root/drivers/spi/spi-ep93xx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ep93xx_spi_calc_divisors
  2. ep93xx_spi_chip_setup
  3. ep93xx_do_write
  4. ep93xx_do_read
  5. ep93xx_spi_read_write
  6. ep93xx_dma_data_to_trans_dir
  7. ep93xx_spi_dma_prepare
  8. ep93xx_spi_dma_finish
  9. ep93xx_spi_dma_callback
  10. ep93xx_spi_dma_transfer
  11. ep93xx_spi_interrupt
  12. ep93xx_spi_transfer_one
  13. ep93xx_spi_prepare_message
  14. ep93xx_spi_prepare_hardware
  15. ep93xx_spi_unprepare_hardware
  16. ep93xx_spi_dma_filter
  17. ep93xx_spi_setup_dma
  18. ep93xx_spi_release_dma
  19. ep93xx_spi_probe
  20. ep93xx_spi_remove

   1 // SPDX-License-Identifier: GPL-2.0-only
   2 /*
   3  * Driver for Cirrus Logic EP93xx SPI controller.
   4  *
   5  * Copyright (C) 2010-2011 Mika Westerberg
   6  *
   7  * Explicit FIFO handling code was inspired by amba-pl022 driver.
   8  *
   9  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
  10  *
  11  * For more information about the SPI controller see documentation on Cirrus
  12  * Logic web site:
  13  *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
  14  */
  15 
  16 #include <linux/io.h>
  17 #include <linux/clk.h>
  18 #include <linux/err.h>
  19 #include <linux/delay.h>
  20 #include <linux/device.h>
  21 #include <linux/dmaengine.h>
  22 #include <linux/bitops.h>
  23 #include <linux/interrupt.h>
  24 #include <linux/module.h>
  25 #include <linux/platform_device.h>
  26 #include <linux/sched.h>
  27 #include <linux/scatterlist.h>
  28 #include <linux/spi/spi.h>
  29 
  30 #include <linux/platform_data/dma-ep93xx.h>
  31 #include <linux/platform_data/spi-ep93xx.h>
  32 
  33 #define SSPCR0                  0x0000
  34 #define SSPCR0_MODE_SHIFT       6
  35 #define SSPCR0_SCR_SHIFT        8
  36 
  37 #define SSPCR1                  0x0004
  38 #define SSPCR1_RIE              BIT(0)
  39 #define SSPCR1_TIE              BIT(1)
  40 #define SSPCR1_RORIE            BIT(2)
  41 #define SSPCR1_LBM              BIT(3)
  42 #define SSPCR1_SSE              BIT(4)
  43 #define SSPCR1_MS               BIT(5)
  44 #define SSPCR1_SOD              BIT(6)
  45 
  46 #define SSPDR                   0x0008
  47 
  48 #define SSPSR                   0x000c
  49 #define SSPSR_TFE               BIT(0)
  50 #define SSPSR_TNF               BIT(1)
  51 #define SSPSR_RNE               BIT(2)
  52 #define SSPSR_RFF               BIT(3)
  53 #define SSPSR_BSY               BIT(4)
  54 #define SSPCPSR                 0x0010
  55 
  56 #define SSPIIR                  0x0014
  57 #define SSPIIR_RIS              BIT(0)
  58 #define SSPIIR_TIS              BIT(1)
  59 #define SSPIIR_RORIS            BIT(2)
  60 #define SSPICR                  SSPIIR
  61 
  62 /* timeout in milliseconds */
  63 #define SPI_TIMEOUT             5
  64 /* maximum depth of RX/TX FIFO */
  65 #define SPI_FIFO_SIZE           8
  66 
  67 /**
  68  * struct ep93xx_spi - EP93xx SPI controller structure
  69  * @clk: clock for the controller
  70  * @mmio: pointer to ioremap()'d registers
  71  * @sspdr_phys: physical address of the SSPDR register
  72  * @tx: current byte in transfer to transmit
  73  * @rx: current byte in transfer to receive
  74  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
  75  *              frame decreases this level and sending one frame increases it.
  76  * @dma_rx: RX DMA channel
  77  * @dma_tx: TX DMA channel
  78  * @dma_rx_data: RX parameters passed to the DMA engine
  79  * @dma_tx_data: TX parameters passed to the DMA engine
  80  * @rx_sgt: sg table for RX transfers
  81  * @tx_sgt: sg table for TX transfers
  82  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
  83  *            the client
  84  */
  85 struct ep93xx_spi {
  86         struct clk                      *clk;
  87         void __iomem                    *mmio;
  88         unsigned long                   sspdr_phys;
  89         size_t                          tx;
  90         size_t                          rx;
  91         size_t                          fifo_level;
  92         struct dma_chan                 *dma_rx;
  93         struct dma_chan                 *dma_tx;
  94         struct ep93xx_dma_data          dma_rx_data;
  95         struct ep93xx_dma_data          dma_tx_data;
  96         struct sg_table                 rx_sgt;
  97         struct sg_table                 tx_sgt;
  98         void                            *zeropage;
  99 };
 100 
 101 /* converts bits per word to CR0.DSS value */
 102 #define bits_per_word_to_dss(bpw)       ((bpw) - 1)
 103 
 104 /**
 105  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 106  * @master: SPI master
 107  * @rate: desired SPI output clock rate
 108  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
 109  * @div_scr: pointer to return the scr divider
 110  */
 111 static int ep93xx_spi_calc_divisors(struct spi_master *master,
 112                                     u32 rate, u8 *div_cpsr, u8 *div_scr)
 113 {
 114         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 115         unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 116         int cpsr, scr;
 117 
 118         /*
 119          * Make sure that max value is between values supported by the
 120          * controller.
 121          */
 122         rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
 123 
 124         /*
 125          * Calculate divisors so that we can get speed according the
 126          * following formula:
 127          *      rate = spi_clock_rate / (cpsr * (1 + scr))
 128          *
 129          * cpsr must be even number and starts from 2, scr can be any number
 130          * between 0 and 255.
 131          */
 132         for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 133                 for (scr = 0; scr <= 255; scr++) {
 134                         if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 135                                 *div_scr = (u8)scr;
 136                                 *div_cpsr = (u8)cpsr;
 137                                 return 0;
 138                         }
 139                 }
 140         }
 141 
 142         return -EINVAL;
 143 }
 144 
 145 static int ep93xx_spi_chip_setup(struct spi_master *master,
 146                                  struct spi_device *spi,
 147                                  struct spi_transfer *xfer)
 148 {
 149         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 150         u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
 151         u8 div_cpsr = 0;
 152         u8 div_scr = 0;
 153         u16 cr0;
 154         int err;
 155 
 156         err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
 157                                        &div_cpsr, &div_scr);
 158         if (err)
 159                 return err;
 160 
 161         cr0 = div_scr << SSPCR0_SCR_SHIFT;
 162         cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 163         cr0 |= dss;
 164 
 165         dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 166                 spi->mode, div_cpsr, div_scr, dss);
 167         dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
 168 
 169         writel(div_cpsr, espi->mmio + SSPCPSR);
 170         writel(cr0, espi->mmio + SSPCR0);
 171 
 172         return 0;
 173 }
 174 
 175 static void ep93xx_do_write(struct spi_master *master)
 176 {
 177         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 178         struct spi_transfer *xfer = master->cur_msg->state;
 179         u32 val = 0;
 180 
 181         if (xfer->bits_per_word > 8) {
 182                 if (xfer->tx_buf)
 183                         val = ((u16 *)xfer->tx_buf)[espi->tx];
 184                 espi->tx += 2;
 185         } else {
 186                 if (xfer->tx_buf)
 187                         val = ((u8 *)xfer->tx_buf)[espi->tx];
 188                 espi->tx += 1;
 189         }
 190         writel(val, espi->mmio + SSPDR);
 191 }
 192 
 193 static void ep93xx_do_read(struct spi_master *master)
 194 {
 195         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 196         struct spi_transfer *xfer = master->cur_msg->state;
 197         u32 val;
 198 
 199         val = readl(espi->mmio + SSPDR);
 200         if (xfer->bits_per_word > 8) {
 201                 if (xfer->rx_buf)
 202                         ((u16 *)xfer->rx_buf)[espi->rx] = val;
 203                 espi->rx += 2;
 204         } else {
 205                 if (xfer->rx_buf)
 206                         ((u8 *)xfer->rx_buf)[espi->rx] = val;
 207                 espi->rx += 1;
 208         }
 209 }
 210 
 211 /**
 212  * ep93xx_spi_read_write() - perform next RX/TX transfer
 213  * @espi: ep93xx SPI controller struct
 214  *
 215  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 216  * called several times, the whole transfer will be completed. Returns
 217  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 218  *
 219  * When this function is finished, RX FIFO should be empty and TX FIFO should be
 220  * full.
 221  */
 222 static int ep93xx_spi_read_write(struct spi_master *master)
 223 {
 224         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 225         struct spi_transfer *xfer = master->cur_msg->state;
 226 
 227         /* read as long as RX FIFO has frames in it */
 228         while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
 229                 ep93xx_do_read(master);
 230                 espi->fifo_level--;
 231         }
 232 
 233         /* write as long as TX FIFO has room */
 234         while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
 235                 ep93xx_do_write(master);
 236                 espi->fifo_level++;
 237         }
 238 
 239         if (espi->rx == xfer->len)
 240                 return 0;
 241 
 242         return -EINPROGRESS;
 243 }
 244 
 245 static enum dma_transfer_direction
 246 ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
 247 {
 248         switch (dir) {
 249         case DMA_TO_DEVICE:
 250                 return DMA_MEM_TO_DEV;
 251         case DMA_FROM_DEVICE:
 252                 return DMA_DEV_TO_MEM;
 253         default:
 254                 return DMA_TRANS_NONE;
 255         }
 256 }
 257 
 258 /**
 259  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 260  * @master: SPI master
 261  * @dir: DMA transfer direction
 262  *
 263  * Function configures the DMA, maps the buffer and prepares the DMA
 264  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 265  * in case of failure.
 266  */
 267 static struct dma_async_tx_descriptor *
 268 ep93xx_spi_dma_prepare(struct spi_master *master,
 269                        enum dma_data_direction dir)
 270 {
 271         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 272         struct spi_transfer *xfer = master->cur_msg->state;
 273         struct dma_async_tx_descriptor *txd;
 274         enum dma_slave_buswidth buswidth;
 275         struct dma_slave_config conf;
 276         struct scatterlist *sg;
 277         struct sg_table *sgt;
 278         struct dma_chan *chan;
 279         const void *buf, *pbuf;
 280         size_t len = xfer->len;
 281         int i, ret, nents;
 282 
 283         if (xfer->bits_per_word > 8)
 284                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 285         else
 286                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 287 
 288         memset(&conf, 0, sizeof(conf));
 289         conf.direction = ep93xx_dma_data_to_trans_dir(dir);
 290 
 291         if (dir == DMA_FROM_DEVICE) {
 292                 chan = espi->dma_rx;
 293                 buf = xfer->rx_buf;
 294                 sgt = &espi->rx_sgt;
 295 
 296                 conf.src_addr = espi->sspdr_phys;
 297                 conf.src_addr_width = buswidth;
 298         } else {
 299                 chan = espi->dma_tx;
 300                 buf = xfer->tx_buf;
 301                 sgt = &espi->tx_sgt;
 302 
 303                 conf.dst_addr = espi->sspdr_phys;
 304                 conf.dst_addr_width = buswidth;
 305         }
 306 
 307         ret = dmaengine_slave_config(chan, &conf);
 308         if (ret)
 309                 return ERR_PTR(ret);
 310 
 311         /*
 312          * We need to split the transfer into PAGE_SIZE'd chunks. This is
 313          * because we are using @espi->zeropage to provide a zero RX buffer
 314          * for the TX transfers and we have only allocated one page for that.
 315          *
 316          * For performance reasons we allocate a new sg_table only when
 317          * needed. Otherwise we will re-use the current one. Eventually the
 318          * last sg_table is released in ep93xx_spi_release_dma().
 319          */
 320 
 321         nents = DIV_ROUND_UP(len, PAGE_SIZE);
 322         if (nents != sgt->nents) {
 323                 sg_free_table(sgt);
 324 
 325                 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 326                 if (ret)
 327                         return ERR_PTR(ret);
 328         }
 329 
 330         pbuf = buf;
 331         for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 332                 size_t bytes = min_t(size_t, len, PAGE_SIZE);
 333 
 334                 if (buf) {
 335                         sg_set_page(sg, virt_to_page(pbuf), bytes,
 336                                     offset_in_page(pbuf));
 337                 } else {
 338                         sg_set_page(sg, virt_to_page(espi->zeropage),
 339                                     bytes, 0);
 340                 }
 341 
 342                 pbuf += bytes;
 343                 len -= bytes;
 344         }
 345 
 346         if (WARN_ON(len)) {
 347                 dev_warn(&master->dev, "len = %zu expected 0!\n", len);
 348                 return ERR_PTR(-EINVAL);
 349         }
 350 
 351         nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 352         if (!nents)
 353                 return ERR_PTR(-ENOMEM);
 354 
 355         txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
 356                                       DMA_CTRL_ACK);
 357         if (!txd) {
 358                 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 359                 return ERR_PTR(-ENOMEM);
 360         }
 361         return txd;
 362 }
 363 
 364 /**
 365  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 366  * @master: SPI master
 367  * @dir: DMA transfer direction
 368  *
 369  * Function finishes with the DMA transfer. After this, the DMA buffer is
 370  * unmapped.
 371  */
 372 static void ep93xx_spi_dma_finish(struct spi_master *master,
 373                                   enum dma_data_direction dir)
 374 {
 375         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 376         struct dma_chan *chan;
 377         struct sg_table *sgt;
 378 
 379         if (dir == DMA_FROM_DEVICE) {
 380                 chan = espi->dma_rx;
 381                 sgt = &espi->rx_sgt;
 382         } else {
 383                 chan = espi->dma_tx;
 384                 sgt = &espi->tx_sgt;
 385         }
 386 
 387         dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 388 }
 389 
 390 static void ep93xx_spi_dma_callback(void *callback_param)
 391 {
 392         struct spi_master *master = callback_param;
 393 
 394         ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
 395         ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 396 
 397         spi_finalize_current_transfer(master);
 398 }
 399 
 400 static int ep93xx_spi_dma_transfer(struct spi_master *master)
 401 {
 402         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 403         struct dma_async_tx_descriptor *rxd, *txd;
 404 
 405         rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
 406         if (IS_ERR(rxd)) {
 407                 dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 408                 return PTR_ERR(rxd);
 409         }
 410 
 411         txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
 412         if (IS_ERR(txd)) {
 413                 ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 414                 dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
 415                 return PTR_ERR(txd);
 416         }
 417 
 418         /* We are ready when RX is done */
 419         rxd->callback = ep93xx_spi_dma_callback;
 420         rxd->callback_param = master;
 421 
 422         /* Now submit both descriptors and start DMA */
 423         dmaengine_submit(rxd);
 424         dmaengine_submit(txd);
 425 
 426         dma_async_issue_pending(espi->dma_rx);
 427         dma_async_issue_pending(espi->dma_tx);
 428 
 429         /* signal that we need to wait for completion */
 430         return 1;
 431 }
 432 
 433 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 434 {
 435         struct spi_master *master = dev_id;
 436         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 437         u32 val;
 438 
 439         /*
 440          * If we got ROR (receive overrun) interrupt we know that something is
 441          * wrong. Just abort the message.
 442          */
 443         if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
 444                 /* clear the overrun interrupt */
 445                 writel(0, espi->mmio + SSPICR);
 446                 dev_warn(&master->dev,
 447                          "receive overrun, aborting the message\n");
 448                 master->cur_msg->status = -EIO;
 449         } else {
 450                 /*
 451                  * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 452                  * simply execute next data transfer.
 453                  */
 454                 if (ep93xx_spi_read_write(master)) {
 455                         /*
 456                          * In normal case, there still is some processing left
 457                          * for current transfer. Let's wait for the next
 458                          * interrupt then.
 459                          */
 460                         return IRQ_HANDLED;
 461                 }
 462         }
 463 
 464         /*
 465          * Current transfer is finished, either with error or with success. In
 466          * any case we disable interrupts and notify the worker to handle
 467          * any post-processing of the message.
 468          */
 469         val = readl(espi->mmio + SSPCR1);
 470         val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 471         writel(val, espi->mmio + SSPCR1);
 472 
 473         spi_finalize_current_transfer(master);
 474 
 475         return IRQ_HANDLED;
 476 }
 477 
 478 static int ep93xx_spi_transfer_one(struct spi_master *master,
 479                                    struct spi_device *spi,
 480                                    struct spi_transfer *xfer)
 481 {
 482         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 483         u32 val;
 484         int ret;
 485 
 486         ret = ep93xx_spi_chip_setup(master, spi, xfer);
 487         if (ret) {
 488                 dev_err(&master->dev, "failed to setup chip for transfer\n");
 489                 return ret;
 490         }
 491 
 492         master->cur_msg->state = xfer;
 493         espi->rx = 0;
 494         espi->tx = 0;
 495 
 496         /*
 497          * There is no point of setting up DMA for the transfers which will
 498          * fit into the FIFO and can be transferred with a single interrupt.
 499          * So in these cases we will be using PIO and don't bother for DMA.
 500          */
 501         if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
 502                 return ep93xx_spi_dma_transfer(master);
 503 
 504         /* Using PIO so prime the TX FIFO and enable interrupts */
 505         ep93xx_spi_read_write(master);
 506 
 507         val = readl(espi->mmio + SSPCR1);
 508         val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 509         writel(val, espi->mmio + SSPCR1);
 510 
 511         /* signal that we need to wait for completion */
 512         return 1;
 513 }
 514 
 515 static int ep93xx_spi_prepare_message(struct spi_master *master,
 516                                       struct spi_message *msg)
 517 {
 518         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 519         unsigned long timeout;
 520 
 521         /*
 522          * Just to be sure: flush any data from RX FIFO.
 523          */
 524         timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 525         while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
 526                 if (time_after(jiffies, timeout)) {
 527                         dev_warn(&master->dev,
 528                                  "timeout while flushing RX FIFO\n");
 529                         return -ETIMEDOUT;
 530                 }
 531                 readl(espi->mmio + SSPDR);
 532         }
 533 
 534         /*
 535          * We explicitly handle FIFO level. This way we don't have to check TX
 536          * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 537          */
 538         espi->fifo_level = 0;
 539 
 540         return 0;
 541 }
 542 
 543 static int ep93xx_spi_prepare_hardware(struct spi_master *master)
 544 {
 545         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 546         u32 val;
 547         int ret;
 548 
 549         ret = clk_enable(espi->clk);
 550         if (ret)
 551                 return ret;
 552 
 553         val = readl(espi->mmio + SSPCR1);
 554         val |= SSPCR1_SSE;
 555         writel(val, espi->mmio + SSPCR1);
 556 
 557         return 0;
 558 }
 559 
 560 static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
 561 {
 562         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 563         u32 val;
 564 
 565         val = readl(espi->mmio + SSPCR1);
 566         val &= ~SSPCR1_SSE;
 567         writel(val, espi->mmio + SSPCR1);
 568 
 569         clk_disable(espi->clk);
 570 
 571         return 0;
 572 }
 573 
 574 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 575 {
 576         if (ep93xx_dma_chan_is_m2p(chan))
 577                 return false;
 578 
 579         chan->private = filter_param;
 580         return true;
 581 }
 582 
 583 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 584 {
 585         dma_cap_mask_t mask;
 586         int ret;
 587 
 588         espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 589         if (!espi->zeropage)
 590                 return -ENOMEM;
 591 
 592         dma_cap_zero(mask);
 593         dma_cap_set(DMA_SLAVE, mask);
 594 
 595         espi->dma_rx_data.port = EP93XX_DMA_SSP;
 596         espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
 597         espi->dma_rx_data.name = "ep93xx-spi-rx";
 598 
 599         espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 600                                            &espi->dma_rx_data);
 601         if (!espi->dma_rx) {
 602                 ret = -ENODEV;
 603                 goto fail_free_page;
 604         }
 605 
 606         espi->dma_tx_data.port = EP93XX_DMA_SSP;
 607         espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
 608         espi->dma_tx_data.name = "ep93xx-spi-tx";
 609 
 610         espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 611                                            &espi->dma_tx_data);
 612         if (!espi->dma_tx) {
 613                 ret = -ENODEV;
 614                 goto fail_release_rx;
 615         }
 616 
 617         return 0;
 618 
 619 fail_release_rx:
 620         dma_release_channel(espi->dma_rx);
 621         espi->dma_rx = NULL;
 622 fail_free_page:
 623         free_page((unsigned long)espi->zeropage);
 624 
 625         return ret;
 626 }
 627 
 628 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
 629 {
 630         if (espi->dma_rx) {
 631                 dma_release_channel(espi->dma_rx);
 632                 sg_free_table(&espi->rx_sgt);
 633         }
 634         if (espi->dma_tx) {
 635                 dma_release_channel(espi->dma_tx);
 636                 sg_free_table(&espi->tx_sgt);
 637         }
 638 
 639         if (espi->zeropage)
 640                 free_page((unsigned long)espi->zeropage);
 641 }
 642 
 643 static int ep93xx_spi_probe(struct platform_device *pdev)
 644 {
 645         struct spi_master *master;
 646         struct ep93xx_spi_info *info;
 647         struct ep93xx_spi *espi;
 648         struct resource *res;
 649         int irq;
 650         int error;
 651 
 652         info = dev_get_platdata(&pdev->dev);
 653         if (!info) {
 654                 dev_err(&pdev->dev, "missing platform data\n");
 655                 return -EINVAL;
 656         }
 657 
 658         irq = platform_get_irq(pdev, 0);
 659         if (irq < 0)
 660                 return -EBUSY;
 661 
 662         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 663         if (!res) {
 664                 dev_err(&pdev->dev, "unable to get iomem resource\n");
 665                 return -ENODEV;
 666         }
 667 
 668         master = spi_alloc_master(&pdev->dev, sizeof(*espi));
 669         if (!master)
 670                 return -ENOMEM;
 671 
 672         master->use_gpio_descriptors = true;
 673         master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
 674         master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
 675         master->prepare_message = ep93xx_spi_prepare_message;
 676         master->transfer_one = ep93xx_spi_transfer_one;
 677         master->bus_num = pdev->id;
 678         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 679         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 680         /*
 681          * The SPI core will count the number of GPIO descriptors to figure
 682          * out the number of chip selects available on the platform.
 683          */
 684         master->num_chipselect = 0;
 685 
 686         platform_set_drvdata(pdev, master);
 687 
 688         espi = spi_master_get_devdata(master);
 689 
 690         espi->clk = devm_clk_get(&pdev->dev, NULL);
 691         if (IS_ERR(espi->clk)) {
 692                 dev_err(&pdev->dev, "unable to get spi clock\n");
 693                 error = PTR_ERR(espi->clk);
 694                 goto fail_release_master;
 695         }
 696 
 697         /*
 698          * Calculate maximum and minimum supported clock rates
 699          * for the controller.
 700          */
 701         master->max_speed_hz = clk_get_rate(espi->clk) / 2;
 702         master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 703 
 704         espi->sspdr_phys = res->start + SSPDR;
 705 
 706         espi->mmio = devm_ioremap_resource(&pdev->dev, res);
 707         if (IS_ERR(espi->mmio)) {
 708                 error = PTR_ERR(espi->mmio);
 709                 goto fail_release_master;
 710         }
 711 
 712         error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
 713                                 0, "ep93xx-spi", master);
 714         if (error) {
 715                 dev_err(&pdev->dev, "failed to request irq\n");
 716                 goto fail_release_master;
 717         }
 718 
 719         if (info->use_dma && ep93xx_spi_setup_dma(espi))
 720                 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
 721 
 722         /* make sure that the hardware is disabled */
 723         writel(0, espi->mmio + SSPCR1);
 724 
 725         error = devm_spi_register_master(&pdev->dev, master);
 726         if (error) {
 727                 dev_err(&pdev->dev, "failed to register SPI master\n");
 728                 goto fail_free_dma;
 729         }
 730 
 731         dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
 732                  (unsigned long)res->start, irq);
 733 
 734         return 0;
 735 
 736 fail_free_dma:
 737         ep93xx_spi_release_dma(espi);
 738 fail_release_master:
 739         spi_master_put(master);
 740 
 741         return error;
 742 }
 743 
 744 static int ep93xx_spi_remove(struct platform_device *pdev)
 745 {
 746         struct spi_master *master = platform_get_drvdata(pdev);
 747         struct ep93xx_spi *espi = spi_master_get_devdata(master);
 748 
 749         ep93xx_spi_release_dma(espi);
 750 
 751         return 0;
 752 }
 753 
 754 static struct platform_driver ep93xx_spi_driver = {
 755         .driver         = {
 756                 .name   = "ep93xx-spi",
 757         },
 758         .probe          = ep93xx_spi_probe,
 759         .remove         = ep93xx_spi_remove,
 760 };
 761 module_platform_driver(ep93xx_spi_driver);
 762 
 763 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
 764 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
 765 MODULE_LICENSE("GPL");
 766 MODULE_ALIAS("platform:ep93xx-spi");

/* [<][>][^][v][top][bottom][index][help] */