root/drivers/nvdimm/pmem.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_dev
  2. to_region
  3. hwpoison_clear
  4. pmem_clear_poison
  5. write_pmem
  6. read_pmem
  7. pmem_do_bvec
  8. pmem_make_request
  9. pmem_rw_page
  10. __pmem_direct_access
  11. pmem_dax_direct_access
  12. pmem_copy_from_iter
  13. pmem_copy_to_iter
  14. pmem_pagemap_cleanup
  15. pmem_release_queue
  16. pmem_pagemap_kill
  17. pmem_release_disk
  18. pmem_pagemap_page_free
  19. pmem_attach_disk
  20. nd_pmem_probe
  21. nd_pmem_remove
  22. nd_pmem_shutdown
  23. nd_pmem_notify

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Persistent Memory Driver
   4  *
   5  * Copyright (c) 2014-2015, Intel Corporation.
   6  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   7  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   8  */
   9 
  10 #include <asm/cacheflush.h>
  11 #include <linux/blkdev.h>
  12 #include <linux/hdreg.h>
  13 #include <linux/init.h>
  14 #include <linux/platform_device.h>
  15 #include <linux/set_memory.h>
  16 #include <linux/module.h>
  17 #include <linux/moduleparam.h>
  18 #include <linux/badblocks.h>
  19 #include <linux/memremap.h>
  20 #include <linux/vmalloc.h>
  21 #include <linux/blk-mq.h>
  22 #include <linux/pfn_t.h>
  23 #include <linux/slab.h>
  24 #include <linux/uio.h>
  25 #include <linux/dax.h>
  26 #include <linux/nd.h>
  27 #include <linux/backing-dev.h>
  28 #include "pmem.h"
  29 #include "pfn.h"
  30 #include "nd.h"
  31 #include "nd-core.h"
  32 
  33 static struct device *to_dev(struct pmem_device *pmem)
  34 {
  35         /*
  36          * nvdimm bus services need a 'dev' parameter, and we record the device
  37          * at init in bb.dev.
  38          */
  39         return pmem->bb.dev;
  40 }
  41 
  42 static struct nd_region *to_region(struct pmem_device *pmem)
  43 {
  44         return to_nd_region(to_dev(pmem)->parent);
  45 }
  46 
  47 static void hwpoison_clear(struct pmem_device *pmem,
  48                 phys_addr_t phys, unsigned int len)
  49 {
  50         unsigned long pfn_start, pfn_end, pfn;
  51 
  52         /* only pmem in the linear map supports HWPoison */
  53         if (is_vmalloc_addr(pmem->virt_addr))
  54                 return;
  55 
  56         pfn_start = PHYS_PFN(phys);
  57         pfn_end = pfn_start + PHYS_PFN(len);
  58         for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  59                 struct page *page = pfn_to_page(pfn);
  60 
  61                 /*
  62                  * Note, no need to hold a get_dev_pagemap() reference
  63                  * here since we're in the driver I/O path and
  64                  * outstanding I/O requests pin the dev_pagemap.
  65                  */
  66                 if (test_and_clear_pmem_poison(page))
  67                         clear_mce_nospec(pfn);
  68         }
  69 }
  70 
  71 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
  72                 phys_addr_t offset, unsigned int len)
  73 {
  74         struct device *dev = to_dev(pmem);
  75         sector_t sector;
  76         long cleared;
  77         blk_status_t rc = BLK_STS_OK;
  78 
  79         sector = (offset - pmem->data_offset) / 512;
  80 
  81         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  82         if (cleared < len)
  83                 rc = BLK_STS_IOERR;
  84         if (cleared > 0 && cleared / 512) {
  85                 hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
  86                 cleared /= 512;
  87                 dev_dbg(dev, "%#llx clear %ld sector%s\n",
  88                                 (unsigned long long) sector, cleared,
  89                                 cleared > 1 ? "s" : "");
  90                 badblocks_clear(&pmem->bb, sector, cleared);
  91                 if (pmem->bb_state)
  92                         sysfs_notify_dirent(pmem->bb_state);
  93         }
  94 
  95         arch_invalidate_pmem(pmem->virt_addr + offset, len);
  96 
  97         return rc;
  98 }
  99 
 100 static void write_pmem(void *pmem_addr, struct page *page,
 101                 unsigned int off, unsigned int len)
 102 {
 103         unsigned int chunk;
 104         void *mem;
 105 
 106         while (len) {
 107                 mem = kmap_atomic(page);
 108                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 109                 memcpy_flushcache(pmem_addr, mem + off, chunk);
 110                 kunmap_atomic(mem);
 111                 len -= chunk;
 112                 off = 0;
 113                 page++;
 114                 pmem_addr += chunk;
 115         }
 116 }
 117 
 118 static blk_status_t read_pmem(struct page *page, unsigned int off,
 119                 void *pmem_addr, unsigned int len)
 120 {
 121         unsigned int chunk;
 122         unsigned long rem;
 123         void *mem;
 124 
 125         while (len) {
 126                 mem = kmap_atomic(page);
 127                 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 128                 rem = memcpy_mcsafe(mem + off, pmem_addr, chunk);
 129                 kunmap_atomic(mem);
 130                 if (rem)
 131                         return BLK_STS_IOERR;
 132                 len -= chunk;
 133                 off = 0;
 134                 page++;
 135                 pmem_addr += chunk;
 136         }
 137         return BLK_STS_OK;
 138 }
 139 
 140 static blk_status_t pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 141                         unsigned int len, unsigned int off, unsigned int op,
 142                         sector_t sector)
 143 {
 144         blk_status_t rc = BLK_STS_OK;
 145         bool bad_pmem = false;
 146         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 147         void *pmem_addr = pmem->virt_addr + pmem_off;
 148 
 149         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 150                 bad_pmem = true;
 151 
 152         if (!op_is_write(op)) {
 153                 if (unlikely(bad_pmem))
 154                         rc = BLK_STS_IOERR;
 155                 else {
 156                         rc = read_pmem(page, off, pmem_addr, len);
 157                         flush_dcache_page(page);
 158                 }
 159         } else {
 160                 /*
 161                  * Note that we write the data both before and after
 162                  * clearing poison.  The write before clear poison
 163                  * handles situations where the latest written data is
 164                  * preserved and the clear poison operation simply marks
 165                  * the address range as valid without changing the data.
 166                  * In this case application software can assume that an
 167                  * interrupted write will either return the new good
 168                  * data or an error.
 169                  *
 170                  * However, if pmem_clear_poison() leaves the data in an
 171                  * indeterminate state we need to perform the write
 172                  * after clear poison.
 173                  */
 174                 flush_dcache_page(page);
 175                 write_pmem(pmem_addr, page, off, len);
 176                 if (unlikely(bad_pmem)) {
 177                         rc = pmem_clear_poison(pmem, pmem_off, len);
 178                         write_pmem(pmem_addr, page, off, len);
 179                 }
 180         }
 181 
 182         return rc;
 183 }
 184 
 185 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
 186 {
 187         int ret = 0;
 188         blk_status_t rc = 0;
 189         bool do_acct;
 190         unsigned long start;
 191         struct bio_vec bvec;
 192         struct bvec_iter iter;
 193         struct pmem_device *pmem = q->queuedata;
 194         struct nd_region *nd_region = to_region(pmem);
 195 
 196         if (bio->bi_opf & REQ_PREFLUSH)
 197                 ret = nvdimm_flush(nd_region, bio);
 198 
 199         do_acct = nd_iostat_start(bio, &start);
 200         bio_for_each_segment(bvec, bio, iter) {
 201                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
 202                                 bvec.bv_offset, bio_op(bio), iter.bi_sector);
 203                 if (rc) {
 204                         bio->bi_status = rc;
 205                         break;
 206                 }
 207         }
 208         if (do_acct)
 209                 nd_iostat_end(bio, start);
 210 
 211         if (bio->bi_opf & REQ_FUA)
 212                 ret = nvdimm_flush(nd_region, bio);
 213 
 214         if (ret)
 215                 bio->bi_status = errno_to_blk_status(ret);
 216 
 217         bio_endio(bio);
 218         return BLK_QC_T_NONE;
 219 }
 220 
 221 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 222                        struct page *page, unsigned int op)
 223 {
 224         struct pmem_device *pmem = bdev->bd_queue->queuedata;
 225         blk_status_t rc;
 226 
 227         rc = pmem_do_bvec(pmem, page, hpage_nr_pages(page) * PAGE_SIZE,
 228                           0, op, sector);
 229 
 230         /*
 231          * The ->rw_page interface is subtle and tricky.  The core
 232          * retries on any error, so we can only invoke page_endio() in
 233          * the successful completion case.  Otherwise, we'll see crashes
 234          * caused by double completion.
 235          */
 236         if (rc == 0)
 237                 page_endio(page, op_is_write(op), 0);
 238 
 239         return blk_status_to_errno(rc);
 240 }
 241 
 242 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 243 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 244                 long nr_pages, void **kaddr, pfn_t *pfn)
 245 {
 246         resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 247 
 248         if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 249                                         PFN_PHYS(nr_pages))))
 250                 return -EIO;
 251 
 252         if (kaddr)
 253                 *kaddr = pmem->virt_addr + offset;
 254         if (pfn)
 255                 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 256 
 257         /*
 258          * If badblocks are present, limit known good range to the
 259          * requested range.
 260          */
 261         if (unlikely(pmem->bb.count))
 262                 return nr_pages;
 263         return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 264 }
 265 
 266 static const struct block_device_operations pmem_fops = {
 267         .owner =                THIS_MODULE,
 268         .rw_page =              pmem_rw_page,
 269         .revalidate_disk =      nvdimm_revalidate_disk,
 270 };
 271 
 272 static long pmem_dax_direct_access(struct dax_device *dax_dev,
 273                 pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 274 {
 275         struct pmem_device *pmem = dax_get_private(dax_dev);
 276 
 277         return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 278 }
 279 
 280 /*
 281  * Use the 'no check' versions of copy_from_iter_flushcache() and
 282  * copy_to_iter_mcsafe() to bypass HARDENED_USERCOPY overhead. Bounds
 283  * checking, both file offset and device offset, is handled by
 284  * dax_iomap_actor()
 285  */
 286 static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 287                 void *addr, size_t bytes, struct iov_iter *i)
 288 {
 289         return _copy_from_iter_flushcache(addr, bytes, i);
 290 }
 291 
 292 static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 293                 void *addr, size_t bytes, struct iov_iter *i)
 294 {
 295         return _copy_to_iter_mcsafe(addr, bytes, i);
 296 }
 297 
 298 static const struct dax_operations pmem_dax_ops = {
 299         .direct_access = pmem_dax_direct_access,
 300         .dax_supported = generic_fsdax_supported,
 301         .copy_from_iter = pmem_copy_from_iter,
 302         .copy_to_iter = pmem_copy_to_iter,
 303 };
 304 
 305 static const struct attribute_group *pmem_attribute_groups[] = {
 306         &dax_attribute_group,
 307         NULL,
 308 };
 309 
 310 static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
 311 {
 312         struct request_queue *q =
 313                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
 314 
 315         blk_cleanup_queue(q);
 316 }
 317 
 318 static void pmem_release_queue(void *pgmap)
 319 {
 320         pmem_pagemap_cleanup(pgmap);
 321 }
 322 
 323 static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
 324 {
 325         struct request_queue *q =
 326                 container_of(pgmap->ref, struct request_queue, q_usage_counter);
 327 
 328         blk_freeze_queue_start(q);
 329 }
 330 
 331 static void pmem_release_disk(void *__pmem)
 332 {
 333         struct pmem_device *pmem = __pmem;
 334 
 335         kill_dax(pmem->dax_dev);
 336         put_dax(pmem->dax_dev);
 337         del_gendisk(pmem->disk);
 338         put_disk(pmem->disk);
 339 }
 340 
 341 static void pmem_pagemap_page_free(struct page *page)
 342 {
 343         wake_up_var(&page->_refcount);
 344 }
 345 
 346 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
 347         .page_free              = pmem_pagemap_page_free,
 348         .kill                   = pmem_pagemap_kill,
 349         .cleanup                = pmem_pagemap_cleanup,
 350 };
 351 
 352 static int pmem_attach_disk(struct device *dev,
 353                 struct nd_namespace_common *ndns)
 354 {
 355         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 356         struct nd_region *nd_region = to_nd_region(dev->parent);
 357         int nid = dev_to_node(dev), fua;
 358         struct resource *res = &nsio->res;
 359         struct resource bb_res;
 360         struct nd_pfn *nd_pfn = NULL;
 361         struct dax_device *dax_dev;
 362         struct nd_pfn_sb *pfn_sb;
 363         struct pmem_device *pmem;
 364         struct request_queue *q;
 365         struct device *gendev;
 366         struct gendisk *disk;
 367         void *addr;
 368         int rc;
 369         unsigned long flags = 0UL;
 370 
 371         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 372         if (!pmem)
 373                 return -ENOMEM;
 374 
 375         /* while nsio_rw_bytes is active, parse a pfn info block if present */
 376         if (is_nd_pfn(dev)) {
 377                 nd_pfn = to_nd_pfn(dev);
 378                 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 379                 if (rc)
 380                         return rc;
 381         }
 382 
 383         /* we're attaching a block device, disable raw namespace access */
 384         devm_nsio_disable(dev, nsio);
 385 
 386         dev_set_drvdata(dev, pmem);
 387         pmem->phys_addr = res->start;
 388         pmem->size = resource_size(res);
 389         fua = nvdimm_has_flush(nd_region);
 390         if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 391                 dev_warn(dev, "unable to guarantee persistence of writes\n");
 392                 fua = 0;
 393         }
 394 
 395         if (!devm_request_mem_region(dev, res->start, resource_size(res),
 396                                 dev_name(&ndns->dev))) {
 397                 dev_warn(dev, "could not reserve region %pR\n", res);
 398                 return -EBUSY;
 399         }
 400 
 401         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
 402         if (!q)
 403                 return -ENOMEM;
 404 
 405         pmem->pfn_flags = PFN_DEV;
 406         pmem->pgmap.ref = &q->q_usage_counter;
 407         if (is_nd_pfn(dev)) {
 408                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 409                 pmem->pgmap.ops = &fsdax_pagemap_ops;
 410                 addr = devm_memremap_pages(dev, &pmem->pgmap);
 411                 pfn_sb = nd_pfn->pfn_sb;
 412                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 413                 pmem->pfn_pad = resource_size(res) -
 414                         resource_size(&pmem->pgmap.res);
 415                 pmem->pfn_flags |= PFN_MAP;
 416                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 417                 bb_res.start += pmem->data_offset;
 418         } else if (pmem_should_map_pages(dev)) {
 419                 memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
 420                 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 421                 pmem->pgmap.ops = &fsdax_pagemap_ops;
 422                 addr = devm_memremap_pages(dev, &pmem->pgmap);
 423                 pmem->pfn_flags |= PFN_MAP;
 424                 memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 425         } else {
 426                 if (devm_add_action_or_reset(dev, pmem_release_queue,
 427                                         &pmem->pgmap))
 428                         return -ENOMEM;
 429                 addr = devm_memremap(dev, pmem->phys_addr,
 430                                 pmem->size, ARCH_MEMREMAP_PMEM);
 431                 memcpy(&bb_res, &nsio->res, sizeof(bb_res));
 432         }
 433 
 434         if (IS_ERR(addr))
 435                 return PTR_ERR(addr);
 436         pmem->virt_addr = addr;
 437 
 438         blk_queue_write_cache(q, true, fua);
 439         blk_queue_make_request(q, pmem_make_request);
 440         blk_queue_physical_block_size(q, PAGE_SIZE);
 441         blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 442         blk_queue_max_hw_sectors(q, UINT_MAX);
 443         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 444         if (pmem->pfn_flags & PFN_MAP)
 445                 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 446         q->queuedata = pmem;
 447 
 448         disk = alloc_disk_node(0, nid);
 449         if (!disk)
 450                 return -ENOMEM;
 451         pmem->disk = disk;
 452 
 453         disk->fops              = &pmem_fops;
 454         disk->queue             = q;
 455         disk->flags             = GENHD_FL_EXT_DEVT;
 456         disk->queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
 457         nvdimm_namespace_disk_name(ndns, disk->disk_name);
 458         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 459                         / 512);
 460         if (devm_init_badblocks(dev, &pmem->bb))
 461                 return -ENOMEM;
 462         nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
 463         disk->bb = &pmem->bb;
 464 
 465         if (is_nvdimm_sync(nd_region))
 466                 flags = DAXDEV_F_SYNC;
 467         dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
 468         if (!dax_dev) {
 469                 put_disk(disk);
 470                 return -ENOMEM;
 471         }
 472         dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 473         pmem->dax_dev = dax_dev;
 474         gendev = disk_to_dev(disk);
 475         gendev->groups = pmem_attribute_groups;
 476 
 477         device_add_disk(dev, disk, NULL);
 478         if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 479                 return -ENOMEM;
 480 
 481         revalidate_disk(disk);
 482 
 483         pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 484                                           "badblocks");
 485         if (!pmem->bb_state)
 486                 dev_warn(dev, "'badblocks' notification disabled\n");
 487 
 488         return 0;
 489 }
 490 
 491 static int nd_pmem_probe(struct device *dev)
 492 {
 493         int ret;
 494         struct nd_namespace_common *ndns;
 495 
 496         ndns = nvdimm_namespace_common_probe(dev);
 497         if (IS_ERR(ndns))
 498                 return PTR_ERR(ndns);
 499 
 500         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
 501                 return -ENXIO;
 502 
 503         if (is_nd_btt(dev))
 504                 return nvdimm_namespace_attach_btt(ndns);
 505 
 506         if (is_nd_pfn(dev))
 507                 return pmem_attach_disk(dev, ndns);
 508 
 509         ret = nd_btt_probe(dev, ndns);
 510         if (ret == 0)
 511                 return -ENXIO;
 512 
 513         /*
 514          * We have two failure conditions here, there is no
 515          * info reserver block or we found a valid info reserve block
 516          * but failed to initialize the pfn superblock.
 517          *
 518          * For the first case consider namespace as a raw pmem namespace
 519          * and attach a disk.
 520          *
 521          * For the latter, consider this a success and advance the namespace
 522          * seed.
 523          */
 524         ret = nd_pfn_probe(dev, ndns);
 525         if (ret == 0)
 526                 return -ENXIO;
 527         else if (ret == -EOPNOTSUPP)
 528                 return ret;
 529 
 530         ret = nd_dax_probe(dev, ndns);
 531         if (ret == 0)
 532                 return -ENXIO;
 533         else if (ret == -EOPNOTSUPP)
 534                 return ret;
 535         return pmem_attach_disk(dev, ndns);
 536 }
 537 
 538 static int nd_pmem_remove(struct device *dev)
 539 {
 540         struct pmem_device *pmem = dev_get_drvdata(dev);
 541 
 542         if (is_nd_btt(dev))
 543                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
 544         else {
 545                 /*
 546                  * Note, this assumes nd_device_lock() context to not
 547                  * race nd_pmem_notify()
 548                  */
 549                 sysfs_put(pmem->bb_state);
 550                 pmem->bb_state = NULL;
 551         }
 552         nvdimm_flush(to_nd_region(dev->parent), NULL);
 553 
 554         return 0;
 555 }
 556 
 557 static void nd_pmem_shutdown(struct device *dev)
 558 {
 559         nvdimm_flush(to_nd_region(dev->parent), NULL);
 560 }
 561 
 562 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 563 {
 564         struct nd_region *nd_region;
 565         resource_size_t offset = 0, end_trunc = 0;
 566         struct nd_namespace_common *ndns;
 567         struct nd_namespace_io *nsio;
 568         struct resource res;
 569         struct badblocks *bb;
 570         struct kernfs_node *bb_state;
 571 
 572         if (event != NVDIMM_REVALIDATE_POISON)
 573                 return;
 574 
 575         if (is_nd_btt(dev)) {
 576                 struct nd_btt *nd_btt = to_nd_btt(dev);
 577 
 578                 ndns = nd_btt->ndns;
 579                 nd_region = to_nd_region(ndns->dev.parent);
 580                 nsio = to_nd_namespace_io(&ndns->dev);
 581                 bb = &nsio->bb;
 582                 bb_state = NULL;
 583         } else {
 584                 struct pmem_device *pmem = dev_get_drvdata(dev);
 585 
 586                 nd_region = to_region(pmem);
 587                 bb = &pmem->bb;
 588                 bb_state = pmem->bb_state;
 589 
 590                 if (is_nd_pfn(dev)) {
 591                         struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 592                         struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 593 
 594                         ndns = nd_pfn->ndns;
 595                         offset = pmem->data_offset +
 596                                         __le32_to_cpu(pfn_sb->start_pad);
 597                         end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 598                 } else {
 599                         ndns = to_ndns(dev);
 600                 }
 601 
 602                 nsio = to_nd_namespace_io(&ndns->dev);
 603         }
 604 
 605         res.start = nsio->res.start + offset;
 606         res.end = nsio->res.end - end_trunc;
 607         nvdimm_badblocks_populate(nd_region, bb, &res);
 608         if (bb_state)
 609                 sysfs_notify_dirent(bb_state);
 610 }
 611 
 612 MODULE_ALIAS("pmem");
 613 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 614 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 615 static struct nd_device_driver nd_pmem_driver = {
 616         .probe = nd_pmem_probe,
 617         .remove = nd_pmem_remove,
 618         .notify = nd_pmem_notify,
 619         .shutdown = nd_pmem_shutdown,
 620         .drv = {
 621                 .name = "nd_pmem",
 622         },
 623         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 624 };
 625 
 626 module_nd_driver(nd_pmem_driver);
 627 
 628 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 629 MODULE_LICENSE("GPL v2");

/* [<][>][^][v][top][bottom][index][help] */