cyclic transfers, in case we did't get
 842          * enough LCLA entries.
 843          */
 844         linkback = cyclic && lli_current == 0;
 845 
 846         /*
 847          * For linkback, we need one LCLA even with only one link, because we
 848          * can't link back to the one in LCPA space
 849          */
 850         if (linkback || (lli_len - lli_current > 1)) {
 851                 /*
 852                  * If the channel is expected to use only soft_lli don't
 853                  * allocate a lcla. This is to avoid a HW issue that exists
 854                  * in some controller during a peripheral to memory transfer
 855                  * that uses linked lists.
 856                  */
 857                 if (!(chan->phy_chan->use_soft_lli &&
 858                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
 859                         curr_lcla = d40_lcla_alloc_one(chan, desc);
 860 
 861                 first_lcla = curr_lcla;
 862         }
 863 
 864         /*
 865          * For linkback, we normally load the LCPA in the loop since we need to
 866          * link it to the second LCLA and not the first.  However, if we
 867          * couldn't even get a first LCLA, then we have to run in LCPA and
 868          * reload manually.
 869          */
 870         if (!linkback || curr_lcla == -EINVAL) {
 871                 unsigned int flags = 0;
 872 
 873                 if (curr_lcla == -EINVAL)
 874                         flags |= LLI_TERM_INT;
 875 
 876                 d40_log_lli_lcpa_write(chan->lcpa,
 877                                        &lli->dst[lli_current],
 878                                        &lli->src[lli_current],
 879                                        curr_lcla,
 880                                        flags);
 881                 lli_current++;
 882         }
 883 
 884         if (curr_lcla < 0)
 885                 goto set_current;
 886 
 887         for (; lli_current < lli_len; lli_current++) {
 888                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
 889                                            8 * curr_lcla * 2;
 890                 struct d40_log_lli *lcla = pool->base + lcla_offset;
 891                 unsigned int flags = 0;
 892                 int next_lcla;
 893 
 894                 if (lli_current + 1 < lli_len)
 895                         next_lcla = d40_lcla_alloc_one(chan, desc);
 896                 else
 897                         next_lcla = linkback ? first_lcla : -EINVAL;
 898 
 899                 if (cyclic || next_lcla == -EINVAL)
 900                         flags |= LLI_TERM_INT;
 901 
 902                 if (linkback && curr_lcla == first_lcla) {
 903                         /* First link goes in both LCPA and LCLA */
 904                         d40_log_lli_lcpa_write(chan->lcpa,
 905                                                &lli->dst[lli_current],
 906                                                &lli->src[lli_current],
 907                                                next_lcla, flags);
 908                 }
 909 
 910                 /*
 911                  * One unused LCLA in the cyclic case if the very first
 912                  * next_lcla fails...
 913                  */
 914                 d40_log_lli_lcla_write(lcla,
 915                                        &lli->dst[lli_current],
 916                                        &lli->src[lli_current],
 917                                        next_lcla, flags);
 918 
 919                 /*
 920                  * Cache maintenance is not needed if lcla is
 921                  * mapped in esram
 922                  */
 923                 if (!use_esram_lcla) {
 924                         dma_sync_single_range_for_device(chan->base->dev,
 925                                                 pool->dma_addr, lcla_offset,
 926                                                 2 * sizeof(struct d40_log_lli),
 927                                                 DMA_TO_DEVICE);
 928                 }
 929                 curr_lcla = next_lcla;
 930 
 931                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
 932                         lli_current++;
 933                         break;
 934                 }
 935         }
 936  set_current:
 937         desc->lli_current = lli_current;
 938 }
 939 
 940 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
 941 {
 942         if (chan_is_physical(d40c)) {
 943                 d40_phy_lli_load(d40c, d40d);
 944                 d40d->lli_current = d40d->lli_len;
 945         } else
 946                 d40_log_lli_to_lcxa(d40c, d40d);
 947 }
 948 
 949 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
 950 {
 951         return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
 952 }
 953 
 954 /* remove desc from current queue and add it to the pending_queue */
 955 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
 956 {
 957         d40_desc_remove(desc);
 958         desc->is_in_client_list = false;
 959         list_add_tail(&desc->node, &d40c->pending_queue);
 960 }
 961 
 962 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
 963 {
 964         return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
 965                                         node);
 966 }
 967 
 968 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
 969 {
 970         return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
 971 }
 972 
 973 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
 974 {
 975         return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
 976 }
 977 
 978 static int d40_psize_2_burst_size(bool is_log, int psize)
 979 {
 980         if (is_log) {
 981                 if (psize == STEDMA40_PSIZE_LOG_1)
 982                         return 1;
 983         } else {
 984                 if (psize == STEDMA40_PSIZE_PHY_1)
 985                         return 1;
 986         }
 987 
 988         return 2 << psize;
 989 }
 990 
 991 /*
 992  * The dma only supports transmitting packages up to
 993  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
 994  *
 995  * Calculate the total number of dma elements required to send the entire sg list.
 996  */
 997 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
 998 {
 999         int dmalen;
1000         u32 max_w = max(data_width1, data_width2);
1001         u32 min_w = min(data_width1, data_width2);
1002         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003 
1004         if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005                 seg_max -= max_w;
1006 
1007         if (!IS_ALIGNED(size, max_w))
1008                 return -EINVAL;
1009 
1010         if (size <= seg_max)
1011                 dmalen = 1;
1012         else {
1013                 dmalen = size / seg_max;
1014                 if (dmalen * seg_max < size)
1015                         dmalen++;
1016         }
1017         return dmalen;
1018 }
1019 
1020 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021                            u32 data_width1, u32 data_width2)
1022 {
1023         struct scatterlist *sg;
1024         int i;
1025         int len = 0;
1026         int ret;
1027 
1028         for_each_sg(sgl, sg, sg_len, i) {
1029                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1030                                         data_width1, data_width2);
1031                 if (ret < 0)
1032                         return ret;
1033                 len += ret;
1034         }
1035         return len;
1036 }
1037 
1038 static int __d40_execute_command_phy(struct d40_chan *d40c,
1039                                      enum d40_command command)
1040 {
1041         u32 status;
1042         int i;
1043         void __iomem *active_reg;
1044         int ret = 0;
1045         unsigned long flags;
1046         u32 wmask;
1047 
1048         if (command == D40_DMA_STOP) {
1049                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050                 if (ret)
1051                         return ret;
1052         }
1053 
1054         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055 
1056         if (d40c->phy_chan->num % 2 == 0)
1057                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058         else
1059                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060 
1061         if (command == D40_DMA_SUSPEND_REQ) {
1062                 status = (readl(active_reg) &
1063                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064                         D40_CHAN_POS(d40c->phy_chan->num);
1065 
1066                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067                         goto unlock;
1068         }
1069 
1070         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072                active_reg);
1073 
1074         if (command == D40_DMA_SUSPEND_REQ) {
1075 
1076                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077                         status = (readl(active_reg) &
1078                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079                                 D40_CHAN_POS(d40c->phy_chan->num);
1080 
1081                         cpu_relax();
1082                         /*
1083                          * Reduce the number of bus accesses while
1084                          * waiting for the DMA to suspend.
1085                          */
1086                         udelay(3);
1087 
1088                         if (status == D40_DMA_STOP ||
1089                             status == D40_DMA_SUSPENDED)
1090                                 break;
1091                 }
1092 
1093                 if (i == D40_SUSPEND_MAX_IT) {
1094                         chan_err(d40c,
1095                                 "unable to suspend the chl %d (log: %d) status %x\n",
1096                                 d40c->phy_chan->num, d40c->log_num,
1097                                 status);
1098                         dump_stack();
1099                         ret = -EBUSY;
1100                 }
1101 
1102         }
1103  unlock:
1104         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105         return ret;
1106 }
1107 
1108 static void d40_term_all(struct d40_chan *d40c)
1109 {
1110         struct d40_desc *d40d;
1111         struct d40_desc *_d;
1112 
1113         /* Release completed descriptors */
1114         while ((d40d = d40_first_done(d40c))) {
1115                 d40_desc_remove(d40d);
1116                 d40_desc_free(d40c, d40d);
1117         }
1118 
1119         /* Release active descriptors */
1120         while ((d40d = d40_first_active_get(d40c))) {
1121                 d40_desc_remove(d40d);
1122                 d40_desc_free(d40c, d40d);
1123         }
1124 
1125         /* Release queued descriptors waiting for transfer */
1126         while ((d40d = d40_first_queued(d40c))) {
1127                 d40_desc_remove(d40d);
1128                 d40_desc_free(d40c, d40d);
1129         }
1130 
1131         /* Release pending descriptors */
1132         while ((d40d = d40_first_pending(d40c))) {
1133                 d40_desc_remove(d40d);
1134                 d40_desc_free(d40c, d40d);
1135         }
1136 
1137         /* Release client owned descriptors */
1138         if (!list_empty(&d40c->client))
1139                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140                         d40_desc_remove(d40d);
1141                         d40_desc_free(d40c, d40d);
1142                 }
1143 
1144         /* Release descriptors in prepare queue */
1145         if (!list_empty(&d40c->prepare_queue))
1146                 list_for_each_entry_safe(d40d, _d,
1147                                          &d40c->prepare_queue, node) {
1148                         d40_desc_remove(d40d);
1149                         d40_desc_free(d40c, d40d);
1150                 }
1151 
1152         d40c->pending_tx = 0;
1153 }
1154 
1155 static void __d40_config_set_event(struct d40_chan *d40c,
1156                                    enum d40_events event_type, u32 event,
1157                                    int reg)
1158 {
1159         void __iomem *addr = chan_base(d40c) + reg;
1160         int tries;
1161         u32 status;
1162 
1163         switch (event_type) {
1164 
1165         case D40_DEACTIVATE_EVENTLINE:
1166 
1167                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168                        | ~D40_EVENTLINE_MASK(event), addr);
1169                 break;
1170 
1171         case D40_SUSPEND_REQ_EVENTLINE:
1172                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173                           D40_EVENTLINE_POS(event);
1174 
1175                 if (status == D40_DEACTIVATE_EVENTLINE ||
1176                     status == D40_SUSPEND_REQ_EVENTLINE)
1177                         break;
1178 
1179                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180                        | ~D40_EVENTLINE_MASK(event), addr);
1181 
1182                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183 
1184                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185                                   D40_EVENTLINE_POS(event);
1186 
1187                         cpu_relax();
1188                         /*
1189                          * Reduce the number of bus accesses while
1190                          * waiting for the DMA to suspend.
1191                          */
1192                         udelay(3);
1193 
1194                         if (status == D40_DEACTIVATE_EVENTLINE)
1195                                 break;
1196                 }
1197 
1198                 if (tries == D40_SUSPEND_MAX_IT) {
1199                         chan_err(d40c,
1200                                 "unable to stop the event_line chl %d (log: %d)"
1201                                 "status %x\n", d40c->phy_chan->num,
1202                                  d40c->log_num, status);
1203                 }
1204                 break;
1205 
1206         case D40_ACTIVATE_EVENTLINE:
1207         /*
1208          * The hardware sometimes doesn't register the enable when src and dst
1209          * event lines are active on the same logical channel.  Retry to ensure
1210          * it does.  Usually only one retry is sufficient.
1211          */
1212                 tries = 100;
1213                 while (--tries) {
1214                         writel((D40_ACTIVATE_EVENTLINE <<
1215                                 D40_EVENTLINE_POS(event)) |
1216                                 ~D40_EVENTLINE_MASK(event), addr);
1217 
1218                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1219                                 break;
1220                 }
1221 
1222                 if (tries != 99)
1223                         dev_dbg(chan2dev(d40c),
1224                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1225                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226                                 100 - tries);
1227 
1228                 WARN_ON(!tries);
1229                 break;
1230 
1231         case D40_ROUND_EVENTLINE:
1232                 BUG();
1233                 break;
1234 
1235         }
1236 }
1237 
1238 static void d40_config_set_event(struct d40_chan *d40c,
1239                                  enum d40_events event_type)
1240 {
1241         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242 
1243         /* Enable event line connected to device (or memcpy) */
1244         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246                 __d40_config_set_event(d40c, event_type, event,
1247                                        D40_CHAN_REG_SSLNK);
1248 
1249         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1250                 __d40_config_set_event(d40c, event_type, event,
1251                                        D40_CHAN_REG_SDLNK);
1252 }
1253 
1254 static u32 d40_chan_has_events(struct d40_chan *d40c)
1255 {
1256         void __iomem *chanbase = chan_base(d40c);
1257         u32 val;
1258 
1259         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261 
1262         return val;
1263 }
1264 
1265 static int
1266 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267 {
1268         unsigned long flags;
1269         int ret = 0;
1270         u32 active_status;
1271         void __iomem *active_reg;
1272 
1273         if (d40c->phy_chan->num % 2 == 0)
1274                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275         else
1276                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277 
1278 
1279         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280 
1281         switch (command) {
1282         case D40_DMA_STOP:
1283         case D40_DMA_SUSPEND_REQ:
1284 
1285                 active_status = (readl(active_reg) &
1286                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287                                  D40_CHAN_POS(d40c->phy_chan->num);
1288 
1289                 if (active_status == D40_DMA_RUN)
1290                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291                 else
1292                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293 
1294                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295                         ret = __d40_execute_command_phy(d40c, command);
1296 
1297                 break;
1298 
1299         case D40_DMA_RUN:
1300 
1301                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302                 ret = __d40_execute_command_phy(d40c, command);
1303                 break;
1304 
1305         case D40_DMA_SUSPENDED:
1306                 BUG();
1307                 break;
1308         }
1309 
1310         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311         return ret;
1312 }
1313 
1314 static int d40_channel_execute_command(struct d40_chan *d40c,
1315                                        enum d40_command command)
1316 {
1317         if (chan_is_logical(d40c))
1318                 return __d40_execute_command_log(d40c, command);
1319         else
1320                 return __d40_execute_command_phy(d40c, command);
1321 }
1322 
1323 static u32 d40_get_prmo(struct d40_chan *d40c)
1324 {
1325         static const unsigned int phy_map[] = {
1326                 [STEDMA40_PCHAN_BASIC_MODE]
1327                         = D40_DREG_PRMO_PCHAN_BASIC,
1328                 [STEDMA40_PCHAN_MODULO_MODE]
1329                         = D40_DREG_PRMO_PCHAN_MODULO,
1330                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332         };
1333         static const unsigned int log_map[] = {
1334                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340         };
1341 
1342         if (chan_is_physical(d40c))
1343                 return phy_map[d40c->dma_cfg.mode_opt];
1344         else
1345                 return log_map[d40c->dma_cfg.mode_opt];
1346 }
1347 
1348 static void d40_config_write(struct d40_chan *d40c)
1349 {
1350         u32 addr_base;
1351         u32 var;
1352 
1353         /* Odd addresses are even addresses + 4 */
1354         addr_base = (d40c->phy_chan->num % 2) * 4;
1355         /* Setup channel mode to logical or physical */
1356         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357                 D40_CHAN_POS(d40c->phy_chan->num);
1358         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359 
1360         /* Setup operational mode option register */
1361         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362 
1363         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364 
1365         if (chan_is_logical(d40c)) {
1366                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1368                 void __iomem *chanbase = chan_base(d40c);
1369 
1370                 /* Set default config for CFG reg */
1371                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373 
1374                 /* Set LIDX for lcla */
1375                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377 
1378                 /* Clear LNK which will be used by d40_chan_has_events() */
1379                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381         }
1382 }
1383 
1384 static u32 d40_residue(struct d40_chan *d40c)
1385 {
1386         u32 num_elt;
1387 
1388         if (chan_is_logical(d40c))
1389                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390                         >> D40_MEM_LCSP2_ECNT_POS;
1391         else {
1392                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1395         }
1396 
1397         return num_elt * d40c->dma_cfg.dst_info.data_width;
1398 }
1399 
1400 static bool d40_tx_is_linked(struct d40_chan *d40c)
1401 {
1402         bool is_link;
1403 
1404         if (chan_is_logical(d40c))
1405                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1406         else
1407                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408                           & D40_SREG_LNK_PHYS_LNK_MASK;
1409 
1410         return is_link;
1411 }
1412 
1413 static int d40_pause(struct dma_chan *chan)
1414 {
1415         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416         int res = 0;
1417         unsigned long flags;
1418 
1419         if (d40c->phy_chan == NULL) {
1420                 chan_err(d40c, "Channel is not allocated!\n");
1421                 return -EINVAL;
1422         }
1423 
1424         if (!d40c->busy)
1425                 return 0;
1426 
1427         spin_lock_irqsave(&d40c->lock, flags);
1428         pm_runtime_get_sync(d40c->base->dev);
1429 
1430         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431 
1432         pm_runtime_mark_last_busy(d40c->base->dev);
1433         pm_runtime_put_autosuspend(d40c->base->dev);
1434         spin_unlock_irqrestore(&d40c->lock, flags);
1435         return res;
1436 }
1437 
1438 static int d40_resume(struct dma_chan *chan)
1439 {
1440         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441         int res = 0;
1442         unsigned long flags;
1443 
1444         if (d40c->phy_chan == NULL) {
1445                 chan_err(d40c, "Channel is not allocated!\n");
1446                 return -EINVAL;
1447         }
1448 
1449         if (!d40c->busy)
1450                 return 0;
1451 
1452         spin_lock_irqsave(&d40c->lock, flags);
1453         pm_runtime_get_sync(d40c->base->dev);
1454 
1455         /* If bytes left to transfer or linked tx resume job */
1456         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458 
1459         pm_runtime_mark_last_busy(d40c->base->dev);
1460         pm_runtime_put_autosuspend(d40c->base->dev);
1461         spin_unlock_irqrestore(&d40c->lock, flags);
1462         return res;
1463 }
1464 
1465 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466 {
1467         struct d40_chan *d40c = container_of(tx->chan,
1468                                              struct d40_chan,
1469                                              chan);
1470         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471         unsigned long flags;
1472         dma_cookie_t cookie;
1473 
1474         spin_lock_irqsave(&d40c->lock, flags);
1475         cookie = dma_cookie_assign(tx);
1476         d40_desc_queue(d40c, d40d);
1477         spin_unlock_irqrestore(&d40c->lock, flags);
1478 
1479         return cookie;
1480 }
1481 
1482 static int d40_start(struct d40_chan *d40c)
1483 {
1484         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485 }
1486 
1487 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488 {
1489         struct d40_desc *d40d;
1490         int err;
1491 
1492         /* Start queued jobs, if any */
1493         d40d = d40_first_queued(d40c);
1494 
1495         if (d40d != NULL) {
1496                 if (!d40c->busy) {
1497                         d40c->busy = true;
1498                         pm_runtime_get_sync(d40c->base->dev);
1499                 }
1500 
1501                 /* Remove from queue */
1502                 d40_desc_remove(d40d);
1503 
1504                 /* Add to active queue */
1505                 d40_desc_submit(d40c, d40d);
1506 
1507                 /* Initiate DMA job */
1508                 d40_desc_load(d40c, d40d);
1509 
1510                 /* Start dma job */
1511                 err = d40_start(d40c);
1512 
1513                 if (err)
1514                         return NULL;
1515         }
1516 
1517         return d40d;
1518 }
1519 
1520 /* called from interrupt context */
1521 static void dma_tc_handle(struct d40_chan *d40c)
1522 {
1523         struct d40_desc *d40d;
1524 
1525         /* Get first active entry from list */
1526         d40d = d40_first_active_get(d40c);
1527 
1528         if (d40d == NULL)
1529                 return;
1530 
1531         if (d40d->cyclic) {
1532                 /*
1533                  * If this was a paritially loaded list, we need to reloaded
1534                  * it, and only when the list is completed.  We need to check
1535                  * for done because the interrupt will hit for every link, and
1536                  * not just the last one.
1537                  */
1538                 if (d40d->lli_current < d40d->lli_len
1539                     && !d40_tx_is_linked(d40c)
1540                     && !d40_residue(d40c)) {
1541                         d40_lcla_free_all(d40c, d40d);
1542                         d40_desc_load(d40c, d40d);
1543                         (void) d40_start(d40c);
1544 
1545                         if (d40d->lli_current == d40d->lli_len)
1546                                 d40d->lli_current = 0;
1547                 }
1548         } else {
1549                 d40_lcla_free_all(d40c, d40d);
1550 
1551                 if (d40d->lli_current < d40d->lli_len) {
1552                         d40_desc_load(d40c, d40d);
1553                         /* Start dma job */
1554                         (void) d40_start(d40c);
1555                         return;
1556                 }
1557 
1558                 if (d40_queue_start(d40c) == NULL) {
1559                         d40c->busy = false;
1560 
1561                         pm_runtime_mark_last_busy(d40c->base->dev);
1562                         pm_runtime_put_autosuspend(d40c->base->dev);
1563                 }
1564 
1565                 d40_desc_remove(d40d);
1566                 d40_desc_done(d40c, d40d);
1567         }
1568 
1569         d40c->pending_tx++;
1570         tasklet_schedule(&d40c->tasklet);
1571 
1572 }
1573 
1574 static void dma_tasklet(unsigned long data)
1575 {
1576         struct d40_chan *d40c = (struct d40_chan *) data;
1577         struct d40_desc *d40d;
1578         unsigned long flags;
1579         bool callback_active;
1580         struct dmaengine_desc_callback cb;
1581 
1582         spin_lock_irqsave(&d40c->lock, flags);
1583 
1584         /* Get first entry from the done list */
1585         d40d = d40_first_done(d40c);
1586         if (d40d == NULL) {
1587                 /* Check if we have reached here for cyclic job */
1588                 d40d = d40_first_active_get(d40c);
1589                 if (d40d == NULL || !d40d->cyclic)
1590                         goto check_pending_tx;
1591         }
1592 
1593         if (!d40d->cyclic)
1594                 dma_cookie_complete(&d40d->txd);
1595 
1596         /*
1597          * If terminating a channel pending_tx is set to zero.
1598          * This prevents any finished active jobs to return to the client.
1599          */
1600         if (d40c->pending_tx == 0) {
1601                 spin_unlock_irqrestore(&d40c->lock, flags);
1602                 return;
1603         }
1604 
1605         /* Callback to client */
1606         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607         dmaengine_desc_get_callback(&d40d->txd, &cb);
1608 
1609         if (!d40d->cyclic) {
1610                 if (async_tx_test_ack(&d40d->txd)) {
1611                         d40_desc_remove(d40d);
1612                         d40_desc_free(d40c, d40d);
1613                 } else if (!d40d->is_in_client_list) {
1614                         d40_desc_remove(d40d);
1615                         d40_lcla_free_all(d40c, d40d);
1616                         list_add_tail(&d40d->node, &d40c->client);
1617                         d40d->is_in_client_list = true;
1618                 }
1619         }
1620 
1621         d40c->pending_tx--;
1622 
1623         if (d40c->pending_tx)
1624                 tasklet_schedule(&d40c->tasklet);
1625 
1626         spin_unlock_irqrestore(&d40c->lock, flags);
1627 
1628         if (callback_active)
1629                 dmaengine_desc_callback_invoke(&cb, NULL);
1630 
1631         return;
1632  check_pending_tx:
1633         /* Rescue manouver if receiving double interrupts */
1634         if (d40c->pending_tx > 0)
1635                 d40c->pending_tx--;
1636         spin_unlock_irqrestore(&d40c->lock, flags);
1637 }
1638 
1639 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640 {
1641         int i;
1642         u32 idx;
1643         u32 row;
1644         long chan = -1;
1645         struct d40_chan *d40c;
1646         unsigned long flags;
1647         struct d40_base *base = data;
1648         u32 *regs = base->regs_interrupt;
1649         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1650         u32 il_size = base->gen_dmac.il_size;
1651 
1652         spin_lock_irqsave(&base->interrupt_lock, flags);
1653 
1654         /* Read interrupt status of both logical and physical channels */
1655         for (i = 0; i < il_size; i++)
1656                 regs[i] = readl(base->virtbase + il[i].src);
1657 
1658         for (;;) {
1659 
1660                 chan = find_next_bit((unsigned long *)regs,
1661                                      BITS_PER_LONG * il_size, chan + 1);
1662 
1663                 /* No more set bits found? */
1664                 if (chan == BITS_PER_LONG * il_size)
1665                         break;
1666 
1667                 row = chan / BITS_PER_LONG;
1668                 idx = chan & (BITS_PER_LONG - 1);
1669 
1670                 if (il[row].offset == D40_PHY_CHAN)
1671                         d40c = base->lookup_phy_chans[idx];
1672                 else
1673                         d40c = base->lookup_log_chans[il[row].offset + idx];
1674 
1675                 if (!d40c) {
1676                         /*
1677                          * No error because this can happen if something else
1678                          * in the system is using the channel.
1679                          */
1680                         continue;
1681                 }
1682 
1683                 /* ACK interrupt */
1684                 writel(BIT(idx), base->virtbase + il[row].clr);
1685 
1686                 spin_lock(&d40c->lock);
1687 
1688                 if (!il[row].is_error)
1689                         dma_tc_handle(d40c);
1690                 else
1691                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1692                                 chan, il[row].offset, idx);
1693 
1694                 spin_unlock(&d40c->lock);
1695         }
1696 
1697         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1698 
1699         return IRQ_HANDLED;
1700 }
1701 
1702 static int d40_validate_conf(struct d40_chan *d40c,
1703                              struct stedma40_chan_cfg *conf)
1704 {
1705         int res = 0;
1706         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707 
1708         if (!conf->dir) {
1709                 chan_err(d40c, "Invalid direction.\n");
1710                 res = -EINVAL;
1711         }
1712 
1713         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1714             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1715             (conf->dev_type < 0)) {
1716                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1717                 res = -EINVAL;
1718         }
1719 
1720         if (conf->dir == DMA_DEV_TO_DEV) {
1721                 /*
1722                  * DMAC HW supports it. Will be added to this driver,
1723                  * in case any dma client requires it.
1724                  */
1725                 chan_err(d40c, "periph to periph not supported\n");
1726                 res = -EINVAL;
1727         }
1728 
1729         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1730             conf->src_info.data_width !=
1731             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1732             conf->dst_info.data_width) {
1733                 /*
1734                  * The DMAC hardware only supports
1735                  * src (burst x width) == dst (burst x width)
1736                  */
1737 
1738                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1739                 res = -EINVAL;
1740         }
1741 
1742         return res;
1743 }
1744 
1745 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1746                                bool is_src, int log_event_line, bool is_log,
1747                                bool *first_user)
1748 {
1749         unsigned long flags;
1750         spin_lock_irqsave(&phy->lock, flags);
1751 
1752         *first_user = ((phy->allocated_src | phy->allocated_dst)
1753                         == D40_ALLOC_FREE);
1754 
1755         if (!is_log) {
1756                 /* Physical interrupts are masked per physical full channel */
1757                 if (phy->allocated_src == D40_ALLOC_FREE &&
1758                     phy->allocated_dst == D40_ALLOC_FREE) {
1759                         phy->allocated_dst = D40_ALLOC_PHY;
1760                         phy->allocated_src = D40_ALLOC_PHY;
1761                         goto found_unlock;
1762                 } else
1763                         goto not_found_unlock;
1764         }
1765 
1766         /* Logical channel */
1767         if (is_src) {
1768                 if (phy->allocated_src == D40_ALLOC_PHY)
1769                         goto not_found_unlock;
1770 
1771                 if (phy->allocated_src == D40_ALLOC_FREE)
1772                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1773 
1774                 if (!(phy->allocated_src & BIT(log_event_line))) {
1775                         phy->allocated_src |= BIT(log_event_line);
1776                         goto found_unlock;
1777                 } else
1778                         goto not_found_unlock;
1779         } else {
1780                 if (phy->allocated_dst == D40_ALLOC_PHY)
1781                         goto not_found_unlock;
1782 
1783                 if (phy->allocated_dst == D40_ALLOC_FREE)
1784                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785 
1786                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1787                         phy->allocated_dst |= BIT(log_event_line);
1788                         goto found_unlock;
1789                 }
1790         }
1791  not_found_unlock:
1792         spin_unlock_irqrestore(&phy->lock, flags);
1793         return false;
1794  found_unlock:
1795         spin_unlock_irqrestore(&phy->lock, flags);
1796         return true;
1797 }
1798 
1799 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1800                                int log_event_line)
1801 {
1802         unsigned long flags;
1803         bool is_free = false;
1804 
1805         spin_lock_irqsave(&phy->lock, flags);
1806         if (!log_event_line) {
1807                 phy->allocated_dst = D40_ALLOC_FREE;
1808                 phy->allocated_src = D40_ALLOC_FREE;
1809                 is_free = true;
1810                 goto unlock;
1811         }
1812 
1813         /* Logical channel */
1814         if (is_src) {
1815                 phy->allocated_src &= ~BIT(log_event_line);
1816                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1817                         phy->allocated_src = D40_ALLOC_FREE;
1818         } else {
1819                 phy->allocated_dst &= ~BIT(log_event_line);
1820                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1821                         phy->allocated_dst = D40_ALLOC_FREE;
1822         }
1823 
1824         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1825                    D40_ALLOC_FREE);
1826  unlock:
1827         spin_unlock_irqrestore(&phy->lock, flags);
1828 
1829         return is_free;
1830 }
1831 
1832 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833 {
1834         int dev_type = d40c->dma_cfg.dev_type;
1835         int event_group;
1836         int event_line;
1837         struct d40_phy_res *phys;
1838         int i;
1839         int j;
1840         int log_num;
1841         int num_phy_chans;
1842         bool is_src;
1843         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844 
1845         phys = d40c->base->phy_res;
1846         num_phy_chans = d40c->base->num_phy_chans;
1847 
1848         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1849                 log_num = 2 * dev_type;
1850                 is_src = true;
1851         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1852                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1853                 /* dst event lines are used for logical memcpy */
1854                 log_num = 2 * dev_type + 1;
1855                 is_src = false;
1856         } else
1857                 return -EINVAL;
1858 
1859         event_group = D40_TYPE_TO_GROUP(dev_type);
1860         event_line = D40_TYPE_TO_EVENT(dev_type);
1861 
1862         if (!is_log) {
1863                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1864                         /* Find physical half channel */
1865                         if (d40c->dma_cfg.use_fixed_channel) {
1866                                 i = d40c->dma_cfg.phy_channel;
1867                                 if (d40_alloc_mask_set(&phys[i], is_src,
1868                                                        0, is_log,
1869                                                        first_phy_user))
1870                                         goto found_phy;
1871                         } else {
1872                                 for (i = 0; i < num_phy_chans; i++) {
1873                                         if (d40_alloc_mask_set(&phys[i], is_src,
1874                                                        0, is_log,
1875                                                        first_phy_user))
1876                                                 goto found_phy;
1877                                 }
1878                         }
1879                 } else
1880                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1881                                 int phy_num = j  + event_group * 2;
1882                                 for (i = phy_num; i < phy_num + 2; i++) {
1883                                         if (d40_alloc_mask_set(&phys[i],
1884                                                                is_src,
1885                                                                0,
1886                                                                is_log,
1887                                                                first_phy_user))
1888                                                 goto found_phy;
1889                                 }
1890                         }
1891                 return -EINVAL;
1892 found_phy:
1893                 d40c->phy_chan = &phys[i];
1894                 d40c->log_num = D40_PHY_CHAN;
1895                 goto out;
1896         }
1897         if (dev_type == -1)
1898                 return -EINVAL;
1899 
1900         /* Find logical channel */
1901         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1902                 int phy_num = j + event_group * 2;
1903 
1904                 if (d40c->dma_cfg.use_fixed_channel) {
1905                         i = d40c->dma_cfg.phy_channel;
1906 
1907                         if ((i != phy_num) && (i != phy_num + 1)) {
1908                                 dev_err(chan2dev(d40c),
1909                                         "invalid fixed phy channel %d\n", i);
1910                                 return -EINVAL;
1911                         }
1912 
1913                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1914                                                is_log, first_phy_user))
1915                                 goto found_log;
1916 
1917                         dev_err(chan2dev(d40c),
1918                                 "could not allocate fixed phy channel %d\n", i);
1919                         return -EINVAL;
1920                 }
1921 
1922                 /*
1923                  * Spread logical channels across all available physical rather
1924                  * than pack every logical channel at the first available phy
1925                  * channels.
1926                  */
1927                 if (is_src) {
1928                         for (i = phy_num; i < phy_num + 2; i++) {
1929                                 if (d40_alloc_mask_set(&phys[i], is_src,
1930                                                        event_line, is_log,
1931                                                        first_phy_user))
1932                                         goto found_log;
1933                         }
1934                 } else {
1935                         for (i = phy_num + 1; i >= phy_num; i--) {
1936                                 if (d40_alloc_mask_set(&phys[i], is_src,
1937                                                        event_line, is_log,
1938                                                        first_phy_user))
1939                                         goto found_log;
1940                         }
1941                 }
1942         }
1943         return -EINVAL;
1944 
1945 found_log:
1946         d40c->phy_chan = &phys[i];
1947         d40c->log_num = log_num;
1948 out:
1949 
1950         if (is_log)
1951                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1952         else
1953                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954 
1955         return 0;
1956 
1957 }
1958 
1959 static int d40_config_memcpy(struct d40_chan *d40c)
1960 {
1961         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962 
1963         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1964                 d40c->dma_cfg = dma40_memcpy_conf_log;
1965                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966 
1967                 d40_log_cfg(&d40c->dma_cfg,
1968                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969 
1970         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1971                    dma_has_cap(DMA_SLAVE, cap)) {
1972                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1973 
1974                 /* Generate interrrupt at end of transfer or relink. */
1975                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976 
1977                 /* Generate interrupt on error. */
1978                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980 
1981         } else {
1982                 chan_err(d40c, "No memcpy\n");
1983                 return -EINVAL;
1984         }
1985 
1986         return 0;
1987 }
1988 
1989 static int d40_free_dma(struct d40_chan *d40c)
1990 {
1991 
1992         int res = 0;
1993         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1994         struct d40_phy_res *phy = d40c->phy_chan;
1995         bool is_src;
1996 
1997         /* Terminate all queued and active transfers */
1998         d40_term_all(d40c);
1999 
2000         if (phy == NULL) {
2001                 chan_err(d40c, "phy == null\n");
2002                 return -EINVAL;
2003         }
2004 
2005         if (phy->allocated_src == D40_ALLOC_FREE &&
2006             phy->allocated_dst == D40_ALLOC_FREE) {
2007                 chan_err(d40c, "channel already free\n");
2008                 return -EINVAL;
2009         }
2010 
2011         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2012             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2013                 is_src = false;
2014         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2015                 is_src = true;
2016         else {
2017                 chan_err(d40c, "Unknown direction\n");
2018                 return -EINVAL;
2019         }
2020 
2021         pm_runtime_get_sync(d40c->base->dev);
2022         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2023         if (res) {
2024                 chan_err(d40c, "stop failed\n");
2025                 goto mark_last_busy;
2026         }
2027 
2028         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029 
2030         if (chan_is_logical(d40c))
2031                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2032         else
2033                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2034 
2035         if (d40c->busy) {
2036                 pm_runtime_mark_last_busy(d40c->base->dev);
2037                 pm_runtime_put_autosuspend(d40c->base->dev);
2038         }
2039 
2040         d40c->busy = false;
2041         d40c->phy_chan = NULL;
2042         d40c->configured = false;
2043  mark_last_busy:
2044         pm_runtime_mark_last_busy(d40c->base->dev);
2045         pm_runtime_put_autosuspend(d40c->base->dev);
2046         return res;
2047 }
2048 
2049 static bool d40_is_paused(struct d40_chan *d40c)
2050 {
2051         void __iomem *chanbase = chan_base(d40c);
2052         bool is_paused = false;
2053         unsigned long flags;
2054         void __iomem *active_reg;
2055         u32 status;
2056         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057 
2058         spin_lock_irqsave(&d40c->lock, flags);
2059 
2060         if (chan_is_physical(d40c)) {
2061                 if (d40c->phy_chan->num % 2 == 0)
2062                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2063                 else
2064                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065 
2066                 status = (readl(active_reg) &
2067                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2068                         D40_CHAN_POS(d40c->phy_chan->num);
2069                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2070                         is_paused = true;
2071                 goto unlock;
2072         }
2073 
2074         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2075             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2076                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2077         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2078                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2079         } else {
2080                 chan_err(d40c, "Unknown direction\n");
2081                 goto unlock;
2082         }
2083 
2084         status = (status & D40_EVENTLINE_MASK(event)) >>
2085                 D40_EVENTLINE_POS(event);
2086 
2087         if (status != D40_DMA_RUN)
2088                 is_paused = true;
2089  unlock:
2090         spin_unlock_irqrestore(&d40c->lock, flags);
2091         return is_paused;
2092 
2093 }
2094 
2095 static u32 stedma40_residue(struct dma_chan *chan)
2096 {
2097         struct d40_chan *d40c =
2098                 container_of(chan, struct d40_chan, chan);
2099         u32 bytes_left;
2100         unsigned long flags;
2101 
2102         spin_lock_irqsave(&d40c->lock, flags);
2103         bytes_left = d40_residue(d40c);
2104         spin_unlock_irqrestore(&d40c->lock, flags);
2105 
2106         return bytes_left;
2107 }
2108 
2109 static int
2110 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2111                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2112                 unsigned int sg_len, dma_addr_t src_dev_addr,
2113                 dma_addr_t dst_dev_addr)
2114 {
2115         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2116         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2117         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2118         int ret;
2119 
2120         ret = d40_log_sg_to_lli(sg_src, sg_len,
2121                                 src_dev_addr,
2122                                 desc->lli_log.src,
2123                                 chan->log_def.lcsp1,
2124                                 src_info->data_width,
2125                                 dst_info->data_width);
2126 
2127         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2128                                 dst_dev_addr,
2129                                 desc->lli_log.dst,
2130                                 chan->log_def.lcsp3,
2131                                 dst_info->data_width,
2132                                 src_info->data_width);
2133 
2134         return ret < 0 ? ret : 0;
2135 }
2136 
2137 static int
2138 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2139                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2140                 unsigned int sg_len, dma_addr_t src_dev_addr,
2141                 dma_addr_t dst_dev_addr)
2142 {
2143         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2144         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2145         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2146         unsigned long flags = 0;
2147         int ret;
2148 
2149         if (desc->cyclic)
2150                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2151 
2152         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2153                                 desc->lli_phy.src,
2154                                 virt_to_phys(desc->lli_phy.src),
2155                                 chan->src_def_cfg,
2156                                 src_info, dst_info, flags);
2157 
2158         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2159                                 desc->lli_phy.dst,
2160                                 virt_to_phys(desc->lli_phy.dst),
2161                                 chan->dst_def_cfg,
2162                                 dst_info, src_info, flags);
2163 
2164         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2165                                    desc->lli_pool.size, DMA_TO_DEVICE);
2166 
2167         return ret < 0 ? ret : 0;
2168 }
2169 
2170 static struct d40_desc *
2171 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2172               unsigned int sg_len, unsigned long dma_flags)
2173 {
2174         struct stedma40_chan_cfg *cfg;
2175         struct d40_desc *desc;
2176         int ret;
2177 
2178         desc = d40_desc_get(chan);
2179         if (!desc)
2180                 return NULL;
2181 
2182         cfg = &chan->dma_cfg;
2183         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2184                                         cfg->dst_info.data_width);
2185         if (desc->lli_len < 0) {
2186                 chan_err(chan, "Unaligned size\n");
2187                 goto free_desc;
2188         }
2189 
2190         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2191         if (ret < 0) {
2192                 chan_err(chan, "Could not allocate lli\n");
2193                 goto free_desc;
2194         }
2195 
2196         desc->lli_current = 0;
2197         desc->txd.flags = dma_flags;
2198         desc->txd.tx_submit = d40_tx_submit;
2199 
2200         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201 
2202         return desc;
2203  free_desc:
2204         d40_desc_free(chan, desc);
2205         return NULL;
2206 }
2207 
2208 static struct dma_async_tx_descriptor *
2209 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2210             struct scatterlist *sg_dst, unsigned int sg_len,
2211             enum dma_transfer_direction direction, unsigned long dma_flags)
2212 {
2213         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2214         dma_addr_t src_dev_addr;
2215         dma_addr_t dst_dev_addr;
2216         struct d40_desc *desc;
2217         unsigned long flags;
2218         int ret;
2219 
2220         if (!chan->phy_chan) {
2221                 chan_err(chan, "Cannot prepare unallocated channel\n");
2222                 return NULL;
2223         }
2224 
2225         d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226 
2227         spin_lock_irqsave(&chan->lock, flags);
2228 
2229         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2230         if (desc == NULL)
2231                 goto unlock;
2232 
2233         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2234                 desc->cyclic = true;
2235 
2236         src_dev_addr = 0;
2237         dst_dev_addr = 0;
2238         if (direction == DMA_DEV_TO_MEM)
2239                 src_dev_addr = chan->runtime_addr;
2240         else if (direction == DMA_MEM_TO_DEV)
2241                 dst_dev_addr = chan->runtime_addr;
2242 
2243         if (chan_is_logical(chan))
2244                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2245                                       sg_len, src_dev_addr, dst_dev_addr);
2246         else
2247                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2248                                       sg_len, src_dev_addr, dst_dev_addr);
2249 
2250         if (ret) {
2251                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2252                          chan_is_logical(chan) ? "log" : "phy", ret);
2253                 goto free_desc;
2254         }
2255 
2256         /*
2257          * add descriptor to the prepare queue in order to be able
2258          * to free them later in terminate_all
2259          */
2260         list_add_tail(&desc->node, &chan->prepare_queue);
2261 
2262         spin_unlock_irqrestore(&chan->lock, flags);
2263 
2264         return &desc->txd;
2265  free_desc:
2266         d40_desc_free(chan, desc);
2267  unlock:
2268         spin_unlock_irqrestore(&chan->lock, flags);
2269         return NULL;
2270 }
2271 
2272 bool stedma40_filter(struct dma_chan *chan, void *data)
2273 {
2274         struct stedma40_chan_cfg *info = data;
2275         struct d40_chan *d40c =
2276                 container_of(chan, struct d40_chan, chan);
2277         int err;
2278 
2279         if (data) {
2280                 err = d40_validate_conf(d40c, info);
2281                 if (!err)
2282                         d40c->dma_cfg = *info;
2283         } else
2284                 err = d40_config_memcpy(d40c);
2285 
2286         if (!err)
2287                 d40c->configured = true;
2288 
2289         return err == 0;
2290 }
2291 EXPORT_SYMBOL(stedma40_filter);
2292 
2293 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294 {
2295         bool realtime = d40c->dma_cfg.realtime;
2296         bool highprio = d40c->dma_cfg.high_priority;
2297         u32 rtreg;
2298         u32 event = D40_TYPE_TO_EVENT(dev_type);
2299         u32 group = D40_TYPE_TO_GROUP(dev_type);
2300         u32 bit = BIT(event);
2301         u32 prioreg;
2302         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303 
2304         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305         /*
2306          * Due to a hardware bug, in some cases a logical channel triggered by
2307          * a high priority destination event line can generate extra packet
2308          * transactions.
2309          *
2310          * The workaround is to not set the high priority level for the
2311          * destination event lines that trigger logical channels.
2312          */
2313         if (!src && chan_is_logical(d40c))
2314                 highprio = false;
2315 
2316         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317 
2318         /* Destination event lines are stored in the upper halfword */
2319         if (!src)
2320                 bit <<= 16;
2321 
2322         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2323         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2324 }
2325 
2326 static void d40_set_prio_realtime(struct d40_chan *d40c)
2327 {
2328         if (d40c->base->rev < 3)
2329                 return;
2330 
2331         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2332             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334 
2335         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2336             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2337                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2338 }
2339 
2340 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2341 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2342 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2343 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2344 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2345 
2346 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2347                                   struct of_dma *ofdma)
2348 {
2349         struct stedma40_chan_cfg cfg;
2350         dma_cap_mask_t cap;
2351         u32 flags;
2352 
2353         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354 
2355         dma_cap_zero(cap);
2356         dma_cap_set(DMA_SLAVE, cap);
2357 
2358         cfg.dev_type = dma_spec->args[0];
2359         flags = dma_spec->args[2];
2360 
2361         switch (D40_DT_FLAGS_MODE(flags)) {
2362         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2363         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2364         }
2365 
2366         switch (D40_DT_FLAGS_DIR(flags)) {
2367         case 0:
2368                 cfg.dir = DMA_MEM_TO_DEV;
2369                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370                 break;
2371         case 1:
2372                 cfg.dir = DMA_DEV_TO_MEM;
2373                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2374                 break;
2375         }
2376 
2377         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2378                 cfg.phy_channel = dma_spec->args[1];
2379                 cfg.use_fixed_channel = true;
2380         }
2381 
2382         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2383                 cfg.high_priority = true;
2384 
2385         return dma_request_channel(cap, stedma40_filter, &cfg);
2386 }
2387 
2388 /* DMA ENGINE functions */
2389 static int d40_alloc_chan_resources(struct dma_chan *chan)
2390 {
2391         int err;
2392         unsigned long flags;
2393         struct d40_chan *d40c =
2394                 container_of(chan, struct d40_chan, chan);
2395         bool is_free_phy;
2396         spin_lock_irqsave(&d40c->lock, flags);
2397 
2398         dma_cookie_init(chan);
2399 
2400         /* If no dma configuration is set use default configuration (memcpy) */
2401         if (!d40c->configured) {
2402                 err = d40_config_memcpy(d40c);
2403                 if (err) {
2404                         chan_err(d40c, "Failed to configure memcpy channel\n");
2405                         goto mark_last_busy;
2406                 }
2407         }
2408 
2409         err = d40_allocate_channel(d40c, &is_free_phy);
2410         if (err) {
2411                 chan_err(d40c, "Failed to allocate channel\n");
2412                 d40c->configured = false;
2413                 goto mark_last_busy;
2414         }
2415 
2416         pm_runtime_get_sync(d40c->base->dev);
2417 
2418         d40_set_prio_realtime(d40c);
2419 
2420         if (chan_is_logical(d40c)) {
2421                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2422                         d40c->lcpa = d40c->base->lcpa_base +
2423                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2424                 else
2425                         d40c->lcpa = d40c->base->lcpa_base +
2426                                 d40c->dma_cfg.dev_type *
2427                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428 
2429                 /* Unmask the Global Interrupt Mask. */
2430                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2432         }
2433 
2434         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2435                  chan_is_logical(d40c) ? "logical" : "physical",
2436                  d40c->phy_chan->num,
2437                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2438 
2439 
2440         /*
2441          * Only write channel configuration to the DMA if the physical
2442          * resource is free. In case of multiple logical channels
2443          * on the same physical resource, only the first write is necessary.
2444          */
2445         if (is_free_phy)
2446                 d40_config_write(d40c);
2447  mark_last_busy:
2448         pm_runtime_mark_last_busy(d40c->base->dev);
2449         pm_runtime_put_autosuspend(d40c->base->dev);
2450         spin_unlock_irqrestore(&d40c->lock, flags);
2451         return err;
2452 }
2453 
2454 static void d40_free_chan_resources(struct dma_chan *chan)
2455 {
2456         struct d40_chan *d40c =
2457                 container_of(chan, struct d40_chan, chan);
2458         int err;
2459         unsigned long flags;
2460 
2461         if (d40c->phy_chan == NULL) {
2462                 chan_err(d40c, "Cannot free unallocated channel\n");
2463                 return;
2464         }
2465 
2466         spin_lock_irqsave(&d40c->lock, flags);
2467 
2468         err = d40_free_dma(d40c);
2469 
2470         if (err)
2471                 chan_err(d40c, "Failed to free channel\n");
2472         spin_unlock_irqrestore(&d40c->lock, flags);
2473 }
2474 
2475 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2476                                                        dma_addr_t dst,
2477                                                        dma_addr_t src,
2478                                                        size_t size,
2479                                                        unsigned long dma_flags)
2480 {
2481         struct scatterlist dst_sg;
2482         struct scatterlist src_sg;
2483 
2484         sg_init_table(&dst_sg, 1);
2485         sg_init_table(&src_sg, 1);
2486 
2487         sg_dma_address(&dst_sg) = dst;
2488         sg_dma_address(&src_sg) = src;
2489 
2490         sg_dma_len(&dst_sg) = size;
2491         sg_dma_len(&src_sg) = size;
2492 
2493         return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2494                            DMA_MEM_TO_MEM, dma_flags);
2495 }
2496 
2497 static struct dma_async_tx_descriptor *
2498 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2499                   unsigned int sg_len, enum dma_transfer_direction direction,
2500                   unsigned long dma_flags, void *context)
2501 {
2502         if (!is_slave_direction(direction))
2503                 return NULL;
2504 
2505         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2506 }
2507 
2508 static struct dma_async_tx_descriptor *
2509 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2510                      size_t buf_len, size_t period_len,
2511                      enum dma_transfer_direction direction, unsigned long flags)
2512 {
2513         unsigned int periods = buf_len / period_len;
2514         struct dma_async_tx_descriptor *txd;
2515         struct scatterlist *sg;
2516         int i;
2517 
2518         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2519         if (!sg)
2520                 return NULL;
2521 
2522         for (i = 0; i < periods; i++) {
2523                 sg_dma_address(&sg[i]) = dma_addr;
2524                 sg_dma_len(&sg[i]) = period_len;
2525                 dma_addr += period_len;
2526         }
2527 
2528         sg_chain(sg, periods + 1, sg);
2529 
2530         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2531                           DMA_PREP_INTERRUPT);
2532 
2533         kfree(sg);
2534 
2535         return txd;
2536 }
2537 
2538 static enum dma_status d40_tx_status(struct dma_chan *chan,
2539                                      dma_cookie_t cookie,
2540                                      struct dma_tx_state *txstate)
2541 {
2542         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2543         enum dma_status ret;
2544 
2545         if (d40c->phy_chan == NULL) {
2546                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2547                 return -EINVAL;
2548         }
2549 
2550         ret = dma_cookie_status(chan, cookie, txstate);
2551         if (ret != DMA_COMPLETE && txstate)
2552                 dma_set_residue(txstate, stedma40_residue(chan));
2553 
2554         if (d40_is_paused(d40c))
2555                 ret = DMA_PAUSED;
2556 
2557         return ret;
2558 }
2559 
2560 static void d40_issue_pending(struct dma_chan *chan)
2561 {
2562         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2563         unsigned long flags;
2564 
2565         if (d40c->phy_chan == NULL) {
2566                 chan_err(d40c, "Channel is not allocated!\n");
2567                 return;
2568         }
2569 
2570         spin_lock_irqsave(&d40c->lock, flags);
2571 
2572         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573 
2574         /* Busy means that queued jobs are already being processed */
2575         if (!d40c->busy)
2576                 (void) d40_queue_start(d40c);
2577 
2578         spin_unlock_irqrestore(&d40c->lock, flags);
2579 }
2580 
2581 static int d40_terminate_all(struct dma_chan *chan)
2582 {
2583         unsigned long flags;
2584         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2585         int ret;
2586 
2587         if (d40c->phy_chan == NULL) {
2588                 chan_err(d40c, "Channel is not allocated!\n");
2589                 return -EINVAL;
2590         }
2591 
2592         spin_lock_irqsave(&d40c->lock, flags);
2593 
2594         pm_runtime_get_sync(d40c->base->dev);
2595         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2596         if (ret)
2597                 chan_err(d40c, "Failed to stop channel\n");
2598 
2599         d40_term_all(d40c);
2600         pm_runtime_mark_last_busy(d40c->base->dev);
2601         pm_runtime_put_autosuspend(d40c->base->dev);
2602         if (d40c->busy) {
2603                 pm_runtime_mark_last_busy(d40c->base->dev);
2604                 pm_runtime_put_autosuspend(d40c->base->dev);
2605         }
2606         d40c->busy = false;
2607 
2608         spin_unlock_irqrestore(&d40c->lock, flags);
2609         return 0;
2610 }
2611 
2612 static int
2613 dma40_config_to_halfchannel(struct d40_chan *d40c,
2614                             struct stedma40_half_channel_info *info,
2615                             u32 maxburst)
2616 {
2617         int psize;
2618 
2619         if (chan_is_logical(d40c)) {
2620                 if (maxburst >= 16)
2621                         psize = STEDMA40_PSIZE_LOG_16;
2622                 else if (maxburst >= 8)
2623                         psize = STEDMA40_PSIZE_LOG_8;
2624                 else if (maxburst >= 4)
2625                         psize = STEDMA40_PSIZE_LOG_4;
2626                 else
2627                         psize = STEDMA40_PSIZE_LOG_1;
2628         } else {
2629                 if (maxburst >= 16)
2630                         psize = STEDMA40_PSIZE_PHY_16;
2631                 else if (maxburst >= 8)
2632                         psize = STEDMA40_PSIZE_PHY_8;
2633                 else if (maxburst >= 4)
2634                         psize = STEDMA40_PSIZE_PHY_4;
2635                 else
2636                         psize = STEDMA40_PSIZE_PHY_1;
2637         }
2638 
2639         info->psize = psize;
2640         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641 
2642         return 0;
2643 }
2644 
2645 static int d40_set_runtime_config(struct dma_chan *chan,
2646                                   struct dma_slave_config *config)
2647 {
2648         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649 
2650         memcpy(&d40c->slave_config, config, sizeof(*config));
2651 
2652         return 0;
2653 }
2654 
2655 /* Runtime reconfiguration extension */
2656 static int d40_set_runtime_config_write(struct dma_chan *chan,
2657                                   struct dma_slave_config *config,
2658                                   enum dma_transfer_direction direction)
2659 {
2660         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2661         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2662         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2663         dma_addr_t config_addr;
2664         u32 src_maxburst, dst_maxburst;
2665         int ret;
2666 
2667         if (d40c->phy_chan == NULL) {
2668                 chan_err(d40c, "Channel is not allocated!\n");
2669                 return -EINVAL;
2670         }
2671 
2672         src_addr_width = config->src_addr_width;
2673         src_maxburst = config->src_maxburst;
2674         dst_addr_width = config->dst_addr_width;
2675         dst_maxburst = config->dst_maxburst;
2676 
2677         if (direction == DMA_DEV_TO_MEM) {
2678                 config_addr = config->src_addr;
2679 
2680                 if (cfg->dir != DMA_DEV_TO_MEM)
2681                         dev_dbg(d40c->base->dev,
2682                                 "channel was not configured for peripheral "
2683                                 "to memory transfer (%d) overriding\n",
2684                                 cfg->dir);
2685                 cfg->dir = DMA_DEV_TO_MEM;
2686 
2687                 /* Configure the memory side */
2688                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2689                         dst_addr_width = src_addr_width;
2690                 if (dst_maxburst == 0)
2691                         dst_maxburst = src_maxburst;
2692 
2693         } else if (direction == DMA_MEM_TO_DEV) {
2694                 config_addr = config->dst_addr;
2695 
2696                 if (cfg->dir != DMA_MEM_TO_DEV)
2697                         dev_dbg(d40c->base->dev,
2698                                 "channel was not configured for memory "
2699                                 "to peripheral transfer (%d) overriding\n",
2700                                 cfg->dir);
2701                 cfg->dir = DMA_MEM_TO_DEV;
2702 
2703                 /* Configure the memory side */
2704                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2705                         src_addr_width = dst_addr_width;
2706                 if (src_maxburst == 0)
2707                         src_maxburst = dst_maxburst;
2708         } else {
2709                 dev_err(d40c->base->dev,
2710                         "unrecognized channel direction %d\n",
2711                         direction);
2712                 return -EINVAL;
2713         }
2714 
2715         if (config_addr <= 0) {
2716                 dev_err(d40c->base->dev, "no address supplied\n");
2717                 return -EINVAL;
2718         }
2719 
2720         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2721                 dev_err(d40c->base->dev,
2722                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2723                         src_maxburst,
2724                         src_addr_width,
2725                         dst_maxburst,
2726                         dst_addr_width);
2727                 return -EINVAL;
2728         }
2729 
2730         if (src_maxburst > 16) {
2731                 src_maxburst = 16;
2732                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2733         } else if (dst_maxburst > 16) {
2734                 dst_maxburst = 16;
2735                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2736         }
2737 
2738         /* Only valid widths are; 1, 2, 4 and 8. */
2739         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2740             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2741             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2743             !is_power_of_2(src_addr_width) ||
2744             !is_power_of_2(dst_addr_width))
2745                 return -EINVAL;
2746 
2747         cfg->src_info.data_width = src_addr_width;
2748         cfg->dst_info.data_width = dst_addr_width;
2749 
2750         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2751                                           src_maxburst);
2752         if (ret)
2753                 return ret;
2754 
2755         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2756                                           dst_maxburst);
2757         if (ret)
2758                 return ret;
2759 
2760         /* Fill in register values */
2761         if (chan_is_logical(d40c))
2762                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2763         else
2764                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765 
2766         /* These settings will take precedence later */
2767         d40c->runtime_addr = config_addr;
2768         d40c->runtime_direction = direction;
2769         dev_dbg(d40c->base->dev,
2770                 "configured channel %s for %s, data width %d/%d, "
2771                 "maxburst %d/%d elements, LE, no flow control\n",
2772                 dma_chan_name(chan),
2773                 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2774                 src_addr_width, dst_addr_width,
2775                 src_maxburst, dst_maxburst);
2776 
2777         return 0;
2778 }
2779 
2780 /* Initialization functions */
2781 
2782 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2783                                  struct d40_chan *chans, int offset,
2784                                  int num_chans)
2785 {
2786         int i = 0;
2787         struct d40_chan *d40c;
2788 
2789         INIT_LIST_HEAD(&dma->channels);
2790 
2791         for (i = offset; i < offset + num_chans; i++) {
2792                 d40c = &chans[i];
2793                 d40c->base = base;
2794                 d40c->chan.device = dma;
2795 
2796                 spin_lock_init(&d40c->lock);
2797 
2798                 d40c->log_num = D40_PHY_CHAN;
2799 
2800                 INIT_LIST_HEAD(&d40c->done);
2801                 INIT_LIST_HEAD(&d40c->active);
2802                 INIT_LIST_HEAD(&d40c->queue);
2803                 INIT_LIST_HEAD(&d40c->pending_queue);
2804                 INIT_LIST_HEAD(&d40c->client);
2805                 INIT_LIST_HEAD(&d40c->prepare_queue);
2806 
2807                 tasklet_init(&d40c->tasklet, dma_tasklet,
2808                              (unsigned long) d40c);
2809 
2810                 list_add_tail(&d40c->chan.device_node,
2811                               &dma->channels);
2812         }
2813 }
2814 
2815 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2816 {
2817         if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2818                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2819                 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2820         }
2821 
2822         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2823                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2824                 dev->directions = BIT(DMA_MEM_TO_MEM);
2825                 /*
2826                  * This controller can only access address at even
2827                  * 32bit boundaries, i.e. 2^2
2828                  */
2829                 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2830         }
2831 
2832         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2833                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2834 
2835         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2836         dev->device_free_chan_resources = d40_free_chan_resources;
2837         dev->device_issue_pending = d40_issue_pending;
2838         dev->device_tx_status = d40_tx_status;
2839         dev->device_config = d40_set_runtime_config;
2840         dev->device_pause = d40_pause;
2841         dev->device_resume = d40_resume;
2842         dev->device_terminate_all = d40_terminate_all;
2843         dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2844         dev->dev = base->dev;
2845 }
2846 
2847 static int __init d40_dmaengine_init(struct d40_base *base,
2848                                      int num_reserved_chans)
2849 {
2850         int err ;
2851 
2852         d40_chan_init(base, &base->dma_slave, base->log_chans,
2853                       0, base->num_log_chans);
2854 
2855         dma_cap_zero(base->dma_slave.cap_mask);
2856         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2857         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2858 
2859         d40_ops_init(base, &base->dma_slave);
2860 
2861         err = dmaenginem_async_device_register(&base->dma_slave);
2862 
2863         if (err) {
2864                 d40_err(base->dev, "Failed to register slave channels\n");
2865                 goto exit;
2866         }
2867 
2868         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2869                       base->num_log_chans, base->num_memcpy_chans);
2870 
2871         dma_cap_zero(base->dma_memcpy.cap_mask);
2872         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2873 
2874         d40_ops_init(base, &base->dma_memcpy);
2875 
2876         err = dmaenginem_async_device_register(&base->dma_memcpy);
2877 
2878         if (err) {
2879                 d40_err(base->dev,
2880                         "Failed to register memcpy only channels\n");
2881                 goto exit;
2882         }
2883 
2884         d40_chan_init(base, &base->dma_both, base->phy_chans,
2885                       0, num_reserved_chans);
2886 
2887         dma_cap_zero(base->dma_both.cap_mask);
2888         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2889         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2890         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2891 
2892         d40_ops_init(base, &base->dma_both);
2893         err = dmaenginem_async_device_register(&base->dma_both);
2894 
2895         if (err) {
2896                 d40_err(base->dev,
2897                         "Failed to register logical and physical capable channels\n");
2898                 goto exit;
2899         }
2900         return 0;
2901  exit:
2902         return err;
2903 }
2904 
2905 /* Suspend resume functionality */
2906 #ifdef CONFIG_PM_SLEEP
2907 static int dma40_suspend(struct device *dev)
2908 {
2909         struct d40_base *base = dev_get_drvdata(dev);
2910         int ret;
2911 
2912         ret = pm_runtime_force_suspend(dev);
2913         if (ret)
2914                 return ret;
2915 
2916         if (base->lcpa_regulator)
2917                 ret = regulator_disable(base->lcpa_regulator);
2918         return ret;
2919 }
2920 
2921 static int dma40_resume(struct device *dev)
2922 {
2923         struct d40_base *base = dev_get_drvdata(dev);
2924         int ret = 0;
2925 
2926         if (base->lcpa_regulator) {
2927                 ret = regulator_enable(base->lcpa_regulator);
2928                 if (ret)
2929                         return ret;
2930         }
2931 
2932         return pm_runtime_force_resume(dev);
2933 }
2934 #endif
2935 
2936 #ifdef CONFIG_PM
2937 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2938                          u32 *regaddr, int num, bool save)
2939 {
2940         int i;
2941 
2942         for (i = 0; i < num; i++) {
2943                 void __iomem *addr = baseaddr + regaddr[i];
2944 
2945                 if (save)
2946                         backup[i] = readl_relaxed(addr);
2947                 else
2948                         writel_relaxed(backup[i], addr);
2949         }
2950 }
2951 
2952 static void d40_save_restore_registers(struct d40_base *base, bool save)
2953 {
2954         int i;
2955 
2956         /* Save/Restore channel specific registers */
2957         for (i = 0; i < base->num_phy_chans; i++) {
2958                 void __iomem *addr;
2959                 int idx;
2960 
2961                 if (base->phy_res[i].reserved)
2962                         continue;
2963 
2964                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2965                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2966 
2967                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2968                              d40_backup_regs_chan,
2969                              ARRAY_SIZE(d40_backup_regs_chan),
2970                              save);
2971         }
2972 
2973         /* Save/Restore global registers */
2974         dma40_backup(base->virtbase, base->reg_val_backup,
2975                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2976                      save);
2977 
2978         /* Save/Restore registers only existing on dma40 v3 and later */
2979         if (base->gen_dmac.backup)
2980                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2981                              base->gen_dmac.backup,
2982                         base->gen_dmac.backup_size,
2983                         save);
2984 }
2985 
2986 static int dma40_runtime_suspend(struct device *dev)
2987 {
2988         struct d40_base *base = dev_get_drvdata(dev);
2989 
2990         d40_save_restore_registers(base, true);
2991 
2992         /* Don't disable/enable clocks for v1 due to HW bugs */
2993         if (base->rev != 1)
2994                 writel_relaxed(base->gcc_pwr_off_mask,
2995                                base->virtbase + D40_DREG_GCC);
2996 
2997         return 0;
2998 }
2999 
3000 static int dma40_runtime_resume(struct device *dev)
3001 {
3002         struct d40_base *base = dev_get_drvdata(dev);
3003 
3004         d40_save_restore_registers(base, false);
3005 
3006         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3007                        base->virtbase + D40_DREG_GCC);
3008         return 0;
3009 }
3010 #endif
3011 
3012 static const struct dev_pm_ops dma40_pm_ops = {
3013         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3014         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3015                                 dma40_runtime_resume,
3016                                 NULL)
3017 };
3018 
3019 /* Initialization functions. */
3020 
3021 static int __init d40_phy_res_init(struct d40_base *base)
3022 {
3023         int i;
3024         int num_phy_chans_avail = 0;
3025         u32 val[2];
3026         int odd_even_bit = -2;
3027         int gcc = D40_DREG_GCC_ENA;
3028 
3029         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3030         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3031 
3032         for (i = 0; i < base->num_phy_chans; i++) {
3033                 base->phy_res[i].num = i;
3034                 odd_even_bit += 2 * ((i % 2) == 0);
3035                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3036                         /* Mark security only channels as occupied */
3037                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3038                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3039                         base->phy_res[i].reserved = true;
3040                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041                                                        D40_DREG_GCC_SRC);
3042                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043                                                        D40_DREG_GCC_DST);
3044 
3045 
3046                 } else {
3047                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3048                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3049                         base->phy_res[i].reserved = false;
3050                         num_phy_chans_avail++;
3051                 }
3052                 spin_lock_init(&base->phy_res[i].lock);
3053         }
3054 
3055         /* Mark disabled channels as occupied */
3056         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3057                 int chan = base->plat_data->disabled_channels[i];
3058 
3059                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3060                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3061                 base->phy_res[chan].reserved = true;
3062                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063                                                D40_DREG_GCC_SRC);
3064                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065                                                D40_DREG_GCC_DST);
3066                 num_phy_chans_avail--;
3067         }
3068 
3069         /* Mark soft_lli channels */
3070         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3071                 int chan = base->plat_data->soft_lli_chans[i];
3072 
3073                 base->phy_res[chan].use_soft_lli = true;
3074         }
3075 
3076         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3077                  num_phy_chans_avail, base->num_phy_chans);
3078 
3079         /* Verify settings extended vs standard */
3080         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3081 
3082         for (i = 0; i < base->num_phy_chans; i++) {
3083 
3084                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3085                     (val[0] & 0x3) != 1)
3086                         dev_info(base->dev,
3087                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3088                                  __func__, i, val[0] & 0x3);
3089 
3090                 val[0] = val[0] >> 2;
3091         }
3092 
3093         /*
3094          * To keep things simple, Enable all clocks initially.
3095          * The clocks will get managed later post channel allocation.
3096          * The clocks for the event lines on which reserved channels exists
3097          * are not managed here.
3098          */
3099         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3100         base->gcc_pwr_off_mask = gcc;
3101 
3102         return num_phy_chans_avail;
3103 }
3104 
3105 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3106 {
3107         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3108         struct clk *clk;
3109         void __iomem *virtbase;
3110         struct resource *res;
3111         struct d40_base *base;
3112         int num_log_chans;
3113         int num_phy_chans;
3114         int num_memcpy_chans;
3115         int clk_ret = -EINVAL;
3116         int i;
3117         u32 pid;
3118         u32 cid;
3119         u8 rev;
3120 
3121         clk = clk_get(&pdev->dev, NULL);
3122         if (IS_ERR(clk)) {
3123                 d40_err(&pdev->dev, "No matching clock found\n");
3124                 goto check_prepare_enabled;
3125         }
3126 
3127         clk_ret = clk_prepare_enable(clk);
3128         if (clk_ret) {
3129                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3130                 goto disable_unprepare;
3131         }
3132 
3133         /* Get IO for DMAC base address */
3134         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3135         if (!res)
3136                 goto disable_unprepare;
3137 
3138         if (request_mem_region(res->start, resource_size(res),
3139                                D40_NAME " I/O base") == NULL)
3140                 goto release_region;
3141 
3142         virtbase = ioremap(res->start, resource_size(res));
3143         if (!virtbase)
3144                 goto release_region;
3145 
3146         /* This is just a regular AMBA PrimeCell ID actually */
3147         for (pid = 0, i = 0; i < 4; i++)
3148                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3149                         & 255) << (i * 8);
3150         for (cid = 0, i = 0; i < 4; i++)
3151                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3152                         & 255) << (i * 8);
3153 
3154         if (cid != AMBA_CID) {
3155                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3156                 goto unmap_io;
3157         }
3158         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3159                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3160                         AMBA_MANF_BITS(pid),
3161                         AMBA_VENDOR_ST);
3162                 goto unmap_io;
3163         }
3164         /*
3165          * HW revision:
3166          * DB8500ed has revision 0
3167          * ? has revision 1
3168          * DB8500v1 has revision 2
3169          * DB8500v2 has revision 3
3170          * AP9540v1 has revision 4
3171          * DB8540v1 has revision 4
3172          */
3173         rev = AMBA_REV_BITS(pid);
3174         if (rev < 2) {
3175                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3176                 goto unmap_io;
3177         }
3178 
3179         /* The number of physical channels on this HW */
3180         if (plat_data->num_of_phy_chans)
3181                 num_phy_chans = plat_data->num_of_phy_chans;
3182         else
3183                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3184 
3185         /* The number of channels used for memcpy */
3186         if (plat_data->num_of_memcpy_chans)
3187                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3188         else
3189                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3190 
3191         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3192 
3193         dev_info(&pdev->dev,
3194                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3195                  rev, &res->start, num_phy_chans, num_log_chans);
3196 
3197         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3198                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3199                        sizeof(struct d40_chan), GFP_KERNEL);
3200 
3201         if (base == NULL)
3202                 goto unmap_io;
3203 
3204         base->rev = rev;
3205         base->clk = clk;
3206         base->num_memcpy_chans = num_memcpy_chans;
3207         base->num_phy_chans = num_phy_chans;
3208         base->num_log_chans = num_log_chans;
3209         base->phy_start = res->start;
3210         base->phy_size = resource_size(res);
3211         base->virtbase = virtbase;
3212         base->plat_data = plat_data;
3213         base->dev = &pdev->dev;
3214         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3215         base->log_chans = &base->phy_chans[num_phy_chans];
3216 
3217         if (base->plat_data->num_of_phy_chans == 14) {
3218                 base->gen_dmac.backup = d40_backup_regs_v4b;
3219                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3220                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3221                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3222                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3223                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3224                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3225                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3226                 base->gen_dmac.il = il_v4b;
3227                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3228                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3229                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3230         } else {
3231                 if (base->rev >= 3) {
3232                         base->gen_dmac.backup = d40_backup_regs_v4a;
3233                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3234                 }
3235                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3236                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3237                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3238                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3239                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3240                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3241                 base->gen_dmac.il = il_v4a;
3242                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3243                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3244                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3245         }
3246 
3247         base->phy_res = kcalloc(num_phy_chans,
3248                                 sizeof(*base->phy_res),
3249                                 GFP_KERNEL);
3250         if (!base->phy_res)
3251                 goto free_base;
3252 
3253         base->lookup_phy_chans = kcalloc(num_phy_chans,
3254                                          sizeof(*base->lookup_phy_chans),
3255                                          GFP_KERNEL);
3256         if (!base->lookup_phy_chans)
3257                 goto free_phy_res;
3258 
3259         base->lookup_log_chans = kcalloc(num_log_chans,
3260                                          sizeof(*base->lookup_log_chans),
3261                                          GFP_KERNEL);
3262         if (!base->lookup_log_chans)
3263                 goto free_phy_chans;
3264 
3265         base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3266                                                   sizeof(d40_backup_regs_chan),
3267                                                   GFP_KERNEL);
3268         if (!base->reg_val_backup_chan)
3269                 goto free_log_chans;
3270 
3271         base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3272                                             * D40_LCLA_LINK_PER_EVENT_GRP,
3273                                             sizeof(*base->lcla_pool.alloc_map),
3274                                             GFP_KERNEL);
3275         if (!base->lcla_pool.alloc_map)
3276                 goto free_backup_chan;
3277 
3278         base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3279                                              sizeof(*base->regs_interrupt),
3280                                              GFP_KERNEL);
3281         if (!base->regs_interrupt)
3282                 goto free_map;
3283 
3284         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3285                                             0, SLAB_HWCACHE_ALIGN,
3286                                             NULL);
3287         if (base->desc_slab == NULL)
3288                 goto free_regs;
3289 
3290 
3291         return base;
3292  free_regs:
3293         kfree(base->regs_interrupt);
3294  free_map:
3295         kfree(base->lcla_pool.alloc_map);
3296  free_backup_chan:
3297         kfree(base->reg_val_backup_chan);
3298  free_log_chans:
3299         kfree(base->lookup_log_chans);
3300  free_phy_chans:
3301         kfree(base->lookup_phy_chans);
3302  free_phy_res:
3303         kfree(base->phy_res);
3304  free_base:
3305         kfree(base);
3306  unmap_io:
3307         iounmap(virtbase);
3308  release_region:
3309         release_mem_region(res->start, resource_size(res));
3310  check_prepare_enabled:
3311         if (!clk_ret)
3312  disable_unprepare:
3313                 clk_disable_unprepare(clk);
3314         if (!IS_ERR(clk))
3315                 clk_put(clk);
3316         return NULL;
3317 }
3318 
3319 static void __init d40_hw_init(struct d40_base *base)
3320 {
3321 
3322         int i;
3323         u32 prmseo[2] = {0, 0};
3324         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3325         u32 pcmis = 0;
3326         u32 pcicr = 0;
3327         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3328         u32 reg_size = base->gen_dmac.init_reg_size;
3329 
3330         for (i = 0; i < reg_size; i++)
3331                 writel(dma_init_reg[i].val,
3332                        base->virtbase + dma_init_reg[i].reg);
3333 
3334         /* Configure all our dma channels to default settings */
3335         for (i = 0; i < base->num_phy_chans; i++) {
3336 
3337                 activeo[i % 2] = activeo[i % 2] << 2;
3338 
3339                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3340                     == D40_ALLOC_PHY) {
3341                         activeo[i % 2] |= 3;
3342                         continue;
3343                 }
3344 
3345                 /* Enable interrupt # */
3346                 pcmis = (pcmis << 1) | 1;
3347 
3348                 /* Clear interrupt # */
3349                 pcicr = (pcicr << 1) | 1;
3350 
3351                 /* Set channel to physical mode */
3352                 prmseo[i % 2] = prmseo[i % 2] << 2;
3353                 prmseo[i % 2] |= 1;
3354 
3355         }
3356 
3357         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3358         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3359         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3360         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3361 
3362         /* Write which interrupt to enable */
3363         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3364 
3365         /* Write which interrupt to clear */
3366         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3367 
3368         /* These are __initdata and cannot be accessed after init */
3369         base->gen_dmac.init_reg = NULL;
3370         base->gen_dmac.init_reg_size = 0;
3371 }
3372 
3373 static int __init d40_lcla_allocate(struct d40_base *base)
3374 {
3375         struct d40_lcla_pool *pool = &base->lcla_pool;
3376         unsigned long *page_list;
3377         int i, j;
3378         int ret;
3379 
3380         /*
3381          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3382          * To full fill this hardware requirement without wasting 256 kb
3383          * we allocate pages until we get an aligned one.
3384          */
3385         page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3386                                   sizeof(*page_list),
3387                                   GFP_KERNEL);
3388         if (!page_list)
3389                 return -ENOMEM;
3390 
3391         /* Calculating how many pages that are required */
3392         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3393 
3394         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3395                 page_list[i] = __get_free_pages(GFP_KERNEL,
3396                                                 base->lcla_pool.pages);
3397                 if (!page_list[i]) {
3398 
3399                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3400                                 base->lcla_pool.pages);
3401                         ret = -ENOMEM;
3402 
3403                         for (j = 0; j < i; j++)
3404                                 free_pages(page_list[j], base->lcla_pool.pages);
3405                         goto free_page_list;
3406                 }
3407 
3408                 if ((virt_to_phys((void *)page_list[i]) &
3409                      (LCLA_ALIGNMENT - 1)) == 0)
3410                         break;
3411         }
3412 
3413         for (j = 0; j < i; j++)
3414                 free_pages(page_list[j], base->lcla_pool.pages);
3415 
3416         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3417                 base->lcla_pool.base = (void *)page_list[i];
3418         } else {
3419                 /*
3420                  * After many attempts and no succees with finding the correct
3421                  * alignment, try with allocating a big buffer.
3422                  */
3423                 dev_warn(base->dev,
3424                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3425                          __func__, base->lcla_pool.pages);
3426                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3427                                                          base->num_phy_chans +
3428                                                          LCLA_ALIGNMENT,
3429                                                          GFP_KERNEL);
3430                 if (!base->lcla_pool.base_unaligned) {
3431                         ret = -ENOMEM;
3432                         goto free_page_list;
3433                 }
3434 
3435                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3436                                                  LCLA_ALIGNMENT);
3437         }
3438 
3439         pool->dma_addr = dma_map_single(base->dev, pool->base,
3440                                         SZ_1K * base->num_phy_chans,
3441                                         DMA_TO_DEVICE);
3442         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3443                 pool->dma_addr = 0;
3444                 ret = -ENOMEM;
3445                 goto free_page_list;
3446         }
3447 
3448         writel(virt_to_phys(base->lcla_pool.base),
3449                base->virtbase + D40_DREG_LCLA);
3450         ret = 0;
3451  free_page_list:
3452         kfree(page_list);
3453         return ret;
3454 }
3455 
3456 static int __init d40_of_probe(struct platform_device *pdev,
3457                                struct device_node *np)
3458 {
3459         struct stedma40_platform_data *pdata;
3460         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3461         const __be32 *list;
3462 
3463         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3464         if (!pdata)
3465                 return -ENOMEM;
3466 
3467         /* If absent this value will be obtained from h/w. */
3468         of_property_read_u32(np, "dma-channels", &num_phy);
3469         if (num_phy > 0)
3470                 pdata->num_of_phy_chans = num_phy;
3471 
3472         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3473         num_memcpy /= sizeof(*list);
3474 
3475         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3476                 d40_err(&pdev->dev,
3477                         "Invalid number of memcpy channels specified (%d)\n",
3478                         num_memcpy);
3479                 return -EINVAL;
3480         }
3481         pdata->num_of_memcpy_chans = num_memcpy;
3482 
3483         of_property_read_u32_array(np, "memcpy-channels",
3484                                    dma40_memcpy_channels,
3485                                    num_memcpy);
3486 
3487         list = of_get_property(np, "disabled-channels", &num_disabled);
3488         num_disabled /= sizeof(*list);
3489 
3490         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3491                 d40_err(&pdev->dev,
3492                         "Invalid number of disabled channels specified (%d)\n",
3493                         num_disabled);
3494                 return -EINVAL;
3495         }
3496 
3497         of_property_read_u32_array(np, "disabled-channels",
3498                                    pdata->disabled_channels,
3499                                    num_disabled);
3500         pdata->disabled_channels[num_disabled] = -1;
3501 
3502         pdev->dev.platform_data = pdata;
3503 
3504         return 0;
3505 }
3506 
3507 static int __init d40_probe(struct platform_device *pdev)
3508 {
3509         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3510         struct device_node *np = pdev->dev.of_node;
3511         int ret = -ENOENT;
3512         struct d40_base *base;
3513         struct resource *res;
3514         int num_reserved_chans;
3515         u32 val;
3516 
3517         if (!plat_data) {
3518                 if (np) {
3519                         if (d40_of_probe(pdev, np)) {
3520                                 ret = -ENOMEM;
3521                                 goto report_failure;
3522                         }
3523                 } else {
3524                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3525                         goto report_failure;
3526                 }
3527         }
3528 
3529         base = d40_hw_detect_init(pdev);
3530         if (!base)
3531                 goto report_failure;
3532 
3533         num_reserved_chans = d40_phy_res_init(base);
3534 
3535         platform_set_drvdata(pdev, base);
3536 
3537         spin_lock_init(&base->interrupt_lock);
3538         spin_lock_init(&base->execmd_lock);
3539 
3540         /* Get IO for logical channel parameter address */
3541         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3542         if (!res) {
3543                 ret = -ENOENT;
3544                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3545                 goto destroy_cache;
3546         }
3547         base->lcpa_size = resource_size(res);
3548         base->phy_lcpa = res->start;
3549 
3550         if (request_mem_region(res->start, resource_size(res),
3551                                D40_NAME " I/O lcpa") == NULL) {
3552                 ret = -EBUSY;
3553                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3554                 goto destroy_cache;
3555         }
3556 
3557         /* We make use of ESRAM memory for this. */
3558         val = readl(base->virtbase + D40_DREG_LCPA);
3559         if (res->start != val && val != 0) {
3560                 dev_warn(&pdev->dev,
3561                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3562                          __func__, val, &res->start);
3563         } else
3564                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3565 
3566         base->lcpa_base = ioremap(res->start, resource_size(res));
3567         if (!base->lcpa_base) {
3568                 ret = -ENOMEM;
3569                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3570                 goto destroy_cache;
3571         }
3572         /* If lcla has to be located in ESRAM we don't need to allocate */
3573         if (base->plat_data->use_esram_lcla) {
3574                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3575                                                         "lcla_esram");
3576                 if (!res) {
3577                         ret = -ENOENT;
3578                         d40_err(&pdev->dev,
3579                                 "No \"lcla_esram\" memory resource\n");
3580                         goto destroy_cache;
3581                 }
3582                 base->lcla_pool.base = ioremap(res->start,
3583                                                 resource_size(res));
3584                 if (!base->lcla_pool.base) {
3585                         ret = -ENOMEM;
3586                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3587                         goto destroy_cache;
3588                 }
3589                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3590 
3591         } else {
3592                 ret = d40_lcla_allocate(base);
3593                 if (ret) {
3594                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3595                         goto destroy_cache;
3596                 }
3597         }
3598 
3599         spin_lock_init(&base->lcla_pool.lock);
3600 
3601         base->irq = platform_get_irq(pdev, 0);
3602 
3603         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3604         if (ret) {
3605                 d40_err(&pdev->dev, "No IRQ defined\n");
3606                 goto destroy_cache;
3607         }
3608 
3609         if (base->plat_data->use_esram_lcla) {
3610 
3611                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3612                 if (IS_ERR(base->lcpa_regulator)) {
3613                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3614                         ret = PTR_ERR(base->lcpa_regulator);
3615                         base->lcpa_regulator = NULL;
3616                         goto destroy_cache;
3617                 }
3618 
3619                 ret = regulator_enable(base->lcpa_regulator);
3620                 if (ret) {
3621                         d40_err(&pdev->dev,
3622                                 "Failed to enable lcpa_regulator\n");
3623                         regulator_put(base->lcpa_regulator);
3624                         base->lcpa_regulator = NULL;
3625                         goto destroy_cache;
3626                 }
3627         }
3628 
3629         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3630 
3631         pm_runtime_irq_safe(base->dev);
3632         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3633         pm_runtime_use_autosuspend(base->dev);
3634         pm_runtime_mark_last_busy(base->dev);
3635         pm_runtime_set_active(base->dev);
3636         pm_runtime_enable(base->dev);
3637 
3638         ret = d40_dmaengine_init(base, num_reserved_chans);
3639         if (ret)
3640                 goto destroy_cache;
3641 
3642         base->dev->dma_parms = &base->dma_parms;
3643         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3644         if (ret) {
3645                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3646                 goto destroy_cache;
3647         }
3648 
3649         d40_hw_init(base);
3650 
3651         if (np) {
3652                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3653                 if (ret)
3654                         dev_err(&pdev->dev,
3655                                 "could not register of_dma_controller\n");
3656         }
3657 
3658         dev_info(base->dev, "initialized\n");
3659         return 0;
3660  destroy_cache:
3661         kmem_cache_destroy(base->desc_slab);
3662         if (base->virtbase)
3663                 iounmap(base->virtbase);
3664 
3665         if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3666                 iounmap(base->lcla_pool.base);
3667                 base->lcla_pool.base = NULL;
3668         }
3669 
3670         if (base->lcla_pool.dma_addr)
3671                 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3672                                  SZ_1K * base->num_phy_chans,
3673                                  DMA_TO_DEVICE);
3674 
3675         if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3676                 free_pages((unsigned long)base->lcla_pool.base,
3677                            base->lcla_pool.pages);
3678 
3679         kfree(base->lcla_pool.base_unaligned);
3680 
3681         if (base->phy_lcpa)
3682                 release_mem_region(base->phy_lcpa,
3683                                    base->lcpa_size);
3684         if (base->phy_start)
3685                 release_mem_region(base->phy_start,
3686                                    base->phy_size);
3687         if (base->clk) {
3688                 clk_disable_unprepare(base->clk);
3689                 clk_put(base->clk);
3690         }
3691 
3692         if (base->lcpa_regulator) {
3693                 regulator_disable(base->lcpa_regulator);
3694                 regulator_put(base->lcpa_regulator);
3695         }
3696 
3697         kfree(base->lcla_pool.alloc_map);
3698         kfree(base->lookup_log_chans);
3699         kfree(base->lookup_phy_chans);
3700         kfree(base->phy_res);
3701         kfree(base);
3702  report_failure:
3703         d40_err(&pdev->dev, "probe failed\n");
3704         return ret;
3705 }
3706 
3707 static const struct of_device_id d40_match[] = {
3708         { .compatible = "stericsson,dma40", },
3709         {}
3710 };
3711 
3712 static struct platform_driver d40_driver = {
3713         .driver = {
3714                 .name  = D40_NAME,
3715                 .pm = &dma40_pm_ops,
3716                 .of_match_table = d40_match,
3717         },
3718 };
3719 
3720 static int __init stedma40_init(void)
3721 {
3722         return platform_driver_probe(&d40_driver, d40_probe);
3723 }
3724 subsys_initcall(stedma40_init);

/* [<][>][^][v][top][bottom][index][help] */