root/drivers/thunderbolt/nhi.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ring_interrupt_index
  2. ring_interrupt_active
  3. nhi_disable_interrupts
  4. ring_desc_base
  5. ring_options_base
  6. ring_iowrite_cons
  7. ring_iowrite_prod
  8. ring_iowrite32desc
  9. ring_iowrite64desc
  10. ring_iowrite32options
  11. ring_full
  12. ring_empty
  13. ring_write_descriptors
  14. ring_work
  15. __tb_ring_enqueue
  16. tb_ring_poll
  17. __ring_interrupt_mask
  18. __ring_interrupt
  19. tb_ring_poll_complete
  20. ring_msix
  21. ring_request_msix
  22. ring_release_msix
  23. nhi_alloc_hop
  24. tb_ring_alloc
  25. tb_ring_alloc_tx
  26. tb_ring_alloc_rx
  27. tb_ring_start
  28. tb_ring_stop
  29. tb_ring_free
  30. nhi_mailbox_cmd
  31. nhi_mailbox_mode
  32. nhi_interrupt_work
  33. nhi_msi
  34. __nhi_suspend_noirq
  35. nhi_suspend_noirq
  36. nhi_wake_supported
  37. nhi_poweroff_noirq
  38. nhi_enable_int_throttling
  39. nhi_resume_noirq
  40. nhi_suspend
  41. nhi_complete
  42. nhi_runtime_suspend
  43. nhi_runtime_resume
  44. nhi_shutdown
  45. nhi_init_msi
  46. nhi_imr_valid
  47. nhi_probe
  48. nhi_remove
  49. nhi_init
  50. nhi_unload

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Thunderbolt driver - NHI driver
   4  *
   5  * The NHI (native host interface) is the pci device that allows us to send and
   6  * receive frames from the thunderbolt bus.
   7  *
   8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
   9  * Copyright (C) 2018, Intel Corporation
  10  */
  11 
  12 #include <linux/pm_runtime.h>
  13 #include <linux/slab.h>
  14 #include <linux/errno.h>
  15 #include <linux/pci.h>
  16 #include <linux/interrupt.h>
  17 #include <linux/module.h>
  18 #include <linux/delay.h>
  19 #include <linux/property.h>
  20 
  21 #include "nhi.h"
  22 #include "nhi_regs.h"
  23 #include "tb.h"
  24 
  25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
  26 
  27 /*
  28  * Used to enable end-to-end workaround for missing RX packets. Do not
  29  * use this ring for anything else.
  30  */
  31 #define RING_E2E_UNUSED_HOPID   2
  32 #define RING_FIRST_USABLE_HOPID TB_PATH_MIN_HOPID
  33 
  34 /*
  35  * Minimal number of vectors when we use MSI-X. Two for control channel
  36  * Rx/Tx and the rest four are for cross domain DMA paths.
  37  */
  38 #define MSIX_MIN_VECS           6
  39 #define MSIX_MAX_VECS           16
  40 
  41 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
  42 
  43 static int ring_interrupt_index(struct tb_ring *ring)
  44 {
  45         int bit = ring->hop;
  46         if (!ring->is_tx)
  47                 bit += ring->nhi->hop_count;
  48         return bit;
  49 }
  50 
  51 /**
  52  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
  53  *
  54  * ring->nhi->lock must be held.
  55  */
  56 static void ring_interrupt_active(struct tb_ring *ring, bool active)
  57 {
  58         int reg = REG_RING_INTERRUPT_BASE +
  59                   ring_interrupt_index(ring) / 32 * 4;
  60         int bit = ring_interrupt_index(ring) & 31;
  61         int mask = 1 << bit;
  62         u32 old, new;
  63 
  64         if (ring->irq > 0) {
  65                 u32 step, shift, ivr, misc;
  66                 void __iomem *ivr_base;
  67                 int index;
  68 
  69                 if (ring->is_tx)
  70                         index = ring->hop;
  71                 else
  72                         index = ring->hop + ring->nhi->hop_count;
  73 
  74                 /*
  75                  * Ask the hardware to clear interrupt status bits automatically
  76                  * since we already know which interrupt was triggered.
  77                  */
  78                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
  79                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
  80                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
  81                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
  82                 }
  83 
  84                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
  85                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  86                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
  87                 ivr = ioread32(ivr_base + step);
  88                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
  89                 if (active)
  90                         ivr |= ring->vector << shift;
  91                 iowrite32(ivr, ivr_base + step);
  92         }
  93 
  94         old = ioread32(ring->nhi->iobase + reg);
  95         if (active)
  96                 new = old | mask;
  97         else
  98                 new = old & ~mask;
  99 
 100         dev_dbg(&ring->nhi->pdev->dev,
 101                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
 102                 active ? "enabling" : "disabling", reg, bit, old, new);
 103 
 104         if (new == old)
 105                 dev_WARN(&ring->nhi->pdev->dev,
 106                                          "interrupt for %s %d is already %s\n",
 107                                          RING_TYPE(ring), ring->hop,
 108                                          active ? "enabled" : "disabled");
 109         iowrite32(new, ring->nhi->iobase + reg);
 110 }
 111 
 112 /**
 113  * nhi_disable_interrupts() - disable interrupts for all rings
 114  *
 115  * Use only during init and shutdown.
 116  */
 117 static void nhi_disable_interrupts(struct tb_nhi *nhi)
 118 {
 119         int i = 0;
 120         /* disable interrupts */
 121         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
 122                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
 123 
 124         /* clear interrupt status bits */
 125         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
 126                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
 127 }
 128 
 129 /* ring helper methods */
 130 
 131 static void __iomem *ring_desc_base(struct tb_ring *ring)
 132 {
 133         void __iomem *io = ring->nhi->iobase;
 134         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
 135         io += ring->hop * 16;
 136         return io;
 137 }
 138 
 139 static void __iomem *ring_options_base(struct tb_ring *ring)
 140 {
 141         void __iomem *io = ring->nhi->iobase;
 142         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
 143         io += ring->hop * 32;
 144         return io;
 145 }
 146 
 147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
 148 {
 149         /*
 150          * The other 16-bits in the register is read-only and writes to it
 151          * are ignored by the hardware so we can save one ioread32() by
 152          * filling the read-only bits with zeroes.
 153          */
 154         iowrite32(cons, ring_desc_base(ring) + 8);
 155 }
 156 
 157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
 158 {
 159         /* See ring_iowrite_cons() above for explanation */
 160         iowrite32(prod << 16, ring_desc_base(ring) + 8);
 161 }
 162 
 163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
 164 {
 165         iowrite32(value, ring_desc_base(ring) + offset);
 166 }
 167 
 168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
 169 {
 170         iowrite32(value, ring_desc_base(ring) + offset);
 171         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
 172 }
 173 
 174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
 175 {
 176         iowrite32(value, ring_options_base(ring) + offset);
 177 }
 178 
 179 static bool ring_full(struct tb_ring *ring)
 180 {
 181         return ((ring->head + 1) % ring->size) == ring->tail;
 182 }
 183 
 184 static bool ring_empty(struct tb_ring *ring)
 185 {
 186         return ring->head == ring->tail;
 187 }
 188 
 189 /**
 190  * ring_write_descriptors() - post frames from ring->queue to the controller
 191  *
 192  * ring->lock is held.
 193  */
 194 static void ring_write_descriptors(struct tb_ring *ring)
 195 {
 196         struct ring_frame *frame, *n;
 197         struct ring_desc *descriptor;
 198         list_for_each_entry_safe(frame, n, &ring->queue, list) {
 199                 if (ring_full(ring))
 200                         break;
 201                 list_move_tail(&frame->list, &ring->in_flight);
 202                 descriptor = &ring->descriptors[ring->head];
 203                 descriptor->phys = frame->buffer_phy;
 204                 descriptor->time = 0;
 205                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
 206                 if (ring->is_tx) {
 207                         descriptor->length = frame->size;
 208                         descriptor->eof = frame->eof;
 209                         descriptor->sof = frame->sof;
 210                 }
 211                 ring->head = (ring->head + 1) % ring->size;
 212                 if (ring->is_tx)
 213                         ring_iowrite_prod(ring, ring->head);
 214                 else
 215                         ring_iowrite_cons(ring, ring->head);
 216         }
 217 }
 218 
 219 /**
 220  * ring_work() - progress completed frames
 221  *
 222  * If the ring is shutting down then all frames are marked as canceled and
 223  * their callbacks are invoked.
 224  *
 225  * Otherwise we collect all completed frame from the ring buffer, write new
 226  * frame to the ring buffer and invoke the callbacks for the completed frames.
 227  */
 228 static void ring_work(struct work_struct *work)
 229 {
 230         struct tb_ring *ring = container_of(work, typeof(*ring), work);
 231         struct ring_frame *frame;
 232         bool canceled = false;
 233         unsigned long flags;
 234         LIST_HEAD(done);
 235 
 236         spin_lock_irqsave(&ring->lock, flags);
 237 
 238         if (!ring->running) {
 239                 /*  Move all frames to done and mark them as canceled. */
 240                 list_splice_tail_init(&ring->in_flight, &done);
 241                 list_splice_tail_init(&ring->queue, &done);
 242                 canceled = true;
 243                 goto invoke_callback;
 244         }
 245 
 246         while (!ring_empty(ring)) {
 247                 if (!(ring->descriptors[ring->tail].flags
 248                                 & RING_DESC_COMPLETED))
 249                         break;
 250                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
 251                                          list);
 252                 list_move_tail(&frame->list, &done);
 253                 if (!ring->is_tx) {
 254                         frame->size = ring->descriptors[ring->tail].length;
 255                         frame->eof = ring->descriptors[ring->tail].eof;
 256                         frame->sof = ring->descriptors[ring->tail].sof;
 257                         frame->flags = ring->descriptors[ring->tail].flags;
 258                 }
 259                 ring->tail = (ring->tail + 1) % ring->size;
 260         }
 261         ring_write_descriptors(ring);
 262 
 263 invoke_callback:
 264         /* allow callbacks to schedule new work */
 265         spin_unlock_irqrestore(&ring->lock, flags);
 266         while (!list_empty(&done)) {
 267                 frame = list_first_entry(&done, typeof(*frame), list);
 268                 /*
 269                  * The callback may reenqueue or delete frame.
 270                  * Do not hold on to it.
 271                  */
 272                 list_del_init(&frame->list);
 273                 if (frame->callback)
 274                         frame->callback(ring, frame, canceled);
 275         }
 276 }
 277 
 278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
 279 {
 280         unsigned long flags;
 281         int ret = 0;
 282 
 283         spin_lock_irqsave(&ring->lock, flags);
 284         if (ring->running) {
 285                 list_add_tail(&frame->list, &ring->queue);
 286                 ring_write_descriptors(ring);
 287         } else {
 288                 ret = -ESHUTDOWN;
 289         }
 290         spin_unlock_irqrestore(&ring->lock, flags);
 291         return ret;
 292 }
 293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
 294 
 295 /**
 296  * tb_ring_poll() - Poll one completed frame from the ring
 297  * @ring: Ring to poll
 298  *
 299  * This function can be called when @start_poll callback of the @ring
 300  * has been called. It will read one completed frame from the ring and
 301  * return it to the caller. Returns %NULL if there is no more completed
 302  * frames.
 303  */
 304 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
 305 {
 306         struct ring_frame *frame = NULL;
 307         unsigned long flags;
 308 
 309         spin_lock_irqsave(&ring->lock, flags);
 310         if (!ring->running)
 311                 goto unlock;
 312         if (ring_empty(ring))
 313                 goto unlock;
 314 
 315         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
 316                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
 317                                          list);
 318                 list_del_init(&frame->list);
 319 
 320                 if (!ring->is_tx) {
 321                         frame->size = ring->descriptors[ring->tail].length;
 322                         frame->eof = ring->descriptors[ring->tail].eof;
 323                         frame->sof = ring->descriptors[ring->tail].sof;
 324                         frame->flags = ring->descriptors[ring->tail].flags;
 325                 }
 326 
 327                 ring->tail = (ring->tail + 1) % ring->size;
 328         }
 329 
 330 unlock:
 331         spin_unlock_irqrestore(&ring->lock, flags);
 332         return frame;
 333 }
 334 EXPORT_SYMBOL_GPL(tb_ring_poll);
 335 
 336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
 337 {
 338         int idx = ring_interrupt_index(ring);
 339         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
 340         int bit = idx % 32;
 341         u32 val;
 342 
 343         val = ioread32(ring->nhi->iobase + reg);
 344         if (mask)
 345                 val &= ~BIT(bit);
 346         else
 347                 val |= BIT(bit);
 348         iowrite32(val, ring->nhi->iobase + reg);
 349 }
 350 
 351 /* Both @nhi->lock and @ring->lock should be held */
 352 static void __ring_interrupt(struct tb_ring *ring)
 353 {
 354         if (!ring->running)
 355                 return;
 356 
 357         if (ring->start_poll) {
 358                 __ring_interrupt_mask(ring, true);
 359                 ring->start_poll(ring->poll_data);
 360         } else {
 361                 schedule_work(&ring->work);
 362         }
 363 }
 364 
 365 /**
 366  * tb_ring_poll_complete() - Re-start interrupt for the ring
 367  * @ring: Ring to re-start the interrupt
 368  *
 369  * This will re-start (unmask) the ring interrupt once the user is done
 370  * with polling.
 371  */
 372 void tb_ring_poll_complete(struct tb_ring *ring)
 373 {
 374         unsigned long flags;
 375 
 376         spin_lock_irqsave(&ring->nhi->lock, flags);
 377         spin_lock(&ring->lock);
 378         if (ring->start_poll)
 379                 __ring_interrupt_mask(ring, false);
 380         spin_unlock(&ring->lock);
 381         spin_unlock_irqrestore(&ring->nhi->lock, flags);
 382 }
 383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
 384 
 385 static irqreturn_t ring_msix(int irq, void *data)
 386 {
 387         struct tb_ring *ring = data;
 388 
 389         spin_lock(&ring->nhi->lock);
 390         spin_lock(&ring->lock);
 391         __ring_interrupt(ring);
 392         spin_unlock(&ring->lock);
 393         spin_unlock(&ring->nhi->lock);
 394 
 395         return IRQ_HANDLED;
 396 }
 397 
 398 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
 399 {
 400         struct tb_nhi *nhi = ring->nhi;
 401         unsigned long irqflags;
 402         int ret;
 403 
 404         if (!nhi->pdev->msix_enabled)
 405                 return 0;
 406 
 407         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
 408         if (ret < 0)
 409                 return ret;
 410 
 411         ring->vector = ret;
 412 
 413         ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
 414         if (ring->irq < 0)
 415                 return ring->irq;
 416 
 417         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
 418         return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
 419 }
 420 
 421 static void ring_release_msix(struct tb_ring *ring)
 422 {
 423         if (ring->irq <= 0)
 424                 return;
 425 
 426         free_irq(ring->irq, ring);
 427         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
 428         ring->vector = 0;
 429         ring->irq = 0;
 430 }
 431 
 432 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
 433 {
 434         int ret = 0;
 435 
 436         spin_lock_irq(&nhi->lock);
 437 
 438         if (ring->hop < 0) {
 439                 unsigned int i;
 440 
 441                 /*
 442                  * Automatically allocate HopID from the non-reserved
 443                  * range 8 .. hop_count - 1.
 444                  */
 445                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
 446                         if (ring->is_tx) {
 447                                 if (!nhi->tx_rings[i]) {
 448                                         ring->hop = i;
 449                                         break;
 450                                 }
 451                         } else {
 452                                 if (!nhi->rx_rings[i]) {
 453                                         ring->hop = i;
 454                                         break;
 455                                 }
 456                         }
 457                 }
 458         }
 459 
 460         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
 461                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
 462                 ret = -EINVAL;
 463                 goto err_unlock;
 464         }
 465         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
 466                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
 467                          ring->hop);
 468                 ret = -EBUSY;
 469                 goto err_unlock;
 470         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
 471                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
 472                          ring->hop);
 473                 ret = -EBUSY;
 474                 goto err_unlock;
 475         }
 476 
 477         if (ring->is_tx)
 478                 nhi->tx_rings[ring->hop] = ring;
 479         else
 480                 nhi->rx_rings[ring->hop] = ring;
 481 
 482 err_unlock:
 483         spin_unlock_irq(&nhi->lock);
 484 
 485         return ret;
 486 }
 487 
 488 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
 489                                      bool transmit, unsigned int flags,
 490                                      u16 sof_mask, u16 eof_mask,
 491                                      void (*start_poll)(void *),
 492                                      void *poll_data)
 493 {
 494         struct tb_ring *ring = NULL;
 495 
 496         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
 497                 transmit ? "TX" : "RX", hop, size);
 498 
 499         /* Tx Ring 2 is reserved for E2E workaround */
 500         if (transmit && hop == RING_E2E_UNUSED_HOPID)
 501                 return NULL;
 502 
 503         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 504         if (!ring)
 505                 return NULL;
 506 
 507         spin_lock_init(&ring->lock);
 508         INIT_LIST_HEAD(&ring->queue);
 509         INIT_LIST_HEAD(&ring->in_flight);
 510         INIT_WORK(&ring->work, ring_work);
 511 
 512         ring->nhi = nhi;
 513         ring->hop = hop;
 514         ring->is_tx = transmit;
 515         ring->size = size;
 516         ring->flags = flags;
 517         ring->sof_mask = sof_mask;
 518         ring->eof_mask = eof_mask;
 519         ring->head = 0;
 520         ring->tail = 0;
 521         ring->running = false;
 522         ring->start_poll = start_poll;
 523         ring->poll_data = poll_data;
 524 
 525         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
 526                         size * sizeof(*ring->descriptors),
 527                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
 528         if (!ring->descriptors)
 529                 goto err_free_ring;
 530 
 531         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
 532                 goto err_free_descs;
 533 
 534         if (nhi_alloc_hop(nhi, ring))
 535                 goto err_release_msix;
 536 
 537         return ring;
 538 
 539 err_release_msix:
 540         ring_release_msix(ring);
 541 err_free_descs:
 542         dma_free_coherent(&ring->nhi->pdev->dev,
 543                           ring->size * sizeof(*ring->descriptors),
 544                           ring->descriptors, ring->descriptors_dma);
 545 err_free_ring:
 546         kfree(ring);
 547 
 548         return NULL;
 549 }
 550 
 551 /**
 552  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
 553  * @nhi: Pointer to the NHI the ring is to be allocated
 554  * @hop: HopID (ring) to allocate
 555  * @size: Number of entries in the ring
 556  * @flags: Flags for the ring
 557  */
 558 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
 559                                  unsigned int flags)
 560 {
 561         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
 562 }
 563 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
 564 
 565 /**
 566  * tb_ring_alloc_rx() - Allocate DMA ring for receive
 567  * @nhi: Pointer to the NHI the ring is to be allocated
 568  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
 569  * @size: Number of entries in the ring
 570  * @flags: Flags for the ring
 571  * @sof_mask: Mask of PDF values that start a frame
 572  * @eof_mask: Mask of PDF values that end a frame
 573  * @start_poll: If not %NULL the ring will call this function when an
 574  *              interrupt is triggered and masked, instead of callback
 575  *              in each Rx frame.
 576  * @poll_data: Optional data passed to @start_poll
 577  */
 578 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
 579                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
 580                                  void (*start_poll)(void *), void *poll_data)
 581 {
 582         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
 583                              start_poll, poll_data);
 584 }
 585 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
 586 
 587 /**
 588  * tb_ring_start() - enable a ring
 589  *
 590  * Must not be invoked in parallel with tb_ring_stop().
 591  */
 592 void tb_ring_start(struct tb_ring *ring)
 593 {
 594         u16 frame_size;
 595         u32 flags;
 596 
 597         spin_lock_irq(&ring->nhi->lock);
 598         spin_lock(&ring->lock);
 599         if (ring->nhi->going_away)
 600                 goto err;
 601         if (ring->running) {
 602                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
 603                 goto err;
 604         }
 605         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
 606                 RING_TYPE(ring), ring->hop);
 607 
 608         if (ring->flags & RING_FLAG_FRAME) {
 609                 /* Means 4096 */
 610                 frame_size = 0;
 611                 flags = RING_FLAG_ENABLE;
 612         } else {
 613                 frame_size = TB_FRAME_SIZE;
 614                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
 615         }
 616 
 617         if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
 618                 u32 hop;
 619 
 620                 /*
 621                  * In order not to lose Rx packets we enable end-to-end
 622                  * workaround which transfers Rx credits to an unused Tx
 623                  * HopID.
 624                  */
 625                 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
 626                 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
 627                 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
 628         }
 629 
 630         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
 631         if (ring->is_tx) {
 632                 ring_iowrite32desc(ring, ring->size, 12);
 633                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
 634                 ring_iowrite32options(ring, flags, 0);
 635         } else {
 636                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
 637 
 638                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
 639                 ring_iowrite32options(ring, sof_eof_mask, 4);
 640                 ring_iowrite32options(ring, flags, 0);
 641         }
 642         ring_interrupt_active(ring, true);
 643         ring->running = true;
 644 err:
 645         spin_unlock(&ring->lock);
 646         spin_unlock_irq(&ring->nhi->lock);
 647 }
 648 EXPORT_SYMBOL_GPL(tb_ring_start);
 649 
 650 /**
 651  * tb_ring_stop() - shutdown a ring
 652  *
 653  * Must not be invoked from a callback.
 654  *
 655  * This method will disable the ring. Further calls to
 656  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
 657  * called.
 658  *
 659  * All enqueued frames will be canceled and their callbacks will be executed
 660  * with frame->canceled set to true (on the callback thread). This method
 661  * returns only after all callback invocations have finished.
 662  */
 663 void tb_ring_stop(struct tb_ring *ring)
 664 {
 665         spin_lock_irq(&ring->nhi->lock);
 666         spin_lock(&ring->lock);
 667         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
 668                 RING_TYPE(ring), ring->hop);
 669         if (ring->nhi->going_away)
 670                 goto err;
 671         if (!ring->running) {
 672                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
 673                          RING_TYPE(ring), ring->hop);
 674                 goto err;
 675         }
 676         ring_interrupt_active(ring, false);
 677 
 678         ring_iowrite32options(ring, 0, 0);
 679         ring_iowrite64desc(ring, 0, 0);
 680         ring_iowrite32desc(ring, 0, 8);
 681         ring_iowrite32desc(ring, 0, 12);
 682         ring->head = 0;
 683         ring->tail = 0;
 684         ring->running = false;
 685 
 686 err:
 687         spin_unlock(&ring->lock);
 688         spin_unlock_irq(&ring->nhi->lock);
 689 
 690         /*
 691          * schedule ring->work to invoke callbacks on all remaining frames.
 692          */
 693         schedule_work(&ring->work);
 694         flush_work(&ring->work);
 695 }
 696 EXPORT_SYMBOL_GPL(tb_ring_stop);
 697 
 698 /*
 699  * tb_ring_free() - free ring
 700  *
 701  * When this method returns all invocations of ring->callback will have
 702  * finished.
 703  *
 704  * Ring must be stopped.
 705  *
 706  * Must NOT be called from ring_frame->callback!
 707  */
 708 void tb_ring_free(struct tb_ring *ring)
 709 {
 710         spin_lock_irq(&ring->nhi->lock);
 711         /*
 712          * Dissociate the ring from the NHI. This also ensures that
 713          * nhi_interrupt_work cannot reschedule ring->work.
 714          */
 715         if (ring->is_tx)
 716                 ring->nhi->tx_rings[ring->hop] = NULL;
 717         else
 718                 ring->nhi->rx_rings[ring->hop] = NULL;
 719 
 720         if (ring->running) {
 721                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
 722                          RING_TYPE(ring), ring->hop);
 723         }
 724         spin_unlock_irq(&ring->nhi->lock);
 725 
 726         ring_release_msix(ring);
 727 
 728         dma_free_coherent(&ring->nhi->pdev->dev,
 729                           ring->size * sizeof(*ring->descriptors),
 730                           ring->descriptors, ring->descriptors_dma);
 731 
 732         ring->descriptors = NULL;
 733         ring->descriptors_dma = 0;
 734 
 735 
 736         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
 737                 ring->hop);
 738 
 739         /**
 740          * ring->work can no longer be scheduled (it is scheduled only
 741          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
 742          * to finish before freeing the ring.
 743          */
 744         flush_work(&ring->work);
 745         kfree(ring);
 746 }
 747 EXPORT_SYMBOL_GPL(tb_ring_free);
 748 
 749 /**
 750  * nhi_mailbox_cmd() - Send a command through NHI mailbox
 751  * @nhi: Pointer to the NHI structure
 752  * @cmd: Command to send
 753  * @data: Data to be send with the command
 754  *
 755  * Sends mailbox command to the firmware running on NHI. Returns %0 in
 756  * case of success and negative errno in case of failure.
 757  */
 758 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
 759 {
 760         ktime_t timeout;
 761         u32 val;
 762 
 763         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
 764 
 765         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 766         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
 767         val |= REG_INMAIL_OP_REQUEST | cmd;
 768         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
 769 
 770         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
 771         do {
 772                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
 773                 if (!(val & REG_INMAIL_OP_REQUEST))
 774                         break;
 775                 usleep_range(10, 20);
 776         } while (ktime_before(ktime_get(), timeout));
 777 
 778         if (val & REG_INMAIL_OP_REQUEST)
 779                 return -ETIMEDOUT;
 780         if (val & REG_INMAIL_ERROR)
 781                 return -EIO;
 782 
 783         return 0;
 784 }
 785 
 786 /**
 787  * nhi_mailbox_mode() - Return current firmware operation mode
 788  * @nhi: Pointer to the NHI structure
 789  *
 790  * The function reads current firmware operation mode using NHI mailbox
 791  * registers and returns it to the caller.
 792  */
 793 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
 794 {
 795         u32 val;
 796 
 797         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
 798         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
 799         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
 800 
 801         return (enum nhi_fw_mode)val;
 802 }
 803 
 804 static void nhi_interrupt_work(struct work_struct *work)
 805 {
 806         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
 807         int value = 0; /* Suppress uninitialized usage warning. */
 808         int bit;
 809         int hop = -1;
 810         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
 811         struct tb_ring *ring;
 812 
 813         spin_lock_irq(&nhi->lock);
 814 
 815         /*
 816          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
 817          * (TX, RX, RX overflow). We iterate over the bits and read a new
 818          * dwords as required. The registers are cleared on read.
 819          */
 820         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
 821                 if (bit % 32 == 0)
 822                         value = ioread32(nhi->iobase
 823                                          + REG_RING_NOTIFY_BASE
 824                                          + 4 * (bit / 32));
 825                 if (++hop == nhi->hop_count) {
 826                         hop = 0;
 827                         type++;
 828                 }
 829                 if ((value & (1 << (bit % 32))) == 0)
 830                         continue;
 831                 if (type == 2) {
 832                         dev_warn(&nhi->pdev->dev,
 833                                  "RX overflow for ring %d\n",
 834                                  hop);
 835                         continue;
 836                 }
 837                 if (type == 0)
 838                         ring = nhi->tx_rings[hop];
 839                 else
 840                         ring = nhi->rx_rings[hop];
 841                 if (ring == NULL) {
 842                         dev_warn(&nhi->pdev->dev,
 843                                  "got interrupt for inactive %s ring %d\n",
 844                                  type ? "RX" : "TX",
 845                                  hop);
 846                         continue;
 847                 }
 848 
 849                 spin_lock(&ring->lock);
 850                 __ring_interrupt(ring);
 851                 spin_unlock(&ring->lock);
 852         }
 853         spin_unlock_irq(&nhi->lock);
 854 }
 855 
 856 static irqreturn_t nhi_msi(int irq, void *data)
 857 {
 858         struct tb_nhi *nhi = data;
 859         schedule_work(&nhi->interrupt_work);
 860         return IRQ_HANDLED;
 861 }
 862 
 863 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
 864 {
 865         struct pci_dev *pdev = to_pci_dev(dev);
 866         struct tb *tb = pci_get_drvdata(pdev);
 867         struct tb_nhi *nhi = tb->nhi;
 868         int ret;
 869 
 870         ret = tb_domain_suspend_noirq(tb);
 871         if (ret)
 872                 return ret;
 873 
 874         if (nhi->ops && nhi->ops->suspend_noirq) {
 875                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
 876                 if (ret)
 877                         return ret;
 878         }
 879 
 880         return 0;
 881 }
 882 
 883 static int nhi_suspend_noirq(struct device *dev)
 884 {
 885         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
 886 }
 887 
 888 static bool nhi_wake_supported(struct pci_dev *pdev)
 889 {
 890         u8 val;
 891 
 892         /*
 893          * If power rails are sustainable for wakeup from S4 this
 894          * property is set by the BIOS.
 895          */
 896         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
 897                 return !!val;
 898 
 899         return true;
 900 }
 901 
 902 static int nhi_poweroff_noirq(struct device *dev)
 903 {
 904         struct pci_dev *pdev = to_pci_dev(dev);
 905         bool wakeup;
 906 
 907         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
 908         return __nhi_suspend_noirq(dev, wakeup);
 909 }
 910 
 911 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
 912 {
 913         /* Throttling is specified in 256ns increments */
 914         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
 915         unsigned int i;
 916 
 917         /*
 918          * Configure interrupt throttling for all vectors even if we
 919          * only use few.
 920          */
 921         for (i = 0; i < MSIX_MAX_VECS; i++) {
 922                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
 923                 iowrite32(throttle, nhi->iobase + reg);
 924         }
 925 }
 926 
 927 static int nhi_resume_noirq(struct device *dev)
 928 {
 929         struct pci_dev *pdev = to_pci_dev(dev);
 930         struct tb *tb = pci_get_drvdata(pdev);
 931         struct tb_nhi *nhi = tb->nhi;
 932         int ret;
 933 
 934         /*
 935          * Check that the device is still there. It may be that the user
 936          * unplugged last device which causes the host controller to go
 937          * away on PCs.
 938          */
 939         if (!pci_device_is_present(pdev)) {
 940                 nhi->going_away = true;
 941         } else {
 942                 if (nhi->ops && nhi->ops->resume_noirq) {
 943                         ret = nhi->ops->resume_noirq(nhi);
 944                         if (ret)
 945                                 return ret;
 946                 }
 947                 nhi_enable_int_throttling(tb->nhi);
 948         }
 949 
 950         return tb_domain_resume_noirq(tb);
 951 }
 952 
 953 static int nhi_suspend(struct device *dev)
 954 {
 955         struct pci_dev *pdev = to_pci_dev(dev);
 956         struct tb *tb = pci_get_drvdata(pdev);
 957 
 958         return tb_domain_suspend(tb);
 959 }
 960 
 961 static void nhi_complete(struct device *dev)
 962 {
 963         struct pci_dev *pdev = to_pci_dev(dev);
 964         struct tb *tb = pci_get_drvdata(pdev);
 965 
 966         /*
 967          * If we were runtime suspended when system suspend started,
 968          * schedule runtime resume now. It should bring the domain back
 969          * to functional state.
 970          */
 971         if (pm_runtime_suspended(&pdev->dev))
 972                 pm_runtime_resume(&pdev->dev);
 973         else
 974                 tb_domain_complete(tb);
 975 }
 976 
 977 static int nhi_runtime_suspend(struct device *dev)
 978 {
 979         struct pci_dev *pdev = to_pci_dev(dev);
 980         struct tb *tb = pci_get_drvdata(pdev);
 981         struct tb_nhi *nhi = tb->nhi;
 982         int ret;
 983 
 984         ret = tb_domain_runtime_suspend(tb);
 985         if (ret)
 986                 return ret;
 987 
 988         if (nhi->ops && nhi->ops->runtime_suspend) {
 989                 ret = nhi->ops->runtime_suspend(tb->nhi);
 990                 if (ret)
 991                         return ret;
 992         }
 993         return 0;
 994 }
 995 
 996 static int nhi_runtime_resume(struct device *dev)
 997 {
 998         struct pci_dev *pdev = to_pci_dev(dev);
 999         struct tb *tb = pci_get_drvdata(pdev);
1000         struct tb_nhi *nhi = tb->nhi;
1001         int ret;
1002 
1003         if (nhi->ops && nhi->ops->runtime_resume) {
1004                 ret = nhi->ops->runtime_resume(nhi);
1005                 if (ret)
1006                         return ret;
1007         }
1008 
1009         nhi_enable_int_throttling(nhi);
1010         return tb_domain_runtime_resume(tb);
1011 }
1012 
1013 static void nhi_shutdown(struct tb_nhi *nhi)
1014 {
1015         int i;
1016 
1017         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1018 
1019         for (i = 0; i < nhi->hop_count; i++) {
1020                 if (nhi->tx_rings[i])
1021                         dev_WARN(&nhi->pdev->dev,
1022                                  "TX ring %d is still active\n", i);
1023                 if (nhi->rx_rings[i])
1024                         dev_WARN(&nhi->pdev->dev,
1025                                  "RX ring %d is still active\n", i);
1026         }
1027         nhi_disable_interrupts(nhi);
1028         /*
1029          * We have to release the irq before calling flush_work. Otherwise an
1030          * already executing IRQ handler could call schedule_work again.
1031          */
1032         if (!nhi->pdev->msix_enabled) {
1033                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1034                 flush_work(&nhi->interrupt_work);
1035         }
1036         ida_destroy(&nhi->msix_ida);
1037 
1038         if (nhi->ops && nhi->ops->shutdown)
1039                 nhi->ops->shutdown(nhi);
1040 }
1041 
1042 static int nhi_init_msi(struct tb_nhi *nhi)
1043 {
1044         struct pci_dev *pdev = nhi->pdev;
1045         int res, irq, nvec;
1046 
1047         /* In case someone left them on. */
1048         nhi_disable_interrupts(nhi);
1049 
1050         nhi_enable_int_throttling(nhi);
1051 
1052         ida_init(&nhi->msix_ida);
1053 
1054         /*
1055          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1056          * get all MSI-X vectors and if we succeed, each ring will have
1057          * one MSI-X. If for some reason that does not work out, we
1058          * fallback to a single MSI.
1059          */
1060         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1061                                      PCI_IRQ_MSIX);
1062         if (nvec < 0) {
1063                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1064                 if (nvec < 0)
1065                         return nvec;
1066 
1067                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1068 
1069                 irq = pci_irq_vector(nhi->pdev, 0);
1070                 if (irq < 0)
1071                         return irq;
1072 
1073                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1074                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1075                 if (res) {
1076                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1077                         return res;
1078                 }
1079         }
1080 
1081         return 0;
1082 }
1083 
1084 static bool nhi_imr_valid(struct pci_dev *pdev)
1085 {
1086         u8 val;
1087 
1088         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1089                 return !!val;
1090 
1091         return true;
1092 }
1093 
1094 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1095 {
1096         struct tb_nhi *nhi;
1097         struct tb *tb;
1098         int res;
1099 
1100         if (!nhi_imr_valid(pdev)) {
1101                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1102                 return -ENODEV;
1103         }
1104 
1105         res = pcim_enable_device(pdev);
1106         if (res) {
1107                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1108                 return res;
1109         }
1110 
1111         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1112         if (res) {
1113                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1114                 return res;
1115         }
1116 
1117         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1118         if (!nhi)
1119                 return -ENOMEM;
1120 
1121         nhi->pdev = pdev;
1122         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1123         /* cannot fail - table is allocated bin pcim_iomap_regions */
1124         nhi->iobase = pcim_iomap_table(pdev)[0];
1125         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1126         if (nhi->hop_count != 12 && nhi->hop_count != 32)
1127                 dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1128                          nhi->hop_count);
1129 
1130         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1131                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1132         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1133                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1134         if (!nhi->tx_rings || !nhi->rx_rings)
1135                 return -ENOMEM;
1136 
1137         res = nhi_init_msi(nhi);
1138         if (res) {
1139                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1140                 return res;
1141         }
1142 
1143         spin_lock_init(&nhi->lock);
1144 
1145         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1146         if (res)
1147                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1148         if (res) {
1149                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1150                 return res;
1151         }
1152 
1153         pci_set_master(pdev);
1154 
1155         if (nhi->ops && nhi->ops->init) {
1156                 res = nhi->ops->init(nhi);
1157                 if (res)
1158                         return res;
1159         }
1160 
1161         tb = icm_probe(nhi);
1162         if (!tb)
1163                 tb = tb_probe(nhi);
1164         if (!tb) {
1165                 dev_err(&nhi->pdev->dev,
1166                         "failed to determine connection manager, aborting\n");
1167                 return -ENODEV;
1168         }
1169 
1170         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1171 
1172         res = tb_domain_add(tb);
1173         if (res) {
1174                 /*
1175                  * At this point the RX/TX rings might already have been
1176                  * activated. Do a proper shutdown.
1177                  */
1178                 tb_domain_put(tb);
1179                 nhi_shutdown(nhi);
1180                 return res;
1181         }
1182         pci_set_drvdata(pdev, tb);
1183 
1184         pm_runtime_allow(&pdev->dev);
1185         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1186         pm_runtime_use_autosuspend(&pdev->dev);
1187         pm_runtime_put_autosuspend(&pdev->dev);
1188 
1189         return 0;
1190 }
1191 
1192 static void nhi_remove(struct pci_dev *pdev)
1193 {
1194         struct tb *tb = pci_get_drvdata(pdev);
1195         struct tb_nhi *nhi = tb->nhi;
1196 
1197         pm_runtime_get_sync(&pdev->dev);
1198         pm_runtime_dont_use_autosuspend(&pdev->dev);
1199         pm_runtime_forbid(&pdev->dev);
1200 
1201         tb_domain_remove(tb);
1202         nhi_shutdown(nhi);
1203 }
1204 
1205 /*
1206  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1207  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1208  * resume_noirq until we are done.
1209  */
1210 static const struct dev_pm_ops nhi_pm_ops = {
1211         .suspend_noirq = nhi_suspend_noirq,
1212         .resume_noirq = nhi_resume_noirq,
1213         .freeze_noirq = nhi_suspend_noirq, /*
1214                                             * we just disable hotplug, the
1215                                             * pci-tunnels stay alive.
1216                                             */
1217         .thaw_noirq = nhi_resume_noirq,
1218         .restore_noirq = nhi_resume_noirq,
1219         .suspend = nhi_suspend,
1220         .freeze = nhi_suspend,
1221         .poweroff_noirq = nhi_poweroff_noirq,
1222         .poweroff = nhi_suspend,
1223         .complete = nhi_complete,
1224         .runtime_suspend = nhi_runtime_suspend,
1225         .runtime_resume = nhi_runtime_resume,
1226 };
1227 
1228 static struct pci_device_id nhi_ids[] = {
1229         /*
1230          * We have to specify class, the TB bridges use the same device and
1231          * vendor (sub)id on gen 1 and gen 2 controllers.
1232          */
1233         {
1234                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1235                 .vendor = PCI_VENDOR_ID_INTEL,
1236                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1237                 .subvendor = 0x2222, .subdevice = 0x1111,
1238         },
1239         {
1240                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1241                 .vendor = PCI_VENDOR_ID_INTEL,
1242                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1243                 .subvendor = 0x2222, .subdevice = 0x1111,
1244         },
1245         {
1246                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1247                 .vendor = PCI_VENDOR_ID_INTEL,
1248                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1249                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1250         },
1251         {
1252                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1253                 .vendor = PCI_VENDOR_ID_INTEL,
1254                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1255                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1256         },
1257 
1258         /* Thunderbolt 3 */
1259         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1260         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1261         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1262         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1263         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1264         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1265         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1266         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1267         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1268         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1269         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1270           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1271         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1272           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1273 
1274         { 0,}
1275 };
1276 
1277 MODULE_DEVICE_TABLE(pci, nhi_ids);
1278 MODULE_LICENSE("GPL");
1279 
1280 static struct pci_driver nhi_driver = {
1281         .name = "thunderbolt",
1282         .id_table = nhi_ids,
1283         .probe = nhi_probe,
1284         .remove = nhi_remove,
1285         .driver.pm = &nhi_pm_ops,
1286 };
1287 
1288 static int __init nhi_init(void)
1289 {
1290         int ret;
1291 
1292         ret = tb_domain_init();
1293         if (ret)
1294                 return ret;
1295         ret = pci_register_driver(&nhi_driver);
1296         if (ret)
1297                 tb_domain_exit();
1298         return ret;
1299 }
1300 
1301 static void __exit nhi_unload(void)
1302 {
1303         pci_unregister_driver(&nhi_driver);
1304         tb_domain_exit();
1305 }
1306 
1307 rootfs_initcall(nhi_init);
1308 module_exit(nhi_unload);

/* [<][>][^][v][top][bottom][index][help] */