root/drivers/spi/spi-cavium.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. octeon_spi_wait_ready
  2. octeon_spi_do_transfer
  3. octeon_spi_transfer_one_message

   1 /*
   2  * This file is subject to the terms and conditions of the GNU General Public
   3  * License.  See the file "COPYING" in the main directory of this archive
   4  * for more details.
   5  *
   6  * Copyright (C) 2011, 2012 Cavium, Inc.
   7  */
   8 
   9 #include <linux/spi/spi.h>
  10 #include <linux/module.h>
  11 #include <linux/delay.h>
  12 #include <linux/io.h>
  13 
  14 #include "spi-cavium.h"
  15 
  16 static void octeon_spi_wait_ready(struct octeon_spi *p)
  17 {
  18         union cvmx_mpi_sts mpi_sts;
  19         unsigned int loops = 0;
  20 
  21         do {
  22                 if (loops++)
  23                         __delay(500);
  24                 mpi_sts.u64 = readq(p->register_base + OCTEON_SPI_STS(p));
  25         } while (mpi_sts.s.busy);
  26 }
  27 
  28 static int octeon_spi_do_transfer(struct octeon_spi *p,
  29                                   struct spi_message *msg,
  30                                   struct spi_transfer *xfer,
  31                                   bool last_xfer)
  32 {
  33         struct spi_device *spi = msg->spi;
  34         union cvmx_mpi_cfg mpi_cfg;
  35         union cvmx_mpi_tx mpi_tx;
  36         unsigned int clkdiv;
  37         int mode;
  38         bool cpha, cpol;
  39         const u8 *tx_buf;
  40         u8 *rx_buf;
  41         int len;
  42         int i;
  43 
  44         mode = spi->mode;
  45         cpha = mode & SPI_CPHA;
  46         cpol = mode & SPI_CPOL;
  47 
  48         clkdiv = p->sys_freq / (2 * xfer->speed_hz);
  49 
  50         mpi_cfg.u64 = 0;
  51 
  52         mpi_cfg.s.clkdiv = clkdiv;
  53         mpi_cfg.s.cshi = (mode & SPI_CS_HIGH) ? 1 : 0;
  54         mpi_cfg.s.lsbfirst = (mode & SPI_LSB_FIRST) ? 1 : 0;
  55         mpi_cfg.s.wireor = (mode & SPI_3WIRE) ? 1 : 0;
  56         mpi_cfg.s.idlelo = cpha != cpol;
  57         mpi_cfg.s.cslate = cpha ? 1 : 0;
  58         mpi_cfg.s.enable = 1;
  59 
  60         if (spi->chip_select < 4)
  61                 p->cs_enax |= 1ull << (12 + spi->chip_select);
  62         mpi_cfg.u64 |= p->cs_enax;
  63 
  64         if (mpi_cfg.u64 != p->last_cfg) {
  65                 p->last_cfg = mpi_cfg.u64;
  66                 writeq(mpi_cfg.u64, p->register_base + OCTEON_SPI_CFG(p));
  67         }
  68         tx_buf = xfer->tx_buf;
  69         rx_buf = xfer->rx_buf;
  70         len = xfer->len;
  71         while (len > OCTEON_SPI_MAX_BYTES) {
  72                 for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
  73                         u8 d;
  74                         if (tx_buf)
  75                                 d = *tx_buf++;
  76                         else
  77                                 d = 0;
  78                         writeq(d, p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
  79                 }
  80                 mpi_tx.u64 = 0;
  81                 mpi_tx.s.csid = spi->chip_select;
  82                 mpi_tx.s.leavecs = 1;
  83                 mpi_tx.s.txnum = tx_buf ? OCTEON_SPI_MAX_BYTES : 0;
  84                 mpi_tx.s.totnum = OCTEON_SPI_MAX_BYTES;
  85                 writeq(mpi_tx.u64, p->register_base + OCTEON_SPI_TX(p));
  86 
  87                 octeon_spi_wait_ready(p);
  88                 if (rx_buf)
  89                         for (i = 0; i < OCTEON_SPI_MAX_BYTES; i++) {
  90                                 u64 v = readq(p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
  91                                 *rx_buf++ = (u8)v;
  92                         }
  93                 len -= OCTEON_SPI_MAX_BYTES;
  94         }
  95 
  96         for (i = 0; i < len; i++) {
  97                 u8 d;
  98                 if (tx_buf)
  99                         d = *tx_buf++;
 100                 else
 101                         d = 0;
 102                 writeq(d, p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
 103         }
 104 
 105         mpi_tx.u64 = 0;
 106         mpi_tx.s.csid = spi->chip_select;
 107         if (last_xfer)
 108                 mpi_tx.s.leavecs = xfer->cs_change;
 109         else
 110                 mpi_tx.s.leavecs = !xfer->cs_change;
 111         mpi_tx.s.txnum = tx_buf ? len : 0;
 112         mpi_tx.s.totnum = len;
 113         writeq(mpi_tx.u64, p->register_base + OCTEON_SPI_TX(p));
 114 
 115         octeon_spi_wait_ready(p);
 116         if (rx_buf)
 117                 for (i = 0; i < len; i++) {
 118                         u64 v = readq(p->register_base + OCTEON_SPI_DAT0(p) + (8 * i));
 119                         *rx_buf++ = (u8)v;
 120                 }
 121 
 122         if (xfer->delay_usecs)
 123                 udelay(xfer->delay_usecs);
 124 
 125         return xfer->len;
 126 }
 127 
 128 int octeon_spi_transfer_one_message(struct spi_master *master,
 129                                     struct spi_message *msg)
 130 {
 131         struct octeon_spi *p = spi_master_get_devdata(master);
 132         unsigned int total_len = 0;
 133         int status = 0;
 134         struct spi_transfer *xfer;
 135 
 136         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 137                 bool last_xfer = list_is_last(&xfer->transfer_list,
 138                                               &msg->transfers);
 139                 int r = octeon_spi_do_transfer(p, msg, xfer, last_xfer);
 140                 if (r < 0) {
 141                         status = r;
 142                         goto err;
 143                 }
 144                 total_len += r;
 145         }
 146 err:
 147         msg->status = status;
 148         msg->actual_length = total_len;
 149         spi_finalize_current_message(master);
 150         return status;
 151 }

/* [<][>][^][v][top][bottom][index][help] */